A Proposal for Automatic Demand Forecast Model Selection
Résumé
Demand forecasting is critical within collaborative networks, enabling suppliers,manufacturers, and retailers to synchronize their operations and achieve enhanced supply chain efficiency. Despite a wealth of research on time series forecast model selection and the availability of numerous forecast models, selecting the most appropriate model for a specific time series remains a challenging task. In this study, an automatic demand forecast model selection procedure is proposed that includes a wide range of statistical andmachine learning forecast models. The optimization of the hyperparameters is performed on all the models. The study is validated on M3 monthly data, outperforming all submitted methods and demonstrating significant improvements in terms of accuracy. The approach was also applied to a collaborative network company.