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Abstract

With the current development of nano-technology, there exists an increasing demand for

three-dimensional shape and deformation measurements at this reduced-length scale in

the field of materials research. Images acquired by Scanning Electron Microscope (SEM)

systems coupled with analysis by Digital Image Correlation (DIC) is an interesting com-

bination for development of a high magnification measurement system. However, a SEM

is designed for visualization, not for metrological studies, and the application of DIC to

the micro- or nano-scale with such a system faces the challenges of calibrating the imaging

system and correcting the spatially-varying and time-varying distortions in order to obtain

accurate measurements. Moreover, the SEM provides only a single sensor and recovering

3D information is not possible with the classical stereo-vision approach. But the specimen

being mounted on the mobile SEM stage, images can be acquired from multiple viewpoints

and 3D reconstruction is possible using the principle of videogrammetry for recovering the

unknown rigid-body motions undergone by the specimen.

The dissertation emphasizes the new calibration methodology that has been developed

because it is a major contribution for the accuracy of 3D shape and deformation mea-

surements at reduced-length scale. It proves that, unlike previous works, image drift and

distortion must be taken into account if accurate measurements are to be made with such

a system. Necessary background and required theoretical knowledge for the 3D shape

measurement using videogrammetry and for in-plane and out-of-plane deformation mea-

surement are presented in details as well. In order to validate our work and demonstrate in

particular the obtained measurement accuracy, experimental results resulting from different

applications are presented throughout the different chapters. At last, a software gathering

different computer vision applications has been developed.

Keywords: Scanning Electron Microscope, Imaging System Calibration, Distortion

Correction, Drift Correction, Videogrammetry, 3D Shape Measurement, Strain Measure-

ment, Experimental Mechanics.
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Résumé

Avec le développement actuel des nano-technologies, la demande en matière d’étude du

comportement des matériaux à des échelles micro ou nanoscopique ne cesse d’augmenter.

Pour la mesure de forme ou de déformation tridimensionnelles à ces échelles de grandeur,

l’acquisition d’images à partir d’un Microscope Électronique à Balayage (MEB) couplée

à l’analyse par corrélation d’images numériques s’est avérée une technique intéressante.

Cependant, un MEB est un outil conçu essentiellement pour de la visualisation et son util-

isation pour des mesures tridimensionnelles précises pose un certain nombre de difficultés

comme par exemple le calibrage du système et la correction des fortes distorsions (spatiales

et temporelles) présentes dans les images. De plus, le MEB ne possède qu’un seul capteur

et les informations tridimensionnelles souhaitées ne peuvent pas être obtenues par une ap-

proche classique de type stéréovision. Cependant, l’échantillon à analyser étant monté sur

un support orientable, des images peuvent être acquises sous différents points de vue, ce

qui permet une reconstruction tridimensionnelle en utilisant le principe de vidéogrammétrie

pour retrouver à partir des seules images les mouvements inconnus du porte-échantillon.

La thèse met l’accent sur la nouvelle technique de calibrage et de correction des dis-

torsions développée car c’est une contribution majeure pour la précision de la mesure de

forme et de déformations 3D aux échelles de grandeur étudiées. Elle prouve que, con-

trairement aux travaux précédents, la prise en compte de la dérive temporelle et des dis-

torsions spatiales d’images est indispensable pour obtenir une précision de mesure suff-

isante. Les principes permettant la mesure de forme par vidéogrammétrie et le calcul de

déformations 2D et 3D sont aussi présentés en détails. Dans le but de valider nos travaux

et démontrer en particulier la précision de mesure obtenue, des résultats expérimentaux

issus de différentes applications sont présentés tout au long de la thèse. Enfin, un logiciel

rassemblant différentes applications de vision par ordinateur a été developpé.

Mots-clés : Microscope Électronique à Balayage, Calibrage d’imageurs, Correc-

tion de distorsion, Correction de dérive, Vidéogrammétrie, Mesure de forme, Mesure de

déformation, Photomécanique.
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Chapter 1

Problem Statement and Objectives

With the current development of nano-technology, three-dimensional shape and deforma-

tion measurements at micro- and nano-scale are more and more required in the field of

materials research. Images acquired by Scanning Electron Microscope (SEM) systems cou-

pled with analysis by Digital Image Correlation (DIC) is an interesting combination for

development of a high magnification measurement system for the following reasons. First,

the SEM offers some undeniable advantages in image acquisition such as its great depth

of focus, its possibility of nano-scale resolution, its straightforward use, its magnification

range from low (50×) to very high (more than 300000×), etc. and appears like the perfect

tool for this application. Besides, the DIC technique has already proved to be a versatile

and effective optical method for measuring three-dimensional shapes and/or deformation at

the macro-scale due to its high spatial resolution, its high sensitivity and its non-contacting

nature.

However, a SEM is designed for visualization, not for metrological studies, and the

image formation is biased by several image disturbances. In order to obtain accurate

measurements, a particular attention must be paid to the modeling and calibration of the

imaging process and especially to the correction for the underlying distortions. In addition

to the common distortion depending on the pixel location in the image (later referred to

as “spatially-varying distortion”), another distortion depending on the time occurs with

a SEM imaging system: a non-uniform apparent displacement of the specimen across the

screen (later referred to as “drift” or “time-varying distortion”).

The application of digital image correlation to the micro- or nano-scale requires that

the surface of the observed specimen is random enough (the so-called “speckle pattern”

texture) so that DIC can be used to locate and track small sub-regions throughout the

image. Therefore, methods must be developed to be able to cover the specimen with an

artificial speckle pattern texture at this reduced-length scale if the natural texture cannot

be used.

Moreover, the SEM provides only a single sensor and recovering 3D information is not
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possible with the classical stereo-vision approach. Acquisition of simultaneous images is

indeed not realizable with a single sensor, but the specimen being mounted on a mobile

stage, images can be acquired from multiple viewpoints. The unknown rigid-body motions

undergone by the specimen can then be recovered a posteriori from image analysis and the

3D shape can be measured (Structure-From-Motion method). With the additional objective

to study surface deformation of the specimen, three-dimensional displacement are measured

as well but due to the uniqueness of the sensor, specific experimental constraints are then

necessary.

2
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1.1 State of the Art

For a few decades, computer vision and digital image correlation has been applied to

the study of in-plane material behavior at the macro-scale: shape, stress, displacement

and deformation analysis [PR82, MNSW+83, CRSP85, SCP+86]. With this success, DIC

technique became one of the preferred optical method of measurements in experimental

mechanics and, later, the addition of a second imaging sensor (stereo-vision) allowed to

access to the three-dimensional material behavior and to the 3D shape [KJC90, LCSP93,

LCS94, HMS96, OGD97, SS99, GH99, SMHS00, Gar01, Sch03]. Nowadays, the 2D and 3D

methods using stereo-vision are widely used in many applications and commercial softwares

are available [CSI, Tri].

A first step to access a reduced-length scale of measurement was to apply DIC method

with images coming from magnifying optical imaging systems, such as the optical micro-

scope for 2D measurements or the stereo-optical microscope for 3D measurements [SCTB90,

MDD96, MKWJ99]. However, few authors have investigated the problem of the accurate

calibration of the micro-scale imaging systems, and specifically the determination and cor-

rection of the underlying distortions in the measurement process. One reason may be

that the obvious complexity of high-magnification imaging systems weakens the common

underlying assumptions in parametric distortion models (radial, decentering, prismatic,

. . . ) commonly used until then to correct simple lens systems such as digital cameras

[Bey92, WCH92, SHL95]. Peuchot [Peu93], Brand et al. [BB94] or Schreier et al. [SGS04]

all proposed to calibrate accurately the imaging sensor by correcting a priori for the distor-

tion using a non-parametric model. The a priori correction of the distortion transforms the

imaging sensor into a virtual distortion-free sensor plane using a calibration target. The

same target can then be used to calibrate this ideal virtual imaging sensor using unknown

arbitrary motions.

Due to the nature of white light, optical imaging systems are limited to a maximum

resolution, leading to a maximum magnification of about 1000×. To access smaller scale

of measurements, imaging systems based on electron microscopy (such as the TEM and

the SEM) are employed. The first issue encountered when using such systems is that the

physics of electron microscopy is quite different from optical microscopy and a new model

and calibration process is necessary compared to the classical approach. The second issue

is that classic electron microscope (such as TEM or SEM) provides only one imaging sensor

whereas 3D measurements require at least two images acquired from different viewpoints1

1Note that it is actually possible to obtain 3D measurements from only one viewpoint by acquiring

images at different zoom levels. This technique is called axial stereo-vision [RA94, SDL96] but it will not

be used here.

3
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and then usually use two imaging sensors rigidly mounted on a stereo-rig (stereo-vision).

Concerning the first point, the different projection models have already been established

but there is no work today giving a satisfactory model and correction method for the

existing image disturbances such as the distortion and the drift. Then, most of the papers

and even commercial SEM measurement systems just ignore them and consider a pure

projection model [MeX, SAM, HAS+96, LTY96, AHD+00, VLBB+01, SRK+02]. The few

authors taking into account distortion consider only a parametric model [Dou00, HA00,

LSP03] and always neglect the drift effect.

The second point concerning the acquisition of stereo images using a SEM is solved by

abandoning the idea of simultaneous images: the two viewpoints are obtained by tilting

the specimen between two consecutive acquisitions, under the hypothesis that the speci-

men shape does not evolve during the time of acquisition of both images [JJ95, LTCY98,

RWT00]. However, this is not really equivalent to a stereo-rig because the rigid-body

transformation between the two viewpoints is not fixed and cannot be determined by a cal-

ibration phase. The motion undergone by the specimen must then be recovered a posteriori

from image analysis [AN88, HN94, Zha96]. This is possible thanks to a geometric constraint

existing between any pair of images: the well-known epipolar geometry [Fau93, LF96], rep-

resented by the fundamental matrix. Estimation of epipolar geometry leaded to a lot

of works over the past decade [Tor95, Har95, Zha96, GSV97, TM97, Zha98] and several

methods and parameterization of the fundamental matrix exist: iterative or non-iterative

method, from 7 or more point correspondences, imposing or ignoring the rank-2 constraint

of the fundamental matrix, normalizing or not the data, etc. Recently, Armangue proposed

a comparison of all the different approaches [AS03].

The natural extension to this technique is the use of multiple views of the specimen,

allowing not only a better accuracy in 3D reconstruction but also a complete view of

the specimen. This approach is known for macro-scale applications as photogrammetry

or videogrammetry [Gru97, Pol99]. The passage from two-view geometry to multi-view

geometry leads to new theoretical issues and to the introduction of new objects: the trifocal

and quadrifocal tensor introduced in Section 3.2 and discussed in details in [FM95, Lav96,

TZ97, Har98, HZ00].

The videogrammetry technique has been recently applied to SEM [CGS+03, CGS+04,

LBVP+04] in order to improve in part the quality of 3D shape measurements but the most

important point for the accuracy of the 3D reconstruction remains the calibration and the

distortion correction. However, the previous works considering spatially-varying distortion

in 3D shape measurement always use common parametric models, which are not really

adapted to complex imaging systems such as the SEM [CSG+04] and do not take into

account time-varying distortion.

4
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In addition to the accuracy, a second objective for our 3D reconstruction process is

its automation. For this purpose, Section 3.3 introduces interest point detectors which

extract automatically feature points in the acquired images. These particular points are

very interesting because they are characteristic of an image and can be robustly extracted

in an image sequence. They can be matched automatically and allow then to estimate

the epipolar geometry without intervention of the user. Numerous interest point detectors

exist in the literature: not only the well-known Harris [HS88], SUSAN [SB97] and Canny

[Can86] edge detectors, but also Horaud et al. [HSV90], Heitger et al. [HRVDH+92],

Cottier [Cot94] and Forstner [For94]. Schmid et al. [SMB00] compare them using different

criteria to evaluate them.

5
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1.2 Thesis Outline

Chapter 2 presents the preliminary and necessary work required for accurate measurements:

the modeling and calibration phase. After a quick introduction to electron microscopy

and to the principle of operation of a SEM, the physical aspect of the imaging process is

studied to be able to establish the most adequate model. Actually, two different models of

projection depending on the magnification and two complementary models of distortions

are finally presented.

Calibration is the most difficult and most important step of the whole measurement

process because it will determine the accuracy of measurement, particularly for complex

imaging system such as the Scanning Electron Microscope. It consists of two different prob-

lems: estimation of the projection model parameters and correction for spatially-varying

distortion and drift. The former is quickly treated in Chapter 2 because it is equivalent to

macro-scale calibration problem and is a known issue in computer vision. The latter leads

us to develop a new methodology because previous works always neglect the drift effect and

rarely take into account spatially-varying distortion. Moreover, the few authors considering

distortion always use a parametric model. Our non-parametric approach is a major contri-

bution of the thesis and is applicable to any imaging system. A comparison of approaches

has been made in Section 2.4 and experimental results demonstrate the important accuracy

improvement realized with our method. Our new approach of the calibration allows now

to transform a simple visualization tool such as the SEM into a real measurement system.

Chapter 3 describes each step of our automated multi-stage approach for 3D reconstruc-

tion. It uses a videogrammetry technique because the SEM only provides one sensor and

classical 3D shape measurement using stereo-vision cannot be directly applied here. The

whole process to recover the unknown rigid-body motions between the acquisitions is first

explained for two images and then extended to multiple images. Multi-view allows not only

to obtain a better accuracy in the reconstruction but also to have a complete view around

the observed specimen.

The last section of this chapter presents experimental results of the 3D reconstruction

of a penny detail using the SEM. But the 3D shape measurement approach developed in

this work is not specific to reduced-length scale application and can be applied for macro-

scale measurements. Another experiment using a sequence of images acquired by a single

moving camera is then presented and the accuracy of the method is assessed by comparing

the 3D shape measurement with the results obtained using a 3D laser scanner.

Chapter 4 treats the surface deformation measurement from in-plane and out-of-plane

displacement measurement using a SEM. The entire process is detailed, from the exper-

imental procedure for measuring 2D and 3D displacement fields to the approximation of

6
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the displacement functions to derive in order to obtain the strains. Limitations due to the

SEM imaging system are presented as well and experimental solutions are proposed for the

issue due to the single sensor provided by the SEM.

Experimental results are presented at the end of the chapter. In order to validate the en-

tire process of calibration, 3D reconstruction and strain computation, a “zero-deformation”

experiment is conducted: two sets of several images of a specimen undergoing only rigid-

body motions are acquired and strains (supposed to be null) are computed between the

two 3D shapes reconstructed by videogrammetry.

Chapter 5 is dedicated to the different computer programs developed for the needs of

this work. In addition to the scientific and graphic libraries, a modular software gathering

different computer vision applications and particularly a module of videogrammetry has

been developed. This software being aimed at any user, not especially experienced in

computer vision, a particular attention has been paid to the user-friendliness (usability)

and consequently to the Graphic User Interface.
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modèle projectif. In Proceedings of 9th Congrès AFCET, Reconnaissances des

Formes et Intelligence Artificielle (RFIA’94), pages 87–98, Paris (France),

Jan 1994.

[Bey92] Horst A. Beyer. Accurate Calibration of CCD-cameras. In Proceedings of

the International Conference on Computer Vision and Pattern Recognition

(CVPR’92), pages 96–101, Urbana Champaign, (IL, USA), Jun 1992.

[Can86] John F. Canny. A Computational Approach to Edge Detection. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 8(6):679–714, 1986.

[CGS+03] Nicolas Cornille, Dorian Garcia, Michael A. Sutton, Stephen R. McNeill, and
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numériques. PhD thesis, Ecole Polytechnique, 2000.

[Fau93] Olivier Faugeras. Three-Dimensional Computer Vision: A Geometric View-

point. MIT Press, 1993. ISBN 0-262-06158-9.

[FM95] O. D. Faugeras and B. Mourrain. On the geometry and algebra of the

point and line correspondences between n images. In Proceedings of the 5th

International Conference on Computer Vision (ICCV’95), pages 951–962,

Boston (MA, USA), 1995.

[For94] Wolfgang Forstner. A framework for low-level feature extraction. In Pro-

ceedings of the 3rd European Conference on Computer Vision (ECCV’94),

pages 383–394, Stockolm (Sweden), 1994.

[Gar01] Dorian Garcia. Mesure de formes et de champs de déplacements tridimen-
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Chapter 2

SEM Imaging System: Modeling and

Calibration

Metrological studies for quantitative 3D shape and deformation measurements at the micro-

and nano-scale using a Scanning Electron Microscope are a very delicate problem. In-

deed, the SEM imaging system is not designed for accurate measurements but only for

visualization and the critical part of the work is to address different issues such as im-

age distortion and drift. Previous 3D shape or strain measurement using a SEM system

[LTCY98, HA00, VLBB+01, SRK+02] rarely took into account distortion and always ne-

glected the drift problem. For this reason, a new calibration methodology including distor-

tion correction must be developed.

This chapter describes how to model accurately the SEM imaging system and how to

calibrate this model. In order to model the most faithfully possible the imaging system,

a physical approach of the problem is first investigated. This is the objective of the first

section, after a short introduction about the principle of operation of a SEM: understand

how the SEM image is produced in order to model the imaging process and interpret the

main sources of distortions to be able to correct for them. When the physical meaning

is understood, the second section then presents the “mathematical” approach: what kind

of projection models for the image formation, what kind of models for distortions? Two

different models of projection are given depending on the magnification and the distortion

model is finally divided into two complementary models. Section 2.3 describes our original

calibration methodology and experimental process and finally, experimental results will be

presented in the last section of this chapter in order to validate our approach.
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2.1 SEM Imaging Process

2.1.1 Principle of Operation of a Scanning Electron Microscope

Electron Microscopy Introduction

The concept of electron microscopy is born in the 1930’s because scientific research required

to pass over a limitation of the optical microscopy: its resolution. According to the Rayleigh

criterion, the size of the minimum resolvable detail depends directly on the diameter of

the aperture and on the wavelength of the source of illumination. In light microscopy,

the shortest possible wavelengths are the ultraviolet rays, which set a resolution limit to

200 nm. Since the photon does not allow to go further, the idea was to use another

elementary particle with a shorter wavelength: the electron. Compared to the wavelength

of light, the wavelength of electron can be up to 100000 times smaller, depending on the

accelerating voltage. This is why the SEM has a much greater resolution ability: about 2

nm (atomic-scale resolution). Relative to the resolution, another improvement of electron

microscopy compared to light microscopy is the capability of magnification. While the

highest magnification attainable with a light microscope is about 1000 times, the highest

magnification of an Environmental Scanning Electron Microscope (ESEM) is more than

300000 times. The second limitation of the optical microscopy is its poor depth of field,

due to its large aperture angle. On the contrary, in electron microscopy the sample is

far from the objective lens compared to the size of the sample and this results in a small

aperture angle and therefore, a good depth of field.

The first electron microscope to be developed is the TEM (Transmission Electron Micro-

scope) and it is very similar to its optical counterpart. In both cases, a sample is mounted

on a mobile stage and can be observed due to its interaction with a beam created by a

source of illumination. This beam passes through a series of lenses to be concentrated

and focused on the specimen. Actually, the main difference between the optical and the

electron microscope is only that the former uses a light beam whereas the latter is based

upon the existing interaction between atoms and an electron beam. The SEM follows the

same principle but the sample is analyzed by interpreting different radiations.

Electron Beam / Specimen Interaction

When the electron beam strikes the specimen, incident electrons irradiate the specimen

surface, penetrate deeply the material and interact with the electrons orbiting around

atoms of the specimen in a volume called “interaction volume1”. This interaction will

1This affects obviously the spatial resolution of the measurement which is therefore not equal to the

size of the incident beam. It is particularly true for X-rays or backscattered electrons which emerge from

higher depths.
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generate a variety of radiations (see Fig. 2.1) as well as side effects like a local increase of

the temperature, induced currents, etc.

Backscattered electrons

Light

Absorbed electrons

Transmitted electrons

Incident beam

X-Ray

Secondary electrons

Interaction volume

Fig. 2.1 — Electron beam / Specimen interaction: a variety of signals are

emitted when the electron beam hits the specimen.

All these radiations are produced simultaneously but they are analyzed independently

to generate the image, depending on the kind of information desired. Transmitted elec-

trons can only be detected with a TEM and X-ray, backscattered electrons and secondary

electrons can be detected using an SEM. But within all these signals, only backscattered

and secondary electron emissions are of a particular interest for our work:

� Secondary Electron (SE): they are created by the passage of an incident electron near

an atom of the material. The incident electron can transmit a small part of its energy

to an electron of this atom which causes its ejection.

Because of their weak energy, only secondary electrons near the surface can emerge

from the surface of the specimen and be collected by the detector. Therefore, be-

cause the least variation of topography will modify the amount of secondary electrons

collected, the information obtained with this detector is mainly correlated to the to-

pography of the specimen.

� Backscattered Electron (BSE): they are created when an incident electron interacts

with the nuclei of an atom of the material. Thus, the amount of a backscattered

electrons collected depends mostly on the size of the nuclei and then the atomic

number.

Contrary to the secondary electrons, the BSE signal represents not only a topography

information but also and specifically information about the local specimen atomic

composition.
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Fig. 2.2 — Difference between acquisition with SE (left) and BSE detector

(right) of a penny detail: the SE detector is strongly influenced by sample to-

pography whereas the BSE is most influenced by local specimen composition.

SEM General Diagram

For a better understanding of the principle of operation of the SEM, the main components

are represented in Fig. 2.3 and are described thereafter:

Electron Gun:

� Tungsten Filament: the electron gun generates generally the electron beam from

a Tungsten hairpin filament but it can be replaced by Lanthanum Hexaboride

(LaB6) single crystal emitter (which has a longer life and allows more bright-

ness but requires more vacuum). The Tungsten filament acts as a cathode: it

is heated by applying a voltage and generates electrons when its temperature

attains 2700K.

� Wehnelt Assembly: the filament is housed in a Wehnelt assembly which is neg-

atively charged in order to center and concentrate the beam of electrons as the

electrons pass through.

� Anode Plate: the anode plate is positively charged in order to accelerate elec-

trons. Acceleration voltage varies from about 0.1 kV to about 30 kV. The more

the electrons are accelerated, the deeper they will penetrate the specimen.

Vacuum System: vacuum is necessary in the column so that electrons would not be easily

deflected by gas molecules in the air. Vacuum system generally consists of two vacuum

pumps: one rotary pump and one diffusion pump inside the SEM.

Condenser Lenses: they are electromagnetic lenses and are called like this because they

“condense” or demagnify the size of the beam. Reducing the size of the beam allows

to control the signal to noise ratio and therefore the resolution. It also reduces the

intensity of the beam and then determines the brightness of the image.
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Deflection or Scan Coils: deflection coils are regulated by a scan generator and impose

a scanning motion on the electron beam. They are involved not only in the image

formation but also in the magnification.

Objective Lens: this electromagnetic lens is named “objective” because it is near the

object. Its purpose is to focus the beam in a spot on the specimen. It determines the

contrast and is involved in the resolution of the image.

SE and BSE Detectors: when the electron beam hits the specimen, a variety of signals

are emitted and can be measured by dedicated detectors. The SE detector is gener-

ally an Everhart-Thornley detector which attracts secondary electrons by a positive

potential. The BSE detector is located just above the sample because it does not

attract backscattered electrons but just collects them.

Mobile Stage: the stage is the place where the specimen is loaded. It can be moved in

translation (X-axis, Y-axis, Z-axis), rotation (around vertical axis) and tilt (around

horizontal axis). By this way, it will be possible to acquire images from different

viewpoints and then recover three-dimensional information using the videogrammetry

technique (see Section 3).
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Vacuum System

Specimen

Deflection Coils

Second Condenser

Lenses

First Condenser

Lenses

Wenhelt + Filament

Anode Plate

Aperture

Objective Lens

BSE Detector

SE Detector

Specimen Chamber

Mobile Stage

Electron Gun

Fig. 2.3 — SEM diagram.
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2.1.2 Image Formation

The image produced by the SEM is formed by scanning the area of interest of the sample,

following a rastering process (see Fig. 2.4). Each pixel of the image is a gray-level represen-

tation of the response to the beam excitation of a point (or more exactly of a small area)

onto the sample. Therefore, the produced image is a 2D representation of the 3D shape of

the sample or in other words, a projected plan of the specimen.

���
���
���
���

Detail of the scanned area Detail of the formed image

Scanned
area

Detector

Formed image

Amplifier

Sample

Electron beam

Fig. 2.4 — Image formation: images of the SEM are formed pixel per pixel

following a rastering process (up) where each pixel represents a small area onto

the specimen (bottom).

That is why the SEM imaging process is almost always considered as a pure projective

transformation [HAS+96, AHD+00, VLBB+01, SRK+02]. Depending on the magnification,

two different projection models are used. At low magnification, the general model of
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perspective projection2 is applied because the field of view (observed area) is large and

therefore, the angular field of view (electron beam scanning angle) as well. At higher

magnification, the field of view and angular field of view are both very small and projection

rays can be considered as parallel: the center of projection is at infinity and the parallel

projection is assumed (see Fig. 2.5). Parameters and equations of both projection models

are described in detail in Section 2.2.2.

Rays nearly

parallel

Low magnification High magnification

⇒ Small scanning angle

parallel

Rays nearly

⇒ Parallel projection⇒ Perspective projection

⇒ Large scanning angle

Sample

SEM imaging sensor

Fig. 2.5 — Projection models depending upon the magnification: the SEM

imaging process is considered as a perspective projection at low magnification

and as a parallel projection at high magnification.

The magnification limit for perspective projection is generally chosen between 200× and

1000× [HA00, VLBB+01, SRK+02]. However, even over these magnifications, the angular

field of view is not negligible and projection rays cannot appropriately be considered as

parallel (see Table 2.1). Considering that the angular field of view is negligible only below

0.1◦, the approximation of the general perspective projection by the parallel projection

2also known as central projection.
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does not seem adequate lower than a magnification of 20000×.

Field of view

Distance (WD)

Working

α
2

d

d

field of view

angular

Half

Mag.
d WD

α
(µm) (mm)

250× ∼ 1000 10 ∼ 8.0◦

1000× ∼ 250 10 ∼ 2.0◦

2500× ∼ 100 10 ∼ 0.8◦

10000× ∼ 25 10 ∼ 0.2◦

25000× ∼ 10 10 ∼ 0.08◦

Table 2.1 — Angular field of view for a given magnification.

In addition to these projection issues, the SEM imaging process is obviously not distor-

tion free. Section 2.1.3 will present different kinds of problem which can cause distortions

to take into account and Section 2.2.3 will discuss how to include these distortions in the

imaging process model.

2.1.3 Image Disturbances and Distortions

Spatially-varying distortion

In simple lens systems (such as camera or optical microscope), image distortion is a well-

known problem. The commonly used method for modeling these imaging systems assumes

that such effects result only from lenses aberrations or optical system malfunctions: mis-

alignment of the optical elements, non-parallelism between image plane and sensor plane,

lens curvature imperfection, etc. In order to correct for these effects, they are approximated

by parametric models [Bro71, Bey92, WCH92]: radial distortion, decentering distortion,

prismatic distortion, etc. and included in the general imaging system model.

The SEM imaging process is based upon the interaction between atoms of the observed

specimen and an electron beam. This beam is concentrated and focused using a tray of

electromagnetic lenses which are subject to geometrical aberrations and defects such as

optical lenses. Therefore, a first approach for modeling the SEM imaging system would

consist in considering it as a simple lens system and approximating the image spatially-

varying distortions by the parametric models presented earlier. An important limitation
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of this approach is that the pre-specified functional forms take into account classical dis-

tortions but are ineffective when used to estimate arbitrary lens aberrations or unknown

(but deterministic) distortions in the imaging system. In particular, this method should

not be adequate for a complex imaging system such as the Scanning Electron Microscope.

To address this issue, the work of Schreier et al. using a non-parametric distortion correc-

tion approach and a speckle-patterned calibration target [SGS04] is used to implement a

new methodology of distortion removal from SEM images3. Actually, Peuchot [Peu93] and

Brand et al. [BB94] first proposed a distortion correction without specific parametric model

but it is based upon the use of cross targets, which may be complex to realize at micro- or

nano-scale for the SEM. Moreover, a speckle-patterned calibration target leads to a better

accuracy of calibration because it allows more measure points for the distortion correction

estimation. Parametric and non-parametric methods are both detailed in Section 2.2.3 and

the accuracy is assessed in Section 2.4.

Time-varying distortion

An important SEM image disturbance, particularly noticeable at high magnification, is

referred to as image drift (non-uniform apparent displacement of the specimen across the

screen). This phenomenon has been observed for years but its origin is not really determined

and several hypothesis are formulated: deformation due to local heating of the specimen,

stabilization problem of the SEM stage due to the controller, accumulation of charges in the

SEM column deflecting gradually the electron beam, mechanical vibration. The problem is

that the drift obviously occurs during the time of acquisition of one image, and it will result

of a displacement of several pixels within the image. Because of its non-stationary nature

(its magnitude is function of time), this effect cannot be corrected by the spatially-varying

distortion correction procedure and a set of experiments was conducted in order to, first,

determine the cause of this effect and then, try to minimize it experimentally.

The following experiments have been realized at a 25000× magnification using a FEI

ESEM Quanta 200 with SE imaging:

(a) standard experiment used for comparisons

(b) experiment by night and using a small specimen holder in order to minimize the

mechanical vibrations

(c) experiment without using the SEM stage

(d) experiment with a pause where the beam is off (i.e., the scanning is stopped) during

30 minutes

3This new methodology has also been successfully applied to other imaging systems such as a camera

or a stereo-optical microscope [CSG+04] (see Section 2.4)
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(e) experiment comparing the rotation of SEM stage and rotation of the beam scanning

direction

(f) qualitative experiment using a SEM from another manufacturer (JEOL SEM)
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Fig. 2.6 — General behavior of the mean drift over the image (from left to right:

x-component, y-component and magnitude): evolution during 3 hours and 40 minutes.

The experiment (a) consists in measuring quantitatively the drift in standard operating

conditions, so that we can compare the results with following experiments. The experiment

lasts 4 hours and consists in acquiring consecutive images each 5 minutes of the same area

of a specimen and in the same operating conditions (each image acquisition last about one

minute). All images are supposed to be similar (up to the Gaussian noise of measurement)

but due to the drift effect, an apparent displacement between them exists. Then, every

image is compared by correlation with respect to the first one and the mean disparity

(corresponding to the mean displacement, i.e. the mean drift over the image) is computed

and presented in Fig. 2.6. The direction of the drift changes in each experiment and

therefore, only the magnitude will be used for comparison.

Experiment (b) has been conducted using a small specimen holder because bigger ones

are more sensitive to vibration and by night to avoid all the possible sources of disturbance
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such as people walking in the hall, truck in the street, etc. The results are very similar to

experiment (a) and allow to think that drift is, for the most part, independent of mechanical

vibrations. The experimental process of experiment (c) without using the SEM stage was

difficult to accomplish because it required to machine a specific piece (see Fig. 2.7) on which

the specimen would be stuck. This platform was placed in the SEM chamber using an

available port of the SEM. Because this is more sensible to vibrations than the SEM stage,

the results are noisy but the magnitude of the drift is similar to the experiment (a) and we

can eliminate the possibility of stabilization of the stage as source of drift. Experiment (d)

was conducted to check if the local increase of temperature has an influence on the drift.

Indeed, when the electron beam scanned an area, the local temperature increases and may

have an influence on the scanning. This is why we stopped the beam during a pause of 30

minutes: if the drift is perturbed by the local temperature, its magnitude when the beam

is on again should be less than just before that the beam is off. But results before and after

the break show that the drift evolution is not perturbed and is comparable to the evolution

of (a), as if the beam was always on. This proves first that there is no relationship between

the local increase of temperature and the drift, and secondly that the source of the drift

continues to evolve even if the beam is off. Experiment (e) leads to the most impressive

results: while a rotation of the SEM stage does not change anything to the drift evolution,

a rotation of the beam scanning direction changes the direction of the drift by the same

angle. This definitely proves that the drift is dependent of the electron beam scanning and

with the results of experiment (d), the hypothesis of the accumulation of charges deflecting

the beam seems to be the cause of the drift. No quantitative measures have been realized

during experiment (f) but naked-eye observations have been sufficient to clearly see that

the drift problem is present as well with a JEOL SEM and is not characteristic to FEI

Quanta microscopes.

Fig. 2.7 — Left: platform especially machined for the experiment (c); Right:

available port on the side of the SEM used to place the platform.

The origin of the drift is now almost certain but unfortunately, there is no obvious

and efficient way to minimize it experimentally without adding specific and expensive

equipments to the SEM. Based on the behavior of the drift (see Fig. 2.6), one apparent
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solution would be to wait several hours before acquiring images, when the drift effect

between two successive acquired images can be considered as negligible. But this condition

is not acceptable and since the stationary distortion correction procedure is not appropriate

for this effect, a specific distortion correction procedure will be developed (see Section 2.2).
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2.2 Imaging System Modeling

2.2.1 Introduction to Projective Geometry

It has been shown in the previous section concerning image formation that the SEM imaging

system produces a 2D image from a 3D world scene. The geometric transformation that

maps 3D world points to 2D image points is called projection and in order to model it, the

introduction of a new geometry is necessary: the projective geometry [Fau93]. Indeed, the

geometry that describes the world as we can observe and perceive it in three dimensions

is the well-known Euclidean geometry but as soon as we want to represent the world on

a plane (such as a painter or the imaging process of a camera), Euclidean geometry is

inadequate: parallel lines in the world may intersect on the plane (see Fig. 2.8), length

ratio is not kept, etc.

”The Annunciation” from Raphael

Fig. 2.8 — Parallel lines in the world (Euclidean space) may not be parallel

anymore in a projective space.

Actually, Euclidean geometry is included in a set of geometries. These geometries are

classified and can be considered like strata where the first and simplest is the projective

geometry. Then, comes the affine geometry, followed by the similarity or metric geometry

and eventually the Euclidean geometry. Only the projective stratum will be briefly pre-

sented here in order to introduce the following work where this kind of geometry is widely

used (see Chapter 3). For additional information about the notion of stratification, the

reader may refer to [DF95, Fau95].

In projective geometry, points in an n-dimensional projective space are defined by a n+1

coordinates column vector
(

x1 x2 . . . xn+1

)>
such that ∃ i, xi 6= 0.

(

x1 x2 . . . xn+1

)>

are called homogeneous coordinates of the point. Such points will be denoted m̃ for a 2D

point and M̃ for a 3D point in the following sections.
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C
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Z

Y

Fig. 2.9 — In projective geometry, the distance is not important, only the

direction is relevant. For instance, the three points M1, M2 and M3 in Euclidean

space will be represented by the same point in a projective space.

Moreover, scaling is inconsequential in projective geometry (see Fig. 2.9) and two points

x̃ and ỹ are said equal (denoted x̃ ∼= ỹ) if:

∃ λ 6= 0,
(

x1 x2 . . . xn+1

)>
= λ

(

y1 y2 . . . yn+1

)>

Therefore, a same point can be represented by an infinity of ways and usually, we

choose to fix its last coordinate to 1. For example, x̃ would be expressed by this way:
(

x1

xn+1

x2

xn+1
. . . 1

)>
. Obviously, this representation is only available if xn+1 6= 0. That’s

because in projective geometry, a point of which last coordinate is zero corresponds to a

point at infinity.

2.2.2 Projection Models

A general projective transformation is a linear transformation mapping any arbitrary 3D

world point M̃ in the projective space P
3 into a 2D point m̃ in the projective space P

2. It

actually consists of three consecutive transformations:

1. a rigid-body transformation (rotation + translation) T transforming a 3D point M̃

in the world coordinate system into a 3D point M̃ in the imaging sensor coordinate

system:

M̃ ∼= TM̃ (2.1)

where T ∼=
(

R t

0> 1

)

with R the rotation matrix and t the translation vector.
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The parameters of this transformation T are called extrinsic parameters and represent

the orientation and the position of the imaging system in the world.

2. a transformation P, transforming the 3D point M̃ into a 2D point in the retinal plane

m̃:

m̃ ∼= P M̃ (2.2)

This transformation P mapping a point in P
3 to a point in P

2 is the core of the

general projective transformation. It is the one that characterizes the perspective or

parallel projection for instance.

3. an affine transformation A, transforming the 2D point m̃ into a 2D point m̃ in the

distortion-free image plane:

m̃ ∼= Am̃ (2.3)

The parameters of A are called intrinsic parameters and represent the internal pa-

rameters of the imaging sensor.

Composition of the three transformations (2.1), (2.2), (2.3) leads to the following equa-

tion for the projective transformation (see Fig. 2.10):

m̃ ∼= APT
︸ ︷︷ ︸

M̃

∼= H M̃ where m̃ ∈ P
2, M̃ ∈ P

3 (2.4)

where H is a 3× 4 matrix called projection matrix constituted in the most general case

of 11 free parameters (and not 12 because in projective geometry, scaling is inconsequential

and then the projection matrix is defined up to a scale factor). Note that the two last

transformations (2.2) and (2.3) are almost always combined in only one transformation

K = AP, K being called intrinsic matrix.

The first special case of projective transformation described thereafter is the perspective

projection, modeled by the well-known pinhole model. It will be used for the SEM imaging

process at low magnification. The second projective transformation presented is the parallel

projection, which can be modeled by 4 different geometric models. The most general case

is the affine model, which can be derived in the weak-perspective model. It can be derived

itself in the scaled orthographic model, finally derived in the orthographic model. The

parallel projection is used at high magnification.
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World coordinate

system

Distortion-free

image planeT P A

mM
M

Projection model

m

K

Fig. 2.10 — Projection model diagram.

Perspective Projection

The pinhole model [Fau93] is an ideal model of pure perspective projection (see Fig. 2.11)

and distortion-free imaging process. Its extrinsic matrix T∠ is defined by 6 free parameters

(three for the orientation and three for the translational position) and its intrinsic matrix

K∠ is defined by 5 parameters:

A∠ =






αx s cx

0 αy cy

0 0 1




 and P∠ =






f 0 0 0

0 f 0 0

0 0 1 0




 ⇒ K∠ =






fx s cx 0

0 fy cy 0

0 0 1 0






where:

� cx and cy are respectively the horizontal and vertical coordinates of the intersection

of the optical axis with the image plane, also referred to as principal point. Usually,

the principal point is close to the center of the image.

� fx = αx.f and fy = αy.f are respectively the horizontal and vertical aspect ratio

multiplied by the focal length. Usually, the pixels are nearly square and fx and fy

are nearly equal.

� s is the parameter related to the skew angle φ (angle between the x-axis and the y-

axis, see Fig. 2.11). Usually, the horizontal and vertical axis are almost perpendicular:

the skew angle φ ≈ 90◦ and s ≈ 0.

It results in a model with 11 degrees of freedom (5 intrinsic + 6 extrinsic), i.e. a

projection matrix H∠ = K∠T∠ with 11 free parameters.

T∠ =








r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1








⇒ H∠
∼=






h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34
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where:

h11 = fxr11 + s r21 + cxr31 h12 = fxr12 + s r22 + cxr32

h13 = fxr13 + s r23 + cxr33 h14 = fxtx + sty + cxtz

h21 = fyr21 + cyr31 h22 = fyr22 + cyr32

h23 = fyr23 + cyr33 h24 = fyty + cytz

h31 = r31 h32 = r32

h33 = r33 h34 = tz

The matrix H∠ being defined up to a scale, every element is usually divided by tz to

set h34 = 1.

Y

C φ

y
M

m

Z

X

c

 

cx

cy

!

m

Optical center C

M

f

Z

x

c

Y

Optical center

Principal axis

Projected image point

Principal axis

Focal length

Principal point

3D world point

Retinal plane

Retinal plane

Fig. 2.11 — Perspective model.

Parallel Projection

The parallel projection is a special case of perspective projection where the center of pro-

jection would be at infinity. It cannot physically exist but it is assumed when the object is

very far from the sensor plane because the angular field of view is very small and projec-

tion rays can be considered as parallel. It can be modeled by 4 different geometric models

(affine, weak-perspective, scaled orthographic and orthographic model) depending on the

conditions made on the internal parameters. For all models, the extrinsic matrix T� is the

same and is defined by 5 parameters (3 for the orientation and only 2 for the translational

position because with parallel projection, the Z-position of the imaging sensor is obviously

irrelevant). The general form of K� is as follows:

A� =






αx s 0

0 αy 0

0 0 1




 and P� =






1 0 0 0

0 1 0 0

0 0 0 1




 ⇒ K� =






αx s 0 0

0 αy 0 0

0 0 0 1
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where:

� αx and αy are respectively the horizontal and vertical aspect ratio of the image. Both

values are different in the affine and the weak-perspective model, equal in the scaled

orthographic model and equal to 1 in the orthographic model.

� s is the parameter related to the skew angle. It is non-null only in the affine model.

It results in a projection matrix H� = K�T� with 8 degrees of freedom (3 intrinsic +

5 extrinsic parameters) for the affine model, 7 (2 + 5) for the weak-perspective model, 6

(1 + 5) for the scaled orthographic and 5 (0 + 5) for the orthographic model.

T� =








r11 r12 r13 tx

r21 r22 r23 ty

∗ ∗ ∗ ∗
0 0 0 1








⇒ H�
∼=






h11 h12 h13 h14

h21 h22 h23 h24

0 0 0 1






where:

h11 = αxr11 + s r21 h12 = αxr12 + s r22

h13 = αxr13 + s r23 h14 = αxtx + sty

h21 = αyr21 h22 = αyr22

h23 = αyr23 h24 = αyty

2.2.3 Distortion Models

For applications that require accurate measurements, a complex imaging system such as

the SEM cannot be represented only by a linear model (pure projection model), it requires

additional non-linear functional forms to take into account distortions. They are expressed

as a final transformation, applied after the projective transformation4, and mapping the

ideal distortion-free image point m into a real distorted image point ˘̆m:

˘̆m = D(m) = (Dt ◦ Ds)(m) (2.5)

where D is the general distortion function, composition of both types of distortion:

time-varying distortion represented by the function Dt and spatially-varying distortion

represented by Ds. The whole distortion model is illustrated in Fig. 2.12.

4Physically, it should seem more pertinent to place the distortion transformation in the retinal plane,

before the affine transformation A (see Fig. 2.10), but it is mathematically equivalent to place it after and

it is more convenient for calibration.
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Distortion-free

image plane

Real distorted

image planeDs Dt

m̆
m ˘̆m

Distortion model

Fig. 2.12 — Distortion Model Diagram.

Spatially-Varying Distortion Model

Parametric model: It has been said that spatially-varying distortion is a common prob-

lem encountered with all imaging system and not only the SEM. For simple lens systems

such as a camera, many authors have proved that parametric models of distortion lead to

satisfactory results [SHL95] and that’s why common models such as radial, tangential and

prismatic distortion model will be used in a first approach.

The spatially-varying distortion function is usually expressed as the sum of the origi-

nal point m and an additive distortion term δs, itself composed of the three pre-specified

elementary distortions:

m̆ = Ds(m) = m+ δs(m)

= m+
︷ ︸︸ ︷

δr(m)
︸ ︷︷ ︸

radial

+ δd(m)
︸ ︷︷ ︸

decentering

+ δp(m)
︸ ︷︷ ︸

prismatic

The distortion functions δr, δd and δp are usually expressed in a polar coordinate system.

Let’s note ρ the distance from the point m to the principal point c and θ the angle between

the x-axis and −→cm. The point m is then expressed as a function of ρ and θ:

m =

(

x

y

)

= ρ

(

cos θ

sin θ

)

(2.6)

and each distortion function δ∗ is expressed with a radial component δrad
∗ and a tangential

component δtan
∗ :

δ∗(m) =

(

cos θ − sin θ

sin θ cos θ

)(

δrad
∗ (ρ, θ)

δtan
∗ (ρ, θ)

)

(2.7)

The expression of the radial and tangential components of the three distortion functions

is given by Weng [WCH92]:
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δrad
r (ρ, θ) =

∞∑

n=1

knρ2n+1 = k1ρ
3 + k2ρ

5 + k3ρ
7 + . . .

δtan
r (ρ, θ) = 0

(2.8)







δrad
d (ρ, θ) = 3 sin(θ − θd)

∞∑

n=1

jnρ2n = 3 sin(θ − θd)(j1ρ
2 + j2ρ

4 + j3ρ
6 + . . .)

δtan
d (ρ, θ) = cos(θ − θd)

∞∑

n=1

jnρ
2n = cos(θ − θd)(j1ρ

2 + j2ρ
4 + j3ρ

6 + . . .)

(2.9)







δrad
p (ρ, θ) = sin(θ − θp)

∞∑

n=1

inρ
2n = sin(θ − θp)(i1ρ

2 + i2ρ
4 + i3ρ

6 + . . .)

δtan
p (ρ, θ) = cos(θ − θp)

∞∑

n=1

inρ
2n = cos(θ − θp)(i1ρ

2 + i2ρ
4 + i3ρ

6 + . . .)

(2.10)

where θd and θp are the angles between the x-axis and the axis of maximum tangential

distortion respectively for the decentering and the prismatic distortion.

Radial distortion being the main component of distortion, (2.8) is limited to the third

term n = 3 whereas decentering and prismatic distortion are minor distortions and terms

of (2.9) and (2.10) of order higher than 2 (corresponding to n = 1) are assumed negligible.

Using Equ. (2.6) and Equ. (2.7), the three distortion functions (2.8), (2.9) and (2.10) can

be expressed in Cartesian coordinates:

δr(m) =
(
k1(x

2 + y2) + k2(x
2 + y2)2 + k3(x

2 + y2)3
)
m

δd(m) = j1

(

− sin θd(3x
2 + y2) + 2 cos θdxy

−2 sin θdxy + cos θd(x
2 + 3y2)

)

δp(m) = i1(x
2 + y2)

(

− sin θp

cos θp

)

Note that δr(m, k1, k2, k3), δd(m, j1, θd), δp(m, i1, θp) are respectively denoted δr(m),

δd(m), δp(m) for convenience.

Let’s note d1 = −j1 sin θd, d2 = j1 cos θd, p1 = −i1 sin θp and p2 = i1 cos θp in order to

simplify the equations and obtain:

δs(m) = δr(m) + δd(m) + δp(m)

= m
(
k1(x

2 + y2) + k2(x
2 + y2)2 + k3(x

2 + y2)3
)

+

(

d1(3x
2 + y2) + 2d2xy + p1(x

2 + y2)

2d1xy + d2(x
2 + 3y2) + p2(x

2 + y2)

)
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leading at last to the following expression for the total spatially-varying distortion func-

tion:

Ds(m,d) = m
(
1 + k1(x

2 + y2) + k2(x
2 + y2)2 + k3(x

2 + y2)3
)

+

(

d1(3x
2 + y2) + 2d2xy + p1(x

2 + y2)

2d1xy + d2(x
2 + 3y2) + p2(x

2 + y2)

)

where d =
(

k1 k2 k3 d1 d2 p1 p2

)

is the vector of distortion parameters.

Non-parametric model: Recently, based on the work of Schreier et al. [SGS04] about

the use of spline functions to remove spatially-varying distortion, we implemented a novel

distortion correction methodology [CSG+04] for SEM images. The idea is to recover the

distortion shape from the remaining reprojection errors of the calibration of a pure projec-

tive model and fitting it with spline functions that allow to represent any type of distortion

field, even complex. The spline fitting and the constraints to insure the uniqueness of its

solution are discussed in Section 2.3.

Then, a second possible model for spatially-varying distortion is a spline surface repre-

sentation:

Ds(m,α,β) =

(
ni∑

i=0

nj∑

j=0

αi,jNi(x)Nj(y)

ni∑

i=0

nj∑

j=0

βi,jNi(x)Nj(y)

)>

(2.11)

where α =
(

α0,0 . . . α0,j . . . α0,nj
α1,0 . . . αni,nj

)>
and β are the spline coeffi-

cients vectors, Ni and Nj the basis functions and ni and nj are equal to the degree of the

spline plus respectively the horizontal and vertical number of patches (see Appendix B for

an introduction to splines).

Time-Varying Distortion Model

As described in Section 2.1.2 and Fig. 2.4, SEM images are produced pixel by pixel following

a rastering process. Each pixel requires an amount of time td called “dwell time” to be

acquired and a line is acquired in tl = w.td + tj where w is the image width (number of

pixels horizontally) and tj the delay for repositioning the beam and stabilizing it to the

next line. An entire frame is acquired in tf = (h− 1).tl + w.td where h is the image height

(number of pixels vertically).

To make easier the study of the time-varying distortion, the intensity of the image is

here considered as a function of time I(t) and not anymore as a function of image position

I(˘̆x, ˘̆y). The relationship between time and position is: t = ˘̆x.td + ˘̆y.tl, 0 ≤ ˘̆x ≤ w− 1, 0 ≤
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˘̆y ≤ h− 1. Therefore, the image is no longer represented as a 2D frame but as a 1D vector

(see Fig. 2.13).

Image frame

z}|{

Image vector

Timetl

tl+td

w

h

tj

wtd2td0

td 3td

2tl

Fig. 2.13 — When the image is a function of time, it is represented as a vector

instead of as a frame.

In order to prove that the drift is indeed a function of time and does not depend

on the spatial position of the point, four points in the first image of the experiment (a)

(previously seen in Section 2.1.3) have been tracked through time over the image sequence

and the behaviors of their corresponding drift are compared. We remind that as results of

this experiment, the evolution of the drift was presented in Fig. 2.6. The four chosen points

are at coordinates p1 = (200 200), p2 = (800 200), p3 = (200 800) and p4 = (800 800).

Fig. 2.14 illustrates the fact that due to the rastering process (see Fig. 2.4), even the

distance between p1 and p2 and the distance between p2 and p4 are both equal to 600

pixels (in image frame), the acquisition time between p1 and p2 is a lot smaller than the

acquisition time between p2 and p4 (in image vector) because p1 and p2 are on the same

row.

Image frame
(200 800) (800 800)

p2

p4p3

(200 800)

p1

(200 200) (800 200)

Image vector

Time

tp4
tp3

tp2
tp1

600 pixels

600 pixels

(800 800)

(200 200)

(800 200)

Fig. 2.14 — Distance in pixels (in image frame) is not related to distance in

time (in image vector): p1 and p2 or p2 and p4 are both separated by 600 pixels

but the acquisition time between p1 and p2 is a lot smaller than the acquisition

time between p2 and p4.

Comparison of the drift depending on the position in the image is represented in Fig. 2.15

where evolutions of the horizontal and vertical drift for the four chosen points are plotted:
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drift evolutions are very similar (graphs seem merged) whatever the position in the image,

which is perfectly consistent with the fact that the drift is a time-varying and not a spatially-

varying distortion. We can also notice that the only observable difference occurs between

the couple of points p1 and p2 and the couple of points p3 and p4 (see Fig. 2.15, right). This

is because p1 and p3 are separated by 600 rows and therefore, the time elapsed between

their acquisition is very long compared to the time elapsed between the acquisition of p1

and p2, separated by 600 columns but on the same row (see Fig. 2.14). Tracking (matching

through time) of the points p1 and p2 is represented in Fig. 2.16.
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Fig. 2.15 — Evolutions of the horizontal (left) and vertical (right) drift for

chosen 4 points (200 200), (800 200), (800 800) and (200 800). Drift evolu-

tions are very similar whatever the position in the image and particularly for

points located on the same row (right) because they have been acquired at near

acquisition time.
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Fig. 2.16 — Evolution of the drift vector δt(t) =
(

δtx(t) δty(t)
)>

every 10

minutes for the points p1 = (200 200) (left) and p2 = (800 200) (right).
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The time-varying distortion function is expressed as the sum of the distorted point m̆

and the drift δt, expressed as a function of time:

˘̆m = Dt(m̆) = m̆ + δt(t) with ˘̆m =

(
˘̆x
˘̆y

)

and t = ˘̆x.td + ˘̆y.tl (2.12)

In order to correct SEM images for the drift, two approaches have been investigated: a)

develop a global model of the drift δt(t) and use it locally on each image j depending on its

time of acquisition t or b) develop local models δ
j
t (t), different for each image j. Note that

the second approach means that the time-varying distortion will only be known locally and

then, it has to be reestimated for each new acquisition, contrary to the spatially-varying dis-

tortion which is estimated once for all for a given experiment, during the calibration phase.

Preliminary experiments using the first approach proved that a global model can easily

be determined to represent drift evolution during time but the model will not adequately

characterize the local variations in drift within an image: see Fig. 2.17. Note that the drift

represented in this figure is not actually the drift but the difference between the drift at a

time of acquisition t (where 20 ≤ t ≤ 220 min) and the drift in the first image. However,

the drift occurring during the acquisition of the first image (20 ≤ t ≤ 20 + tf = 21 min) is

negligible and can be considered as null with respect to the long period of the experiment

and the magnitude of the drift.

The second approach correcting independently each image is therefore preferable. Ex-

perimentally, implementation of a local model is very simple: for each image meant to be

corrected, another consecutive image of the same area and under the same operating condi-

tions is acquired. Then, using digital image correlation5, the disparity map (but presented

as a function of time and not as a function of position) computed between these two images

and the knowledge of the time elapsed t∆ allow to estimate the drift as a function of time.

Let’s note ˘̆mi =
(

˘̆xi
˘̆yi

)>
the ith point in the first image and ˘̆m′

i =
(

˘̆x′
i

˘̆y′
i

)>
its

correspondence in the second image. The first pixels of the first and the second image are

respectively acquired at time 0 and time t∆. At each time t, a drift vector is associated

δt(t) =
(

δtx(t) δty(t)
)>

.

Both points ˘̆mi and ˘̆m′
i represents actually the same physical point Mi on the specimen

and therefore the same spatially-varying distorted projected point m̆i at two different times:

˘̆mi = m̆i + δt(ti) and ˘̆m′
i = m̆i + δt(t

′
i)

5Ideally, in order to minimize the influence of the drift on the correlation, a DIC software working with

image vectors and not image frames should be used. Because it does not exist, attention must be paid when

using classic DIC software to choose a very small height of the correlation window because pixels which

are neighbors vertically in the image frame are not neighbors at all in the time (ideally, the correlation

window would be a row).
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Fig. 2.17 — The general drift behavior (upper left figure) can be represented

by a global model but it is not a good idea because it would not represent the

important local variations of the drift in each image (upper right and bottom

figures).

This leads to the following expression for the disparity:

dispi = ˘̆m′
i − ˘̆mi = δt(t

′
i) − δt(ti) (2.13)

where ti and t′i are respectively the times of acquisition of the pixels ˘̆mi and ˘̆m′
i:

ti = ˘̆xi.td + ˘̆yi.tl

and t′i = t∆ + ˘̆x′
i.td + ˘̆y′

i.tl

Moreover, let’s note for convenience:

tdispi
= (˘̆x′

i − ˘̆xi) td + (˘̆y′
i − ˘̆yi) tl
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Time (t)

Acquisition time of the second image

δty (t′i) − δty (ti) =
˘̆
y′

i − ˘̆yi

Acquisition time of the first image

Vertical drift δty (t)

0 ti tf t∆ t∆ + t′i t∆ + tf

tdispi

Fig. 2.18 — Example of an unknown vertical drift function and the way to

estimate it from the disparity data between two consecutive images.

Fig. 2.18 illustrates an example of representation of the drift as a function of time with

the variables defined before. Note that the delicate part of the drift function estimation is

that the disparity data does not lead directly to the drift function but to drift differences

(see Equ. (2.13)). Therefore, it allows to estimate the drift function only up to a constant

and in order to have a unique solution, a constraint has to be added.

From the drift evolution through time (see Fig. 2.17), different models can be assumed to

represent locally the time-varying distortion δt(t) and three have been experimented: linear,

quadratic or spline curve6. The model equations are presented thereafter and the estimation

of the parameters are discussed in Section 2.3. Note that the spline representation allows

to replace the two other models by choosing a spline defined on only one knot span (see

Appendix B) and by setting its degree to 1 (equivalent to linear model) or 2 (equivalent to

quadratic model).

� Linear model: δt(t) =
(

ax ay

)>
t

The general linear model should be δt(t) =
(

ax ay

)>
t + b but the parameter b is null.

Indeed, the constraint to enforce the unique solution is that the drift is null for the first

pixel δt(0) =
(

0 0
)>

and that leads to b = 0.

Equ. (2.13) ⇒ ˘̆m′
i − ˘̆mi =

(

ax ay

)>
(t′i − ti)

=
(

ax ay

)>
(t∆ + tdispi

) (2.14)

6If the disparity evolution is assumed constant, it corresponds to a linear model of drift; if the disparity

evolution is assumed linear, it corresponds to a quadratic model of drift; etc.
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� Quadratic model: δt(t) =
(

ax ay

)>
t2 +

(

bx by

)>
t

Similarly to the linear model, the general quadratic model should be δt(t) =
(

ax ay

)>
t2+

(

bx by

)>
t + c but the parameter c is null due to the constraint δt(0) =

(

0 0
)>

.

Equ. (2.13) ⇒ ˘̆m′
i − ˘̆mi =

(

ax ay

)>
(t′i

2 − ti
2) +

(

bx by

)>
(t′i − ti)

=
(

ax ay

)> (
(t∆ + tdispi

)2 + 2 ti(t∆ + tdispi
)
)

+
(

bx by

)>
(t∆ + tdispi

) (2.15)

� Spline model: δt(t,α,β) =

( nj∑

j=0

αjNx(t)

nk∑

k=0

βkNy(t)

)>

Equ. (2.13) ⇒ ˘̆m′
i − ˘̆mi = δt(t

′
i,α,β) − δt(ti,α,β)

=

( nj∑

j=0

αj (Nx(t
′
i) − Nx(ti))

nk∑

k=0

βk (Ny(t
′
i) − Ny(ti))

)>

(2.16)

The constraint to enforce to ensure the uniqueness of solution with the spline model is

discussed in Section 2.3.

2.2.4 Complete Imaging System Model

Combining the projection model (Equ. (2.4) and Fig. 2.10) and the distortion model

(Equ. (2.5) and Fig. 2.12) leads to the complete imaging system model of equation: ˘̆m =

D(KTM), represented by the diagram in Fig. 2.19.

World coordinate

system

Real distorted

image plane

Projection model

M T K D

M m
˘̆m

Distortion

Complete imaging system model

model

Fig. 2.19 — Schematic complete imaging system model including projection

and distortion transformations.
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Actually, to simplify the calibration process, the distortion function D is replaced by its

reciprocal C = D−1, the distortion correction function (see Fig. 2.20). When the spatially-

varying distortion is represented by spline functions, this approach allows to avoid issues

with splines definition domain which may change during calibration process. Moreover, by

this way, spline inversions are eliminated, thereby increasing the computation efficiency of

the distortion removal process.

Similarly to Equ. (2.5), the distortion correction equation can be written as follows:

m = C( ˘̆m) = (Cs ◦ Ct)( ˘̆m)

where C( ˘̆m) = D−1( ˘̆m), Cs(m̆) = D−1
s (m̆) and Ct( ˘̆m) = D−1

t ( ˘̆m).

This leads to the following final model equation to calibrate (illustrated in Fig. 2.20):

C( ˘̆m) = KTM (2.17)

system

World coordinate Real distorted

image plane
T K

M

C

correction model

Distortion

Complete imaging system model

Projection model

M
˘̆mm

Fig. 2.20 — Schematic imaging system model with correction distortion.

43



SEM Imaging System: Modeling and Calibration

2.3 Imaging System Calibration

Calibrating the SEM imaging system consists in determining the global transformation

mapping 3D world points Mi into their corresponding 2D projected points ˘̆mi. This trans-

formation has been modeled in the previous section and is represented by the composition

of successive transformations, linear or not (see Equ. (2.17) and Fig. 2.20). The calibration

of this model, or in other words, the estimation of its parameters T, K and C requires a set

of known 3D points Mi of a quasi-planar calibration target associated to 2D measure points
˘̆mj

i , projection of the ith point of the calibration target in the jth view. Note that because

the geometry of the calibration target is not always accurately known, the 3D points Mi will

be reestimated as well during the calibration process [LVD98]. The experimental process

to acquire the necessary data is explained in Section 2.3.2 in this chapter.

The estimation of the parameters in the least-squares sense leads to a non-linear opti-

mization process where the sum of the magnitudes of reprojection errors7 ε
j
i is minimized:

min
Mi,T

j ,K,C

∑

i

∑

j

‖εj
i‖2

2 where ε
j
i = KTjMi − C( ˘̆mj

i ) (2.18)

The estimation of the 3D points Mi, the extrinsic parameters of each view Tj and the

intrinsic parameters K (corresponding to the calibration of the projective transformation)

is a well-known problem referred to as bundle adjustment [TMHF00]. On the contrary,

the estimation of C is based on a novel approach described in the following sections. As

described in section 2.2.3, measurements made using SEM images are biased by two types

of distortions: a spatially-varying distortion constant for each image and a time-varying

distortion different for each acquired image. This is why time-varying distortion correc-

tion functions Ctj are independently estimated for each view j of the calibration sequence

whereas the spatially-varying distortion correction function Cs is estimated using all views.

Actually, for each view j, a consecutive image of the same area and under the same operat-

ing conditions is acquired (see Section 2.3.2 and Fig. 2.23) and each time-varying distortion

correction function can be determined from the disparity map computed between these two

images and the knowledge of the time elapsed. The non-parametric spatially-varying dis-

tortion removal approach is implemented using a relaxation algorithm that progressively

improves the distortion correction function estimates using the residual reprojection errors

after calibration of the projection model by bundle adjustment.

2.3.1 Calibration Procedure

The minimization problem (2.18) is solved using the following algorithm:

7The magnitudes of reprojection errors correspond to the distance between the estimated projected

points and the actual measures.
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1. Estimation of the different time-varying distortion correction functions Ctj (see fol-

lowing sections for details)

2. Correction of the original measure points ˘̆mj
i for drift using the time-varying distortion

correction function Ctj corresponding to the associated view j:

m̆
j
i = Ctj(

˘̆mj
i )

3. Estimation of the projection model parameters and the spatially-varying distortion

correction function by a relaxation technique:

(a) Initialization: spatially-varying distortion is considered null:

Cs(m̆
j
i ) = m̆

j
i

(b) Spatially-varying distortion correction of the “undrifted” measure points m̆
j
i :

n
j
i = Cs(m̆

j
i )

(c) Calibration of the projection model by bundle adjustment (see following sections

for details):

min
Mi,T

j ,K

∑

i

∑

j

‖εj
i‖2

2 where ε
j
i = m

j
i − n

j
i

(d) Estimation of the spatially-varying distortion correction function Cs by fitting

the data {m̆j
i , m̄} where m̄ = n

j
i + ωε

j
i} (see following sections for details)

(e) Repeat steps from 3b. to 3d. until convergence (the stop criterion here is

relative: algorithm is stopped when the decrease of the residue value ε
j
i is less

than 0.1%).

Note that the algorithm is presented here in the more complex case, when the spatially-

varying distortion is represented by spline functions. If parametric distortion models are

used, there is no relaxation procedure: steps 3a., 3b. and 3e. do not exist and steps 3c. and

3d. are gathered in a same step where distortion parameters are integrated in the bundle

adjustment process.

Because effects of both distortion types occur at each acquisition, they are mixed to-

gether in the image and their separated estimation may be difficult to achieve without

taking into account a part of the other distortion type. Ideally, the calibration process

should estimate first 1) the time-varying distortion correction functions considering the

spatially-varying one fixed, then 2) estimate the spatially-varying distortion correction
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function considering the time-varying ones fixed and finally 3) iterate these two stages

using a relaxation process in order to recover progressively each distortion type. This ap-

proach has been tested but in practice, the distortion types are properly separated at the

first iteration and the current algorithm is then preferred for its straightforwardness.

Important steps of the algorithm are detailed in the following sections:

Step 1.: Time-Varying Distortion Correction Estimation

Based on Equ. (2.12), the time-varying distortion correction function Ct can be expressed

as the subtraction of the drifted point and the drift δt:

Ct( ˘̆m) = ˘̆m − δt(t)

Different models have been presented in Section 2.2.3 for δt and we will now explain

how to calibrate them by estimating their parameters.

� Linear model: see Equ. (2.14)

t∆ being known, the parameters ax and ay are easily obtained as follows:

(

ax ay

)>
=

1

n

n∑

i=1

dispi

t∆ + tdispi

� Quadratic model: see Equ. (2.15)

With t∆ known, the parameters of the model are estimated by a least square linear

regression process:

Yi =
(

ax ay

)>
Xi +

(

bx by

)>

with Yi =
dispi

t∆ + tdispi

and Xi = (2 ti + t∆ + tdispi
)

� Spline model: see Equ. (2.16)

Resolving Equ. (2.16) consists in determining the parameter vectors α and β (splines

coefficients) such that the distance between dispi and δt(t
′
i,α,β)− δt(ti,α,β) is minimal.

For a least-squares optimization (assuming a normal distribution of errors), the distance

to minimize is the so-called l2 norm, defined by:
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E√(α,β) =

√
√
√
√

n∑

i=1

‖ξi‖2
2 where ξi = dispi − δt(t

′
i,α,β) + δt(ti,α,β)

Note that minimizing E√ is equivalent to minimize the objective function E = E√2.

Equ. (2.16) ⇒ E(α,β) =

(

Ex(α)

Ey(β)

)

with Ex(α) =
n∑

i=1

∥
∥
∥(˘̆x′

i − ˘̆xi) − δtx(t
′
i,α) + δtx(ti,α)

∥
∥
∥

2

2

and Ey(β) =
n∑

i=1

∥
∥
∥(˘̆y′

i − ˘̆yi) − δty(t
′
i,β) + δty(ti,β)

∥
∥
∥

2

2

Equ. (2.16) does not lead to a unique solution. Indeed, if δt is solution, any function δ′t
defined as δ′t = δ′t + v,∀v ∈ R

2 is also solution. To insure the uniqueness of the function

to estimate, two constraints must be added to the minimization process. Because the drift

is null in x and y direction at the beginning of the acquisition of the first image, we can

eliminate the two degrees of freedom by fixing the constraint δt(0,α,β) =
(

0 0
)>

. For

optimization problems subject to constraints, it is common to introduce the Lagrangian

multipliers. They are new variables (one per constraint) gathered in a vector of vectors

Λ =
(

λ1 λ2 . . .
)

. Each constraint equation is multiplied by its corresponding variable,

before being added to the original objective functions. For convenience, and because there

is only one constraint here, λ1 will be denoted λ =
(

λx λy

)>
. The new objective function

to minimize becomes:

L(α,β,λ) = E(α,β) + λδt(0,α,β) (2.19)

Minimization of (2.19) is achieved by setting the derivatives equal to zero, resulting in

the system of normal equations (2.20):

min
α,β,Λ

L ⇒







∂L

∂αj

= 0>, j = 1 . . . nj

∂L

∂βk

= 0>, k = 1 . . . nk

∂L

∂λ
= 0>

⇒







∂Ex

∂αj

(α) + λx
∂δtx

∂αj

(0) = 0

∂Ey

∂βk

(β) + λy

∂δty

∂βk

(0) = 0

δt(0,α,β) = 0>

(2.20)

where:
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∂Ex

∂αj

(α) = −2
n∑

i=1

(
∂δtx

∂αj

(ti) −
∂δtx

∂αj

(t′i)

)

×
(

(˘̆x′
i − ˘̆xi) − δtx(t

′
i,α) + δtx(ti,α)

)

∂Ey

∂βk

(β) = −2
n∑

i=1

(
∂δty

∂βk

(ti) −
∂δty

∂βk

(t′i)

)

×
(

(˘̆y′
i − ˘̆yi) − δty(t

′
i,β) + δty(ti,β)

)

∂δtx

∂αj

(t) = Nx(t),∀t ∈ R

∂δty

∂βk

(t) = Ny(t),∀t ∈ R

At last, solving for the normal equations (2.20) in order to estimate the drift function

δt consists in solving two different linear systems: one where the unknown parameters are

α and λx and leading to the estimation of δtx and one where the unknown parameters are

β and λy and leading to the estimation of δty . The linear systems can simply be solved by

non-iterative methods such as the pseudo-inverse method.

Step 3c.: Calibration of the projection model

Calibration of the projection model consists in estimating the parameters of the transfor-

mation K (intrinsic parameters) and the parameters of the transformations Tj (extrinsic

parameters)8 corresponding to the different orientations and positions of the imaging sys-

tem with respect to a coordinate system chosen as reference. This estimation problem can

then be solved using the knowledge of three-dimensional points expressed in the reference

coordinate system and their corresponding projected points in different images. Usually,

the three-dimensional points employed are scattered on an object called calibration target.

By acquiring some images of this object from different viewpoints, it is possible to simul-

taneously estimate the intrinsic and extrinsic parameters of the projection model and to

reestimate the 3D coordinates of the supposedly known points Mi of the calibration target,

considering that the geometry of the calibration target is not always perfectly known. This

technique called bundle adjustment was already used more than 45 years ago with pho-

tographs [Bro58] and was updated a few years ago with digital images [LVD98, TMHF00].

The estimation of the projection model parameters is achieved by minimizing the mag-

nitudes of the reprojection errors, i.e. the minimization of the distances between m
j
i , the

8The parameters of Tj are usually denoted Tj = (Rj , tj) where Rj is the rotation matrix representing

the orientation and tj is the translation vector representing the position of the imaging system in the view

j. However, the rotation matrix is not a minimal representation of a 3D rotation since it is composed

of 9 parameters for 3 rotation angles and it is therefore not appropriate for a minimization process. In

order to have a minimal parameterization of the problem, rotation matrix will be converted into a minimal

representation of rotation such as Euler angles or rather the rotation vector. Conversions between different

rotation representations are detailed in Appendix C.
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projected points in the view j of 3D points Mi and n
j
i , the measure-points corrected for

distortion.

In the case of a non-parametric model of distortion, the measure-points n
j
i are already

corrected for time-varying and spatially-varying distortion at this step of the algorithm and

the minimization is as follows:

min
Mi,T

j ,K

∑

i

∑

j

‖mj
i − n

j
i‖2

2 with m
j
i = KTjMi and n

j
i = C( ˘̆mj

i ) (2.21)

In the case of a parametric model of distortion, the measure-points n
j
i are only corrected

for time-varying distortion (nj
i = m̆

j
i ) and the estimation of the vector of spatially-varying

distortion parameters d =
(

k1 k2 k3 d1 d2 p1 p2

)

is included in the minimization

process of bundle adjustment:

min
Mi,T

j ,K,d

∑

i

∑

j

‖mj
i − n

j
i‖2

2 with m
j
i = Cs(KTjMi,d) and n

j
i = Ct( ˘̆mj

i ) = m̆
j
i (2.22)

The minimization is carried out using a well-known iterative optimization process: the

Levenberg-Marquardt technique. However, the huge number of parameters of the mini-

mizations (2.21) or (2.22) leads to a huge over-determined equation system and solving

directly the normal equations is out of question. For instance, a standard calibration ex-

periment with a non-parametric model of distortion using 10 views and 3000 points per

image leads to 60000 equations. Classical methods of matrix inversion are too computa-

tionally expensive and a very effective method using advantageously the sparse structure

of matrices is implemented. This method is described in details in Appendix A.

Before the optimization process and because it requires initial guesses of each parame-

ter to estimate, a linear calibration is first conducted. Two methods almost similar exist

[RAS93, Zha98a] and allow to obtain analytically estimated values of the intrinsic and

extrinsic parameters. In the case of a parametric model of distortion, the distortion pa-

rameters are assumed null before the first iteration of Levenberg-Marquardt.

To ensure the uniqueness of the minimizations (2.21) or (2.22), Garcia [Gar01] proved

that 7 constraints must be enforced. Usually the 7 fixed parameters are coordinates of

some points Mi from the calibration target: three non-collinear 3D points are chosen to be

completely or partially constrained (2 points and the z-coordinate of the third are fixed to

their initial value). Note that in the case of a non-parametric model of distortion, these

constraints can be omitted in the bundle adjustment to be enforced during the spline fitting

(see Step 3d.). Indeed, the bundle adjustment is minimizing Equ. (2.21):
∑

i

∑

j ‖KTjMi−
Cs(m̆

j
i )‖2

2 and the uniqueness constraints can be enforced either on the projection model

parameters, or on the 3D points Mi, or on the spline Cs.

Fig. 2.21 illustrates the whole process:
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Images of the

calibration

target

Initial estimates of the

projection model parameters

Bundle

Adjustment
3D model of the calibration target

(Parametric distortion parameters)

Initial estimate of the geometry

of the calibration target

PROJECTION MODEL PARAMETERSMeasure points

Fig. 2.21 — In addition to the measure points (obtained from fiducial marks

or speckle pattern images), the bundle adjustment approach used for the calibra-

tion needs initial guesses for the 3D shape of the calibration target and for the

projection model parameters (obtained by linear calibration [RAS93, Zha98a]).

The purpose of the optimization process is essentially the projection model pa-

rameters refinement (and the distortion parameters estimation in the case of a

parametric distortion) but in addition, the bundle adjustment refines also the

3D shape of the calibration target.

Step 3d.: Spatially-Varying Distortion Correction Estimation

Spatially-varying distortion can be modeled by two ways: parametric or non-parametric

model. Parametric models are added to the projection model and estimated during the

bundle adjustment process (see Step 3c.). To estimate the distortion in the case of a

non-parametric model and obtain the spline function coefficients, Schreier et al. [SGS04]

developed a methodology that uses images of at least two known translated motions of a

plane calibration target. Even if this approach is relatively straightforward, our methodol-

ogy further simplifies the process by allowing the user to employ a non-planar object and

general unspecified motions. The original idea of our methodology is to consider that the

remaining reprojection errors after time-varying distortion correction and calibration of the

projection model correspond to the errors due to the non-correction of the spatially-varying

distortion. Nevertheless, the spatially-varying distortion correction cannot be recovered di-

rectly because without the real spatially-varying distortion correction before the calibration

of the projection model, a part of this distortion is included in the parameters estimated by

the bundle-adjustment (particularly the reestimated 3D shape of the target). Therefore, the

spatially-varying and the projection model parameters have to be estimated progressively

using a relaxation process. However, the rate of convergence is very slow using directly

this approach and to minimize the number of iterations (see Fig. 2.22), the principle of the

S.O.R.(Successive Over Relaxation) [Kul61, Ost53] is used: the residue value ε
j
i is scaled

by a factor ω, called S.O.R. parameter. Optimal value of this parameter can be determined

a priori [LT87].
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Fig. 2.22 — Influence of the S.O.R. parameter on the rate of convergence of

relaxation algorithm: we notice that the S.O.R. method is particularly efficient

for the first iterations.

The distortion correction fields in x and y direction are represented by the two 3D

surfaces defined by the measure-points corrected for drift m̆ and the coordinates
(

x̄ ȳ
)>

of m̄ = n
j
i + ωε

j
i . Let’s note Sx the surface composed of the n 3D points

(

x̆i y̆i x̄i

)>
, i =

1 . . . n and Sy composed of the points
(

x̆i y̆i ȳi

)>
. The distortion correction function is

denoted Cs(m̆,α,β) and defined as follows:

Cs(m̆i,α,β) =

(

Csx
(m̆i,α)

Csy
(m̆i,β)

)

where Csx
(m̆i,α) =

nj∑

j=0

nk∑

k=0

αj,kNj(x̆i)Nk(y̆i)

and Csy
(m̆i,β) =

nj∑

j=0

nk∑

k=0

βj,kNj(x̆i)Nk(y̆i)

It is estimated by fitting the surface Sx with the spline Csx
and the surface Sx with Csy

.

The fitting is an approximation procedure which consists in determining the parameters

vector α (respectively β) of the spline function Csx
(respectively Csy

) such that the distance

between the surfaces defined by the spline and Sx (respectively Sy) is minimal. Similarly

to previous minimizations, we assume a normal distribution of errors and use the l2 norm

to define the objective function E. For convenience, only the equations for the fitting of

Sx with the spline Csx
are given but the others can be easily obtained by replacing x by y

and α by β in each expression.
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E(α) =
n∑

i=1

ε2
i where εi = x̄i − Csx

(x̆i, y̆i,α)

or expressed in matrix form:

E(α) = ‖ε‖2
2 where ε = x − Cxα

with:

Cx =









N0
0,0 . . . N0

0,k
. . . N0

0,nk
N0

1,0 . . . N0
nj ,nk

.

..

N i
0,0 . . . N i

0,k
. . . N i

0,nk
N i

1,0 . . . N i
nj ,nk

.

.

.

Nn
0,0 . . . Nn

0,k
. . . Nn

0,nk
Nn

1,0 . . . Nn
nj ,nk









where N i
j,k = Nj(x̆i)Nk(y̆i)

and x =
(

x̄0, . . . x̄i . . . x̄n

)>

Let’s note Ci
sx

(α) = Csx
(x̆i, y̆i,α). The minimization is achieved by setting the deriva-

tives equal to zero, resulting in the normal equation (2.23):

min
α

E ⇒ ∂E

∂α
= 0>

⇒ 2
n∑

i=1

∂Ci
sx

∂α

(
Ci

sx
(α) − x̄i

)
= 0> (2.23)

with
∂Ci

sx

∂α
=
(

N i
0,0 . . . N i

0,k . . . N i
0,nk

N i
1,0 . . . N i

nj ,nk

)>

In matrix form, this is expressed by the following linear system:

(
C>

x Cx

)
α = C>

x x (2.24)

Note that the size of C>
x Cx and C>

x x does not depend on n, the number of 3-D points.

Moreover, they can be calculated directly in a very efficient manner (cumulative sum). This

leads to the solution:

α =
(
C>

x Cx

)−1
C>

x x

C>
x Cx being a symmetric, positive definite and banded matrix, its inversion can be

carried out very efficiently.

It has been shown in Step 3c. that the bundle adjustment requires some constraints

to ensure the uniqueness of the estimated vector of parameters. No constraint is neces-

sary for the spline fitting but for convenience, we can choose not to constrain the bundle
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adjustment and constrain the spline fitting instead. Then, in addition to the data to fit

and in order to enforce the uniqueness of the general solution, it is necessary to introduce

some supplemental constraints, such as imposing the spline a given value at a given point.

Consider a set of m equality constraints Cn+1
sx

(α) = c1, . . . , Cn+m
sx

(α) = cm. The new

objective function to optimize is:

Lx(α,λx) = E(α) + λx1
(Cn+1

sx
(α) − c1) + . . . + λxm

(Cn+m
sx

(α) − cm)

where λx1
, . . . , λxm

are Lagrangian multipliers. The new normal equations are:

∂Lx

∂α
=

∂E

∂α
+ λx1

∂Cn+1
sx

∂α
+ . . . + λxm

∂Cn+m
sx

∂α
= 0>

∂Lx

∂λ
=

(

Cn+1
sx

(α) − c1 . . . Cn+m
sx

(α) − cm

)>
= 0>

which leads to the following linear system to solve:














C>
x Cx

∂Cn+1
sx

∂α
. . .

∂Cn+m
sx

∂α

Cn+1
x
... 0m×m
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2.3.2 Experimental Process

Traditional experimental calibration process of an imaging system consists in acquiring a

series of images of a planar calibration target from different viewpoints and orientations

[RAS93, Zha98b, OGD97, LVD98, Gar01]. This calibration target is almost always a ded-

icated object (see Fig. 2.25 for an example), marked with a set of fiducial marks (e.g.,

circles, grid intersections, etc.) which location has to be known more or less accurately

(see [BB94, Peu94] for fiducial marks extraction). Realization of such an object at the

macro-scale (for calibrating digital camera for instance) is not complex but it becomes very

delicate at reduced-length scales and almost impossible for high-magnification experiments

with the SEM. This is why we developed a new experimental calibration process able to

use any simple object. The only requirement is that the texture of the object is random

and with sufficiently small spatial wavelength so that digital image correlation can be used

to locate and track small sub-regions throughout the image. Moreover, even if the method

works with any calibration object of which the geometry is approximately known, it is often
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chosen quasi-planar so that it is easier to give an initial guess of the calibration points Mi

for the bundle adjustment. This technique has been successfully applied to several imag-

ing systems in [CSG+04] and in addition to be more straightforward, calibration results

show clearly that it is more accurate to use a speckle pattern textured target instead of a

dedicated target with fiducial marks. Indeed, contrary to the dedicated target where the

number of fiducial marks is generally small (rarely more than 100), the number of measure

points with randomly-textured target is only limited by the number of possible correla-

tion windows in the image plane, which is almost equal to the number of pixels (generally

1024× 764 ≈ 800000). Moreover, they can be extracted with higher accuracy than fiducial

marks (the matching accuracy with digital image correlation using a speckle pattern is

better than 0.01 pixels while the accuracy of the extraction of an ellipse center for example

is about 0.02 pixels).

Our experimental calibration procedure differs a little compared to traditional ones be-

cause even if a series of images obtained like classic experimental calibration process should

be sufficient to calibrate the projection model and the spatially-varying distortion, the time-

varying distortion estimation requires another consecutive image for each acquired image

(see Fig. 2.23). Thus, time-varying distortion is estimated and corrected for each pair of

consecutive images while spatially-varying distortion is estimated and corrected through-

out the entire image sequence. The series of images of the calibration target from different

viewpoints is acquired thanks to the motorized stage of the SEM that can be translated

and rotated in the plane automatically and tilted (out-of-plane rotation) manually (see

Appendix D.2).
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consecutive images

First pair of

consecutive images

Second pair of

consecutive images

N-th pair of

body
Rigid-

motion

body
Rigid-

motion

spatially-varying distortion

Image sequence for

Image 2A

Image 2B

Image NA

Image NB

Image 1A

Image 1B

Fig. 2.23 — Sequence of image acquisition: for each image of the series for

spatially-varying distortion estimation, a consecutive one is acquired for time-

varying distortion estimation. Each *A image is acquired from a different view-

point whereas a couple of images *A and *B represents the same area from the

same viewpoint.
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2.4 Experimental Results: From Macro to Nano-Scale

This section presents experimental results using different calibration methodologies in-

cluding the one previously described in Section 2.3. It clearly shows the improvement in

calibration accuracy of our approach with respect to other traditional methods. Thus, by

eliminating the need for precision grids and employing general 3D motions of the specimen,

our calibration process is both simpler and more accurate.

In order to prove the wide range of applications of our approach, experiments were

conducted with different imaging systems and not only a Scanning Electron Microscope.

In the case of a camera (Section 2.4.1) and a stereo-optical microscope (Section 2.4.2),

there is no time-varying distortion and the calibration process is simplified. The function

Ct is the identity function: m̆
j
i = Ct( ˘̆mj

i ) = ˘̆mj
i and the minimization becomes:

min
Mi,T

j ,K,Cs

∑

i

∑

j

‖εj
i‖2

2 where ε
j
i = KTjMi − Cs(m̆

j
i )

Moreover, the calibration procedure is simplified as well and only consists of the Step

3. of the algorithm presented in Section 2.3.1.

In order to validate independently both types of distortion correction for the SEM

imaging system, two experiments have been performed: the first at low magnification

(Section 2.4.3) where the drift is negligible (at 200× and after 3 hours, the magnitude of

drift is only 25× 10−3 pixels), the second at high magnification (Section 2.4.4) where both

distortions occur.

2.4.1 Camera Imaging System Calibration

Using a QImaging Retiga 1300 CCD camera equipped with a 25 mm lens, two different

sets of images have been acquired for calibration:

1. one set of 15 images of a speckle pattern target (see Fig. 2.24)

Fig. 2.24 — Four images of the speckle Pattern calibration target (random

pattern).

2. one set of 20 images of a standard calibration target consisting of 9×9 circles (ap-

pearing as ellipses in images) (see Fig. 2.25)
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Fig. 2.25 — Four images of the standard circle calibration target.

Using the first set of images (speckle pattern target), the simplified calibration procedure

presented earlier is performed using 6500 points per image and bicubic splines of 8×8

patches9 for representing the distortion correction. The obtained standard deviation of the

magnitudes of the reprojection errors is 0.01 pixels, with a bias (systematic error) of 0.01

pixels. If the distortion is not taken into account, the standard deviation is 0.04 pixels and

the bias is 0.08 pixels and if the distortion is represented by a third-order radial distortion

model, the standard deviation is 0.02 pixels. Thus, even in the presence of small amounts

of distortion (see Fig. 2.26), the method is capable of a 4-fold increase in accuracy with

respect to a pure projective model and a 2-fold increase compared to a parametric model

of distortion.
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Fig. 2.26 — The distortion correction varies from -1 pixel to 1.5 pixels hori-

zontally (left) and from -1.5 pixels to 1.5 pixels vertically (right).

Using the second set of images (circle target), our calibration procedure is carried out

using 81 points resulting from the extraction of the ellipses centers in the 20 images. The

standard deviation here is 0.03 pixels with a bias of 0.03 pixels. Note that the circle target is

not adequate for estimating the distortion correction function with spline surfaces because

9Using 8×8 patches means that the area of interest of the image is divided in 8×8 rectangles and the

data contained in each patch is approximated by a B-spline surface (see Appendix B).
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81 measure points are widely insufficient for a correct spline fitting (only an average of

9 points per patch if the image is split into 3 × 3 patches). By comparison, considering

a radial parametric model leads to a standard deviation of 0.04 pixels and a bias of 0.03

pixels whereas considering no distortion in the images leads to a standard deviation of 0.1

pixels and a bias of 0.1 pixels.

All results are gathered in Table 2.2. Note that whatever the distortion model used, the

calibration results using a speckle pattern target are better than the results obtained using

a classical calibration target. This is due to the difference in the number of measure-points

(6500 points per image for the former and 81 points per image for the latter) and the

accuracy of their extractions.

Model Standard target Speckle pattern target

Pinhole 0.1 0.04

Pinhole + Radial order 3 0.04 0.02

Pinhole + Spline 0.03 0.01

Table 2.2 — Camera calibration: experimental results (standard deviation in

pixels).

2.4.2 Stereo Optical Microscope Imaging System Calibration

For the stereo optical microscope (SOM) system, the calibration process uses 20 images

acquired with a Nikon SMZ-U SOM (see Fig. 2.27).

5 cm

Fig. 2.27 — Four images of the speckle pattern specimen used to calibrate the

stereo-optical microscope.

A total of 3000 points per image are used and bicubic splines with 8×8 patches are

used to represent the distortion correction field. Fig. 2.28 illustrates the obtained distortion

correction along x-axis and y-axis.

The standard deviation of the magnitudes of reprojection errors is 0.005 pixels with a

bias of 0.01 pixels. In comparison, the standard deviation of the errors using the pinhole
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Fig. 2.28 — The distortion correction field obtained after calibration: x-

component (left), y-component (right).

model without distortion correction is 0.08 pixels and the pinhole model with a third-order

parametric radial distortion model is 0.04 pixels. Results are gathered in Table 2.3.

Model Standard deviation (pixel)

Pinhole 0.08

Pinhole + Radial order 3 0.04

Pinhole + Spline 0.005

Table 2.3 — Calibration of the stereo-optical microscope : experimental results.

2.4.3 SEM Imaging System Calibration - Low Magnification

This first experiment using the SEM is conducted at low magnification and after a long

waiting time (about 3 hours) in order to validate the spatially-varying distortion correction

part. Indeed, the magnitude of time-varying distortion at 200× and after 3 hours is about

25× 10−3 pixels, which is negligible. The time-varying distortion correction is validated in

the experiment described in Section 2.4.4.

The SEM system used in this calibration experiment is a FEI ESEM Quanta 200. A

total of 24 images of a speckle-patterned calibration target 10 (see Fig. 2.29) is recorded

at a 200× magnification, where the target underwent different amounts of out-of-plane

rotation and translation. Our calibration method is performed with 5000 points per image

and bicubic splines with 8×8 patches are used to represent the distortions incurred during

the imaging process.

10At low magnification, the speckle-patterned calibration target can be realized using micro-lithography

(see Fig. 3.11).
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1.2 cm

Fig. 2.29 — A set of 24 images of a speckle-patterned calibration target is

acquired with the SEM.

Fig. 2.30 shows the distribution of the reprojection errors along y-axis. The left part

of the figure demonstrates that using our calibration methodology, a non-biased normal

distribution is obtained, proving that the remaining errors are essentially due to Gaussian

noise. On the contrary, the right part shows that a pure projective model or a third-order

radial model are far from removing correctly the distortions because the remaining errors

still clearly contains a non-Gaussian error component.

 

 

 

 

 

 

 

 

 

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

D
en

si
ty

 o
f d

is
tr

ib
ut

io
n

Reprojection errors along y-axis (pixel)

 

 

 

 

 

 

 

 

 

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

D
en

si
ty

 o
f d

is
tr

ib
ut

io
n

Reprojection errors along y-axis (pixel)

Non-parametric model using splines

Parametric model
(radial order 3)

Without distortion
correction

Fig. 2.30 — The error distribution resulting from our calibration method is

close to a normal distribution (left), contrary to the ones resulting from a cali-

bration considering radial distortion or no distortion at all (right).

The distortion correction field using spline surfaces is illustrated in Fig. 2.31. Horizontal

and vertical component of the distortion correction varies respectively from -2 to 3 pixels

and from -3 to 1 pixels. In the corners of the images, where the amplitude of distortion is

maximum, the magnitude approaches 4 pixels.

The standard deviation of the magnitudes of reprojection errors is 0.02 pixels and the

bias is 0.03 pixels using our calibration approach. By comparison, the same input data

with the pinhole model and a parametric distortion correction model (radial order 3) leads

to a standard deviation of 0.14 pixels and a bias of 0.24 pixels. The pinhole model without
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Fig. 2.31 — Distortion correction field of the SEM at low magnification: x-

component (left), y-component (right) and magnitude (bottom).

distortion correction leads to a standard deviation of 0.43 pixels and a bias of 0.79 pixels

(see Table 2.4)

Model Standard deviation (pixel)

Pinhole 0.43

Pinhole + Radial order 3 0.14

Pinhole + Spline 0.02

Table 2.4 — SEM calibration at low magnification: experimental results.

This calibration experiment was the preliminary phase within an experiment aiming

at the 3D reconstruction of a detail of an American penny. A calibration using directly

the penny (quasi-planar object) as the calibration target has been realized as well (see

Section 3.5.1 for details and experimental results).
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2.4.4 SEM Imaging System Calibration - High Magnification

The objective of this second experiment using a SEM is to validate the time-varying dis-

tortion correction developed in this work. In this sense, the experiment is conducted11 at

high magnification (10000×) where the drift is quite important.

Time-varying distortion correction requires a specific experimental process described

in Section 2.3.2 and in Fig. 2.23: consecutively to each image of the calibration target12

usually acquired for the spatially-varying distortion correction, a second image of the same

area and in the same operating conditions is acquired (see Fig. 2.32 and Fig. 2.33) for the

time-varying distortion correction. A total of 16 images (8 pairs of consecutive images) of

the calibration target are acquired using a FEI ESEM Quanta 200 and denoted 1A, 1B,

2A, . . ., 8A, 8B (each *A image is acquired from a different viewpoint whereas a couple of

images *A and *B represents the same area from the same viewpoint). Fig. 2.32 presents

the times t
j
∆ elapsed between the beginning of the acquisition of the two images of a pair

j (one image acquisition lasting 95 seconds here). It presents as well the times t
j
∇ elapsed

during the jth rigid-body motion (time between the end of the second image of the pair j

and the first image of the pair j + 1).

consecutive images

First pair of

consecutive images

Second pair of
consecutive images

Third pair of

consecutive images

8th pair of

t8
∆

t1
∆

t2
∆

t3
∆

t1
∇

t2
∇

Image sequence for spatially-varying distortion

Image 2A

Image 2B

Image 8A

Image 8B

Image 1A

Image 1B

Image 3A

Image 3B

t1∆ = 118 s t2∆ = 111 s t3∆ = 109 s t4∆ = 111 s t5∆ = 113 s t6∆ = 112 s t7∆ = 113 s t8∆ = 117 s

t1∇ = 50 s t2∇ = 47 s t3∇ = 47 s t4∇ = 52 s t5∇ = 56 s t6∇ = 51 s t7∇ = 54 s

Fig. 2.32 — The time ti∆ elapsed between the acquisition of images of a pair

are useful for the drift estimation. The times ti
∇ are given as an indication only.

The complete calibration algorithm presented in Section 2.3.1 is followed step by step:

11We wish to acknowledge Dr. Ning Li from the University of South Carolina who accepted to help us

by acquiring all the images of this experiment using the SEM of the Electronic Microscopy Center of USC.
12The calibration target used in this experiment has been realized using an original methodology devel-

oped by the Chemical Engineering Department of the University of South Carolina [CSM+04].
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Image 1A Image 1B

Fig. 2.33 — Two consecutive images from the sequence of 8 pairs of images

of the calibration target acquired with the SEM: images 1A and 1B represent

the same area from the same viewpoint but at a different time of acquisition

(t1∆ = 118 seconds).

Step 1. and 2. of the algorithm: Time-Varying Distortion Correction

For each couple of consecutive images jA and jB, the disparity map (but presented as a

function of time and not as a function of position) is computed between the two images

(see Fig. 2.34). The time t
j
∆ elapsed between the acquisition of the 2 images is known and

allows to estimate the drift function δ
j
t (see Equ. (2.13)), represented here by two spline

curves of degree 5 (one for δ
j
tx and one for δ

j
ty). Then, each image jA is corrected for the

time-varying distortion.

Step 3. of the algorithm: Spatially-varying Distortion Correction

The eight images jA being now corrected for drift13, they are used to estimate the spatially-

varying distortion while estimating the projection model parameters as well in a relaxation

process (see Section 2.3.1). In this procedure, the spatially-varying distortion correction is

represented by bicubic splines composed of 8 × 8 patches.

This new calibration methodology leads to good calibration results since the standard

deviation of the magnitudes of reprojection errors is 0.03 pixels and the bias is 0.05 pixels.

In order to confirm the importance of the drift correction, it is judicious to try to estimate

13Note that the images jB could also be corrected for drift but 8 images are already sufficient for the

spatially-varying distortion estimation.
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Fig. 2.34 — Disparity computed between some pairs of consecutive images

(green graphs): the disparity is supposed to be null since no motion has been

undergone but due to the drift effect, it is not. After time-varying distortion

correction (red graphs), the disparity vector is closer to zero but is still biased

by the spatially-varying distortion (and noise).

64



2.4 Experimental Results: From Macro to Nano-Scale

directly the spatially-varying distortion using the simplified calibration procedure (no pre-

liminary time-varying distortion correction) and to compare the calibration results. In this

latter case, the standard deviation of the magnitudes of reprojection errors becomes 0.1

pixels (3 times bigger) and the bias 0.2 pixels (4 times bigger). Comparison of the two

distributions of reprojection errors along x-axis is illustrated in Fig. 2.35 and shows the

distinct accuracy improvement when the time-varying distortion is taken into account.
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Fig. 2.35 — Contrary to the reprojections errors obtained after the complete

calibration procedure (time-varying distortion correction + spatially-varying dis-

tortion correction) represented by the red graph, the reprojections errors clearly

contains a non-Gaussian error component (green graph) when the drift effect is

neglected.

Fig. 2.36 represents the reprojection errors of a view depending on the position in the

image in the cases of a complete and a simplified calibration procedure. In the latter case,

the reprojection errors interestingly show that a remaining deterministic component has not

been corrected. This remaining part is clearly due to a time-varying distortion (dependent

on the acquisition time and not on the spatial position in the image). Indeed, we can notice

that it is almost constant for a given row (along x-axis) and variable for a given column

(along y-axis). This is because contrary to horizontal neighbors, vertical neighbors in the

image are not neighbors in the time. It proves not only that a time-varying distortion

actually exists for high-magnification experiments but also that it cannot be included in

the spatially-varying distortion part. The two distortion types are clearly separated and

they absolutely need to be both taken into account if accurate measurements are to be

made.
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Fig. 2.36 — The red graph represents the reprojections errors after a com-

plete calibration procedure whereas the green graph represents them when the

time-varying distortion is not preliminarily taken into account. The green graph

interestingly shows that the remaining errors are due to a time-varying distor-

tion.
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Chapter 3

Automated 3D Reconstruction

Process using Videogrammetry

The first objective of our work is to measure accurately the 3D shape of any object ob-

served with a Scanning Electron Microscope. With the success of the stereo-correlation

technique at the macro-scale, several authors [JJ95, HS97, LTCY98, VLBB+01] and com-

mercial softwares [MeX, SAM] tried to apply this technique to the micro- and nano-scale

using stereoscopic SEM images. Since the SEM provides only one imaging sensor, the stereo

images cannot be acquired simultaneously and the specimen is generally tilted between the

two acquisitions to simulate a stereo-rig. However, contrary to stereo-vision applications,

the rigid-body transformation between the two viewpoints is not fixed and cannot be deter-

mined by acquisition of several images of a calibration target: stereo-vision is not directly

applicable here and the unknown rigid-body motion will be recovered a posteriori from

image analysis only (see Section 3.1).

The natural extension to this technique is the use of multiple views of the specimen (see

Section 3.2), allowing not only a better accuracy in 3D reconstruction but also a complete

view of the specimen. This technique is known for macro-scale applications as photogram-

metry, videogrammetry or Structure-from-Motion method and has been recently applied

to SEM 3D shape measurement [CGS+03, CGS+04, LBVP+04]. The important steps for

the accuracy of the 3D reconstruction are the calibration, the distortion correction and the

quality of the motion estimation. Previous works about 3D shape measurement using a

SEM rarely take into account distortion correction and always neglect the drift problem.

Moreover, the few authors considering distortion always use common parametric models,

which are not really adapted to complex imaging systems such as the SEM [CSG+04]. Con-

cerning the rigid-body motion estimation, the approach presented here consists not only

in recovering them using the epipolar geometry but also in reestimating them in a global

optimization process.

In addition to the accuracy, the second point in our 3D reconstruction process is its
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automation. With this objective, Section 3.3 introduces interest point detectors which

extract automatically feature points in the acquired images. These particular points are

very interesting because they are characteristic of an image and can be robustly extracted

in an image sequence. They can be matched automatically and allow then to estimate the

epipolar geometry without any intervention of the user.

Section 3.4 is the last step of the reconstruction process. It presents triangulation

equations for 2 views and more and gives different methods to solve them. Throughout

this chapter, the 3D reconstruction will always be considered first in the general case of a

perspective projection model of imaging sensor. The case of parallel projection is not more

difficult but differs slightly in some steps which will be generally briefly described at the

end of the sections.

Finally, Section 3.5 presents applications of videogrammetry at different length-scales:

the 3D reconstruction of a penny detail at micro-scale and the 3D reconstruction of a mold

at macro-scale. This last experiment is also the occasion to assess the accuracy of the

videogrammetry technique by comparing with the 3D shape measurement using a laser

scanning 3D digitizer.

Before entering in details of each stage and in order to facilitate the comprehension of

the complete algorithm, Fig. 3.1 recapitulates the different stages of the 3D reconstruction

process for a multi-view geometry and the reader may refer to it when necessary.
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Fig. 3.1 — Multistage process of the automated 3D shape measurement using

videogrammetry.
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3.1 2-View Geometry

Before presenting in Section 3.2 the general case of multiple view geometry, we consider in

this section the minimal case of multiple view geometry able to lead to 3D reconstruction:

the two-view geometry. An imaging sensor is defined by a projective transformation which

transforms a 3D point into a 2D point but this transformation removes the third dimension

and is therefore irreversible: for a given 2D point, we do not have a unique possibility for its

corresponding 3D point but an infinity along a line called projection ray (see Fig. 3.2, left).

By using two imaging sensors or in our case, by moving the object and acquiring a new

image from a different viewpoint, it is possible to recover the three-dimensional position of

the point by triangulation (see Section 3.4). It exists indeed only one point in 3D space

which corresponds to a pair of projected points (see Fig. 3.2, right).

m

M ?

M ?

M ?

m′
m

T

M

Fig. 3.2 — One-view geometry (left): the 3D point M is known to be along

the projection ray but cannot be determined; Two-view geometry (right): the 3D

point is unique, it is the intersection of the two projection rays.

Triangulation consists in determining the intersection in space of the two projections

rays. Therefore, it is necessary to express these two lines in the same coordinate system, i.e.

to know the rigid-body motion T = (R, t) (R is the rotation matrix and t the translation

vector) existing between the two viewpoints. The precision of this information being critical

for the quality of the 3D reconstruction, it is preferable to recover this motion a posteriori

from the images rather than to trust the position sensors of the SEM stage. This is possible

using a geometric constraint existing between any pair of images: the epipolar geometry

[Fau93, LF96, Zha96a].

The three first sections 3.1.1, 3.1.2 and 3.1.3 present the epipolar geometry, the funda-

mental matrix and the motion recovery in the most complex case of a general perspective
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projection (low magnification). The parallel projection leads to certain simplifications de-

scribed quickly in the last section.

3.1.1 Epipolar Geometry

Epipolar geometry is the relationship between correspondences of any pair of images. For

a given projected point m in one image, we know that its corresponding 3D point M in

space lies on a line called projection ray. Let’s note l′m the projected line of this projection

ray in a second image. Then, M being on the projection ray, its projected point m′ in the

second image have to be on the line l′m, called epipolar line of m (see Fig. 3.3).

associated to m

Projection ray Projection ray
associated to m′

m′
m

lm′

l′m

M

Fig. 3.3 — Epipolar geometry: epipolar line l′m (respectively lm′) is the image

of the projection ray associated to m (respectively m′).

This is called the epipolar constraint: for a given point m in one image, its corresponding

point m′ in the second image must lie on its epipolar line l′m. Respectively, m lies on lm′ ,

the epipolar line associated to m′. It is algebraically expressed as follows:

m′ constrained to be on l′m ⇒ m̃′>l′m = 0

and m constrained to be on lm′ ⇒ m̃> lm′ = 0

Fundamental Matrix

In order to have a direct algebraic relationship between a point m̃ in the first image and

its correspondence m̃′ in the second image, the fundamental matrix F is introduced. It is a

3× 3 matrix defined such that F m̃ = l′m. Likewise, the fundamental matrix F′ represents

the relationship between a point m′ in the second image and its correspondence m in the
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first image and is defined such that F′ m̃′ = lm′ . Substituting l′m and lm′ in the epipolar

constraints leads to:

m̃′> F m̃ = 0 (3.1)

and m̃> F′ m̃′ = 0 (3.2)

Note that if we transpose Equ. (3.1), we obtain an equation similar to Equ. (3.2) and

can deduce a relationship between the both fundamental matrices:

(3.1)> ⇒ m̃>F>m̃′ = 0

⇒ F> ∼= F′

where ∼= is the projective equality (equality up to a scale factor): see Section 2.2.1 for

details.

Essential Matrix

Equivalent to the fundamental matrix but in the imaging sensor coordinate system, the

essential matrix E represents the relationship between points in the first viewpoint and

the second viewpoint. The unknown rigid-body motion between the two viewpoints will

be extracted and recovered from this matrix. The essential matrix was introduced by

Longuet-Higgins before the fundamental matrix, more than 20 years ago in [LH81]. It can

be defined by two different ways:

� as a function of F and the intrinsic parameters of the imaging sensor in the two

positions:

E = A′> F A (3.3)

where A is the affine transformation of the projection model associated to the imaging

sensor in the first viewpoint and A′ the one corresponding to the second viewpoint.

Note that in our case, we have only one imaging sensor and the intrinsic parameters

does not change between the two viewpoints so A′ = A.

� as a function of the rigid-body transformation (R, t) between the two viewpoints:

E = t × R

= [t]×R (3.4)
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where × represents the cross product and [t]× is the antisymmetric matrix defined

by t:

[t]× =






0 −tz ty

tz 0 −tx

−ty tx 0






This matrix representation of the vector t allows to do a simple multiplication of

matrices instead of a cross product.

The essential matrix has only five degrees of freedom: 3 for the rotation plus 3 for the

translation but minus 1 because it is defined up to a scale factor.

3.1.2 Fundamental Matrix Estimation

Determining epipolar geometry in order to recover the motion between two viewpoints

consists in estimating the fundamental matrix parameters from a set of point matches.

The technique usually used consists in writing the linear equation corresponding to the

epipolar constraint (see Equ. (3.1)), like in [Zha96b]:

Consider a point m̃i =
(

xi yi 1
)>

in the first image, its corresponding point m̃′
i =

(

x′
i y′

i 1
)>

in the second image and F =






f11 f12 f13

f21 f22 f23

f31 f32 f33




. Then:

Equ. (3.1) ⇒ xix
′
if11 + yix

′
if12 + x′

if13 + xiy
′
if21 + yiy

′
if22 + y′

if23 + xif31 + yif32 + f33 = 0

⇔ uif
> = 0

where:

ui =
(

xix
′
i yix

′
i x′

i xiy
′
i yiy

′
i y′

i xi yi 1
)

and f =
(

f11 f12 f13 f21 f22 f23 f31 f32 f33

)

From n point matches, the following linear system can then be established:

Uf> = 0 with U =






u1

...

un






As the fundamental matrix F is a 3×3 matrix, nine parameters should be evaluated

and then nine points matches should be necessary but in fact, this number is smaller due

to two particularities of F:
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1. Equ. (3.1) ⇔ ∀λ, m̃′>(λF) m̃ = 0

⇒ F is defined up to a scale factor (3.5)

2.

{

Equ. (3.3) and Equ. (3.4) ⇒ F = A′−>[t]×RA−1

[t]× antisymmetric matrix ⇒ |[t]×| = 0

⇒ |F| = 0 (3.6)

Thus, only seven point matches are needed to estimate the seven independent parame-

ters of F with an appropriate parameterization. Actually, in practice, we have always more

than seven point matches and we preferred to implement the 8-point algorithm [LH81]

which uses eight or more point matches.

However, because the fundamental matrix estimation is very sensitive to noise, Hartley’s

method has to be implemented as well [Har95]. This method is proved to lead to a better

stability of the results thanks to an improvement in the condition number of the linear

system. It consists in applying, independently on each image, a 2-step transformation

called isotropic scaling to the coordinates before carrying out the 8-point algorithm:

1. each point mi is translated so that the centroid of all points is at the origin:

m̌i = mi −
1

n

n∑

i=1

mi

2. the coordinates of each point are scaled so that the average distance to the origin is

equal to
√

2:

m̂i =
m̌i

√
2

1

n

n∑

i=1

‖m̌i‖

Then, the 8-point algorithm can be performed but the obtained matrix F̂ corresponds

to modified inputs m̂i and m̂′
i. Thus, it has to be transformed as well in order to recover

the original fundamental matrix F.

Let T be the isotropic scaling transformation applied to each mi and T′, the one applied

to m′
i:

˜̂mi = Tm̃i and ˜̂m′
i = T′m̃′

i

Then:
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Equ. (3.1) ⇒ (T′−1
m̃′

i)
> F (T−1m̃i) = 0

⇒ m̃′>
i (T′−>

FT−1)
︸ ︷︷ ︸

F̂

m̃i = 0

And eventually, we recover F:

F = T′>F̂T

However, the estimated fundamental matrix does not satisfy the rank-2 constraint and

Tsai and Huang [TH84] suggest to enforce this singularity constraint a posteriori by replac-

ing F by Ḟ which minimizes the Frobenius norm of
∥
∥
∥F − Ḟ

∥
∥
∥ and subject to the constraint

∣
∣
∣Ḟ
∣
∣
∣ = 0. This is done easily using a Singular Value Decomposition of F.

Eventually, this linear method is still not accurate enough and its result is only used

as initial guess for an optimization approach. Indeed, the non-linear methods are better

because they minimize a physically meaningful quantity like distance of points to epipolar

lines or distances between observation and reprojection. We chose to implement the former

with the adapted fundamental matrix parameterization [LF96].

The criterion to minimize is:

n∑

i=1

d2(m̃′
i,Fm̃i) + d2(m̃i,F

>m̃′
i)

where d(m̃′
i,Fm̃i) is the Euclidean distance of point m̃′

i to Fm̃i, its epipolar line. Like-

wise, d(m̃i,F
>m̃′

i) is the Euclidean distance of point m̃i to F>m̃′
i. Therefore,

d(m̃′
i,Fm̃i) =

∣
∣
∣m̃′>

i Fm̃i

∣
∣
∣

‖Fm̃i‖2

and d(m̃i,F
>m̃′

i) =

∣
∣m̃>F>m̃′

∣
∣

∥
∥F>m̃′

∥
∥

2

(3.7)

Note that the method of fundamental matrix estimation described here is not the only

one. Several methods and parameterization of the fundamental matrix exist: iterative

or non-iterative method, from 7 or more point correspondences, imposing or ignoring the

rank-2 constraint of the fundamental matrix, normalizing or not the data, etc. Recently,

Armangue proposed a comparison of all the different approaches [AS03].

3.1.3 Motion Recovery

When the fundamental matrix F is estimated and the intrinsic parameters are known (after

calibration), the essential matrix E can be computed (see Equ. (3.3)). Then, the original

motion (R, t) can be extracted from E. The classical resolution of this problem is to

decompose E as described in [Zha96a]:
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Starting from Equ. (3.4):

Equ. (3.4) ⇒ E> = R>[t]>×

⇔ E>t = R> [t]>×t
︸︷︷︸

0

⇔ E>t = 0 (3.8)

Then, to recover the translation t, we have to solve Equ. (3.8). This kind of problem

is common in linear algebra and it is usually solved by minimizing
∥
∥E>t

∥
∥

2

2
, subject to

‖t‖2 = 1 (thus, the translation is found up to a scale factor). The solution is the unit

eigenvector of EE> corresponding to the smallest eigenvalue. This can be easily performed

using Jacobi’s method or a Singular Value Decomposition for example. However, because

of the ambiguity of sign of the essential matrix, the sign of t cannot be determined. This

leads to four possible choices: {E, t}, {E,−t}, {−E, t} and {−E,−t}. The ambiguity

is removed during the 3D reconstruction process by choosing the only couple of solutions

leading to points reconstructed in front of the imaging sensors.

For a given E and t, the rotation matrix R can be found:

Equ. (3.4) ⇒ E − [t]×R = 0 (3.9)

Like the previous problem, Equ. (3.9) is solved by minimizing ‖E − [t]×R‖2, subject to

R>R = I and |R| = 1.

Moreover:

E − [t]×R = (ER> − [t]×)R

⇒ ‖E − [t]×R‖2 =
∥
∥(ER> − [t]×)

∥
∥

2

and the minimization becomes:

min
R

C with C =
3∑

i=1

‖Rεi − τi‖2
2

where εi et τi are respectively the ith row vectors of E and [t]×.

Once again, the solution is the unit eigenvector of C>C corresponding to the smallest

eigenvalue. To solve it more easily, Zhang [Zha96b] proposed to use the quaternion rep-

resentation of a rotation and to convert it to the rotation matrix R (see Appendix C for

details).
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3.1.4 Specific Case of Parallel Projection

In the case of parallel projection, epipolar geometry is specifically called affine epipolar

geometry in order to distinguish it from the general case of perspective projection. Contrary

to the general epipolar geometry, epipolar lines in affine epipolar geometry are parallel

because the center of projection is at infinity and the projections rays are parallel. However,

every equation defined in the three previous sections 3.1.1, 3.1.2 and 3.1.3 are valid as well

for parallel projection, the only difference is that most of them can be greatly simplified.

The fundamental matrix in the specific case of parallel projection is called affine fun-

damental matrix and defined as follows:

F� =






0 0 a

0 0 b

c d e






where a, b, c, d and e are non-null. It is still of rank 2 but has only 4 degrees of freedom

(it has 5 parameters but it is defined up to a scale factor). This simplifies the expression

of the epipolar lines l′m and lm′ respectively associated to the points m̃ =
(

x y 1
)

and

m̃′ =
(

x′ y′ 1
)

:

l′m = F� m̃ =
(

a b cx + dy + e
)>

and lm′ = F�
>m̃′ =

(

c d ax′ + by′ + e
)>

Estimation of the affine fundamental matrix is obviously simplified as well with respect

to perspective projection. Using the same approach as in Section 3.1.2 and from n point

matches, this leads to the same linear system Uf> = 0 where U =
(

u1 . . . un

)>
but

where ui and f are defined more simply:

Equ. (3.1) ⇒ ax′
i + by′

i + cxi + dyi + e = 0

⇔ uif
> = 0

where:

ui =
(

x′
i y′

i xi yi 1
)

and f =
(

a b c d e
)

Here, the resolution of the linear system requires only 4 correspondences. Even if the

8-point algorithm can be used again here, [HZ00] recommends to use instead the Gold
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Standard algorithm which leads to greater performance with equal computational ease of

implementation in the case of affine epipolar geometry.

The affine essential matrix is computed as the essential matrix:

E� = A�
> F� A�

=






αx 0 0

s αy 0

0 0 1




 F�






αx s 0

0 αy 0

0 0 1






=






0 0 aαx

0 0 as + bαy

cαx cs + dαy e






Motion recovery from the affine essential matrix is not detailed here but the reader can

refer to [HZ00] for further information.
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3.2 Multiple View Geometry

Even if two images of an object are sufficient to be able to measure its 3D shape, it is

common to acquire more images for more accuracy in the reconstruction. Moreover, it

allows to have a complete view by taking images all around the object. Multiple view

geometry [HZ00, FLP01] can be considered as a series of two-view geometry groups but it

does not take into account specific cases and additional constraints appearing with three or

more views. Trifocal and quadrifocal tensors are then introduced and can be considered as

the extension of the fundamental matrix to three and four viewpoints. The previous section

3.1 about two-view geometry gives the necessary background for studying the multiple view

geometry.

3.2.1 3-View Geometry

A geometry of three viewpoints can always be considered as the combination of two groups

of two-view geometry. Then, using epipolar geometry properties and given correspondences

in two images, it is possible to determine their correspondence in the third image as the in-

tersection of the two epipolar lines (this method is known as epipolar transfer, see Fig. 3.4).

However, this is not always possible and when the three centers of projection are nearly

collinear or when the 3D point is close to the plane defined by the three centers (called

trifocal plane), the epipolar transfer fails and the third correspondence must be determined

by another way.

Fortunately, similarly to two-view geometry, there exist geometric relationships in three-

view geometry which constrain points and lines correspondences over three images. This

is represented by a 3× 3× 3 homogeneous tensor described thereafter: the trifocal tensor.

This third-order tensor has 27 parameters but only 18 are independent. Because we chose

not to use the trifocal tensor for refining correspondences or for our 3D reconstruction

process, the affine trifocal tensor (in parallel projection case) will not be discussed at all

and the trifocal tensor will be presented only briefly. The literature is abundant on this

topic and the reader can refer to [SA91, VL93, Sas94] for further information.

Trifocal Tensor

Similarly to two-view geometry, corresponding points and/or lines in three images are

subject to different constraints. These are trilinear relationships (also called trilineari-

ties), organized in the trifocal tensor τ . With two entities (point and line), five types

of trilinearities exist: the point-point-point, the point-point-line, the point-line-point, the

point-line-line and the line-line-line correspondence relations. The most useful are a) the

point-point-point correspondence allowing to determine the location of a third correspond-

ing point in the last view given two corresponding points in two views (point transfer)
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Projection ray
associated to m′′

Projection ray
associated to m

m

m′′

M

m′

l′m

l′m′′

Fig. 3.4 — Epipolar transfer: the correspondence m′ in the second view is

determined as the intersection of the epipolar line l′m (image of the projection

ray associated to m) and the epipolar line l′m′′ (image of the projection ray

associated to m′′).

and b) the line-line-line correspondence allowing to determine the third corresponding line

given two corresponding lines (line transfer):

a) Point transfer: Given two correspondences m and m′, the third correspondence m′′

can be determined using the trifocal tensor.

∀i, j = 1, 2, 3, m′′
l = mi

3∑

k=1

mkτkjl − m′
j

3∑

k=1

mkτkil [TZ97]

The nine different choices for the couple of values {i, j} lead to nine expressions of

point-point-point correspondence but only four are linearly independent.

b) Line transfer: similarly, the third line correspondence l can be predicted from the

two corresponding lines l′ and l′′ in the two other images:

∀i = 1, 2, 3, li =
3∑

j=1

3∑

k=1

l′jl
′′

kτijk [TZ97]

Three expressions of line-line-line correspondence exist but only two are linearly in-

dependent.
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Trifocal Tensor Estimation

Analogous to the fundamental matrix in two-view geometry, the trifocal tensor is depen-

dent of the intrinsic parameters and the motions between the three concerned viewpoints.

Similarly to fundamental matrix estimation (see Section 3.1.2), it can be estimated directly

from point correspondences and line correspondences as well and methods are close. The

only difference and the main difficulty in the trifocal tensor estimation is the greater num-

ber of necessary constraints: while the fundamental matrix requires only one constraint

(9 elements minus 1 scaling factor minus 7 degrees of freedom), the trifocal tensor es-

timation requires 8 geometric constraints (27 elements minus 1 scaling factor minus 18

independent parameters). These constraints are generally implicitly enforced by the pa-

rameterization of the trifocal tensor, the minimal parameterization having 18 parameters

[FM95, Lav96, TZ97].

Several different algorithms exist to estimate the trifocal tensor [HZ00]. Linear methods

require at least 7 points or 13 lines or a proper combination in three images whereas robust

estimation based on RANSAC and some iterative methods minimizing an objective function

can use only 6 point correspondences. Generally, more correspondences are available and

the system is over-determined, leading to an optimal solution in the least-squares sense.

3.2.2 N-View Geometry

Recently, the quadrifocal tensor has been introduced and Hartley has proposed an algorithm

for its computation [Har98]. This brings new constraints and should lead to better accuracy

in 3D reconstruction than two- and three-view techniques. However, it is still early to fully

understand and exploit its possibilities and its interest is currently more theoretical than

practical.

No tensor exists for more than four views and whatever the number of viewpoints, the

N-view geometry does not have multi-linear constraints for 5 views or more. It is expressed

as a combination of two-, three- and four-view geometry using respectively the fundamental

matrix, the trifocal tensor and the quadrifocal tensor. Actually, the quadrifocal tensor is

rarely used practically and only the fundamental matrix and the trifocal tensor are used to

find two-view and three-view correspondences to compute linear estimation of projection

matrices for the 3D shape measurement process. Because image measurements are noisy,

the estimation of the projection matrices is biased and it is always preferable to compute the

3D shape with a global optimization process such as the bundle adjustment, reestimating

simultaneously the 3D points and the projection matrices.
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3.3 Interest Point Detection and Matching

Fundamental matrix estimation requires a set of point correspondences (see Section 3.1.2)

in each pair of images. Instead of selecting manually correspondences scattered in the

images and in concern for the automation of the 3D reconstruction process, the corre-

spondences will be found automatically. The idea is to use an interest point detector to

extract remarkable points in each image in order to match them easily throughout the

image sequence. The correspondences can then be gathered for each pair of images and

the corresponding fundamental matrix can be estimated. A very good survey of different

strategies from the point extraction to the epipolar geometry estimation is proposed by

Vincent [VL01]. Note that the same technique would be used for the trifocal tensor esti-

mation (the correspondences would be gathered by triplet of images) but we chose to not

use it in the reconstruction process.

3.3.1 Interest Point Detection

Numerous interest point detectors exist in the literature: not only the well-known Harris

[HS88], SUSAN [SB97] and Canny [Can86] edge detectors, but also Horaud et al. [HSV90],

Heitger et al. [HRVDH+92], Cottier [Cot94] and Forstner [For94]. Because results depend

widely on the detector and the algorithm used, a comparison is necessary to find the

most suitable for our specific needs. Detectors are most often compared with respect to

a localization accuracy criterion but this is not significant for us. Indeed, the aim of

the interest point detector for us is not to locate precisely a feature point in the image

(like a corner) but to find a point very characteristic which will be repeated in the most

possible images in the sequence. The motion between different viewpoints is seldom only

a translation and the interest detector must extract points independently of the rotation

and the scale of the images. Moreover, brightness and contrast in SEM images are far from

being constant in an image sequence and therefore, interest points must be invariant to

these parameters. At last, interest points also need to be regularly scattered in the whole

image because we notice that in practice, the epipolar geometry estimated is very badly

estimated if the point correspondences are all in a same area of the image.

Schmid et al. [SMB00] compare several different detectors and use different criteria

to evaluate them. One of them is very interesting for us: the repeatability rate. Indeed,

this criterion compares the stability of the detector with respect to different images of a

same scene under varying viewing conditions. According to the authors, the best detector

evaluated with the repeatability criterion is an improved version of Harris detector.

Like several interest point detectors, Harris detector uses an intensity based method

(opposed to contour based and parametric model based methods), i.e. it uses the grey

levels of the image to measure the cornerness (also called “corner response”) of each point.
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The cornerness is a value which permits to detect interest points by quantifying their

“interest”. Its computation is based on the auto-correlation matrix Ω, approximation of

the Hessian matrix of the auto-correlation function. This function characterizes how the

intensity values change in an area defined around the point (x, y). It is computed by

convolving the intensity image derivatives with a Gaussian filter:

Ω(x, y) =
exp (−x2+y2

2σ2 )

2πσ2
⊗
(

( ∂I
∂x

)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(∂I
∂y

)2

)

where I(x, y) is the grey level intensity and ⊗ the convolution product.

If both eigenvalues of the matrix Ω are high, then a small motion of the local patch in

any direction will cause a significant change in grey level and this indicates that the point

is a feature one. That is why the cornerness depends on the determinant of Ω, which is

proportional of the product of the two eigenvalues:

c(x, y) = |Ω(x, y)| − 0.04 × trace(Ω(x, y))2

Cornerness is then computed for each image point and local maxima of the function are

selected as interest points. Sub-pixel accuracy can be obtained using a quadratic fitting

of the neighborhood of the local maxima. A threshold is eventually used to keep only the

best of the selected points.

However, this detector is not directly usable for us because of the additional constraint

of the distribution of the points in the image. The classical implementation of the Harris

detector leads to points often concentrated in the same area of the image and therefore,

this implementation has been modified to obtain points distributed in the whole image:

instead of selecting an unknown number of points in the image with respect to a threshold,

the image is divided in small areas (bucketing technique) in which we select the best points.

Obviously, a threshold is used as well to prevent points that should not be repeatable.

3.3.2 Interest Point Matching

At this point, we have now one set of feature points per image and in order to estimate the

epipolar geometry between each pair of images (see Section 3.1.2), the interest points of

the different sets have to be matched between them. Here, a zero mean normalized cross

correlation (ZNCC) function will be used but for an obvious matter of speed, a point of a

given set cannot be compared with each point of the other set. To optimize this process, a

point is only compared with points satisfying the two following criteria:

� small distance to the current point (actually, the correspondence point coordinates

have to be in a rectangle area defined around the current point),
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� good cornerness similarity [JL01] with the current point.

In practice, we usually fix the similarity at 50% because a greater value eliminates good

matching and the size of the area depends on the motion between the viewpoints but 25%

of the image size is often a good compromise.

Eventually, in order to prevent false matching, a robust filtering process (Least Median

of Squares technique [RL87]) detects and removes the outliers. The Least Median of Squares

(LMS) estimator is a statistical approach which, as the name indicates, minimizes the

median value of the squared residuals. The complete algorithm of outliers filtering is

composed as follows:

1. For j = 1 . . . r, repeat:

a) Eight point correspondences are randomly chosen in the entire set of available

n correspondences1.

b) A fundamental matrix Fj is estimated using only these 8 point correspondences

and the 8-point algorithm.

c) For each pair of correspondences {m̃i, m̃′
i}, i = 1 . . . n in the set of data, the

squared residual ε2
i,j is computed: ε2

i,j = d2(m̃′
i,Fjm̃i) + d2(m̃i,F

>
j m̃′

i) where d

represents the Euclidean distance function.

d) The median value mj of all n squared residuals εi,j is computed.

2. The fundamental matrix F̂ is selected where ̂ is the value of j = 1 . . . r for which

mj is the minimal median value.

3. Point correspondences are considered as outliers if their associated squared residual

εi,̂ is greater than the threshold (2.5 σ̂2) where σ̂ = 1.4826(1+5/(n−8))√
m̂

is the robust

standard deviation (see [RL87, Zha96b] for details).

The number r of repetitions of steps a) to d) is given in [Zha96b]: assuming a fraction of

outliers f in the set of correspondences, the probability that at least one of the r subsamples

of 8 points is good is p = 1 − (1 − (1 − f)8)
r
. For a fraction of outliers f = 20% and with

an objective of probability p = 99%, the number of necessary subsamples is r = 26.

1Actually, if the 8 point correspondences were really randomly chosen, there would be a chance that

the correspondences be close in the image and the fundamental matrix would be badly estimated. For this

reason, one of the images is divided into buckets (typically 8× 8) and only one point per bucket is allowed

in this image.
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3.4 Triangulation

When the imaging sensor is calibrated and the relative position and orientation are re-

covered, the last step to obtain 3D shape measurement is the triangulation. Without the

determination of the intrinsic parameters, projection matrices cannot be computed but a

3D projective reconstruction is still possible (up to a projective transformation). It can

be sufficient for some applications but not for ours and intrinsic parameters are therefore

necessary to upgrade the reconstruction to a metric one (up to a scale factor). The metric

reconstruction is adequate for strain measurements (Chapter 4) but for most of 3D shape

measurement applications, the metric reconstruction needs to be upgraded to Euclidean re-

construction by finally determining the missing scale factor (see Section 2.2.1 and [Fau95]

for the stratification of geometry). This is generally achieved using the knowledge of a

distance in the scene or a known accurate displacement between two viewpoints.

The first section 3.4.1 presents the equations to solve to recover the 3D information from

the projections matrices and measure points. Note that we chose to not compute trifocal

tensors and only fundamental matrices are used to estimate the projection matrices, even

with 3 views and more. However, once the two first projection matrices are estimated, the

third and following projection matrices cannot be estimated directly because they depend

on the frame defined by the first two. A specific method of computation is therefore

necessary for more than 2 views and details are given in Section 3.4.1. Section 3.4.2 presents

different techniques to solve the linear equation system coming from the triangulation. The

last section (Section 3.4.3) treats the specific case of parallel projection.

3.4.1 3D Metric Reconstruction from Multi-View Images

As illustrated in Fig. 3.5, for each pair of viewpoints (i, j), the rigid-body transformation

between Rc
i and Rc

j is denoted:

Ti→j =

(

Ri,j ti,j

0>
3 1

)

(3.10)

After calibration and epipolar geometry estimation, the intrinsic matrix K and motions

Ti→j between each couple of viewpoints are estimated. Actually, we saw in Section 3.1.3

that rotation matrices Ri,j are completely recovered but each translation vector ti,j is only

recovered up to a scale factor λi,j. If we choose the ith view as the reference one (i.e. the ith

imaging sensor coordinate system is set as world coordinate system), the projection matrix

corresponding to the view j is:
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m2

M

m1

C1
C2

mi

Ci

T1→2 T1→i

T2→i

Rc
1 = Rw

Rc
i

Rc
2

Fig. 3.5 — 3D reconstruction from multiple views: all the projection rays are

intersecting in space at the point M. Here, the first view is chosen as the ref-

erence one and its imaging sensor coordinate system is set as world coordinate

system.

Hj = K

(

Ri,j (λi,jti,j)

0>
3 1

)

= A [Ri,j (λi,jti,j)] (3.11)

=






h
j
11 h

j
12 h

j
13 h

j
14

h
j
21 h

j
22 h

j
23 h

j
24

h
j
31 h

j
32 h

j
33 h

j
34






To highlight the influence of λi,j on the last column of Hj, the elements of this column

will be denoted h
j
{1,2,3}4 = λi,j̊h

j
{1,2,3}4 until the end of this section.

Note that the projection matrix associated to a view j can be determined even if

this view does not have any point correspondences with the reference view. The view

j just requires to have point correspondences2 with one or more intermediate views, having

themselves point correspondences with the reference view (for instance, the projection

matrix in view 4 can be computed if the view 4 has point correspondences with the view

2Actually, it requires to have at least 7 point correspondences so that epipolar geometry can be esti-

mated.
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3, the view 3 having point correspondences with the view 2 and this latter having point

correspondences with the reference view 1, see Fig. 3.6).

Image

1

Image

2

Image

3

Image

4

Fig. 3.6 — Possibilities of organization of 4 views: even if there is not enough

point correspondences between the view 1 and 4, projection matrix of view 4 may

be computed using its relationships with the view 2 or 3.

This is the big advantage of the multiple view reconstruction using a single sensor

and the videogrammetry technique: any point of the specimen can be reconstructed on

condition that is it visible in at least two views. Therefore, a complete 3D reconstruction

of the specimen can be obtained by acquiring images all around the object (see Fig. 3.7)

and so that the views are overlapping in order to have points visible in more than one view.

We remind that if a perspective projection model is assumed for the imaging sensor,

the following relationship exists:

∀i = 1 . . . n (number of points), j = 1 . . . m (number of views),

m̃
j
i
∼= Hj

∠
M̃i (3.12)

where m̃
j
i =

(

x
j
i y

j
i 1

)>
is the projected point of M̃i =

(

Xi Yi Zi 1
)>

in the jth

sensor plane (see Fig. 3.5). For convenience, Hj
∠

is simply denoted Hj in the following

sections.

3D reconstruction from two views

Without loss of generality, let’s assume that the first viewpoint is chosen as reference view.

The projection matrices are then expressed as follows (see Equ. (3.11)):

H1 = A1 [I3 03] H2 = A2 [R1,2 (λ1,2t1,2)]

=






h1
11 h1

12 h1
13 0

h1
21 h1

22 h1
23 0

h1
31 h1

32 h1
33 0




 =






h2
11 h2

12 h2
13 λ1,2̊h

2
14

h2
21 h2

22 h2
23 λ1,2̊h

2
24

h2
31 h2

32 h2
33 λ1,2̊h

2
34
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Fig. 3.7 — Example of 4 views all around an object: in order to reconstruct

the complete shape of the specimen, multiple images are acquired from different

viewpoints. However, the points meant to be reconstructed need also to be visible

in at least two views. Then, in this example, the green face of the cube cannot

be reconstructed.

From Equ. (3.12), we can write m̃1 ∼= H1M̃ and its correspondence in the second view

m̃2 ∼= H2M̃ and deduce:

x1 =
h1

11X + h1
12Y + h1

13Z

h1
31X + h1

32Y + h1
33Z

y1 =
h1

21X + h1
22Y + h1

23Z

h2
31X + h2

32Y + h2
33Z

x2 =
h2

11X + h2
12Y + h2

13Z + λ1,2̊h
2
14

h2
31X + h2

32Y + h2
33Z + λ1,2̊h

2
34

y2 =
h2

21X + h2
22Y + h2

23Z + λ1,2̊h
2
24

h2
31X + h2

32Y + h2
33Z + λ1,2̊h

2
34

This can be expressed as an over-determined linear system (4 equations for 3 unknowns):







(x1h1
31 − h1

11) X + (x1h1
32 − h1

12) Y + (x1h1
33 − h1

13) Z = 0

(y1h1
31 − h1

21) X + (y1h1
32 − h1

22) Y + (y1h1
33 − h1

23) Z = 0

(x2h2
31 − h2

11) X + (x2h2
32 − h2

12) Y + (x2h2
33 − h2

13) Z = λ1,2

(

h̊2
14 − x2̊h2

34

)

(y2h2
31 − h2

21) X + (y2h2
32 − h2

22) Y + (y2h2
33 − h2

23) Z = λ1,2

(

h̊2
24 − y2̊h2

34

)

(3.13)

Here, we clearly notice that this system will be solved up to the scale factor λ1,2 and the
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reconstructed 3D point
(

X Y Z
)>

will be found up to this same factor. The solving of

this equation system will be discussed in Section 3.4.2.

3D reconstruction from more than 2 views

With 3 or more images and because we do not use the trifocal tensor, the projections

matrices cannot be computed directly from the estimated translations. Indeed, if the same

approach is kept and if we re-wrote the linear system of equations (3.13) with m views, m−1

different scale factors will be obtained due to each scale factor in estimated translations.

Actually, we know that geometric constraints exist and all scale factors can be formulated

in function of a global scale.

Without loss of generality, the first view is set as reference view and all scale factors

are expressed with respect to λ1,2. Then, for any view j:

T1→j = T2→j.T1→2
(

R1,j t1,j

0>
3 1

)

=

(

R2,j t2,j

0>
3 1

)

.

(

R1,2 t1,2

0>
3 1

)

=⇒ t1,j = R2,jt1,2 + t2,j (3.14)

Actually, we do not know t1,j, t1,2 and t2,j but only t̃1,j = λ1,jt1,j, t̃1,2 = λ1,2t1,2 and

t̃2,j = λ2,jt2,j, then:

(3.14) =⇒ t2,j × t1,j = t2,j × R2,jt1,2 + t2,j × t2,j
︸ ︷︷ ︸

=03

=⇒ t̃2,j

λ2,j

× t̃1,j

λ1,j

=
t̃2,j

λ2,j

× R2,j

t̃1,2

λ1,2

=⇒ λ1,2

(
t̃2,j × t̃1,j

)
= λ1,j

(
t̃2,j × R2,j t̃1,2

)

=⇒ λ1,2

(
t̃2,j × t̃1,j

)> (
t̃2,j × t̃1,j

)
= λ1,j

(
t̃2,j × t̃1,j

)> (
t̃2,j × R2,j t̃1,2

)

=⇒ λ1,2 = λ1,j

(
t̃2,j × t̃1,j

)> (
t̃2,j × R2,j t̃1,2

)

∥
∥t̃2,j × t̃1,j

∥
∥

2

2

(3.15)

Therefore, each scale factor can be expressed as

λ1,j =
1

Λj

λ1,2 where Λj =

(
t̃2,j × t̃1,j

)> (
t̃2,j × R2,j t̃1,2

)

∥
∥t̃2,j × t̃1,j

∥
∥

2

2

and before computing projection matrices, translation vectors have to be scaled in order to

be expressed with the same global scale. By this way, λ1,2 remains the only unknown scale

factor in the equation system.
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Eventually, the projection matrices are expressed as follows:

H1 = A1 [I3 03] , H2 = A2 [R1,2 (λ1,2t1,2)] and ∀j = 2 . . . m,Hj = A [R1,j Λj (λ1,jt1,j)]

This leads to the following over-determined linear system of 2m equations for 3 un-

knowns:







(x1h1
31 − h1

11) X + (x1h1
32 − h1

12) Y + (x1h1
33 − h1

13) Z = 0

(y1h1
31 − h1

21) X + (y1h1
32 − h1

22) Y + (y1h1
33 − h1

23) Z = 0

(x2h2
31 − h2

11) X + (x2h2
32 − h2

12) Y + (x2h2
33 − h2

13) Z = λ1,2

(

h̊2
14 − x2̊h2

34

)

(y2h2
31 − h2

21) X + (y2h2
32 − h2

22) Y + (y2h2
33 − h2

23) Z = λ1,2

(

h̊2
24 − y2̊h2

34

)

...

(xjh
j
31 − h

j
11) X + (xjh

j
32 − h

j
12) Y + (xjh

j
33 − h

j
13) Z = Λjλ1,j

︸ ︷︷ ︸

λ1,2

(

h̊
j
14 − xjh̊

j
34

)

...

(ymhm
31 − hm

21) X + (ymhm
32 − hm

22) Y + (ymh2
33 − hm

23) Z = Λmλ1,m
︸ ︷︷ ︸

λ1,2

(

h̊m
24 − y2̊hm

34

)

(3.16)

Once again, the system will be solved up to the scale factor λ1,2.

3.4.2 System Solving: Non-Iterative and Iterative Methods

3D Reconstruction of One Point

From the linear equation system (3.16), the 3D point M can be recovered up to a scale factor.

But even after calibration and distortion correction, the measure points are still biased by

measurement noise (typically assumed as Gaussian noise) and therefore the projection rays

rarely intersect exactly in a unique 3D point. Then, the over-determined equation system

seldom has a solution and solving it consists in determining the best solution in some sense

(least-squares, min-max, etc.). This section presents different methods of solving of the

linear system.

Non-Iterative Method: Pseudo-Inverse Method: The set of equations (3.16) can

be simply re-written in the matrix form AM = b where:
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A =














x1h1
31 − h1

11 x1h1
32 − h1

12 x1h1
33 − h1

13

y1h1
31 − h1

21 y1h1
32 − h1

22 y1h1
33 − h1

23
...

xjh
j
31 − h

j
11 xjh

j
32 − h

j
12 xjh

j
33 − h

j
13

...

ymhm
31 − hm

21 ymhm
32 − hm

22 ymh2
33 − hm

23














, M =






X

Y

Z




 and b =














0

0
...

h
j
14 − xjh

j
34

...

hm
24 − y2hm

34














Since A is not square and then not invertible, the solution of this equation is: M = A†b

where A† =
(
A>A

)−1
A> is the Moore-Penrose inverse matrix [Pen55] (pseudo-inverse

matrix) of A. The solution found by this way is optimal in a least-squares sense.

Non-Iterative Method: Null-Space Method: Another matrix expression of the lin-

ear system (3.16) is AM̃ = 0 where:

A =














x1h1
31 − h1

11 x1h1
32 − h1

12 x1h1
33 − h1

13 0

y1h1
31 − h1

21 y1h1
32 − h1

22 y1h1
33 − h1

23 0
...

xjh
j
31 − h

j
11 xjh

j
32 − h

j
12 xjh

j
33 − h

j
13 xjh

j
34 − h

j
14

...

ymhm
31 − hm

21 ymhm
32 − hm

22 ymh2
33 − hm

23 y2hm
34 − hm

24














and M̃ =








X

Y

Z

1








M̃ is here defined as the null-space of matrix A and can be determined either by Singular

Value Decomposition of A or by Jacobi’s method (M̃ is the eigenvector associated to the

smallest eigenvalue of A>A).

Iterative Method: The two previous methods lead to an algebraic solution which has no

actual physical interpretation. This is why it is preferable to carry out an iterative method

which minimizes a physically meaningful criterion. The quantity chosen to be minimized

is the sum of the Euclidean distances between the 2D image points and the reprojections

of the reconstructed 3D point (reprojection error):

min
M̃

m∑

j=1

∥
∥εj
∥
∥

2

2
where εj = m̃j − HjM̃

The minimization can be achieved with the Levenberg-Marquardt method where the

Jacobian vector would be:
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∂εj

∂M̃
=

1
(

hj
3M̃
)2

(

h
j
11.h

j
3M̃ − h

j
31.h

j
1M̃ h

j
12.h

j
3M̃ − h

j
32.h

j
1M̃ h

j
13.h

j
3M̃ − h

j
33.h

j
1M̃

h
j
21.h

j
3M̃ − h

j
31.h

j
2M̃ h

j
22.h

j
3M̃ − h

j
32.h

j
2M̃ h

j
23.h

j
3M̃ − h

j
33.h

j
2M̃

)

where hj
k =

(
h

j
k1 h

j
k2 h

j
k3 h

j
k4

)
is the kth row of Hj.

Extension to Bundle Adjustment

The three previous methods are generally used when only one 3D point has to be recon-

structed or for determining initial guesses for the current described method. Indeed, in

order to improve the quality of the 3D reconstruction, a global optimization is preferable

and the previous method can be extended to a bundle adjustment where all the 3D points

and all the projection matrices are reestimated simultaneously. In other words, the bundle

adjustment considers all the views and all the 3D points in a global way and minimizes, as

usual, the sum of magnitudes of reprojection errors. This is the final step of the 3D shape

measurement.

Note that a 3D point is not always projected in all views but the more views it is

visible in, the more accurate will be its estimation (we remind that at least two point

correspondences, i.e. the 3D point projected in two views, are necessary to reconstruct the

point in 3D). This is why the images are acquired not only all around the object but also so

that the views are overlapping. By this way, any point of the object can be reconstructed

(contrary to stereo-vision applications where only a part of the object is observed) and

moreover, these points are accurately reconstructed because visible in many views.

Even if the projection matrices are entirely reestimated in some approaches, we prefer

to fix the intrinsic parameters for the bundle adjustment (see Fig. 3.8) because they have

already been accurately estimated during the calibration phase. Moreover, in our case the

intrinsic parameters are known and constant through all the viewpoints (since we have a

unique imaging sensor) and allowing the entire projection matrices (and then indirectly

the intrinsic parameters) to be reestimated for each viewpoint may cause an error on the

estimation of the extrinsic parameters. Therefore, it is better to parameterize differently

the projection matrices and the intrinsic matrix is separated from the extrinsic matrix for

each projection matrix: Hj is expressed as a combination of a unique K and one matrix

Tj. By this way, we can more easily ensure the constancy of the intrinsic matrix during

the optimization process. The whole process and the number of constraints to enforce is

already described in detail in Section 2.3 and in Appendix A.

Note that the bundle adjustment was already used in the calibration phase for the pro-

jection model parameters estimation (see Section 2.3.1, Step 3c. and particularly Fig. 2.21).

Interestingly, even if the calibration and 3D shape measurement are different matters, an
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analogy can be established between the use of the bundle adjustment in both cases by

comparing Fig. 2.21 and Fig. 3.8:

� involved parameters are exactly the same in both cases: measure points from acquired

images, 3D shape, projection model parameters and distortion parameters.

� the measure points used as input come from images of a calibration target for the

calibration and they come from images of the object to reconstruct for the 3D shape

measurement.

� the bundle adjustment outputs a 3D shape in both cases but it is only the interesting

information for the 3D shape measurement.

� projection model parameters needs to be given as input in both cases but they are

initial guesses to be refined for the calibration whereas they will remain fixed for the

3D shape measurement.

Undistorted

Measure points

Images of

the object

Fixed projection

model parameters

Bundle

Adjustment

Distortion correction function

3D SHAPE OF THE OBJECT

Reestimated extrinsic parameters

Fig. 3.8 — The bundle adjustment is used for the calibration (see Fig. 2.21)

as well as the 3D shape measurement. Involved parameters are similar in both

cases and only the role of the parameters differs.

3.4.3 3D Reconstruction using Parallel Projection Imaging Sen-

sors

When the parallel projection is assumed and without intrinsic parameters, the 3D recon-

struction can only de determined up to an affine transformation. It is better than the

projective ambiguity obtained with perspective projection imaging sensors but it is still

insufficient. If the 3 intrinsic parameters are known, the reconstruction is upgraded to a

metric one, similarly to the perspective projection case.

The 3D reconstruction with parallel projection imaging sensors is achieved using the

“factorization algorithm” introduced by Tomasi and Kanade [TK92] and described there-

after. Contrary to the bundle adjustment algorithm in the perspective projection case, this
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algorithm requires that the n 3D points meant to be reconstructed has projected points in

the all m views.

Equ. (2.4) of the general projective transformation can be applied to parallel projection:

∀i = 1 . . . n, j = 1 . . . m,

m̃
j
i
∼= Hj

�M̃i (3.17)

where m̃
j
i =

(

x
j
i y

j
i 1

)>
is the ith 2D projected image point of the 3D point Mi =

(

Xi Yi Zi 1
)>

in the view j. For convenience, until the end of this section, the 2D and

3D points will be denoted in inhomogeneous coordinates.

Moreover, the translation vector is separated from the projection matrix Hj
�. Then,

the equation of the parallel projection Equ. (3.17) becomes:

m
j
i = NjMi + tj

where Nj is a 2 × 3 matrix and tj a 2D vector both extracted from Hj
�. Obviously,

the projection points mi are biased by measurement noise and are not perfectly equal to

NjMi + tj. Similarly to the bundle adjustment method in the perspective projection case,

the 3D points Mi are then estimated by minimizing the sum of magnitudes of reprojection

errors (distance between the measured image points m
j
i and the estimated projected points

equal to NjMi + tj):

min
Nj ,Mi,tj

∑

i

∑

j

∥
∥ε

j
i

∥
∥

2

2
where ε

j
i = m

j
i − NjMi − tj (3.18)

The translation vector tj can be removed from the minimization by changing the coor-

dinate system such that the centroid of the points is at the origin [MZ92]. This statement

is explained by the fact that for a parallel projection imaging system, the centroid of a

set of 3D points is projected to the centroid of the corresponding projected image points.

Every measure point m
j
i is then translated so that the centroid of the n points in each view

j is at the origin (leading to tj = 0):

m̌
j
i = m

j
i −

1

n

m∑

i=1

m
j
i

This is why it is necessary that the n 3D points are projected in all views (n must be

the same for the m images). The minimization (3.18) turns into:

min
Nj ,Mi

∑

i

∑

j

∥
∥m̌

j
i − NjMi

∥
∥

2

2
(3.19)
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This can then be expressed in matrix form by introducing the 2m × n measurement

matrix W [HZ00]:

W =














x̌1
1 x̌1

2 . . . x̌1
n

y̌1
1 y̌1

2 . . . y̌1
n

x̌2
1 x̌2

2 . . . x̌2
n

...
...

. . .
...

x̌m
1 x̌m

2 . . . x̌m
n

y̌m
1 y̌m

2 . . . y̌m
n














and writing:

(3.19) ⇒ W =









N1

N2

...

Nm









(

M1 M2 . . . Mn

)

(3.20)

In the presence of noise, Equ. (3.20) may not be satisfied [HZ00] and the solution

consists in determining the matrix Ŵ which minimizes the Frobenius norm of
∥
∥
∥W − Ŵ

∥
∥
∥.

This is achieved easily using a Singular Value Decomposition of W.
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3.5 Applications

3D reconstruction using a single sensor and the videogrammetry technique is very interest-

ing not only for SEM systems (where stereo-vision is not possible) but also for every imaging

systems used in non-contacting surface measurements ([CLVWdV02] for example). It has

become a very popular tool in the metrology industry because the experimental setup and

acquisition phase with one imaging system is more straightforward than the ones using the

stereo-vision technique. The only drawback in the experimental setup of the videogramme-

try technique used in the industry is the requirement of targets / fiducial marks as points

of interest which necessitate a lot of time to place. To ease the experimental setup, the

fiducial marks can be projected on the object to measure but a problem still exists: it

leads to sparse three-dimensional information contrary to dense 3D reconstruction using

a speckle pattern textured object. Because our new methodology of calibration does not

require fiducial marks anymore and using the DIC technique, it is now possible to measure

the 3D shape of an object using the videogrammetry technique and without the need of

targets: the calibration is realized with any quasi-planar speckle pattern textured object

and if the natural texture of the object to reconstruct is not random enough, speckle pat-

tern texture can be easily deposited using spray paint or speckle pattern image projection

(see Fig. 3.9).

Fig. 3.9 — Speckle pattern image projected onto an object to avoid to place

target / fiducial marks.

Applications of videogrammetry at different length-scales will be presented in the fol-

lowing sections: the 3D reconstruction of a penny detail at micro-scale [CGS+03] (see
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Section 3.5.1) and the 3D reconstruction of a mold used for Pyrex
�

plate at macro-scale

(see Section 3.5.2). For this last experiment, the 3D shape of the mold is also measured with

a 3D laser scanner, giving us the opportunity to assess the accuracy of the videogrammetry

technique and of the software we developed for the needs of the thesis (see Section 5).

3.5.1 3D Reconstruction of a Penny Detail

In order to validate on the one hand the spatially-varying distortion at low magnification

(the drift being negligible at this range of magnification) and on the other hand the 3D

reconstruction algorithm, an experiment has been conducted at a magnification of 200×
to measure the 3D shape of an American penny detail: the letter “R” of the sentence “E

PLURIBUS UNUM”. Fig. 3.10 shows three fields of view for the penny. The 200× coin

detail shows a natural speckle pattern texture that is adequate for selective use of digital

image correlation to identify and match corresponding subsets.

1× 50× 200×

1.9 cm

5 mm 1.25 mm

Fig. 3.10 — Sample used for the 3D reconstruction: the letter “R” of the

sentence “E PLURIBUS UNUM” of an American penny.

For this experiment, the FEI ESEM Quanta 200 of the Electron Microscopy Center of

the University of South Carolina is operated in high-vacuum mode (SEM mode). SEM

operational parameters such as the detector type, accelerating voltage, working distance,

etc. will affect the quality of the images. In this regard, the major requirements for

image correlation in an SEM are (a) adequate image contrast, (b) random texture in the

images, (c) appropriate spatial frequency in the random texture (d) temporal invariance in

the images and (e) minimal image changes during the rigid-body motion of the specimen.

Since SE detector imaging (which depends on topography of the sample) will violate (e) in

most cases, BSE imaging is preferred. Moreover, the surface texture is generally improved

when using the BSE detector. Since BSE imaging is also slightly affected by topography,

all BSE images are acquired at a low accelerating voltage in this experiment. By this way,

the primary beam electrons do not penetrate deeply into the specimen. Another advantage
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of a low voltage incident beam is that surface details are enhanced in comparison to high

voltage [RWT00]. The operating conditions for this study are then as follows:

� BSE detector

� 200× magnification

� non-dimensional spot-size of seven

� 10 mm working distance

� accelerating voltage of 8 kV

� seven-bit gray scale for all images (1024 × 884 size)

� 1.3 mm by 1.1 mm field of view

Calibration Procedure

The procedure used for this experiment is the simplified calibration procedure presented

in Section 2.4. Two different calibration have been realized: a) an aluminum plate covered

with a gold speckle pattern realized by a micro-lithography process (see Fig. 3.11) is em-

ployed as calibration target and b) the object to measure is directly employed as calibration

target using the natural random texture on the American penny (see Fig. 3.10, right). The

relative ”flatness” of the coin detail (depth < 50µm) allows to ignore its real geometry and

consider it planar as initial guess for the calibration.

1.25 mm 200 µm 100 µm

200×, detail 400×, detail200×

Fig. 3.11 — BSE detector images of the planar aluminum calibration target

covered with a thin speckle pattern layer of gold realized by micro-lithography.

Experimental results using the gold speckle pattern realized by micro-lithography are

not presented here but in the section about calibration: Section 2.4.3.
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Fig. 3.12 — Distortion correction field computed using the coin in replace-

ment of the especially designed speckle pattern: x-component (left), y-component

(right) and magnitude (bottom).
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Fig. 3.12 shows the distortion field of the SEM imaging system when using the random

texture on the coin as calibration target. The results are very similar to those obtained by

using the “ideal” planar target (Section 2.4.3).

Interestingly, the bundle adjustment technique reestimates the shape of the calibration

target (the coin) while also computing the projection model parameters of the imaging

system (see Fig. 2.21). Assuming a flat object as the initial guess for the calibration by

bundle adjustment, Fig. 3.13 shows the final reestimated shape of the target.
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Fig. 3.13 — Reestimated 3D shape of the coin target used for the calibration

by bundle adjustment. The shape is made up of three distinct areas, which

corresponds to the three areas of interest selected for being matched by correlation

(we avoid to correlate areas of high curvature where the image correlation is

likely to be less accurate).
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3D Reconstruction

The operating conditions for the acquisition of the images for the calibration and the ones

for the 3D reconstruction must obviously be the same and we cannot remove the calibration

target specimen from the SEM chamber after calibration to put the penny. The penny is

then stuck near the gold speckle pattern to allow a new set of acquisitions after calibration

without changing any parameters of the SEM (see Fig. 3.14).

micro-scale
speckle pattern
(gold deposit)

carbon adhesive disc to
maintain a (missing)

second specimen
insure specimen/
wafer conductivity

aluminum
wafer

specimen
to measure

(US penny coin)

carbon paint to

1 cm

Fig. 3.14 — Setup of the experiment: the coin to measure is stuck using a thin

adhesive on an aluminum wafer covered with a gold speckle pattern deposited by

micro-lithography.

Even if two images would have been sufficient, for this experiment three images of the

letter “R” of an American penny were acquired at 200×, under three different viewpoints

(see Fig. 3.15).

Feature Points Extraction (see Fig. 3.16): A set of feature points is extracted

for each image using Harris detector. This set is then processed to keep only the best

feature points in a given circular neighborhood (typically a 5-pixel radius) with respect

to their Harris “cornerness” function response. Using this approach, good feature points

are regularly scattered throughout the image and the epipolar geometry to estimate in the

next steps is likely to be better [Zha96a]. Depending upon the image being used, between

9200 and 9800 points are extracted.
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? ?

1.25 mm

1.25 mm

50 µm

Fig. 3.15 — Experiment of 3D reconstruction using videogrammetry: acqui-

sition of the penny detail undergoing unknown rigid-body motions in order to

obtain the 3D shape of the letter “R”.
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Robust Matching (see Fig. 3.16): For each pair of images (pair of images 1&2, pair

of images 2&3 and pair of images 1&3), feature points are matched using:

� ZNCC criterion

� 15 × 15 pixels correlation window

� Correlation threshold3 of 70%

� Least Median of Squares method to detect and remove outliers (false matches) while

estimating the epipolar geometry

An average of 3100 pairs of points are robustly matched from each set containing initially

9500 points (about 100 initial matches were removed as outliers).

Motion Estimation: As the feature points are only extracted with a pixel accuracy,

the computation of the epipolar geometry is a first estimation for the following stage. At

this point, the mean distance of points to their epipolar line is 0.26 pixels (see Equ. (3.7)).

An estimation of the motion is recovered and a first approximation of the 3D shape is

computed. Figure 3.17 shows the reconstructed shape based on 3100 matched feature

points.

Dense Matching (see Fig. 3.18): When the epipolar geometry is estimated between

each couple of images, the dense matching process is very simplified. Indeed, for each point

in one image, its correspondence in the second image must lie on the associated epipolar

line. Searching for the correspondence along the epipolar line4 is not only faster but also

less error-prone because false matches are more easily avoided by this way. About 26000

points are correlated with a sub-pixel accuracy using DIC (ZNCC correlation criterion

and affine transformation of the correlation window) for each pair of image. Epipolar

geometry is finally refined (mean distance of points to their epipolar line is now 5.10−3

pixels) improving the motion estimates.

Triangulation / Bundle adjustment: Once the motions are accurately recovered,

the triangulation process is achieved using the bundle adjustment technique. Figs. 3.19

and 3.20 show the 3D shape of the coin detail reconstructed by triangulation. The results in

these figures confirm that the calibration and 3D reconstruction processes can be performed

3The ZNCC criterion returns a correlation score between 0 and 1, 1 corresponding to a perfect similarity

measure. A correlation threshold of 70% means that the result of correlation is taken into account only if

the ZNCC score is greater than 0.7.
4Actually, in practice, the correspondence is not only searched along the epipolar line but inside a very

narrow band of a few pixels width defined around the line.
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9283 points 9437 points

Feature points   extraction Feature points   extraction

Robust    Matching

3247 couples of points

Fig. 3.16 — Example of the first stages of the algorithm of reconstruction with

two images: feature points extraction and robust matching.
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Fig. 3.17 — Reconstructed 3D shape based upon the first estimation of the

motions and using only the 3100 matched feature points: the reconstructed points

are sparse and the quality of reconstruction is poor. Epipolar geometry, and

consequently the motions, have to be refined.

26400 couples of points

Fig. 3.18 — Because the points correspondences are more numerous and corre-

lated with a sub-pixel accuracy, the dense matching leads to a better estimation

of the epipolar geometry and consequently of the motion.
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with arbitrary rigid-body motions using a single sensor imaging system such as the FEI

ESEM.

The accuracy of the 3D reconstruction can hardly be assessed here because the real

shape of the letter “R” of the penny is not available and it is difficult to determine by

another method (contrary to macro-scale experiments where the 3D shape can be obtained

using a 3D laser scanner for example: Section 3.5.2). However, the excellent results of

calibration (the standard deviation of reprojection errors is 2.10−2 pixels) and the quality

of the epipolar geometry estimation (mean distance of points to the epipolar line is 5.10−3

pixels) must lead to a very good estimation of the unknown motions and consequently of

the 3D shape.

Fig. 3.19 — Reconstructed 3D shape after dense sub-pixel matching by image

correlation (rendering of 26400 sub-sampled 3D points).

110



3.5 Applications

Fig. 3.20 — Reconstructed 3D shape with texture mapping.
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3.5.2 3D Reconstruction of a Glass Mold

Experimental Context

30 cm

Fig. 3.21 — Upper part of a mold used for Pyrex � glass plate covered with a

spray-painted speckle pattern.

In order to assess the accuracy of the 3D shape measurement methodology and validate

the software developed in this thesis (see Section 5), a comparative experiment has been

conducted at the Research Centre on Tools, Materials and Forming Processes (CROMeP

in French) of Ecole des Mines d’Albi-Carmaux. The centre, focused towards optimization

of forming tools, was interested to test the videogrammetry technique for reconstructing

the 3D shape of a part of a mold for Pyrex
�

glass plate (see Fig. 3.21) and to compare

the results with the ones obtained using a commercial digitizing instrument, the Konica

Minolta
�

VI-9i (see Fig. 3.22, right). This 3D laser scanner is used for reverse-engineering

by the CIRTES, partner of Ecole des Mines and developer of the StratoConception
�

process

[Bar92, BFGM95], a rapid prototyping technique able to realize a mold from a CAD model

or a cloud of points. For the videogrammetry part, the experiment is carried out using a

HAMAMATSU C4742-95 digital camera equipped with a 16 mm lens and mounted on a
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tripod (see Fig. 3.22, left).

HAMAMATSU C4742-95 digital camera Konica Minolta
�

VI-9i 3D digitizer

Fig. 3.22 — The digital camera (left) is used for the 3D shape measurement of

the glass mold using the videogrammetry technique. The 3D shape of the mold

is measured as well using the 3D laser scanner (right) for comparison.

3D Reconstruction using the Videogrammetry Technique

For the videogrammetry experiment, a calibration process is first necessary and eight images

are acquired in different orientations and positions (see Fig. 3.23) of the camera. The

calibration target is made with a speckle pattern printed and glued on a flat and rigid

Plexiglas plate.

Fig. 3.23 — Four images of the image sequence acquired for calibration.
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Calibration determines the projection model parameters (pinhole parameters in this

case) of the camera and the spatially-varying distortion correction function (non-parametric

and approximated by a bicubic spline of 10 × 10 patches). Indeed, there is no time-

varying distortion for an imaging system such as a camera and the simplified calibration

procedure presented in Section 2.4 is sufficient. Fig. 3.24 shows that the distortion is quite

important here (from -4 to +3 pixels for the x-component and from -4 to +3 pixels for the

y-component) which means that the 3D shape measurement without taking into account

distortion would have been very inaccurate.
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Fig. 3.24 — Horizontal (left) and vertical (right) component of the distortion

correction function: acquired images are very distorted (up to 4 pixels of distor-

tion).

For the 3D reconstruction, a speckle pattern texture using white spray-paint is realized

on the mold and four images are acquired from different viewpoints (see Fig. 3.25). Be-

cause the distortion is important here, we preferred not using the feature point detector on

undistorted images (to avoid loss of accuracy with the interpolation) and Vic2D
�

[CSI]

is used for a dense correlation using the original images: an area of interest of more than

18000 points is selected in the first image and correlated in the image sequence. Coordi-

nates of measure-points exported by Vic2D
�

are then corrected for distortion and our 3D

reconstruction process using videogrammetry technique (see Section 3) is performed using

the software we developed: Visiocore (see Section 5). The reconstructed 3D shape of the

mold is presented in Fig. 3.26.
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Fig. 3.25 — The four images acquired by the HAMAMATSU digital camera

and used for the 3D reconstruction using videogrammetry.

Fig. 3.26 — 3D shape of the glass mold (cloud of points) using the videogram-

metry technique.
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3D Reconstruction using the 3D Laser Scanner

Using the 3D digitizer Konica Minolta
�

VI-9i, the mold is acquired in three steps (in

front, left and right viewpoint) because of the curved parts inside the mold which cannot

be seen from one single viewpoint. Three clouds of about 100000 points are then generated

(see Fig. 3.27) and merged into a unique cloud by the software provided by the the laser

scanning system. The final cloud contains a little more than 135000 points and is illustrated

in Fig. 3.28.

Fig. 3.27 — Three clouds of points generated by the 3D scanner, before the

registration and fusion. We can notice that the curved parts of the mold are not

reconstructed in the two upper clouds.

Accuracy Assessment

The accuracy of the 3D shape measurement made using the videogrammetry technique will

be assessed by comparing a cloud of points generated by our videogrammetry software (see

Fig. 3.26) and the one generated by the 3D digitizer Konica Minolta
�

VI-9i (see Fig. 3.28)

claiming a measurement accuracy of ± 0.05 mm. Because the 3D shapes are not in the same

coordinate system, the comparison of the two shapes is realized using a program based on

the ICP (Iterative Closest Point) algorithm and implemented by Andres Restrepo-Specht
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Fig. 3.28 — Final cloud of more than 135000 points generated by the 3D laser

scanner and used for the comparison with the cloud of points obtained with the

videogrammetry technique (see Fig. 3.26).
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[RSDS02, RS05] during his PhD thesis carried out at LAAS-CNRS Toulouse5. This algo-

rithm [Ben98, BS99] estimates iteratively the best rigid-body transformation to transform

the first cloud of points into the second one (registration) minimizing the distance between

each pair of corresponding points. The mean distance between all pairs will be used to

assess the accuracy of the 3D reconstruction. With respect to the classical implementa-

tion, the approach here is modified in order to estimate a scale factor in addition to the

rigid-body motion between the two clouds of points. Indeed, the 3D shape obtained by the

videogrammetry technique is known only up to a scale factor. The optimization process is

then composed of two steps: 1) estimation of the scale factor and of the rigid-body motion

and (about 100 iterations) 2) refinement of the rigid-body motion considering the scale

factor fixed (about 60 iterations). In the first step, the data are sub-sampled to converge

faster (about only 6000 points per cloud are used) but in the second step, all the points

are used. The cloud of points obtained from the 3D laser scanner being much more dense

(about 130000 points) than the cloud from the videogrammetry technique (about 18000

points), each point of the second cloud has finally a correspondence in the first.

In order to show the importance of the distortion correction for the accuracy of the

measurement, two 3D reconstruction are achieved using the videogrammetry technique:

one from undistorted point correspondences as previously described denoted (a) and one

from points directly obtained by the correlation and not corrected for distortion denoted

(b). The two clouds look similar qualitatively (see Fig. 3.29) but a difference of accuracy

nevertheless exists: the mean distance between the 3D shape obtained with the 3D laser

scanner and (a) is 0.012 mm whereas the mean distance between the shape obtained with

the 3D laser scanner and (b) is 0.028 mm. These results are very good and confirm that

the videogrammetry technique and the software Visiocore developed for this work are as

efficient as a 3D laser scanner. They prove as well that it is always necessary to take into

account the spatially-varying distortion because it leads here to more than a 2-fold increase

in accuracy.

5We wish to acknowledge Andres Restrepo-Specht and Michel Devy from LAAS-CNRS Toulouse for

their generous and constant help in this experiment.
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Fig. 3.29 — Qualitative comparison between the 3D shapes with (left) and with-

out distortion correction (right): at the naked-eye, the 3D shapes look similar

but a difference in accuracy measurement exists.
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[VL93] T. Viéville and Q. Luong. Motion of points and lines in the uncalibrated

case. Technical Report RR-2054, INRIA, 1993.

[VL01] E. Vincent and E. Laganière. Matching Features Points in Stereo Pairs:

A Comparative Study of Some Matching Strategies. Machine Graphics &

Vision, 10(3):237–259, 2001.

[VLBB+01] F. Vignon, G. Le Besnerais, D. Boivin, J.-L. Pouchou, and L. Quan. 3D

reconstruction from scanning electron microscopy using stereovision and self-

calibration. In Physics in Signal and Image Processing, Marseille (France),

Jan 2001.

[Zha96a] Zhengyou Zhang. A New Multistage Approach to Motion and Structure Es-

timation: From Essential Parameters to Euclidean Motion via Fundamental

Matrix. Technical Report RR-2910, INRIA, Jun 1996.

[Zha96b] Zhengyou Zhang. Determining the Epipolar Geometry and its Uncertainty:

A Review. Technical Report RR-2927, INRIA, Jul 1996.

124



Chapter 4

Surface Strain Measurement

Similarly to the increasing interest for 3D shape measurement at micro- and nano-scale,

development of nano-technology creates as well a need for strain measurement at these

reduced-length scales. Digital image correlation is still the non-contacting method we

preferred for strain measurement applications. Actually, deformation cannot be directly

measured using the DIC technique: comparison of images of two (or more) different loads

allows to measure only displacements, which are then used to compute strains. Because we

do not observe under the surface, we will only treat the surface deformations in our studies

and will not pay attention to the volumetric deformations [BSFS99, BDM04].

Section 4.1 introduces the methodology for computing in-plane strain1 from the 2D

displacement field. It presents as well the limitations in strain measurement due to the

used imaging system: the Scanning Electron Microscope. Section 4.2 deals with three-

dimensional strain2 and the way to obtain them from the two reconstructed 3D shapes at

two different times. It proposes as well methods to address the issues raised by the fact

that SEM provides only one sensor.

Experimental results are presented in Section 4.3. In order to validate the entire process

of calibration, 3D reconstruction and strain computation, a “zero-deformation” experiment

is conducted: several images of a specimen undergoing only rigid-body motions are acquired

and strains (supposed to be null) are computed between the two 3D shapes reconstructed

by videogrammetry.

1We call “in-plane strain” or “two-dimensional strain” the surface strain computed on a planar object.
2We call “three-dimensional strain” the surface strain computed on a 3D object.



Surface Strain Measurement

4.1 In-Plane Strain Measurement

In-plane strain measurement3 at macro-scale using digital cameras and DIC technique

began 20 years ago [MNSW+83, SWP+83, CRSP85, SCP+86] and is very common nowadays

in experimental mechanics. The methodology is very simple: after a calibration phase of

the imaging sensor, images corresponding to different states of deformation of the studied

specimen are acquired4 (two-dimensional strain measurement only requires one image per

state). Then, the area of interest of the object in the undeformed state, represented by a

set of points regularly distributed or not, is compared by correlation to every other image

in the sequence to obtain disparity maps (or displacement fields). Note that it is better to

compare a deformed image with respect to the initial image instead of comparing it with a

previous image in the sequence in order to avoid to propagate and cumulate the correlation

errors. However, this is sometimes difficult in practice (in the case of large deformation for

example) and a sequential approach is then employed. Finally, the strains are obtained by

derivation of the displacement fields (see Section 4.1.1).

Obviously, in-plane strain measurement at micro- or nano-scale follows exactly the

same procedure [Dou00]. The only issue comes from the used imaging system: because

acquisition of an image with a SEM can last from some seconds to a few minutes, the

deformation must absolutely not be significant during this period of time so that the object

remains constant. Using a SEM imposes then a limitation on the rate of deformation: fast

deformation can definitely not be measured using such an imaging system.

4.1.1 Strain Tensor Computation

Consider a set of original 2D points mi =
(

xi yi

)>
which is transformed in the set of

points m′
i =

(

x′
i y′

i

)>
(see Fig. 4.1). Coordinates xi and yi are called material coordinates

and coordinates x′
i and y′

i are called spatial coordinates. They are related by the functions

U and V representing respectively the value of the displacement in horizontal and vertical

directions for a given point and defined such that:

∀i, x′
i = xi + U(xi, yi)

y′
i

︸︷︷︸

deformed

= yi
︸︷︷︸

initial

+ V(xi, yi)
︸ ︷︷ ︸

displacement

Actually, it is oftentimes more convenient to use the functions X ′ and Y ′ (later referred

to as “displacement functions”) defined by:

3What we call for convenience “strain measurement” is not really a direct measurement but actually a

strain computation from the displacement measurement.
4Particular attention must be paid to the position of the camera: if the surface of the object is not

fronto-parallel to the imaging sensor, a parasite perspective distortion will be included in the strain field.
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m0 m1 . . .

V(mk) = y′
k
− yk

Initial image (before deformation) Deformed image

mk

Subset of deformed points

m′
k

U(mk) = x′
k
− xk

m′
k − mk

Displacement:

Subset of initial points

Deformation

Fig. 4.1 — In-plane strain: the set of 2D points mi are deformed into the set

of 2D points m′
i.

∀i, X ′(xi, yi) = x′
i

Y ′(xi, yi) = y′
i

In order to derive the strains from the displacements, we need to introduce the de-

formation gradient tensor F. Let’s consider a differential vector
−→
di of origin xi that is

transformed in the vector
−→
d′

i of origin x′
i (see Fig. 4.2). F is defined such that:

−→
d′

i = F
−→
di (4.1)

Subset of deformed points

Subset of initial points

mi

−→
di

m
′
i

−→
d′i

tensor F

Deformation gradient

Fig. 4.2 — The deformation gradient tensor F defines the relationship between

a vector
−→
di of the initial surface and a vector

−→
d′

i of the deformed surface.

The tensor is then represented as follows:
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F =

(
∂X ′

∂x
∂X ′

∂y
∂Y ′

∂x
∂Y ′

∂y

)

=

(

1 + ∂U
∂x

∂U
∂y

∂V
∂x

1 + ∂V
∂y

)

(4.2)

The dilatation tensor or Cauchy-Green tensor C is defined to characterize the dilatation

of the original vector
−→
di :

‖
−→
d′

i‖2 =
−→
d′

i
>.

−→
d′

i

=
−→
di

> F>. F
−→
di using Equ. (4.1)

=
−→
di

> C
−→
di

where C = F>F (4.3)

Finally, the Green-Lagrange strain tensor5 E is determined from the Cauchy-Green

tensor C:

E =
1

2
(C − I) where I is the identity matrix

Note that E is symmetric because C is symmetric according to Equ. (4.3). E is repre-

sented as follows:

E =

(

Exx Exy

Exy Eyy

)

where Exx, Eyy are the normal strains and Exy is the shear strain. Using Equ. (4.2)

and Equ. (4.3), they can be identified to:

Exx =
1

2

[(
∂X ′

∂x

)2

+

(
∂Y ′

∂x

)2

− 1

]

Eyy =
1

2

[(
∂X ′

∂y

)2

+

(
∂Y ′

∂y

)2

− 1

]

Exy =
1

2

(
∂X ′

∂x

∂X ′

∂y
+

∂Y ′

∂x

∂Y ′

∂y

)

5Note that another formulation of the strain tensor exists: the Euler-Almansi strain tensor. Instead of

expressing the strain tensor as a function of the material coordinates xi and yi (point of the undeformed

surface), the Euler-Almansi tensor is expressed as a function of the spatial coordinates x′
i and y′

i (point of

the deformed surface).
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Replacing X ′ by (U + x) and Y ′ by (V + y) leads to expressions of Exx, Eyy and Exy

depending on U and V :

Exx =
∂U
∂x

+
1

2

[(
∂U
∂x

)2

+

(
∂V
∂x

)2
]

Eyy =
∂V
∂y

+
1

2

[(
∂U
∂y

)2

+

(
∂V
∂y

)2
]

Exy =
1

2

(
∂U
∂y

+
∂V
∂x

+
∂U
∂x

∂U
∂y

+
∂V
∂x

∂V
∂y

)

Strains 6 can then be determined from the partial derivatives of the displacement func-

tions X ′ and Y ′ or U and V . These functions are sampled and measured at discrete number

of locations. Therefore, they are approximated by using the sets of initial and deformed 2D

points and by fitting these data with a transformation such as a local affine transformation,

a local quadratic transformation or a global spline function. Only the approximation of the

functions X ′ and Y ′ will be presented in Section 4.1.2 because the approximation U and V
is similar and does not need to be detailed.

4.1.2 Displacement Functions Approximation

The displacement functions can be approximated by transformations that will be presented

thereafter. The affine transformation is the simplest representation and can be considered

sufficient if the deformation in the region of interest is homogeneous (i.e., constant exten-

sional and shear strain). Quadratic and/or spline transformations are used if the deforma-

tions are non-homogeneous in the region of interest. Due to the presence of noise in the

displacement measurements, the selection of an optimal displacement function necessitates

the use of smoothing to reduce errors in the resulting displacement gradients.

Local approximation of the displacement functions by an affine transforma-

tion: Consider a subset of n points mk around the point m where we want to compute

the strains. These points are chosen inside a circle of a given radius or inside a square of a

6Note that in the case of small deformation, the Green-Lagrange strain tensor is generally approximated

by its linearized counterpart ε = 1
2 (F> + F) − I.

ε =

(

εxx εxy

εxy εyy

)

where







εxx = ∂X ′

∂x
− 1 = ∂U

∂x

εyy = ∂Y′

∂x
− 1 = ∂V

∂y

εxy = 1
2

(
∂X ′

∂y
+ ∂Y′

∂x

)

= 1
2

(
∂U
∂y

+ ∂V
∂x

)

However, in order to stay in the most general case, only the strain tensor E is considered in the following

sections.
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given side length (see Fig. 4.3). Some authors [ABBC94, Dou00] prefer to use a triangular

mesh and the points are chosen inside a triangle, a square or an hexagon.

. . .

m m

m0 m1 . . . m0 m1

Fig. 4.3 — Two types of possible neighborhood around the interest point m

where the displacement functions will be approximated.

The displacement functions between mk and m′
k can be expressed locally as an affine

transformation over the area defined by the point subset:

∀k = 1 . . . n,

(

x′
k

y′
k

)

=

(

X ′(xk, yk)

Y ′(xk, yk)

)

≈
(

ax bx

ay by

)(

xk

yk

)

+

(

tx

ty

)

This leads to the two overdetermined linear system Axx = bx and Axy = by where

A =






x0 y0 1
...

xn yn 1




 ,xx =






ax

bx

tx




 ,xy =






ay

by

ty




 ,bx =






x′
0
...

x′
n




 and by =






y′
0
...

y′
n






Since A is not square and therefore not invertible, the solutions of these systems are:

xx = A†bx and xy = A†by where A† =
(
A>A

)−1
A> is the pseudo-inverse of A.

Note that in order to compute the normal strains and the shear strain, we only need

the four parameters ax, bx, ay and by of the affine transformation since we have:

∂X ′

∂x
= ax,

∂X ′

∂y
= bx,

∂Y ′

∂x
= ay and

∂Y ′

∂y
= by

leading to the expressions:
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Exx =
a2

x + a2
y − 1

2
, Eyy =

b2
x + b2

y − 1

2
and Exy =

axbx + ayby

2
(4.4)

This is because deformation is invariant to rigid-body motions and a fortiori to a trans-

lation
(

tx ty

)>
. The affine transformation can then be represented by only 4 parameters

instead of 6.

Local approximation of the displacement functions by a quadratic transfor-

mation: Similarly to the approximation by an affine transformation, let’s consider a

subset of n points mk around the point m (see Fig. 4.3) where we want to compute the

strains. The displacement functions over this area can be expressed locally as a quadratic

transformation:

∀k = 1 . . . n,

(

x′
k

y′
k

)

=

(

X ′(xk, yk)

Y ′(xk, yk)

)

≈
(

ax bx

ay by

)(

xk

yk

)

+

(

cx

cy

)

xkyk +

(

dx ex

dy ey

)(

x2
k

y2
k

)

+

(

tx

ty

)

(4.5)

The equation system is no more linear here and the parameters ax, ay, bx, by, cx, cy, dx,

dy, ex, ey, tx, ty have now to be estimated using a non-linear optimization procedure. An

iterative method such as the Levenberg-Marquardt algorithm is used to minimize the sum

of square differences between
(

x′
k y′

k

)>
and Equ. (4.5).

Compared to the affine approximation, the expression of the derivatives of the displace-

ment functions and particularly the strains are a little more complex when approximated

by a quadratic transformation:

∂X ′

∂x
= ax + cxy + 2dxx

∂X ′

∂y
= bx + cxx + 2exy

∂Y ′

∂x
= ay + cyy + 2dyx

∂Y ′

∂y
= by + cyx + 2eyy

leading to the following expressions for the normal and shear strains:
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Exx = 2
(
d2

x + d2
y

)
x2 +

c2
x + c2

y

2
y2 + 2 (cxdx + cydy) xy + 2 (axdx + aydy) x + (axcx + aycy) y

+
a2

x + a2
y − 1

2

Eyy =
c2
x + c2

y

2
x2 + 2

(
e2

x + e2
y

)
y2 + 2 (cxex + cyey) xy + (bxcx + bycy) x + 2 (bxex + byey) y

+
b2
x + b2

y − 1

2

Exy = (cxdx + cydy) x2 + (cxex + cyey) y2 +

(

2 (dxex + dyey) +
c2
x + c2

y

2

)

xy

+

(

bxdx + bydy +
axcx + aycy

2

)

x +

(

axex + ayey +
bxcx + bycy

2

)

y +
axbx + ayby

2

Note that, similarly to the affine approximation, the translation parameters tx and ty

are obviously again absent from the expressions of the strains since the deformation is

invariant to rigid-body motions. The quadratic transformation can then be represented by

10 parameters instead of 12.

Global approximation of the displacement functions by a spline: displacement

functions can be approximated over the whole area of interest using spline functions. The

procedure for computing strains is still the same:

1. Fit globally the two functions X ′ and Y ′ respectively with the splines SX ′ and SY ′ .

2. Compute locally the derivatives
∂SX′
∂x

,
∂SY′
∂y

,
∂SY′
∂x

and
∂SY′
∂y

for the given points.

3. Compute Exx, Eyy and Exy.

Spline fitting consists in approximating a function with a spline function. The complete

process is detailed in Section 2.3.1, Step 3d.

Evaluating the derivative of a spline along the x-axis (respectively y-axis) is equivalent to

evaluate the spline with the kernel (basis function) for x-axis (respectively y-axis) replaced

by its derivative. Indeed:

S(x, y,α) =

nj∑

j=0

nk∑

k=0

αj,kMj(x)Mk(y) ⇒







∂S(x, y,α)

∂x
=

nj∑

j=0

nk∑

k=0

αj,k
∂Mj

∂x
Mk(y)

∂S(x, y,α)

∂y
=

nj∑

j=0

nk∑

k=0

αj,kMj(x)
∂Mk

∂y

Actually, to simplify the expressions of the kernels, the spacing between knots is con-

sidered constant (uniform spline) and equal to 1. x and y are then replaced by fx = x
kx

and

fy = y
ky

where kx is the width of the patches and ky the height. The equations become:
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S(x, y,α) =

nj∑

j=0

nk∑

k=0

αj,kNj(fx)Nk(fy) ⇒







∂S(x, y,α)

∂x
=

1

kx

nj∑

j=0

nk∑

k=0

αj,k
∂Nj

∂fx

Nk(fy)

∂S(x, y,α)

∂y
=

1

ky

nj∑

j=0

nk∑

k=0

αj,kNj(fx)
∂Nk

∂fy

Expressions of the basis functions and their derivatives depending on the degree of

spline are given in Table 4.1.

Degree Kernel: Derivative:

of spline N∗(f) ∂N∗(f)
∂f

1 Ni(f) = 1 − f ∂Ni

∂f
= −1

Ni+1(f) = f
∂Ni+1

∂f
= 1

Ni(f) = 1−2f+f2

2
= (1−f)2

2
∂Ni

∂f
= f − 1

2 Ni+1(f) = 1+2f−2f2

2
∂Ni+1

∂f
= 1 − 2f

Ni+2(f) = f2

2
∂Ni+2

∂f
= f

Ni(f) = 1−3f+3f2−f3

6
= (1−f)3

6
∂Ni

∂f
= −1+2f−f2

2
= − (1−f)2

2

3 Ni+1(f) = 4−6f2+3f3

6
∂Ni+1

∂f
= −4f+3f2

2

Ni+2(f) = 1+3f+3f2−3f3

6
∂Ni+2

∂f
= 1+2f−3f2

2

Ni+3(f) = f3

6
∂Ni+3

∂f
= f2

2

Ni(f) = 1−4f+6f2−4f3+f4

24
= (1−f)4

24
∂Ni

∂f
= −1+3f−3f2+f3

6
= − (1−f)3

6

Ni+1(f) = 11−12f−6f2+12f3−4f4

24
∂Ni+1

∂f
= −3−3f+9f2−4f3

6

4 Ni+2(f) = 11+12f−6f2−12f3+6f4

24
∂Ni+2

∂f
= 1−f−3f2+2f3

2

Ni+3(f) = 1+4f+6f2+4f3−4f4

24
∂Ni+3

∂f
= 1+3f+3f2−4f3

6

Ni+4(f) = f4

24
∂Ni+4

∂f
= f3

6

Ni(f) = 1−5f+10f2−10f3+5f4−f5

120
= (1−f)5

120
∂Ni

∂f
= −1+4f−6f2+4f3−f4

24
= − (1−f)4

24

Ni+1(f) = 26−50f+20f2+20f3−20f4+5f5

120
∂Ni+1

∂f
= −10+8f+12f2−16f3+5f4

24

5 Ni+2(f) = 66−60f2+30f4−10f5

120
∂Ni+2

∂f
= −12f+12f3−5f4

12

Ni+3(f) = 26+50f+20f2−20f3−20f4+10f5

120
∂Ni+3

∂f
= 5+4f−6f2−8f3+5f4

12

Ni+4(f) = 1+5f+10f2+10f3+5f4−5f5

120
∂Ni+4

∂f
= 1+4f+6f2+4f3−5f4

24

Ni+5(f) = f5

120
∂Ni+5

∂f
= f4

24

Table 4.1 — Expressions of the kernels and their respective derivative depend-

ing on the degree of spline
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4.2 Three-dimensional Strain Measurement

The procedure for three-dimensional strain measurement is similar to the one for two-

dimensional strain measurement (see Section 4.1): first, a calibration phase of the imaging

sensors (one or more imaging sensors can be used), and secondly, the acquisition of at least

two images of the studied object per state of deformation. Then, 3D reconstructions of

the object before and after deformation are performed and 3D displacement measurements

(leading later to the surface strain) are obtained from the difference of the 3D shapes.

But the difference cannot be computed directly because we first need to know for each 3D

point of the undeformed shape, which 3D point of the deformed shape is corresponding.

In addition to the point correspondences between projected images representing the same

state of deformation (we will called them “spatial matches”) and necessary for the 3D

reconstruction, it is therefore required to have point correspondences between images of

the initial state and images of the deformed state (called “temporal matches”).

Fig. 4.4 presents the classical approach of 3D displacement measurement using DIC

[KJC90, LCSP93, SS99, GOP02]. We consider for convenience the simple case of two

undeformed and two deformed images:

① Spatial matching between the two images at the initial state: the correspond-

ing point m′
ini of the point mini is searched into the second image of the initial state

using correlation. Then, using the two matches and the projection model parameters

obtained by calibration, the 3D point Mini can be obtained by triangulation.

② Temporal matching between the first image of the initial state and the

first image of the deformed state: the corresponding point mdef of the point mini

is searched into the first image of the deformed state using correlation.

③ Spatial matching between the two images at the deformed state: the cor-

responding point m′
def of the point mdef is searched into the second image of the

deformed state. The deformed 3D point Mdef can then be obtained by triangulation.

④ Displacement computation: the 3D displacement is determined as the subtraction

of the undeformed 3D point Mini to the second 3D point Mdef (after deformation).

This procedure is obviously repeated for each point of the undeformed surface, in order

to obtain a complete 3D displacement field. This procedure is the commonly used approach

even if it presents a known little trouble: the point found by correlation in the second image

of the deformed state (Step ③) corresponds to a point already found by correlation (Step

②) and therefore the correlation errors for this point are cumulated. For this reason, Step

③ is sometimes replaced by a direct matching between the first image at the undeformed

state I1 and the second image at the deformed state D2.
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3

1

2 4

Initial image I1 (before deformation)

Deformed image D1

mini

mdef

Mini

Mdef
}

Spatial matching

Spatial matching

Temporal matching Displacement: Mdef − Mini

Initial image I2 (before deformation)

m′
ini

Deformed image D2

m′
def

Fig. 4.4 — Classical approach of 3D displacement measurement.

4.2.1 Experimental Issues due to the SEM Imaging System

Application of this approach to our case using a SEM imaging system is possible but

new issues are raised. First, and similarly to in-plane strain (see Section 4.1), there is

a limitation on the rate of deformation but it is even more restrictive: the deformation

process must be slow enough so that at least two images of the specimen can be acquired

from different viewpoints. Secondly, and most importantly, the fact that the SEM provides

a unique sensor causes a major problem for the computation of the displacement in Step

④. Indeed, as illustrated in Fig. 4.5, the experimental process with a unique sensor consists

in moving the specimen in order to acquire at least two images from different viewpoints

for each state (initial and deformed state). Because the relative motions undergone by

the specimen on the SEM stage between each acquisition are not accurately known, they

have to be recovered from image analysis using the videogrammetry approach. However,

we have seen in Section 3.4 that only the rotation and the direction of the translation of
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the motion undergone can be recovered. Since the magnitude of the translation is only

known up to a scale factor, the 3D reconstruction will include as well the unknown scale

factor: from the images before deformation, the initial 3D shape will be reconstructed up

to λini and from the images after deformation, the deformed 3D shape will be known up to

a different scale factor λdef . Note that this problem does not occur with systems providing

multiple sensors rigidly mounted (such as a stereo-rig of cameras) because the rigid-body

transformation between the sensors is always the same during the entire experiment and

the unknown scale factor in the 3D reconstruction is therefore constant. In this case, the

value of this scale factor can easily be determined using a known distance in the scene at

the initial or deformed state but it is not required since strain is a relative measurement

(the strain is the same if both 3D shapes are scaled by a same scale factor).
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of initial image I1

Viewpoint for the acquisition
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of deformed image D1

Viewpoint for the acquisition

of deformed image D2
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area
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Initial

State

Deformed
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Fig. 4.5 — Three-dimensional strain measurement with an imaging system pro-

viding only one sensor leads to a major problem: because the rigid-body trans-

formation between initial images and the one between deformed images are dif-

ferent, initial and deformed 3D shapes will be reconstructed up to different scale

factors and therefore, the 3D displacement field cannot be computed directly.

To compute the 3D displacement field between initial and deformed state, both 3D

shapes obviously need to be expressed with a common scale factor and the ratio λini

λdef
is
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therefore absolutely necessary. To determine this ratio, different experimental solutions

related to the knowledge of specific information of the scene can be investigated:

� comparison of an unknown fixed length in the different 3D reconstructions (using for

example the presence of a non-deformable object in the field of view) allows to obtain

the needed ratio (equal to the ratio of lengths).

� same statement as above but comparing two unknown fixed areas. It allows to min-

imize the error on the ratio estimation because several points are used. The needed

ratio is equal to the square root of the ratio of areas.

� knowledge of a distance or an area in the initial and deformed 3D reconstruction

allows to directly eliminate the two unknown scale factors λini and λdef and therefore

to be able to compute the 3D displacement.

4.2.2 Strain Tensor Computation

Let’s note Mi =
(

Xi Yi Zi

)>
the set of undeformed points and M′

i =
(

X ′
i Y ′

i Z ′
i

)>

the set of deformed points (see Fig. 4.6). Analogously to the 2D case (see Section 4.1.1),

points in different states are related by the function U , V and W representing respectively

the value of the displacement along x, y and z-axis. Respective displacement functions are

denoted X ′, Y ′ and Z ′:

∀i, X ′
i = Xi + U(Xi, Yi, Zi) = X ′(Xi, Yi, Zi)

Y ′
i = Yi + V(Xi, Yi, Zi) = Y ′(Xi, Yi, Zi)

Z ′
i = Zi + W(Xi, Yi, Zi) = Z ′(Xi, Yi, Zi)

The different tensors used in strain computation have already been detailed in Sec-

tion 4.1.1 and only the mathematical expression will be given in this section. The defor-

mation gradient tensor F in 3D is expressed as follows:

F =






∂X ′

∂X
∂X ′

∂Y
∂X ′

∂Z
∂Y ′

∂X
∂Y ′

∂Y
∂Y ′

∂Z
∂Z′

∂X
∂Z′

∂Y
∂Z′

∂Z






=






1 + ∂U ′

∂X
∂U ′

∂Y
∂U ′

∂Z
∂V ′

∂X
1 + ∂V ′

∂Y
∂V ′

∂Z
∂W ′

∂X
∂W ′

∂Y
1 + ∂W ′

∂Z






leading to the following Green-Lagrange strain tensor E:
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E =






Exx Exy Exz

Exy Eyy Eyz

Exz Eyz Ezz






where:

Exx = 1
2

[(
∂X ′

∂X

)2
+
(

∂Y ′

∂X

)2
+
(

∂Z′

∂X

)2 − 1
]

= ∂U
∂X

+ 1
2

[(
∂U
∂X

)2
+
(

∂V
∂X

)2
+
(

∂W
∂X

)2
]

Eyy = 1
2

[(
∂X ′

∂Y

)2
+
(

∂Y ′

∂Y

)2
+
(

∂Z′

∂Y

)2 − 1
]

= ∂V
∂Y

+ 1
2

[(
∂U
∂Y

)2
+
(

∂V
∂Y

)2
+
(

∂W
∂Y

)2
]

Ezz = 1
2

[(
∂X ′

∂Z

)2
+
(

∂Y ′

∂Z

)2
+
(

∂Z′

∂Z

)2 − 1
]

= ∂W
∂Z

+ 1
2

[(
∂U
∂Z

)2
+
(

∂V
∂Z

)2
+
(

∂W
∂Z

)2
]

Exy = 1
2

(
∂X ′

∂X
∂X ′

∂Y
+ ∂Y ′

∂X
∂Y ′

∂Y
+ ∂Z′

∂X
∂Z′

∂Y

)
= 1

2

(
∂U
∂Y

+ ∂V
∂X

+ ∂U
∂X

∂U
∂Y

+ ∂V
∂X

∂V
∂Y

+ ∂W
∂X

∂W
∂Y

)

Exz = 1
2

(
∂X ′

∂X
∂X ′

∂Z
+ ∂Y ′

∂X
∂Y ′

∂Z
+ ∂Z′

∂X
∂Z′

∂Z

)
= 1

2

(
∂U
∂Z

+ ∂W
∂X

+ ∂U
∂X

∂U
∂Z

+ ∂V
∂X

∂V
∂Z

+ ∂W
∂X

∂W
∂Z

)

Eyz = 1
2

(
∂X ′

∂Y
∂X ′

∂Z
+ ∂Y ′

∂Y
∂Y ′

∂Z
+ ∂Z′

∂Y
∂Z′

∂Z

)
= 1

2

(
∂V
∂Z

+ ∂W
∂Y

+ ∂U
∂Y

∂U
∂Z

+ ∂V
∂Y

∂V
∂Z

+ ∂W
∂Y

∂W
∂Z

)

Actually, because we do not have access to information under the surface, we only have

surface deformation and gradients perpendicular to the surface ∂∗
∂Z

are unknown. Therefore,

the values of Exz, Eyz and Ezz cannot be determined.

Due to lack of time, the three-dimensional strain computation has not been entirely

implemented in the thesis. The method is implemented until the 3D displacement field

computation (from Step ① to Step ④ of Section 4.2) but the final step (computation of

the strain tensor) is not available. For the experimental results of Section 4.3, the strains

are computed using Abaqus
�

, a software for finite element analysis. The computation is

achieved from the 3D displacements given at the nodes of a triangular mesh, generated

using Visiocore, the computer vision software developed in this work (see Section 5).

However, in order to present the complete method of three-dimensional strain mea-

surement and to give an idea of how the strain tensor can be computed, a simple method

commonly used is described in the following sections.

4.2.3 Change of Coordinate System

In the case of three-dimensional strain measurement, the strain in a given measure point is

computed by averaging the strains in the triangles formed by the neighboring points. As

illustrated in Fig. 4.6, a triangular mesh is then created for each subsets of points (initial

and deformed) and deformation is defined as the transformation converting a triangle in the

initial state to the corresponding triangle in the deformed state (Lagrangian formulation).
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. . .
M

′
0

M
′
1

Subset of deformed points

M0

. . .

M1

Subset of initial points

Rw

Tw
ini

Rini
Deformation

Fig. 4.6 — The set of 3D points Mi are deformed into the set of 3D points

M′
i. The three-dimensional strain measurement in a given measure point is

achieved by averaging the strain in all the triangles it belongs to. In order to

have surface deformation, the coordinate system is changed for each triangle so

that this triangle in the initial state lies onto the plane Z = 0 and the origin is

the measure point.

Because the strain in a given triangle is considered at the surface of the object, it is

required to be located on the tangent plane to the surface at the measure point and a

change of coordinate system is therefore necessary before approximating the displacement

functions and computing the strain associated to the triangle. Actually, in practice, the

world coordinate system Rw is not transformed into the real tangent plane to the surface at

the measure point but into the local coordinate system Rini where the origin is the measure

point and the corresponding triangle in the initial state lies onto the plane Z = 0. The

rigid-body transformation between Rw and Rini is denoted Tw
ini (see Fig. 4.6).

4.2.4 Displacement Functions Approximation

Similarly to two-dimensional strain measurement, the approximation of the displacement

functions is necessary because the real functions X ′, Y ′ and Z ′ are unknown. However,

because the strain is computed for each triangle around the measure point, only 3 cou-

ples of points are available to estimate the displacement functions and they can only be
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approximated by an affine transformation (supposing an homogeneous deformation in this

triangle). The approximation procedure for 3D displacement functions is analogous to the

developments in 4.1.2 and the expression for the strain tensor components in the case of a

three-dimensional displacement can be readily deduced from these equations.

For a given triangle composed of the 3 points M0, M1 and M2, the approximation

of the displacement functions by an affine transformation consists in determining the 12

parameters ax, ay, az, bx, by, bz, cx, cy, cz, tx, ty and tz such that:

∀k = 0 . . . 2,






X ′
k

Y ′
k

Z ′
k




 ≈






ax bx cx

ay by cy

az bz cz











X̂k

Ŷk

Ẑk




+






tx

ty

tz






where M̂k =
(

X̂k Ŷk Ẑk

)>
are the coordinates of the kth undeformed point in the

new local coordinate system: M̂k = Tw
iniMk (Section 4.2.3).

Actually, all the initial points M̂k are in the plane defined by the initial triangle and then

∀k = 0 . . . 2, Ẑk = 0. Therefore, the three parameters cx, cy and cz cannot be estimated

(with Ẑk = 0, they disappear from the equations). This is coherent with the fact that the

displacements perpendicular to the surface ∂∗
∂Z

are unknown and the values of Exz, Eyz and

Ezz cannot be determined. Finally, the approximation is:

∀k = 0 . . . 2,






X ′
k

Y ′
k

Z ′
k




 ≈






ax bx

ay by

az bz






(

X̂k

Ŷk

)

+






tx

ty

tz






which leads to the following expressions for the normal and shear strains:

Exx =
a2

x + a2
y + a2

z − 1

2
Eyy =

b2
x + b2

y + b2
z − 1

2
Exy =

axbx + ayby + azbz

2
(4.6)

Note that similarly to the two-dimensional strain measurement, the translation param-

eters tx, ty and tz does not appear in the strain computation since deformation is invariant

to rigid-body motions.
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4.3 Experimental Results

4.3.1 Experimental Context: Euro vs. Dollar

In order to validate the entire process of calibration, 3D reconstruction and strain com-

putation, a “zero-deformation” experiment is conducted: several images of a specimen

undergoing only rigid-body motions are acquired and strains (supposed to be null) are

computed between the two 3D shapes reconstructed by videogrammetry. It would have

been better to conduct an experiment with a specimen undergoing tensile loading in a

SEM loading stage and compare with strain gauges but we do not have any SEM loading

stage available at the current time.

After the 3D reconstruction of the letter “R” on a penny (see Section 3.5.1), the exper-

iment is conducted with the letter “R” of the word “EURO” of a coin of 10 cents of Euro

(see Fig. 4.7) in order to avoid any jealousy between the two currencies.

5.65 mm 1.7 mm

1×, detail 75×1×

2 cm

Fig. 4.7 — The specimen used for the experiment is a coin of 10 cents of Euro.

The letter “R” of the word “EURO” is observed with a SEM in order to be

reconstructed in 3D.

The FEI XL 30 ESEM of Ecole des Mines d’Albi-Carmaux is operated in high-vacuum

mode (SEM mode). As described in see Section 3.5.1, it is better to work at a low voltage

and with the BSE detector. The operating conditions for this experiment are as follows:

� BSE detector

� 75× magnification

� non-dimensional spot-size of 4

� 10 mm working distance

� accelerating voltage of 5 kV
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� seven-bit gray scale images (712 × 484 size)

After the image acquisition, the experiment consists of the four following steps: a)

calibration, b) reconstruction of the two 3D shapes and c) 3D displacement measurement

and d) strain computation.

4.3.2 Calibration

Due to its texture and its relative flatness, the coin is usable as a quasi-planar calibration

target. However, a speckle pattern calibration target realized by micro-lithography is pre-

ferred to insure optimal results because its geometry is closer to a plane and its geometry

is then better initialized (Z = 0). A sequence of 7 images of this target is acquired from

different viewpoints (see Fig. 4.8).

Fig. 4.8 — Three images from the sequence used for the calibration procedure

(speckle pattern textured specimen realized by micro-lithography).

The experiment is conducted at very low magnification (75×) and similarly to the first

experiment with the SEM at low magnification (see Section 2.4.3), the drift is negligible

and the time-varying distortion is not corrected. The spatially-varying distortion is fitted

by a bicubic spline composed of 10 × 10 patches and the correction field is illustrated in

Fig. 4.9. The distribution of the reprojection errors follows a normal distribution proving

that the remaining errors are essentially due to Gaussian noise. Moreover, the calibration

results are very good since the standard deviation of the magnitudes of reprojection errors

is 0.01 pixels and the bias is 0.02 pixels.

4.3.3 3D Reconstruction

After the calibration, the operating conditions must obviously remain constant until the

end of the experiment. In order to avoid to remove the calibration target from the SEM

chamber after the image acquisition, the coin of 10 cents of Euro is fixed on the same

specimen holder (see Fig. 4.10). By this way, the acquisition of the images of the letter
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Fig. 4.9 — Distortion correction field computed using the especially designed

speckle pattern calibration target: x-component (left), y-component (right) and

magnitude (bottom).

“R” of the word “EURO” can be done consecutively without changing any parameters of

the SEM.

For the 3D shape measurement using videogrammetry, two sets of three images of the

coin detail are acquired from different viewpoints (see Fig. 4.11). The three first images are

used for the reconstruction of a first 3D shape (considered as the initial state) represented

in Fig. 4.12 and the three last images are used for a second 3D reconstruction (considered

as the deformed state).

4.3.4 3D Displacement Measurement

In addition to the spatial matchings, a temporal matching is achieved between the first

images of each set in order to have a relationship between the 3D points in the initial and

deformed states. However, the 3D displacement cannot be estimated directly because the

two 3D shapes are reconstructed up to a different scale factor, denoted λini for the initial

3D shape and λdef for the deformed one (see Section 4.2). The ratio λini

λdef
between the
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Speckle-patterned

Adhesive tape

calibration target
Specimen holder

10 cents of euro

2 cm

Fig. 4.10 — Setup of the experiment: the coin is stuck close to the calibra-

tion target on the same specimen holder in order to keep the same operating

conditions for the acquisition of all images.

two shapes can be easily determined because the specimen has not actually been deformed

since only rigid-body motions have been imposed (zero-deformation). Different methods

have been presented in Section 4.2.1 to obtain the ratio. Here, several pairs of 3D point

correspondences are used to compare 3D distances which are supposed to be equal. The

estimated ratio of scale factors is obviously slightly different depending on the pair of 3D

points used and the mean value of the different ratios is finally kept for λini

λdef
. At last,

the second 3D shape is scaled by λini

λdef
so that the two shapes are reconstructed up to the

same unknown scale factor λini. The 3D displacement field is obtained by difference of

corresponding 3D points. Note that the actual value of the common scale factor λini does

not need to be determined because we are computing strain, which is a relative measurement

(the strain is the same if both 3D shapes are scaled by a same scale factor).

4.3.5 Strain Computation

The computation of the strain tensor has not been implemented in our programs and

the strains in this experiment are estimated using Abaqus
�

, a software for finite element

analysis. Abaqus
�

needs the 3D displacements at the nodes of a mesh as input but no 3D

mesher is implemented in our programs. Then, the module of Visiocore of 2D mesh using

Delaunay triangulation (see Section 5) is used instead: a 2D triangular mesh is generated

from the initial 2D points in the first image and the neighboring relationships between

the points are considered equivalent in 3D (see Fig. 4.13). This is obviously not true for

complex shapes but it is an acceptable assumption for the shape of the letter “R” in this

experiment.

Strain values are obtained with Abaqus
�

considering a thin shell structure and the
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In-plane rotation angle: ∼ −107◦

Tilt angle: ∼ −1◦
In-plane rotation angle: ∼ −86◦

Tilt Angle: ∼ 19◦

In-plane rotation angle: ∼ −86◦

Tilt Angle: ∼ −1◦
In-plane rotation angle: ∼ −86◦

Tilt Angle: ∼ 19◦

Fig. 4.11 — Four BSE images of the letter “R” of the 10 cents coin. A total

of 6 images are acquired for the two 3D reconstructions.

nodes of the mesh being defined every 3 pixels. Results are illustrated in Fig. 4.14 and

4.15. Because only rigid-body motions have been undergone between the different image

acquisitions, the computed strains should be null. Actually, they are not, and even if the

standard deviation and the bias of errors are acceptable (bias = 1%, standard deviation =

1.8% for the maximum principal strain and bias = -0.5%, standard deviation = 1% for the

minimum principal strain), the results are a little disappointing because errors can reach

5% for the maximum principal strain and -1.5% for the minimum principal strain.

The errors presented here are due to the different errors cumulated in the 4 steps of the

experiment:

a) errors due to the calibration (see Section 4.3.2)

b) errors due to the 3D reconstruction (see Section 4.3.3)

c) errors due to the identification of the ratio of scale factors (see Section 4.3.4)

d) error due to the method of strain computation (see Section 4.3.5).
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Fig. 4.12 — One of the two reconstructed 3D shapes of the letter “R” of

“EURO”, known up to a scale factor.

Using our new calibration approach, a) errors due to the calibration are now very

small and they certainly not represent the main error component here. Likewise, strain

computation being realized using Abaqus
�

, d) errors due to the method of computation

are not the first cause of error even if the important variations in the strain field (see

Figs 4.14, 4.14 and 4.16) are the consequence of a too small element size compared to

the data spacing (spacing between each node of the mesh is 3 pixels). A larger spacing

of the nodes (15-20 pixels) would lead to a much smoother strain field and then, much

better results. However, the main cause of error here is clearly b) the 3D reconstruction.

Indeed, we can notice in Fig. 4.14 that the highest strain values are located on the slopes

of the letter “R” where the 3D reconstruction is more difficult. This is due to two main

reasons: first, the DIC technique is less efficient in areas of high curvature and secondly,

the curved areas are subject to occlusion problems when the specimen undergoes rigid-

body motions: points of these areas are not present in all the images, leading to a less

accurate reconstruction. On the contrary, the results of the strain computation on the

areas of low curvature of the specimen are quite good since the errors vary from 0 to 1.5%

(see Fig. 4.16). The second main cause of error is c) the identification of the ratio of scale

factors. The differences between the different ratios estimated from pairs of 3D points (see

Section 4.3.4) is significant (a few percents) and even if the error is minimized by taking

the mean value, it does not seem sufficient here. A first improvement could be to use only
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Initial image (before deformation)

2D triangular mesh

3D triangular mesh

Fig. 4.13 — The 3D mesh required for Abaqus � is obtained using the module

of 2D mesh and considering that the neighboring relationships are the same for

the 2D points and the 3D points.

the pairs of the most accurately reconstructed 3D points (corresponding to the smallest

reprojection errors).
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Fig. 4.14 — Maximum principal strain values obtained for the zero-deformation

experiment. The strain values go from 0% to 5%, the highest errors being located

on the slopes of the letter “R”.
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Fig. 4.15 — Minimum principal strain values obtained for the zero-deformation

experiment. The strain values go from -1.5% to 0%.
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Surface Strain Measurement

Fig. 4.16 — Maximum principal strain values considering only the quasi-planar

areas of the object. The results are much better here and the errors vary from

0% to 1.5%.
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Chapter 5

Software Development

Applications of the videogrammetry are very numerous and in many fields (see [CLVWdV02]

for an application to volcanology for instance). Ecole des Mines d’Albi-Carmaux started

developing this technique in 1999 for architectural applications [AGO00] and decided in

2001 to apply it for micro- and nano-scale measurements using a SEM [Cor01]. During

this thesis, a general modular software gathering different computer vision applications

and particularly a module of videogrammetry has been developed. This software being

aimed at any user, not especially experienced in computer vision, a particular attention

has been paid to the user-friendliness (usability) and consequently to the Graphic User

Interface (GUI). The software has been developed under Linux (RedHat distribution) in

C++ and is designed for running under different platforms (particularly Windows). In

this sense, it uses the portable Qt library1 for the GUI. In addition to the standard C++

library stdlib, it uses as well a scientific library v3d that we developed for computer vision2

and algebra algorithms and a graphic library GUILib that we developed to add functional-

ities of image visualization: zoom, primitive and text drawing, palette change, restriction

of mouse movement, crosshair, etc. However, the development of a complete software is

very time-consuming and does not accommodate with the work required for a thesis. The

development of the last applications (mainly spatially-varying and time-varying distortion

correction) are then only command-line programs and will not be detailed in this chapter.

They have been implemented simultaneously with a new scientific library called csl, devel-

oped in collaboration with Dorian Garcia and Hubert Schreier at USC (University of South

Carolina).

1Qt library is developed by Trolltech: http://www.trolltech.com
2The library development of v3d was initiated by Dorian Garcia during his PhD thesis [Gar01].
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5.1 Visiocore Software

The software is called Visiocore and has been developed following a generic and modular

approach3 so that new computer vision applications can be included easily to the main

application. Every module represents a specific application and outputs its results as

formatted data to a global repository. This repository gathers all types of data (images,

point list, mesh, etc.) to be used as input data for the modules. For example, the module

of primitive extraction extracts ellipses centers from images and outputs an indexed point

list usable in the module of camera calibration. Only the module of videogrammetry will be

discussed in detail in Section 5.1.2 but numerous other modules have been developed (see

Section 5.1.1): module of camera calibration (linear and non-linear), primitive extraction

(circles and crosses), two-dimensional mesh generator, strain computation, point tracking

through time, etc. Visiocore uses 3 libraries (see Fig. 5.1), described in Section 5.2: Qt

and GUILib for the GUI and v3d for the computer vision algorithms.

Qt

library

GUILib

library

csl

library

command-line
programs

command-line
programs

v3d

library

Visiocore

Fig. 5.1 — Visiocore uses 3 libraries: Qt and GUILib for the Graphic User

Interface and v3d for the computer vision algorithms. Besides, v3d and csl are

also used to implement command-line programs.

5.1.1 Modules of Computer Vision

Visiocore is a modular software gathering a lot of different modules oriented to computer

vision applications. Most of these modules are quickly described thereafter.

3We wish to acknowledge Dorian Garcia for its participation in the software architecture development.
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5.1 Visiocore Software

Module of Primitive Extraction

The module of primitive extraction is useful for classical calibration using calibration target

with fiducial marks. It allows to extract circles or crosses from images (see Fig. 5.2) and

to return an indexed point list for the module of calibration.

Fig. 5.2 — The module of primitive extraction allows to extract fiducial marks

such as crosses or circles from calibration target images.
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Module of 2D mesh

The module of 2D mesh (see Fig. 5.3) is able to mesh a set of given points using the

constrained Delaunay triangulation algorithm. It is possible to impose maximum triangle

areas, maximum angles, holes in the mesh, to transform edges into boundaries and vice-

versa, etc.

Fig. 5.3 — The module of 2D mesh realizes a constrained Delaunay triangula-

tion from a set of given points.
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5.1 Visiocore Software

Module of Tracking

The module of tracking has been realized with the help of Bruno Remondi, trainee from

INSA, an engineering school of Toulouse (France). As the name suggests, this module is

used to track points over an image sequence using Digital Image Correlation (see Fig. 5.4).

Fig. 5.4 — The module of tracking allows to track points distributed over a

mesh (see module of 2D mesh, page 156) between different images of a sequence.

This example presents images of a foam sample subjected to a tensile test. The

natural texture of the foam allows to use Digital Image Correlation for the 2D

displacement measurement.
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Module of Calibration

The calibration methodology performed in this module is the traditional calibration method

[Gar01], which was used before the development of our new calibration approach (which

is only implemented as a command-line program). The module is able to accomplish a

linear calibration [RAS93] before the non-linear optimization and takes into account the

parametric distortions (radial, decentering and prismatic). In addition to the projection

model parameters, the quality of the calibration is given (residue values depending on

the views). It is also possible to display a distortion map and to correct images for the

estimated distortion (see Fig. 5.5).

Fig. 5.5 — The module of calibration displays the results in three different tabs:

the projection model parameters in the first, the calibration quality in the second

and the distortion map in the last.
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5.1 Visiocore Software

Module of Rigid-Body Transformations

Extrinsic parameters (rigid-body transformation in 3D space) can be represented by several

ways and depending on the situation, it can be wiser to use one specific representation

instead of another one. Fig. 5.6 shows the module of rigid-body transformations able to

create extrinsic parameters or to convert them from one representation to another: rotation

vector / rotation matrix / Euler angles + translation vector or matrix 4×4. (see Appendix

C for conversions between rotation representations).

Fig. 5.6 — The module of calibration allows to calibrate a camera imaging

system .
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5.1.2 Module of Videogrammetry

The module of videogrammetry has been implemented following the algorithm described in

Fig. 3.1. Calibration process is not included in the module of videogrammetry so that the

module stays independent of the imaging system used (because calibration process for a

SEM is not the same as the calibration process for a camera for example). Images have to

be corrected for distortion in another module before being loaded and the projection model

parameters are necessary inputs of the module. Most of intern parameters are adjustable

and have to be correctly set up in order to obtain good results (Harris threshold, cornerness

similarity, number of buckets, correlation window size, etc.). because even if default values

are fixed, ideal values usually vary from an experiment to another.

The process is entirely automated and it allows, in the simplest case, from an image

sequence to 1) extract feature points in the image, 2) match them between pairs of images,

3) estimate the epipolar geometry and the rigid-body motion between viewpoints and

4) recover the 3D shape by bundle adjustment. The 3D shape can be represented by

a cloud of 3D points or a 3D mesh with or without texture mapping (see Fig. 5.8 and

Fig. 5.9). In complement of the Harris detector (see Section 3.3), the GUI allows to add

correspondences by clicking manually a point in an image and finding its correspondences

in the entire sequence manually (user click), semi-manually (user click restricted upon the

epipolar line, see Fig. 5.7) or automatically (by correlation). It is also possible to load dense

disparity maps from Vic2D [CSI], very efficient software for dense correlation, in order to

have directly an excellent estimation of the epipolar geometry.

Experimental results of 3D shape measurement using this software are presented in

Section 3.5.

5.2 Libraries

For the needs of the thesis and the software, three libraries were developed: GUILib (graphic

library), v3d and csl (scientific libraries). Moreover, Qt library is used for the GUI of

Visiocore. Fig. 5.1 illustrates the role of each library.

5.2.1 Graphic Libraries: Qt and GUILib

Qt library is actually more than a graphic library because it includes as well container

classes, input / output devices and even database and networking classes in the last versions.

However, only the GUI widget classes of Qt are used in Visiocore, all the other useful classes

being managed by our library v3d. Qt offers all types of basic widgets: buttons, check boxes,

scrollbars, etc. but also some advanced widgets such as listviews, progress bars and tab

dialogs.
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Fig. 5.7 — Screenshot of the module of videogrammetry: the epipolar geometry

being estimated from the 13 first pairs of correspondences, the correspondence

of the point 14 (highlighted point in the left view) must lie on its epipolar line

(green line in the right view). The mouse position (represented by the crosshair)

is then restricted to this line and the user can click manually the correspondence.
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Fig. 5.8 — Screenshot of the module of videogrammetry: 3D reconstruction of

a concrete mold

GUILib is a graphic library developed to add some graphic functionalities necessary for

our applications. Here is a non-exhaustive list:

� primitive drawing is used mainly in the module of primitive extraction. For in-

stance, it allows to draw an ellipse over the image from its equation, draw a grid

from all the coordinates of the points extracted, etc. It is also employed to draw

epipolar lines or correlation windows in the videogrammetry module and 2D mesh in

the associated module. At last, text drawing is often used to name or enumerate sets

of points in order to distinguish them.

� crosshair drawing instead of the mouse cursor and management of non-integer

coordinates is useful to locate precisely a particular point in one image

� restriction of mouse movement allows to define where the mouse cursor can go.

For example, the crosshair can be stuck to an epipolar line in order to manually click

the correspondence of a given point in the videogrammetry module (the crosshair

is projected from the actual mouse coordinates to the closest point on the epipolar

line).

All the drawings are vectorial (opposed to bitmap) and are obviously on a different

layer than the image. This allows to hide them, remove them, change the color, the size of

them, etc. very easily. Using Qt, a custom widget of image visualization has been finally
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Fig. 5.9 — Screenshots of the module of videogrammetry: 3D reconstruction

of a blank sink with a projected speckle pattern image on it (from left to right:

cloud of points, meshed and textured reconstruction)
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developed and is integrated in Visiocore. It allows to have all the new functionalities of

GUILib available at any time by a simple click (see Fig. 5.10).

Fig. 5.10 — The image visualization widget offers some functionalities: change

of palette, zoom, crosshair drawing, non-integer coordinates, etc.

5.2.2 Scientific Libraries: v3d and csl

v3d is the scientific library developed at Ecole des Mines d’Albi-Carmaux. Its objective is

to provide all the necessary tools for computer vision applications. In this sense, it first

includes useful low level mathematic classes: matrix, vector, 2D point, 3D point, rigid

transformation, rotation (Euler angles, rotation vector and quaternion) are the basis of

the library. Each class offers all the possible methods depending on its nature: addition,

subtraction, transposition, cross product, norm, etc. Matrix class is a little more complex

and some basic linear algebra algorithms are implemented as well: Singular Value Decom-

position, Gauss-Jordan elimination, Moore-Penrose pseudo-inverse computation, etc.

Then, classes and algorithms purely dedicated to computer vision applications are im-

plemented in v3d. They can be classified by groups:

� calibration classes and algorithms: linear calibration using either the method

of Ravn et al. [RAS93] or the method of Zhang [Zha98], non linear calibration

[Gar01], improved implementation of the bundle adjustment (see Appendix A), cross
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and ellipse extraction (requiring image processing such as binarization), parametric

distortion correction (requiring image interpolation), etc.

� Digital Image Correlation classes and algorithms: four different criteria are

implemented (Sum of Squared Differences, Zero-mean SSD, Normalized Cross Cor-

relation and Zero-mean NCC) and can be used with different methods of matching:

matching along an epipolar line, interest point matching with Least Median of Squares

outlier filtering (see Section 3.3.2), tracking (matching through a sequence of images),

etc.

� 3D reconstruction / videogrammetry classes and algorithms: fundamental

matrix with all the methods described in Section 3.1 (8-point algorithm, isotropic

scaling, rank-2 constraint enforcing, linear and non-linear estimation), essential ma-

trix and motion recovery, projection matrix, different methods of triangulation (see

Section 3.4.2), improved Harris corner detector, etc.

The csl library has been developed after v3d at the University of South Carolina. It

provides almost the same functionalities as the v3d library but the implementation of

all the classes and the algorithms has been optimized to be faster and memory-efficient.

Moreover, if offers new classes very useful for our calibration approach such as the classes of

1D and 2D spline and their associated methods: 1D and 2D fitting, spline inversion, spline

derivatives, etc. By lack of time, most of the applications developed with this library are

only command-line programs.
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Conclusion & Future Work

“Accurate 3D Shape and Displacement Measurement using a Scanning Elec-

tron Microscope” is an ambitious objective because it faces two main challenges:

� Scanning electron microscope is nowadays one of the best tool to observe any phe-

nomena at the micro- and nano-scale but it remains a visualization instrument and

does not allow for the while to realize accurate two- or three-dimensional measure-

ments. Key point of the problem is that the image formation is biased by several

image disturbances and a particular attention must be paid to the modeling of the

imaging process.

. The model of the SEM imaging system presented in this work is composed of two

parts: first, a linear part corresponding to the projection and then, a non-linear part

corresponding to the underlying distortions. The first part is easily established and

two different models of projection have been determined depending on the magnifi-

cation (see Section 2.2.2). The second part is more delicate and two complementary

models of distortion are used (see Section 2.2.3): a distortion depending on the pixel

location in the image (referred to as “spatially-varying distortion”) and a distortion

depending on the time (referred to as “drift” or “time-varying distortion”). We de-

veloped in the thesis a new original methodology for correcting for the distortions

because most of the previous works about 2D/3D measurements using a SEM con-

sider the imaging process as a pure projection model. The few works taking into

account distortion use simple parametric models which are not efficient for a complex

imaging system such as the SEM and always neglect the drift effect. The calibra-

tion procedure can use any quasi-planar object with a speckle pattern texture. It

leads to greater accuracy than using calibration target composed of fiducial marks

because the extraction of their measure points is less accurate and their number a lot

smaller. Experimental results are presented (see Section 2.4) to compare the differ-

ent approaches and demonstrate the great accuracy improvement realized with our

method, not only with the SEM but also with other imaging systems: compared to a

calibration neglecting distortions, standard deviation of the magnitudes of reprojec-

tion errors using our calibration methodology is improved from 0.43 to 0.02 pixels for
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the SEM imaging system, from 0.08 to 0.005 pixels for a stereo-optical microscope

and from 0.1 to 0.03 pixels for a camera.

� The Scanning Electron Microscope provides only a single sensor whereas 3D shape

and displacement measurement usually requires two imaging system for recovering

3D information using the classical stereo-vision approach.

. The specimen being mounted on the mobile SEM stage, images can be acquired from

multiple viewpoints under the hypothesis that the specimen shape does not change

during the time of acquisition of the images. 3D shape and displacement measurement

is then possible using the principle of videogrammetry for recovering the unknown

rigid-body motions undergone by the specimen (see Section 3). Moreover, multi-view

imaging allows not only to obtain a better accuracy in the 3D reconstruction but also

to have a complete view around the observed specimen. This approach is not specific

to reduced-length scale applications and in addition to experimental results using

the SEM, an experiment using a single camera is presented (see Section 3.5). This

same experiment was also the occasion to compare the results with the data obtained

by a 3D laser scanner and by this way, to assess the accuracy of the developed

method (mean distance between the two clouds of points: 0.012 mm). For the needs

of this work, a modular software gathering different computer vision applications

(calibration, primitive extraction, point tracking, strains computation, etc.) and

particularly a module of videogrammetry has been developed (see Section 5).

In conclusion, a measurement methodology has successfully been developed for analyz-

ing and correcting SEM images so that quantitative 3D shape and displacement measure-

ments can be obtained. However, further investigations, mainly experimental, are necessary

to validate the work presented in this dissertation.

Regarding the calibration and distortion correction, initial experimental results are

very promising but they have to be confirmed by more experiments. In particular, new

high magnification experiments are indispensable to definitely corroborate the proposed

approach for drift correction. Moreover, it would be also interesting to use an Environ-

mental Scanning Electron Microscope and analyze the influence of the low-vacuum mode

(environmental mode allowing to visualize non-metallic specimen) on the spatially-varying

and time-varying distortions by comparison with a SEM in high-vacuum mode.

Regarding the 3D measurements, more experiments are also required. Indeed, the

accuracy of the 3D shape measurement has been validated at the macro-scale (see Sec-

tion 3.5.2) but the equivalent experiment at reduced-length scale is still necessary. For

example, a comparison can be made between the 2 clouds of 3D points obtained on the

one hand with a SEM and the videogrammetry technique and on the other hand with an

AFM (Atomic Force Microscope). A second experiment that can be intended would be
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the 3D reconstruction of a specimen of which the dimensions are perfectly known. For

the 3D displacement and strain measurements, work is on-going to conduct experiments

with a specimen undergoing tensile loading in a specially designed SEM loading stage and

comparison with strain gauges will assess the accuracy of the developed method.
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Appendix A

Bundle adjustment Implementation

This appendix1 presents an efficient way to implement the bundle adjustment procedure

taking into account the specific matrix structure of the equation system to solve. This sec-

tion considers that the reader already acquired the basic knowledge about bundle adjust-

ment (for example, Levenberg-Marquardt or Newton iteration and Jacobian and Hessian

matrices will not be introduced here and the reader may first refer to the Triggs et al.’s

synthesis of bundle adjustment [TMHF00]). The matrix presentation used thereafter is

inspired from Hartley [Har94] and has already been used in previous works [Lav96, Pol00].

Let’s consider the more complete case of bundle adjustment where we take a perspective

model for the imaging system and a parametric distortion included in the optimization

process. We remind the objective function to minimize (see Equ. (2.22)):

min
Mi,T

j ,K,d

∑

i

∑

j

‖mj
i − n

j
i‖2

2 (A.1)

where Mi are the 3D model points, Tj the rigid-body transformations between the views

(extrinsic parameters), K the intrinsic parameter matrix and d =
(

k1 k2 k3 d1 d2 p1 p2

)

is the parameter vector of distortion.

Let’s consider a standard calibration experiment composed of n = 10 views of the

calibration target where we take p = 3000 points. The number of available equations

is 2np = 60000 equations (one equation per coordinate of 2D projected points). The

parameters to estimate are: 5 intrinsic parameters k =
(

cx cy fx fy s
)

, 7 distortion

parameters, 6 extrinsic parameters per view (nx, ny, nz, tx, ty et tz)
2 and 3 coordinates

per 3D model point. We saw in Section 2.3.1 that 7 parameters remain fixed to enforce

the uniqueness of the solution. The total number of parameters to estimate is then 5 +

7 + 6n + 3p − 7 = 9065. Such a minimization would be very computationally expensive

1We would like to thank Dorian Garcia for his participation in the work presented in this appendix.
2The rotation is here represented by a rotation vector of parameters nx, ny and nz (see Appendix C)

because it is a minimal representation, unlike the rotation matrix.
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(several hours with a brand new computer) if the normal equations are solved directly and

we propose to reduce this time to a few minutes by taking into account the very specific

structure of the implicated matrices. As illustrated in Fig. A.1, the Jacobian matrix J (first

derivative of the objective function useful for the Levenberg-Marquardt algorithm) is very

sparse and has a block structure.

M9M8M7M6M5M4T5 M3M2M1T4T3T2T1dk

m
1
1

m
1
2

m
1
9

m
1
1

Fig. A.1 — Sparse structure of the Jacobian matrix J for a calibration com-

posed of five views and ten 3D model points. Null elements of the matrix are

represented by blank parts.

In addition to the Jacobian matrix, normal equations to solve and Levenberg-Marquardt

algorithm require the Hessian matrix H (second derivative of the objective function). It is

commonly approximated as H = J>J and is therefore a symmetric positive definite matrix.

The block and sparse structure of H is represented in Fig. A.2.

Minimizing the objective function (A.1) using the Levenberg-Marquardt or the New-

ton iteration consists in approximating progressively δ such that H δ = ε (called normal

equation) where ε is the residue vector. The standard implementation of the bundle ad-

justment inverts directly the matrix H at each iteration but because the size oh this matrix

is generally huge (9065 × 9065 in the previous example), it is very time-consuming and the
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d M1M2 M9M8M7M6M5M4M3T5T3T2k T1 T4
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M3

M4

M5

M6

M7

M8

M9

Fig. A.2 — Approximated Hessian matrix structure: H has a block and sparse

structure that will be used for efficient implementation of the bundle adjustment

procedure.

whole process can last several hours. A first possible improvement to invert H would be

to implement a specific algorithm of symmetric positive definite matrix inversion such as

Cholesky’s or Rutishauser’s but the most efficient implementation, presented in this section

and allowing to reduce considerably the computation time, consists in inverting H using

its block structure. Fig. A.3 shows the way we choose to split H in order to simplify the

computations by explicitly formulating each block H11, H12 and H12.

The partial derivatives of the projected point with respect to the intrinsic parameters,

the distortion parameters, the extrinsic parameters and the 3D model points are expressed

as follows:

∂mj
i

∂k
=

∂m

∂k
(k,d,Tj, Mi) =

(
∂x
∂cx

∂x
∂cy

∂x
∂fx

∂x
∂fy

∂x
∂s

∂y
∂cx

∂y
∂cy

∂y
∂fx

∂y
∂fy

∂y
∂s

)

∂mj
i

∂d
=

∂m

∂d
(k,d,Tj, Mi) =

(
∂x

∂kk1

∂x
∂kk2

· · ·
∂y

∂kk1

∂y
∂kk2

· · ·

)

∂mj
i

∂Tj

=
∂m

∂T
(k,d,Tj, Mi) =

(
∂x
∂nx

∂x
∂ny

∂x
∂nz

∂x
∂tx

∂x
∂ty

∂x
∂tz

∂y
∂nx

∂y
∂ny

∂y
∂nz

∂y
∂tx

∂y
∂ty

∂y
∂tz

)

∂mj
i

∂Mi

=
∂m

∂M
(k,d,Tj, Mi) =

(
∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

)
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H12

H22H>
12

H11

Fig. A.3 — The approximate Hessian matrix H is split into the block matrices

H11, H12 and H22. Since H is a symmetric positive definite matrix, H11 and

H22 are symmetric positive definite as well.

For convenience, let’s note κ =
(

k | d
)

the combination of the intrinsic and distortion

parameters. The partial derivatives of the projected point with respect to this new vector

are
∂m

j
i

∂κ
= ∂m

∂κ
(k,d,Tj, Mi) =

(
∂m

j
i

∂k
| ∂m

j
i

∂d

)

. Moreover, block matrices H11, H12 and H22

are split in new block matrices represented in Fig. A.4 and formulated as follows:

A12×12 =
n∑

i=1

p
∑

j=1

(
∂mij

∂κ

)>
∂mij

∂κ

B12×6
j =

p
∑

j=1

(
∂mij

∂κ

)>
∂mij

∂Ti

C6×6
i =

p
∑

j=1

(
∂mij

∂Ti

)>
∂mij

∂Ti

D12×3
j =

n∑

i=1

(
∂mij

∂κ

)>
∂mij

∂Mj

E6×3
ij =

(
∂mij

∂Ti

)>
∂mij

∂Mj

F3×3
j =

n∑

i=1

(
∂mij

∂Mj

)>
∂mij

∂Mj

Normal equations to solve become:
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A Bj Di

Eji
FiCj

H12 H22H11

Fig. A.4 — Composition of block matrices of the Hessian matrix: H11, H12

and H22 are split in new block matrices for convenience.

(

H11 H12

H>
12 H22

)(

δ1

δ2

)

=

(

ε1

ε2

)

By multiplying the two sides of the equality by the following matrix:

(

I −H12H
−1
22

0 I

)

we obtain the new system to solve:

(

H11 − H12H
−1
22 H>

12 0

H>
12 H22

)(

δ1

δ2

)

=

(

ε1 − H12H
−1
22 ε2

ε2

)

(A.2)

Let’s note Λ = H11 − H12H
−1
22 H>

12. This computation will not be made directly but

using the block structure of H in order to be faster. As presented in Fig. A.5, the structure

of Λ is

(

U V

V> W

)

with:

U12×12 = A −
p
∑

j=1

DjF
−1
j D>

j

V12×6
i = Bi −

p
∑

j=1

DjF
−1
j E>

ij

W6×6
ki = δkiCi −

p
∑

j=0

EkjF
−1
j E>

ij

where δki is the Kronecker delta (if k = i then δki = 1 else δki = 0).

The system (A.2) can be solved in two steps. The first one consists in solving the

following equation:
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U

Wki

Vi

Fig. A.5 — Structure of the matrix Λ

Equ. (A.2) ⇒
(
H11 − H12H

−1
22 H>

12

)

︸ ︷︷ ︸

Λ

δ1 = ε1 − H12H
−1
22 ε2

⇒ δ1 = Λ−1
(
ε1 − H12H

−1
22 ε2

)

The inversion of the matrix H22 is immediate because H22 consists only of a set of

3× 3 sub-blocks Fi on its diagonal (see Fig. A.3) and H−1
22 is then composed of the known

inverse matrices F−1
i on its diagonal. Indeed, these matrices have already been computed

for determining the matrices U, Vi or Wki. Moreover, each Fi is symmetric positive

definite and the inverse Fi was determined easily:

Fi =






a b c

b d e

c e f




⇒ F−1

i =
1

adf + 2bce − ae2 − b2f − c2d






df − e2 ec − bf be − cd

ec − bf af − c2 bc − ae

be − cd bc − ae ad − b2






The inversion of the matrix Λ can be realized very efficiently as well using the fact that

Λ is symmetric positive definite or better, by using the Schur complement method. Indeed,

block matrices can be easily inverted using the general following formula:

(

A B

C D

)−1

=

(

A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)

where the Schur complement is S = D − CA−1B.

If we apply this formula to Λ, we obtain:

Λ−1 =

(

U V

V> W

)−1

=

(

U−1 + XV>U−1 −X

−X> S−1

)

with:

S = W − V>U−1V

X = U−1VS−1
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Finally, when δ1 is determined, the second step to compute δ2 and solve the normal

equations is:

Equ. (A.2) ⇒ H>
12δ1 + H22δ2 = ε2

⇒ δ2 = H−1
22

(
ε2 − H>

12δ1

)

Again, the computation is achieved very quickly because the inverse of H22 has already

been computed previously.

When δ1 and δ2 are at last known, one iteration of the Levenberg-Marquardt or the

Newton algorithm can be processed to converge towards the bundle adjustment solution.

Thanks to the implementation described in this section which uses the sparse and block

structure of the Hessian matrix, the time of processing is greatly reduced compared to

a standard implementation where the Hessian matrix is directly inverted (a few minutes

instead of several hours).
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Appendix B

Introduction to Splines

Spline functions are functions defined piecewise by polynomial. Due to the simplicity of

their representation, they are widely used in computer graphics for curve and surface fitting

(interpolation or approximation)1 and particularly for modeling complex functions. In this

thesis (see Section 2.2.3), the time-varying distortion is modeled using spline curves (2D

representation) and the spatially-varying distortion is modeled using spline surfaces (3D

representation).

Note that this appendix is only an introduction to spline functions providing basic

information in order to understand the use of spline functions in our work. The curve

and surface fitting by approximation have already been developed in the dissertation (see

Section 2.3.1) and the expressions of the basis functions and their derivatives depending

on the degree of spline are given in Section 4.1.2, Table 4.1. The reader may also refer to

[Far93, Nie98] for a more complete overview about splines.

B.1 Two-dimensional Case: Spline Curve

B.1.1 Spline Definition

Given m + 1 points t0, . . . , tm (called knots) in an interval [a, b] such that a = t0 ≤ t1 ≤
. . . ≤ tm−1 ≤ tm = b, the function S is a spline of degree p if:

� S and its first p − 1 derivatives are continuous in the interval [a, b]:

S ∈ Cp−1(a, b)

1The difference between interpolation and approximation is that interpolation provides a model which

passes exactly through all the data points whereas approximation minimizes a function in order to provide

a model which passes the closest possible to all the data points in some sense. For example, minimizing

the l2 norm leads to an approximation in the least-squares sense, minimizing the l∞ norm leads to an

approximation in the min-max sense, etc.
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� S is a polynomial of degree at most p in the m subintervals (called knot spans) [ti, ti+1[

with i = 0 . . . m − 1:

S[ti,ti+1[ ∈ Πp, i = 0 . . . m − 1

Depending on the knot distribution within [a, b] (see Fig. B.1), the spline is said:

� uniform: the knots are equidistantly distributed t1 − t0 = t2 − t1 = . . . = tm − tm−1

� open uniform: the p + 1 first knots are all equal t0 = t1 = . . . = tp and the p + 1

last knots as well tm−p = tm−p+1 = . . . = tm. The other knots (from tp+1 to tm−p−1)

are called interior knots and are equidistantly distributed.

� non-uniform: the knots are only subject to the general constraint ti ≤ ti+1

t0

t1

t2

t3

t6

t7

t8

t9

t4 t5

Open uniform distribution:

a b

t9t0 t1 t2 t3 t4 t5 t6

t7

t8

Non-uniform distribution:

a b

t0 t1 t2 t3 t4 t5 t6 t7 t9t8

Uniform distribution:

a b

Fig. B.1 — Example of the three possible knot distribution for a cubic B-spline

(degree p = 3) with m + 1 = 10 knots. From top to bottom: uniform, open-

uniform and non-uniform distribution.

B.1.2 B-Spline Definition

Splines used in our work are actually uniform B-splines (short for basis-splines), a special

case of spline. B-spline functions are spline functions defined such that:
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B.2 Three-dimensional Case: Spline Surface

S(t) =
n∑

i=0

αiNi,p(t)

where:

� n = m − p − 1 with m + 1, the number of knots and p, the degree of the B-spline

� αi are the (n + 1) spline coefficients (also called control points or de Boor points)

� Ni,p are the basis functions (also called kernels) of the B-spline, defined recursively

as follows:

Ni,0(t) =

{

1 if t ∈ [ti, ti+1[

0 otherwise

Ni,p6=0(t) =
t − ti

ti+p − ti
Ni,p−1(t) +

ti+p+1 − t

ti+p+1 − ti+1

Ni+1,p−1(t) (B.1)

Equ. (B.1) shows that the shape of the basis functions are determined by the relative

spacing between the knots. In our work, the B-splines are uniform and Fig. B.2 illustrates

the shapes of the basis functions in this case.

Each point of the B-spline curve is influenced by p + 1 basis functions Ni,p weighted by

their associated coefficients αi. The B-spline curve is then not available for the p first and

p last knots (see Fig. B.2) and is composed of n − p + 1 curves joined Cp−1 continuously

at the interior knots.

B.2 Three-dimensional Case: Spline Surface

A B-spline surface is defined as the tensor product of two B-splines curves:

S(x, y) =

ni∑

i=0

nj∑

j=0

αi,jNi,p(x)Nj,p(y)

where:

� ni = mi − p − 1 and nj = mj − p − 1 with mi + 1 (respectively mj + 1), the number

of horizontal (respectively vertical) knots and p, the degree of the B-spline

� αi,j are the (ni + 1).(nj + 1) spline coefficients

� Ni,p (respectively Nj,p) are the basis functions of the B-spline along x-axis (respec-

tively along y-axis)
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t0 t1 t2 t3 t4 t5 t6

N3,2N2,2N1,2N0,2

S(t)

Fig. B.2 — Example of basis functions of a uniform quadratic B-spline (degree

p = 2) with m + 1 = 7 knots. The B-spline is defined by n + 1 = m − p = 4

control points and is composed of n − p + 1 = 2 curves.

Similarly to the B-spline curve, the points of a B-spline surface are affected by p+1×p+1

basis functions and their coefficients. The surface is only available for the horizontal and

vertical interior knots (see Fig. B.3). The rectangular area defined by an interior horizontal

and vertical knot span is called a patch.

Bibliography

[Far93] G. Farin. Curves and Surfaces for Computer Aided Geometric Design – A Practical

Guide. Academic Press, 1993.

[Nie98] H. B. Nielsen. Cubic splines. Lecture notes, Department of Mathematical Modeling,

Technical University of Denmark, 1998.

182



B.2 Bibliography

x0 x1 x2 x3 x4 x5 x6 x7

y6

y5

y4

y3

y2

S(x, y)

3 × 2 patches

y1

y0

Fig. B.3 — Example of a uniform quadratic B-spline surface (degree p = 2)

with mi + 1 = 7 horizontal knots and mj + 1 = 6 vertical knots. The B-spline

surface is available on 3 × 2 patches.
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Appendix C

Rotations Representations and

Conversions

A rotation in 3D space can be represented by several ways. This appendix presents the

notations, properties and conversions for four of them:

� Rotation matrix: Section C.1.1

� Rotation vector: Section C.1.2

� Euler angles and Cardan-Bryant angles representations (6 different representations)

and particularly the one which decompose the rotation along x-axis, then y-axis and

at last z-axis: Section C.1.3

� Quaternion: Section C.1.4

It is very useful because it is often wiser to use one specific representation depending

on the situation and conversions from one representation to another are commonly nec-

essary. For instance, quaternion representation is often used for the motion recovery (see

Section 3.1.3), rotation vector representation is used for bundle adjustment because it is a

minimal representation of a rotation, (see Section 2.3.1), etc.

C.1 Different Representations

C.1.1 Rotation Matrix

Notation

It is a 3× 3 matrix (because in 3D space) and is defined by nine parameters (non minimal

representation).



Rotations Representations and Conversions

R =






r11 r12 r13

r21 r22 r23

r31 r32 r33






Let’s note li the i-th row (ri1, ri2, ri3) and ci the i-th column (r1i, r2i, r3i).

General Formulation

A rotation of an angle θ around an axis of unit vector d =
(

dx dy dz

)>
is denoted:

R =






d2
x(1 − cos θ) + cos θ dxdy(1 − cos θ) − dz sin θ dxdz(1 − cos θ) + dy sin θ

dxdy(1 − cos θ) + dz sin θ d2
y(1 − cos θ) + cos θ dydz(1 − cos θ) − dx sin θ

dxdz(1 − cos θ) − dy sin θ dydz(1 − cos θ) + dx sin θ d2
z(1 − cos θ) + cos θ






(C.1)

In particular, for d =
(

1 0 0
)>

(x-axis), d =
(

0 1 0
)>

(y-axis) and d =
(

0 0 1
)>

(z-axis), we have the following rotation matrices:

Rx(α) =






1 0 0

0 cos α − sin α

0 sin α cos α






Ry(β) =






cos β 0 sin β

0 1 0

− sin β 0 cos β






Rz(γ) =






cos γ − sin γ 0

sin γ cos γ 0

0 0 1






with Rx(α) the rotation of an angle α around x-axis, Ry(β) the rotation of an angle

β around y-axis and Rz(γ) the rotation of an angle γ around z-axis. Composition of these

three rotations is studied in Section C.1.3.

Properties

A matrix rotation is an orthonormal matrix and thus has its characteristic properties:

|R| = 1

R−1 = R> ⇐⇒ R.R> = I

∀i,∀j, li.lj = ci.cj = δij with

{

δij = 0 if i = j

= 1 if i 6= j
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Because it represents a rotation, it also has the following properties:

trace (R) = 1 + 2 cos θ with θ the angle of rotation (see Equ. (C.1))

Composition of two successive rotations consists simply in multiplying the two rotation

matrices in the right order. For instance, the matrix rotation of a rotation R1 followed by

a rotation R2 is RR2RR1.

C.1.2 Rotation Vector

Notation

It is a column vector and is defined by 3 parameters. It is one of the minimal representations

of a rotation.

n =






nx

ny

nz






Properties

� The rotation vector represents the rotation axis and its norm represents the angle.

Then, we have: n = θ.d. For a given rotation matrix R, recover the angle and axis of

rotation is equivalent to compute the associated rotation vector n (see Section C.2.4).

� The rotation vector is invariant in the rotation since it represents the rotation axis:

R.n = n. The rotation vector is therefore an eigenvector associated to the eigenvalue

λ = 1 of the rotation matrix and is unique due to its constraint on its norm.

� No particular relationship exist to compose two successive rotations represented by a

rotation vector and they have to be converted into another representation first. For

computation efficiency, it is better to convert them into quaternions.

� Let’s note p′ the rotation of angle θ of the point p around the axis defined by n. We

have1:

p′ = p. cos θ +






n2
x nxny nxnz

nxny n2
y nynz

nxnz nynz n2
z




p(1 − cos θ) +






0 −nz ny

nz 0 −nx

−ny nx 0




p sin θ

1It is equivalent to compute the result of the rotation using this formula or to convert the rotation

vector into a rotation matrix (Section C.2.1) and multiply it by the original point p
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C.1.3 Cardan-Bryant Angles Representations

Notation

Cardan-Bryant representation is defined by 3 parameters (minimal representation) corre-

sponding to the angles of rotation around the different axis: x-axis, y-axis and z-axis. Six

possible representations exist, depending on the order of the axis: xyz, xzy, yxz, yzx, zxy

and zyx. Euler angles representation is the extension of the Cardan-Bryant representations

and allows 6 additional representations: xyx, xzx, yxy, yzy, zxz, zyz.

The Cardan-Bryant angles representation is denoted:

cb = [α β γ]

with α, beta and γ the angles around respectively the first, the second and the third

axis. From now, the only Cardan-Bryant representation that we will use is the one where

the first axis is x-axis, the second is y-axis and the third is z-axis.

Note that even if the Cardan-Bryant representation is minimal, we prefer not using it

because for a given rotation, the representation is not unique (for instance, [π 0 0] =

[0 π π]). This may cause problems, especially for the conversion from the rotation matrix

to Cardan-Bryant angles (see Section C.2.5).

C.1.4 Quaternion

Notation

A quaternion is defined by 4 parameters and is therefore a non-minimal representation of

a rotation in 3D space. The parameters are a combination of the 3 coordinates of the axis

of rotation and of the angle.

It is commonly denoted:

q = [w x y z] or q = [s v] with s = w and v =
(

x y z
)>

Because the quaternion is an extension to the complex numbers, it is sometimes denoted:

q = w + x i + y j + z k with







i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j
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Definitions and properties

Let’s note q = [w x y z] = [s v] = w + xi + yj + zk and q′ = [w′ x′ y′ z′] =

[s′ v′] = w′ + x′i + y′j + z′k

Conjugate of q : q = [w − x − y − z] = [s − v] = w − xi − yj − zk

Multiplication :







qq′ = [ww′ − xx′ − yy′ − zz′ wx′ + xw′ + yz′ − zy′

wy′ + yw′ + zx′ − xz′ wz′ + zw′ + xy′ − yx′]

= [ss′ − vv′, sv′ + s′v + v × v′]

where × represents the cross product

= ww′ − xx′ − yy′ − zz′ + (wx′ + xw′ + yz′ − zy′)i+

(wy′ + yw′ + zx′ − xz′)j + (wz′ + zw′ + xy′ − yx′)k

Non-commutativity : qq′ 6= q′q

Associativity : (qq′)q′′ = q(q′q′′)

Norm of q : ||q|| =
√

qq =
√

w2 + x2 + y2 + z2

Inversion : q−1 =
q

||q||
Unit quaternion : q is a unit quaternion if ||q|| = 1

Normalization of q : q||.|| =

[
w

||q||
x

||q||
y

||q||
z

||q||

]

Composition of rotations : The quaternion of a rotation represented by q followed by a

rotation represented by q′ is q′q

Rotation of a point p : p′ = q||.||.[0,p].q−1

Axis and angle of rotation :






x

y

z




 = ||q|| sin θ

2
.d and w = ||q|| cos θ

2
(C.2)

with d the unit vector of the axis and θ the angle of rotation
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C.2 Conversions

C.2.1 Rotation vector 7→ Rotation matrix

Conversion

n =






nx

ny

nz




 7→







If n 6= −→
0 ,

then R =






n2
x(1−cN )

N2 + cN
nxny(1−cN )

N2 − nzsN

N
nxnz(1−cN )

N2 + nysN

N
nxny(1−cN )

N2 + nzsN

N

n2
y(1−cN )

N2 + cN
nynz(1−cN )

N2 − nxsN

N
nxnz(1−cN )

N2 − nysN

N

nynz(1−cN )

N2 + nxsN

N
n2

z(1−cN )
N2 + cN






with N = ||n|| , cN = cos N and sN = sin N

else R = I

(C.3)

Demonstration

Section C.1.2 shows that the rotation vector represents the axis of rotation and then, it is

collinear to d. Moreover, its norm is equal to the angle of rotation θ and thus we have:

n = θ.d ⇒







If θ 6= 0,

then 1
θ
.n = d

else n =
−→
0

If n 6= −→
0 , the matrix rotation can be expressed as a function of nx, ny, nz and ||n||

from Equ. (C.1):

R =






d2
x(1 − cos θ) + cos θ dxdy(1 − cos θ) − dz sin θ dxdz(1 − cos θ) + dy sin θ

dxdy(1 − cos θ) + dz sin θ d2
y(1 − cos θ) + cos θ dydz(1 − cos θ) − dx sin θ

dxdz(1 − cos θ) − dy sin θ dydz(1 − cos θ) + dx sin θ d2
z(1 − cos θ) + cos θ






=






n2
x(1−cos θ)

θ2 + cos θ
nxny(1−cos θ)

θ2 − nz sin θ
θ

nxnz(1−cos θ)
θ2 + ny sin θ

θ
nxny(1−cos θ)

θ2 + nz sin θ
θ

n2
y(1−cos θ)

θ2 + cos θ
nynz(1−cos θ)

θ2 − nx sin θ
θ

nxnz(1−cos θ)
θ2 − ny sin θ

θ

nynz(1−cos θ)

θ2 + nx sin θ
θ

n2
z(1−cos θ)

θ2 + cos θ






=







n2
x(1−cos||n||)

||n||2 + cos ||n|| nxny(1−cos||n||)
||n||2 − nz sin||n||

||n||
nxnz(1−cos||n||)

||n||2 + ny sin||n||
||n||

nxny(1−cos||n||)
||n||2 + nz sin||n||

||n||
n2

y(1−cos||n||)
||n||2 + cos ||n|| nynz(1−cos||n||)

||n||2 − nx sin||n||
||n||

nxnz(1−cos||n||)
||n||2 − ny sin||n||

||n||
nynz(1−cos||n||)

||n||2 + nx sin||n||
||n||

n2
z(1−cos||n||)

||n||2 + cos ||n||







If n =
−→
0 , the rotation is null and the rotation matrix is the identity: R = I.
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C.2.2 Cardan-Bryant 7→ Rotation matrix

Conversion

[α β γ] 7→






cos β cos γ − cos α sin γ + cos γ sin α sin β sin α sin γ + cos α cos γ sin β

cos β sin γ cos α cos γ + sin α sin β sin γ − cos γ sin α + cos α sin β sin γ

− sin β cos β sin α cos α cos β






(C.4)

Demonstration

Cardan-Bryant representation considers a rotation as the composition of the three following

rotations: a rotation of angle α around the x-axis, then a rotation of angle β around y-axis

and at last, a rotation of angle γ around z-axis. Then, we have:

Rxyz = Rz.Ry.Rx

=






cos γ − sin γ 0

sin γ cos γ 0

0 0 1











cos β 0 sin β

0 1 0

− sin β 0 cos β











1 0 0

0 cos α − sin α

0 sin α cos α






=






cos β cos γ − cos α sin γ + cos γ sin α sin β sin α sin γ + cos α cos γ sin β

cos β sin γ cos α cos γ + sin α sin β sin γ − cos γ sin α + cos α sin β sin γ

− sin β cos β sin α cos α cos β






C.2.3 Quaternion 7→ Rotation matrix

Conversion

q = [w x y z] 7→ 1

||q||2






w2 + x2 − y2 − z2 2xy − 2wz 2xz + 2wy

2xy + 2wz w2 − x2 + y2 − z2 2yz − 2wx

2xz − 2wy 2yz + 2wx w2 − x2 − y2 + z2






In particular, if ||q||2 = w2 + x2 + y2 + z2 = 1, we have:

q = [w x y z] 7→






1 − 2y2 − 2z2 2xy − 2wz 2xz + 2wy

2xy + 2wz 1 − 2x2 − 2z2 2yz − 2wx

2xz − 2wy 2yz + 2wx 1 − 2x2 − 2y2




 (C.5)

Then, for computation efficiency, it is always preferable to normalize the quaternion

before converting it.
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Demonstration

Section C.1.4 shows that the quaternion parameters can be expressed as a function of d

and θ. On the contrary, if dx, dy, dz, cos θ and sin θ can be expressed as a function of x, y,

z and w, we will be able to replace the former by the latter in Equ. (C.1) and then, obtain

the rotation matrix associated to a quaternion.

Equ. (C.2) ⇒







θ = 2 arccos w
||q||

dx =
x

||q||
sin(arccos w

||q|| )

dy =
y

||q||
sin(arccos w

||q|| )

dz =
z

||q||
sin(arccos w

||q|| )

Let’s note W = w
||q|| , X = x

||q|| , Y = y
||q|| , Z = z

||q|| and using the following trigonometric

identities:

sin(2a) = 2 sin a cos a ; cos(2a) = 2 cos2 a − 1 ; sin(arccos a) =
√

1 − a2

we obtain:







cos θ = 2W 2 − 1

sin θ = 2W
√

1 − W 2

dx = X√
1−W 2

dy = Y√
1−W 2

dz = Z√
1−W 2

These correspondences can now be applied in Equ. (C.1):

Rq =






d2
x(1 − cos θ) + cos θ dxdy(1 − cos θ) − dz sin θ dxdz(1 − cos θ) + dy sin θ

dxdy(1 − cos θ) + dz sin θ d2
y(1 − cos θ) + cos θ dydz(1 − cos θ) − dx sin θ

dxdz(1 − cos θ) − dy sin θ dydz(1 − cos θ) + dx sin θ d2
z(1 − cos θ) + cos θ






=






2X2 + 2W 2 − 1 2XY − 2WZ 2XZ + 2WY

2XY + 2WZ 2Y 2 + 2W 2 − 1 2Y Z − 2WX

2XZ − 2WY 2Y Z + 2WX 2Z2 + 2W 2 − 1






=






X2 + W 2 − Y 2 − Z2 2XY − 2WZ 2XZ + 2WY

2XY + 2WZ Y 2 + W 2 − X2 − Z2 2Y Z − 2WX

2XZ − 2WY 2Y Z + 2WX Z2 + W 2 − X2 − Y 2






=
1

||q||2






w2 + x2 − y2 − z2 2xy − 2wz 2xz + 2wy

2xy + 2wz w2 − x2 + y2 − z2 2yz − 2wx

2xz − 2wy 2yz + 2wx w2 − x2 − y2 + z2
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C.2.4 Rotation matrix 7→ Rotation vector

Conversion

R =






r11 r12 r13

r21 r22 r23

r31 r32 r33




 7→







If R = I,

then n =
−→
0

else if r11 + r22 + r33 6= −1,

then n =









(r32 − r23)
arccos (

r11+r22+r33−1

2
)√

4−(r11+r22+r33−1)2

(r13 − r31)
arccos (

r11+r22+r33−1

2
)√

4−(r11+r22+r33−1)2

(r21 − r12)
arccos (

r11+r22+r33−1

2
)√

4−(r11+r22+r33−1)2









else n =






nx

ny

nz




with







nx = −
√

π2

2
(r11 + 1)

If r12 > 0,

then ny = −
√

π2

2
(r22 + 1)

else ny =
√

π2

2
(r22 + 1)

If r13 > 0,

then nz = −
√

π2

2
(r33 + 1)

else nz =
√

π2

2
(r33 + 1)

Demonstration

First, the case R = I ⇒ n =
−→
0 is obvious and does not require a demonstration.

Section C.2.1 shows that a rotation matrix can be expressed as a function of the param-

eters of a rotation vector (see Equ. (C.3)). For a rotation matrix not equal to the identity

(corresponding to n 6= −→
0 ):







r11 = n2
x(1−cos||n||)

||n||2 + cos ||n|| r12 = nxny(1−cos||n||)
||n||2 − nz sin||n||

||n|| r13 = nxnz(1−cos||n||)
||n||2 + ny sin||n||

||n||

r21 = nxny(1−cos||n||)
||n||2 + nz sin||n||

||n|| r22 =
n2

y(1−cos||n||)
||n||2 + cos ||n|| r23 = nynz(1−cos||n||)

||n||2 − nx sin||n||
||n||

r31 = nxnz(1−cos||n||)
||n||2 − ny sin||n||

||n|| r32 = nynz(1−cos||n||)
||n||2 + nx sin||n||

||n|| r33 = n2
z(1−cos||n||)

||n||2 + cos ||n||







leading to the following relationships:







r32 − r23 = 2nx
sin||n||
||n||

r13 − r31 = 2ny
sin||n||
||n||

r21 − r12 = 2nz
sin||n||
||n||

The parameters of the rotation vector are then known up to a coefficient 2 sin||n||
||n|| . The

more direct method to obtain this coefficient is as follows:
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r11 + r22 + r33 − 1 = 2 cos ||n|| ⇒ 2
sin ||n||
||n|| =

√

4 − (r11 + r22 + r33 − 1)2

arccos ( r11+r22+r33−1
2

)

Before dividing by this coefficient, we need to check if it is not null:

√

4 − (r11 + r22 + r33 − 1)2

arccos ( r11+r22+r33−1
2

)
6= 0 ⇐⇒

{

r11 + r22 + r33 6= 3

r11 + r22 + r33 6= −1

The statement r11 + r22 + r33 = 3 is not possible here. Indeed, the trace of a matrix

being equal to 1 + 2 cos θ, this would correspond to θ = 0 mod 2π, i.e. a null rotation,

and this is not possible since the matrix rotation is not the identity.

The statement r11 + r22 + r33 = −1 corresponds to ||n|| = θ = π mod 2π. The rotation

matrix becomes:






r11 = 2n2
x

π2 − 1 r12 = 2nxny

π2 r13 = 2nxnz

π2

r21 = 2nxny

π2 r22 =
2n2

y

π2 r23 = 2nynz

π2

r31 = 2nxnz

π2 r32 = 2nynz

π2 r33 = 2n2
z

π2






and using r11, r22 and r33, the parameters nx, ny and nz of the rotation vector n can be

identified but with an ambiguity of their signs. Because the angle of rotation is ||n|| = θ = π

mod 2π, it is equivalent to have the direction of the axis of rotation n =
(

nx ny nz

)>
or

n =
(

−nx −ny −nz

)>
. Therefore, in order to determine the missing signs, it is possible

to fix one sign (nx for instance) and deduce the signs of the other parameters (ny and nz)

using the signs of r12, r13 or r23.

Finally, we have several possibilities:

If r11 + r22 + r33 6= −1

then







nx = (r32 − r23)
arccos (

r11+r22+r33−1

2
)√

4−(r11+r22+r33−1)2

ny = (r13 − r31)
arccos (

r11+r22+r33−1

2
)√

4−(r11+r22+r33−1)2

nz = (r21 − r12)
arccos (

r11+r22+r33−1

2
)√

4−(r11+r22+r33−1)2

else







nx = −
√

π2

2
(r11 + 1) (nx is fixed negative)

If r12 > 0, then ny = −
√

π2

2
(r22 + 1) else ny =

√
π2

2
(r22 + 1)

If r13 > 0, then nz = −
√

π2

2
(r33 + 1) else nz =

√
π2

2
(r33 + 1)
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C.2.5 Rotation matrix 7→ Cardan-Bryant

Conversion

R =






r11 r12 r13

r21 r22 r23

r31 r32 r33




 7→







If r11 = 0, r21 = 0, r32 = 0 and r33 = 0,

then if r31 = 1

then







α = arctan ( r12

r13
) = arctan ( r12

r22
)

β = π
2

γ = 0

else r31 = −1 and







α = arctan ( r12

r13
) = arctan (−r12

r22
)

β = −π
2

γ = 0

else







α = arctan ( r32

r33
)

β = arctan ( −r31√
r2
11

+r2
21

)

γ = arctan ( r21

r11
)

Demonstration

Section C.2.2 shows that a matrix rotation can be expressed with only the parameters of

the Cardan-Bryant representation. Then, several methods exist to recover the Cardan-

Bryant angles α, β and γ from Equ. (C.4) but the one presented here has the advantage of

avoiding sign ambiguities by taking relationships giving the tangent value of the Cardan-

Bryant angles.

Equ. (C.4):




r11 = cos β cos γ r12 = − cos α sin γ + cos γ sin α sin β r13 = sin α sin γ + cosα cos γ sinβ

r21 = cosβ sin γ r22 = cos α cos γ + sin α sinβ sin γ r23 = − cos γ sinα + cos α sinβ sin γ

r31 = − sin β r32 = cosβ sin α r33 = cos α cosβ





leads to:







r21

r11
= tan γ if cos β 6= 0

r32

r33
= tan α if cos β 6= 0

√

r2
11 + r2

21 = cos β and r31 = − sin β ⇒ tan β = −r31√
r2
11

+r2
21

if cos β 6= 0

In order to identify the parameters α, β and γ, the specific case where cos β = 0 has

to be treated (this problem is known as “Gimbal lock”). Actually, it is not possible to

determine a unique solution for the angles α and γ in this case and one is expressed as a

function of the other. We choose to fix γ = 0 and determine the value of α using r12 and

r13 or r12 and r22.

cos β = 0 ⇔ r11 = 0, r21 = 0, r32 = 0 and r33 = 0
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At last, we have:

If r11 = 0, r21 = 0, r32 = 0 et r33 = 0,

then if r31 = 1,

then







β = π
2

we fix: γ = 0

and we have: α = arctan ( r12

r13
) = arctan ( r12

r22
)

else r31 = −1 and







β = −π
2

we fix: γ = 0

and we have: α = arctan ( r12

r13
) = arctan (−r12

r22
)

C.2.6 Rotation matrix 7→ Quaternion

Conversion






r11 r12 r13

r21 r22 r23

r31 r32 r33




 7→







If r11 + r22 + r33 + 1 6= 0, then

q =
[√

r11+r22+r33+1
2

r32−r23

2
√

r11+r22+r33+1
r13−r31

2
√

r11+r22+r33+1
r21−r12

2
√

r11+r22+r33+1

]

else if r11 − r22 − r33 + 1 6= 0, then

q =
[

r32−r23

2
√

r11−r22−r33+1

√
r11−r22−r33+1

2
r21+r12

2
√

r11−r22−r33+1
r13+r31

2
√

r11−r22−r33+1

]

else if − r11 + r22 − r33 + 1 6= 0, then

q =
[

r13−r31

2
√
−r11+r22−r33+1

r21+r12

2
√
−r11+r22−r33+1

√
−r11+r22−r33+1

2
r23+r32

2
√
−r11+r22−r33+1

]

else we know that − r11 − r22 + r33 + 1 6= 0, and

q =
[

r21−r12

2
√
−r11−r22+r33+1

r13+r31

2
√
−r11−r22+r33+1

r23+r32

2
√
−r11−r22+r33+1

√
−r11−r22+r33+1

2

]

Actually, as we know that r11 + r22 + r33 + 1, r11 − r22 − r33 + 1, −r11 + r22 − r33 + 1

and −r11 − r22 + r33 + 1 cannot be simultaneously all null, we prefer using the following

algorithm:






r11 r12 r13

r21 r22 r23

r31 r32 r33




 7→







1. Calculate the maximum of r11 + r22 + r33 + 1, r11 − r22 − r33 + 1,

−r11 + r22 − r33 + 1 and − r11 − r22 + r33 + 1

2. If the maximum is r11 + r22 + r33 + 1, then

q =
[√

r11+r22+r33+1
2

r32−r23

2
√

r11+r22+r33+1
r13−r31

2
√

r11+r22+r33+1
r21−r12

2
√

r11+r22+r33+1

]

else if the maximum is r11 − r22 − r33 + 1, then

q =
[

r32−r23

2
√

r11−r22−r33+1

√
r11−r22−r33+1

2
r21+r12

2
√

r11−r22−r33+1
r13+r31

2
√

r11−r22−r33+1

]

else if the maximum is − r11 + r22 − r33 + 1, then

q =
[

r13−r31

2
√
−r11+r22−r33+1

r21+r12

2
√
−r11+r22−r33+1

√
−r11+r22−r33+1

2
r23+r32

2
√
−r11+r22−r33+1

]

else the maximum is − r11 − r22 + r33 + 1, and

q =
[

r21−r12

2
√
−r11−r22+r33+1

r13+r31

2
√
−r11−r22+r33+1

r23+r32

2
√
−r11−r22+r33+1

√
−r11−r22+r33+1

2

]
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Demonstration

Section C.2.3 shows that a rotation matrix can be expressed with the parameters of a

unit quaternion (see Equ. (C.5)). Then, it should be possible to extract from any rotation

matrix the parameters of an equivalent unit quaternion.

Equ. (C.5) :






r11 = 1 − 2y2 − 2z2 r12 = 2xy − 2wz r13 = 2xz + 2wy

r21 = 2xy + 2wz r22 = 1 − 2x2 − 2z2 r23 = 2yz − 2wx

r31 = 2xz − 2wy r32 = 2yz + 2wx r33 = 1 − 2x2 − 2y2






where w2 + x2 + y2 + z2 = 1.

This leads to:







r11 + r22 + r33 + 1 = 4(1 − x2 − y2 − z2) = 4w2

r11 − r22 − r33 + 1 = 4x2

−r11 + r22 − r33 + 1 = 4y2

−r11 − r22 + r33 + 1 = 4z2

A first approach would consist in using these 4 equalities to obtain w, x, y and z with an

ambiguity of sign for each parameter and finding other relationships in the matrix to remove

the ambiguities. However, we prefer using another method to avoid the sign ambiguities:







r11 + r22 + r33 + 1 = 4w2

r32 − r23 = 4wx

r13 − r31 = 4wy

r21 − r12 = 4wz

⇒







w = ±
√

r11+r22+r33+1
2

if w 6= 0, then x = r32−r23

4w

if w 6= 0, then y = r13−r31

4w

if w 6= 0, then z = r21−r12

4w

The advantage here is that the sign of w does not need to be known because if its sign

is wrong, the signs of x, y and z will be wrong as well and we know that the quaternions

q = [x y z w] and q = [−x − y − z − w] are equivalent.

However, this is only possible if w 6= 0 ⇔ r11 + r22 + r33 +1 6= 0. Three other equivalent

methods exist, each one being available under a particular condition:







r11 − r22 − r33 + 1 = 4x2

r32 − r23 = 4wx

r21 + r12 = 4xy

r13 + r31 = 4xz

⇒







x = ±
√

r11−r22−r33+1
2

if x 6= 0, then w = r32−r23

4x

if x 6= 0, then y = r21+r12

4x

if x 6= 0, then z = r13+r31

4x







−r11 + r22 − r33 + 1 = 4y2

r13 − r31 = 4wy

r21 + r12 = 4xy

r23 + r32 = 4yz

⇒







y = ±
√
−r11+r22−r33+1

2

if y 6= 0, then w = r13−r31

4y

if y 6= 0, then x = r21+r12

4y

if y 6= 0, then z = r23+r32

4y
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−r11 − r22 + r33 + 1 = 4z2

r21 − r12 = 4wz

r13 + r31 = 4xz

r23 + r32 = 4yz

⇒







z = ±
√
−r11−r22+r33+1

2

if z 6= 0, then w = r21−r12

4z

if z 6= 0, then x = r13+r31

4z

if z 6= 0, then y = r23+r32

4z

Note that there is always at least one method available. Indeed, the parameters cannot

be simultaneously all null because the following equation system:







r11 + r22 + r33 + 1 = 0

r11 − r22 − r33 + 1 = 0

−r11 + r22 − r33 + 1 = 0

−r11 − r22 + r33 + 1 = 0

does not have any solution.

The general approach consists then in finding a non-null parameter and deducing the

other parameters with the appropriate method:







If r11 + r22 + r33 + 1 6= 0,

then q =
[√

r11+r22+r33+1
2

r32−r23

2
√

r11+r22+r33+1
r13−r31

2
√

r11+r22+r33+1
r21−r12

2
√

r11+r22+r33+1

]

else if r11 − r22 − r33 + 1 6= 0,

then q =
[

r32−r23

2
√

r11−r22−r33+1

√
r11−r22−r33+1

2
r21+r12

2
√

r11−r22−r33+1
r13+r31

2
√

r11−r22−r33+1

]

else if − r11 + r22 − r33 + 1 6= 0,

then q =
[

r13−r31

2
√
−r11+r22−r33+1

r21+r12

2
√
−r11+r22−r33+1

√
−r11+r22−r33+1

2
r23+r32

2
√
−r11+r22−r33+1

]

else we know that − r11 − r22 + r33 + 1 6= 0,

and q =
[

r21−r12

2
√
−r11−r22+r33+1

r13+r31

2
√
−r11−r22+r33+1

r23+r32

2
√
−r11−r22+r33+1

√
−r11−r22+r33+1

2

]

C.2.7 Rotation vector 7→ Quaternion

Conversion

n =






nx

ny

nz




⇒







If ||n|| = 0

then q = [1 0 0 0]

else q =
[

cos ||n||
2

nx

||n|| sin
||n||
2

ny

||n|| sin
||n||
2

nz

||n|| sin
||n||
2

]

Demonstration

The demonstration is here very simple. For a unit quaternion:

Equ. (C.2) ⇒






x

y

z




 = sin

θ

2
.d et w = cos

θ

2
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C.2 Conversions

Moreover, ||n|| = θ and d = n
||n|| if ||n|| 6= 0. Then:







If ||n|| 6= 0

then q =
[

cos ||n||
2

nx

||n|| sin
||n||
2

ny

||n|| sin
||n||
2

nz

||n|| sin
||n||
2

]

else the rotation is null and q = [1 0 0 0]

C.2.8 Quaternion 7→ Rotation vector

Conversion

q = [w x y z] ⇒







If x = 0, y = 0 and z = 0

then n =
−→
0

elsen =
arccos (2 w2

||q||2 −1)√
||q||2−w2






x

y

z






In particular, if q is a unit quaternion and w 6= 1:

q = [w x y z] ⇒ n =
arccos (2w2 − 1)√

1 − w2






x

y

z






Demonstration

Here again, the demonstration is very simple. Using n = θd and the different relationships

of Section C.2.3:

Si ||q|| 6= w2,







dx = x√
||q||2−w2

dy = y√
||q||2−w2

dz = z√
||q||2−w2

else x = 0, y = 0 and z = 0 ⇒ n =
−→
0 because the rotation is null

Moreover:

cos θ = 2
w2

||q||2
− 1 ⇒ θ = arccos (2

w2

||q||2
− 1)

leading at last to:







If x = 0, y = 0 and z = 0

then n =
−→
0

else n =
arccos (2 w2

||q||2 −1)√
||q||2−w2






x

y

z
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Appendix D

SEM Calibration - Experimental

setup

D.1 Preparation

D.1.1 SEM Settings

� Set the digital contrast and digital gamma to 1 and the digital brightness to 0.

� Save images in an uncompressed 8-bit format (BMP, TIFF, ...). Image resolution

must be at least 1024x884.

� Set the data-bar to:

HV Spot WD Det Mag Scan Date ` micron-bar a
Time

� Note the dwell time value

D.1.2 Operating Conditions

� Working Distance ideally set to 10 mm

� Lowest accelerating voltage possible to obtain a sharp and detailed image

� Scan speed greater than 30 ms per line

� Spot size: usually 3

� BSE detector if possible (if the pattern with the current specimen is good enough for

correlation)

� Setup the contrast/brightness in order to have the maximum gray levels used without

saturating (check the videoscope)



SEM Calibration - Experimental setup

Videoscope

ideal gray levels
Area of

once set up, do not change any parameters during the experiment!!!

D.2 Experimental Procedure

General recommendations:

� after each motion of the stage (translation or rotation) and before acquiring the image,

wait at least 30 seconds so that the SEM stage is stabilized.

� do the entire experiment as fast as possible so that the operating conditions are almost

the same from the first to the last acquired image.

� if the image goes out of focus during the tilt sequence, do not change the working

distance! Refocus by moving the stage in Z direction.

� choose the initial position so that there is a specific mark in the center of the im-

age. That will be very helpful for repositioning of the specimen during the rotation

sequence.

The experiment procedure consists of the following steps (this is obviously an example

and rotation an tilt angle values depend generally on the experiment):

1. Acquire an image in initial position and name it calib 000a. Acquire consecutively a

second image calib 000b.

2. Rotate the stage by 90◦ and acquire 2 new consecutive images calib 001a and calib 001b.

3. Rotate again by 90◦ (total angle: 180◦) and acquire 2 new consecutive images calib 002a

and calib 002b.

4. Rotate a last time by 90◦ (total angle: 270◦) and acquire images calib 003a and

calib 003b.

5. Tilt the stage by an angle as big as possible without shrinking the original image by

more than a few percent. The value depends obviously on the magnification (generally
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D.2 Experimental Procedure

between 3◦ for high magnification and 20◦ for low magnification). Center the image

approximately at the position it was before the tilt (this is why a specific mark on

the specimen in the center of the image at initial position can be helpful). Repeat

the steps 1. to 4., acquire 8 images and name them calib 004a, . . . , calib 007b

6. Tilt the stage approximately by the opposite angle. Recenter the image, and repeat

again steps 1. to 4. to acquire 8 new images and name them calib 008a, . . . ,

calib 011b

Image Filename Rotation Tilt

calib 000a.tif 0◦ 0◦

calib 000b.tif 0◦ 0◦

calib 001a.tif 90◦ 0◦

calib 001b.tif 90◦ 0◦

calib 002a.tif 180◦ 0◦

calib 002b.tif 180◦ 0◦

calib 003a.tif 270◦ 0◦

calib 003b.tif 270◦ 0◦

Image Filename Rotation Tilt

calib 004a.tif 0◦ 10◦

calib 004b.tif 0◦ 10◦

calib 005a.tif 90◦ 10◦

calib 005b.tif 90◦ 10◦

calib 006a.tif 180◦ 10◦

calib 006b.tif 180◦ 10◦

calib 007a.tif 270◦ 10◦

calib 007b.tif 270◦ 10◦

Image Filename Rotation Tilt

calib 008a.tif 0◦ -10◦

calib 008b.tif 0◦ -10◦

calib 009a.tif 90◦ -10◦

calib 009b.tif 90◦ -10◦

calib 010a.tif 180◦ -10◦

calib 010b.tif 180◦ -10◦

calib 011a.tif 270◦ -10◦

calib 011b.tif 270◦ -10◦

Example of image sequence
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SEM Calibration - Experimental setup

D.3 Example of images

Speckle pattern of gold deposited on an aluminum wafer by micro-lithography

15
◦

Initial position

135
◦

Tilt -15◦

Rotation 135◦
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D.3 Example of images

Gold coated anodized aluminum

Translation X: 3 µ m Translation X: 5 µm, Y: 5 µm

Epoxy substrate

Translation X: 5 µ m Translation X: 5 µm, Y: 5 µm
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d’objets, simple à utiliser et n’utilisant qu’une seule caméra – An easy-to-use
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Accurate 3D Shape and Displacement Measurement using a Scanning Electron

Microscope

With the current development of nano-technology, there exists an increasing demand for three-
dimensional shape and deformation measurements at this reduced-length scale in the field of materials
research. Images acquired by Scanning Electron Microscope (SEM) systems coupled with analysis by
Digital Image Correlation (DIC) is an interesting combination for development of a high magnification
measurement system. However, a SEM is designed for visualization, not for metrological studies, and
the application of DIC to the micro- or nano-scale with such a system faces the challenges of calibrat-
ing the imaging system and correcting the spatially-varying and time-varying distortions in order to
obtain accurate measurements. Moreover, the SEM provides only a single sensor and recovering 3D
information is not possible with the classical stereo-vision approach. But the specimen being mounted
on the mobile SEM stage, images can be acquired from multiple viewpoints and 3D reconstruction
is possible using the principle of videogrammetry for recovering the unknown rigid-body motions un-
dergone by the specimen.
The dissertation emphasizes the new calibration methodology that has been developed because it is
a major contribution for the accuracy of 3D shape and deformation measurements at reduced-length
scale. It proves that, unlike previous works, image drift and distortion must be taken into account
if accurate measurements are to be made with such a system. Necessary background and required
theoretical knowledge for the 3D shape measurement using videogrammetry and for in-plane and out-
of-plane deformation measurement are presented in details as well. In order to validate our work and
demonstrate in particular the obtained measurement accuracy, experimental results resulting from
different applications are presented throughout the different chapters. At last, a software gathering
different computer vision applications has been developed.

Keywords: Scanning Electron Microscope, Imaging System Calibration, Distortion Correction, Drift
Correction, Videogrammetry, 3D Shape Measurement, Strain Measurement, Experimental Mechanics.

Mesure précise de formes et de déformations 3D d’objets observés au Microscope

Électronique à Balayage (MEB)

Avec le développement actuel des nano-technologies, la demande en matière d’étude du comportement
des matériaux à des échelles micro ou nanoscopique ne cesse d’augmenter. Pour la mesure de forme
ou de déformation tridimensionnelles à ces échelles de grandeur, l’acquisition d’images à partir d’un
Microscope Électronique à Balayage (MEB) couplée à l’analyse par corrélation d’images numériques
s’est avérée une technique intéressante. Cependant, un MEB est un outil conçu essentiellement
pour de la visualisation et son utilisation pour des mesures tridimensionnelles précises pose un certain
nombre de difficultés comme par exemple le calibrage du système et la correction des fortes distorsions
(spatiales et temporelles) présentes dans les images. De plus, le MEB ne possède qu’un seul capteur et
les informations tridimensionnelles souhaitées ne peuvent pas être obtenues par une approche classique
de type stéréovision. Cependant, l’échantillon à analyser étant monté sur un support orientable,
des images peuvent être acquises sous différents points de vue, ce qui permet une reconstruction
tridimensionnelle en utilisant le principe de vidéogrammétrie pour retrouver à partir des seules images
les mouvements inconnus du porte-échantillon.
La thèse met l’accent sur la nouvelle technique de calibrage et de correction des distorsions développée
car c’est une contribution majeure pour la précision de la mesure de forme et de déformations 3D
aux échelles de grandeur étudiées. Elle prouve que, contrairement aux travaux précédents, la prise
en compte de la dérive temporelle et des distorsions spatiales d’images est indispensable pour obtenir
une précision de mesure suffisante. Les principes permettant la mesure de forme par vidéogrammétrie
et le calcul de déformations 2D et 3D sont aussi présentés en détails. Dans le but de valider nos
travaux et démontrer en particulier la précision de mesure obtenue, des résultats expérimentaux issus
de différentes applications sont présentés tout au long de la thèse. Enfin, un logiciel rassemblant
différentes applications de vision par ordinateur a été développé.

Mots clés : Microscope Électronique à Balayage, Calibrage d’imageurs, Correction de distorsion,
Correction de dérive, Vidéogrammétrie, Mesure de forme, Mesure de déformation, Photomécanique.
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