Latent Thermal Energy Storage System for Heat Recovery between 120 and 150 °C: Material Stability and Corrosion - IMT Mines Albi-Carmaux Accéder directement au contenu
Article Dans Une Revue Energies Année : 2024

Latent Thermal Energy Storage System for Heat Recovery between 120 and 150 °C: Material Stability and Corrosion

Résumé

Thermal energy represents more than half of the energy needs of European industry, but is still misspent in processes as waste heat, mostly between 100 and 200 °C. Waste heat recovery and reuse provide carbon-free heat and reduce production costs. The industrial sector is seeking affordable and rugged solutions that should adapt the heat recovery to heat demand. This study aims to identify suitable latent heat materials to reach that objective: the selected candidates should show good thermal performance that remains stable after aging and, in addition, be at a reasonable price. This paper details the selection process and aging results for two promising phase change materials (PCMs): adipic and sebacic acid. They showed, respectively, melting temperatures around 150 °C and 130 °C, degradation temperatures (mass lost higher than 1%) above 180 °C, and volumetric enthalpy of 95 and 75 kWh·m−3. They are both compatible with the stainless steel 316L while their operating temperature does not exceed 15 °C above the melting temperature, but they do not comply with the industrial recommendation for long-term use in contact with the steel P265GH (corrosion speed > 0.2 mm·year−1).
Fichier principal
Vignette du fichier
Latente-Thermal-Energy-Storage-System-Heat-Recovery-between-120-150-Material-Stability-Corrosion.pdf (4.34 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04482016 , version 1 (28-02-2024)

Licence

Paternité

Identifiants

Citer

Yasmine Lalau, Sacha Rigal, Jean-Pierre Bédécarrats, Didier Haillot. Latent Thermal Energy Storage System for Heat Recovery between 120 and 150 °C: Material Stability and Corrosion. Energies, 2024, 17 (4), pp.787. ⟨10.3390/en17040787⟩. ⟨hal-04482016⟩
19 Consultations
4 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More