A Proposal for Automatic Demand Forecast Model Selection - IMT Mines Albi-Carmaux
Communication Dans Un Congrès Année : 2024

A Proposal for Automatic Demand Forecast Model Selection

Résumé

Demand forecasting is critical within collaborative networks, enabling suppliers,manufacturers, and retailers to synchronize their operations and achieve enhanced supply chain efficiency. Despite a wealth of research on time series forecast model selection and the availability of numerous forecast models, selecting the most appropriate model for a specific time series remains a challenging task. In this study, an automatic demand forecast model selection procedure is proposed that includes a wide range of statistical andmachine learning forecast models. The optimization of the hyperparameters is performed on all the models. The study is validated on M3 monthly data, outperforming all submitted methods and demonstrating significant improvements in terms of accuracy. The approach was also applied to a collaborative network company.

Domaines

Autre [cs.OH]
Fichier sous embargo
Fichier sous embargo
0 8 10
Année Mois Jours
Avant la publication
vendredi 12 septembre 2025
Fichier sous embargo
vendredi 12 septembre 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04732432 , version 1 (12-11-2024)

Identifiants

Citer

Wassim Garred, Raphaël Oger, Anne-Marie Barthe-Delanoe, Matthieu Lauras. A Proposal for Automatic Demand Forecast Model Selection. PRO-VE 2024 - 25th IFIP WG 5.5 Working Conference on Virtual Enterprises, Oct 2024, Albi, France. pp.331-346, ⟨10.1007/978-3-031-71743-7_22⟩. ⟨hal-04732432⟩
24 Consultations
0 Téléchargements

Altmetric

Partager

More