Communication Dans Un Congrès Année : 2024

Senselife: Service Recommendation and Frailty Prevention Through Knowledge Models

Résumé

The aging global population presents unique challenges, particularly in managing frailty—a condition defined by declines in physical, cognitive, and social capacities. This paper introduces Senselife, a recommender system tailored for frailty management in elderly individuals. Senselife leverages hypergraph-based knowledge models to intelligently recommend personalized services aimed at mitigating frailty and enhancing life quality. Our methodology integrates diverse data types through Heterogeneous Information Networks (HINs), allowing for nuanced user-service interactions that significantly improve recommendation accuracy and relevance. This paper details the development of these models, emphasizing the transition from conventional data handling to advanced, knowledge-driven approaches that consider both user and service complexities. By incorporating these sophisticated models, Senselife aims to provide a scalable solution for frailty prevention, offering a significant contribution to personalized elderly care.
Fichier sous embargo
Fichier sous embargo
0 8 24
Année Mois Jours
Avant la publication
vendredi 14 novembre 2025
Fichier sous embargo
vendredi 14 novembre 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04907987 , version 1 (11-02-2025)

Identifiants

Citer

Ghassen Frikha, Xavier Lorca, Hervé Pingaud, Adel Taweel, Christophe Bortolaso, et al.. Senselife: Service Recommendation and Frailty Prevention Through Knowledge Models. ADBIS 2024 - 28th European Conference on New Trends in Databases and Information Systems, Aug 2024, Bayonne, France. pp.273-285, ⟨10.1007/978-3-031-70421-5_23⟩. ⟨hal-04907987⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More