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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• Paddle-induced flows are characterised
by the dense flow regime.

• Dimensional analysis and shear band
observation are performed in a lab-scale
mixer.

• A rheological law inspired from the μ(I)-
rheology is developed for free-flowing
powders.

• Hatano’s three parameters equation
adequately fits the experimental data.

• The parameters are found to be insen-
sitive to particle size.
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A B S T R A C T

This work adopts an in-system rheological approach to analyse powder flow behaviour in dense flows under
mechanical agitation. For this purpose, an empirical law has been developed to assess powder rheology within a
laboratory mixing setup, focusing on interactions between the paddles and the powder bed in dense flow. This
model, is an empirical law, based on the μ(I)-rheology-like framework derived from dimensional analysis and
shear band visualization. It reveals good predictive capabilities for powders of similar particle shapes but
different sizes across various filling ratios. This approach addresses challenges in measuring complex powder
parameters, such as the effective friction coefficient μeff , establishing a practical and easily applicable model that
facilitates the scaling up of mixing processes and allows for better anticipation of forces exerted on the paddles.
Comparisons with Hatano’s equation showed a good fit with the rheological framework, particularly for deep
powder beds. Better evaluation of the shear band width and reconsideration of normal stress assumptions may be
the way forward to improve the accuracy of this μ(I)-rheology.

* Corresponding author.
E-mail address: henri.berthiaux@mines-albi.fr (H. Berthiaux).

Contents lists available at ScienceDirect

Powder Technology

journal homepage: www.journals.elsevier.com/powder-technology

https://doi.org/10.1016/j.powtec.2024.120469
Received 17 June 2024; Received in revised form 14 November 2024; Accepted 17 November 2024

Powder Technology 451 (2025) 120469 

Available online 21 November 2024 
0032-5910/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:henri.berthiaux@mines-albi.fr
www.sciencedirect.com/science/journal/00325910
https://www.journals.elsevier.com/powder-technology
https://doi.org/10.1016/j.powtec.2024.120469
https://doi.org/10.1016/j.powtec.2024.120469
https://doi.org/10.1016/j.powtec.2024.120469
http://creativecommons.org/licenses/by/4.0/


1. Introduction

Numerous industrial sectors, extending beyond the food industry,
require the processing of granular materials at various stages of pro-
duction. Powders can serve either as final products or as critical in-
gredients in a diverse array of goods. A key operation in powder
handling is mixing, which is performed using a variety of technologies.
Dry mixing allows for the homogenization of different types of powders
[1] and is carried out in static, tumbling, convective mixers, etc.… In
convective mixers, the powder bed is agitated by impellers, which
forcibly displaces the powder in blocks from one region to another
within the mixer’s tank. In addition to convection, particles move in
smaller groups due to shearing mechanisms. Impellers come in various
shapes to achieve different mixing goals. Some resemble ribbons or
screws, while others, like in Forberg-style mixer, features paddles [2,3].
Paddle mixers are usually composed of one or two shafts on which a
certain number of paddles are mounted at specific rake angles. Powder
flow within mixing equipment operating in batch mode is influenced by
several factors, including operating conditions such as paddle agitation
speed, filling ratio, and mixer geometry, as well as the powders’ intrinsic
and extrinsic properties. Therefore, understanding the powder flow
behaviour when agitated mechanically in convective mixers is crucial.
Free-flowing powders, often perceived as easier to handle compared

to cohesive powders due to weak inter-particle forces like Van der Waals
or capillary forces, present challenges in predicting their flow behaviour
due to potential particle segregation and agglomeration [4,5]. In a dy-
namic state, these powders primarily interact through frictional and
collisional contacts, with forces that can vary depending on the shear
rate.
The physical interactions of powders with the agitation mobile in

mixers have been studied since the 60’s, where Bagster and Bridgwater
examined flow patterns near the surface around a horizontal stationary
flat blade within a moving granular bed [6,7]. More recent research in a
similar setup has shown interest in characterising powder flows around
paddles using high-speed cameras and Discrete Element Method (DEM)
[8–10]. These studies demonstrated the formation of recirculation zones
in front of paddles and identified a velocity gradient within the moved
powder bed [4,5,11]. They have also shown that the flow regime at the
surface can be split into two types –rolling and cataracting– based on
whether the Froude number is below or above one [12]. Through
dimensional analysis, Legoix found that the in-system rheology within
convective mixers can be described by a power law, constituting a
process relationship, between the Froude number and the power number
(Np = a.Frb

)
, where the proportionality coefficient a depends on the

powder and on the filling ratio of the mixer, while the exponent b de-
pends on the flow regime. This correlation, intended for scale-up pur-
pose, does not account quantitively for the impact of powder
characteristics [13]. Furthermore, the immersed regions, where fric-
tional forces dominate, have often been overlooked due to the difficulty
in obtaining insights into the flows taking place at such scale.
Research works have highlighted three regimes of powder flow

depending on applied shear rates, with one intermediate regime
exhibiting a liquid-like behaviour, referred to as a dense flow regime
[14,15]. This regime, lying between the quasi-static and collisional flow
regimes, involves complex interactions and fluctuating contact networks
localised in a narrow region of about a dozen particle mean diameters
where energy is dissipated by friction [16]. The dense flow regime is the
most common regime in different industrial applications, including dry
powder mixing. The localised area, referred to as the shear band, cor-
responds to a limited number of particles and can be said to be meso-
scopic. Analysing flow at this scale may help to bridge the gap between
individual particle interactions (microscopic scale) and the bulk flow
behaviour (macroscopic scale). The thickness of the shear band tends to
decrease slightly with increasing particle size and increase significantly
with increasing confining stress. However, it was found to be indepen-
dent from particle shape [17–22]. To better predict flow behaviour in

agitation equipment like mixers, it is essential to take into consideration
the shear band formation to build a multi-scale approach, therefore,
linking the dynamics at a grain level to the overall structure of the flow.
To better account for particle characteristics, researchers have

turned -during the last two decades- to a specific dimensionless number,
the inertial number I ((Eq. (1)). It aims to describe the balance between
interparticle momentum and energy dissipation, both of which gov-
erning the rheology of granular matters [14,23–25]:

I = γ̇d

/
̅̅̅̅̅̅̅̅̅̅
P/ρp

√
(1)

Nevertheless, to address the discrete nature of granular materials, a
constitutive law correlating I to the effective friction coefficient μeff has
been established by numerical methods, to describe dense flow regimes
10− 2 < I < 0.2 [23] for various configurations, where the flow goes from
free surface to confined [23]. This rheological law, referred to as μ(I)-
rheology, was described empirically by Hatano [26] as:

μeff = μ0 +bIn (2)

with μ0 being the minimum dynamic friction coefficient as I→0, and b
and n being constants specific to the material. The effective friction
coefficient μeff , based on the Mohr-Coulomb definition, represents the
ratio of the shear stress τ to the normal stress σ. In many studies, the
normal stress has been approximated by hydrostatic pressure, though
this assumption may be less accurate for thicker layers of material. For
example, in dam-break scenarios or real landslides, the initially released
mass may be substantial, affecting stress distributions [14,27–30].
Therefore, the dynamic pressure ought to be taken into account during
the flow initiation. In the framework of this study, the flow initiation
(the start-up of the mixer) is excluded and only the stationary regime is
studied. Furthermore, in dense flows, particle interactions are domi-
nated by contact forces, and dynamic pressure might have an insignifi-
cant impact.
The μ(I)-rheology has been extensively studied in planar shear con-

figurations, where parameters are easily controllable and measurable,
and stress distribution remains uniform within the sheared layer. At low
shear rates, μeff remains constant, indicating a shear-independent
behaviour of the powder, mainly governed by frictional forces.
Beyond a certain value of I, μeff starts increasing rapidly with I, marking
the threshold at which the flow becomes shear-dependant. Recent
research using a laboratory vertical bladed mixer has shown, however,
that μeff more accurately represents flow behaviour in deep powder beds
compared to shallow ones [31].
This work aims to develop a rheological law based on the well-known

μ(I)-rheology, to study and predict powder flow behaviour in immersed
area within a laboratory mixing set-up, depicted in Fig. 1, following a
dimensional analysis approach. The objective is then to assess the
capability of μ(I)-rheology to predict flow behaviour for any type of
convective mixer. This approach aims to provide a framework for
comprehensively analysing powder flows under mechanical agitation,
thereby aiding in the optimisation of mixing efficiency and the sus-
tainability of processing operations. Ultimately, the goal is to develop
scalable process relationships that will enable the transition of the
mixing process in convective paddle mixers from laboratory to industrial
scale.
The article is structured as follows: Section 2 details the materials

and methods, including powder characteristics and the lab-scale mixing
set-up. Section 3 presents the results and discussions, starting with the
study of paddle-induced flows, followed by the development of a rheo-
logical law μ(I)-rheology through dimensional analysis, and concluding
with the assessment of this law for two free-flowing powders – semolina
and couscous. Finally, Section 4 provides the conclusions and suggests
potential directions for future research.
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2. Materials and methods

2.1. Powder characteristics

In this work, the behaviour of two free-flowing powders under me-
chanical agitation is examined: fine semolina (Panzani®) and fine
couscous (En Cuisine®). Both powders are stable under various condi-
tions (temperature, moisture…) and offer uniformly sized particles of

similar chemical composition.
Particle morphology, observed using a Scanning ElectronMicroscope

(SEM) TM3030Plus (Hitachi®, Japan), is presented in Fig. 2. SEM im-
ages of semolina reveal irregularly shaped particles with relatively sharp
edges and a rough surface. However, couscous particles, are roughly
rounded with less pronounced surface irregularities.
Table 1 illustrates the measured properties of semolina and couscous.

Mean particle diameter d50 was determined using a LASER diffraction
with a Mastersizer3000 (Malvern Panalytical, Malvern®, UK). Bulk
density ρb was measured using the SVM22 tapped density tester
(Erweka®, Germany), while the particle density ρp was measured using
an Accupyc® 1340 helium pycnometer (Micromeritics®, Mérignac,
France). Carr Index CI%, indicating the ratio between the untapped and
tapped powder densities, is calculated to assess the flowability of the
powders. A CI% below 15 % implies that the powder is free-flowing. φ
represents the maximum compacity of the powder bed and is defined as
the ratio between ρb and ρp.

2.2. Lab-scale mixing set-up “C-lab mixer”

A cylindrical tank mechanically agitated, referred to as the C-lab
mixer, that has been designed to carry out the thesis work of Legoix [13]
is used in this work. The C-lab mixer consists in a transparent vessel
made from polymethylmethacrylate (PMMA) of approximately 9 mm
width and an effective capacity of around 8.85 l, thereby allowing flow
visualization during agitation. As depicted in Fig. 3, the mixer is fitted
with one shaft, sustained by two bearing bushes, supporting a row of
four straight rectangular stainless-steel paddles, each set at 90◦. The four
paddles form a single agitation mobile as they cut through the same
region of the powder bed. The configuration adapted for the tests of this
framework is detailed in Fig. 3.b. The paddle length Lp is 3 mm shorter
than the tank radius R, making a minimal gap sufficient to prevent
particle blockage between the paddle tips and the tank wall. Given this
small gap, Lp is assumed to be approximately equal to R.
The C-lab mixer is equipped with a torquemeter mounted on the

Fig. 1. Definition of macro, meso, and micro-scales within the laboratory set-up
“C-lab mixer”: Macro-scale represents the in-system scale; meso-scale refers to
clusters of particles where friction occurs, and micro-scale denotes the scale of
individual particles.

Fig. 2. SEM pictures of semolina (a. X100 and b. X200) and couscous (c. X50 and d.X200).
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shaft to measure the mechanical torque. The torquemeter has an accu-
racy of 0.25 %, applicable over the maximum measurement range of 10
N.m. The motor can operate within a rotational speed range spanning
from 2 to 20 rad.s− 1 thanks to reduction gearbox. A LabVIEW® interface
controls paddle speed and records torque data, sampling every 0.02 s.
The speed, torque measurements, powder mass, room temperature, and
moisture percentage are logged into a spreadsheet for analysis.

2.2.1. Rheological measurements
The central parameter in this work is the torque which is a descriptor

of the systems agitated by a rotating mobile. In practice, the recom-
mended mixer speed is that which allows a balance to be achieved be-
tween inertia forces associated with the rotating mobile and the forces of
gravity, ideally resulting in a Froude number Fr equal to 1. In the present
work, the Froude number is calculated through:

Fr =
Lp × ω2

g
(3)

ω represents the angular speed setpoint (rad.s− 1), Lp the paddle
length (m) and g the gravitational acceleration (m.s− 2).
To explore a wide range of operating conditions, various speeds and

filling ratios were investigated in our study. Each test campaign begins
with a one-hour preheating procedure for all mixers. During the initial
minutes of preheating, torque measurements decrease due to the heating
of bearing seals, which reduces frictional resistance and facilitates easier
shaft rotation. As preheating continues, the mixer reaches its optimal
operating temperature, stabilizing torque measurements. After pre-
heating, the mixer tank is filled to achieve the desired filling level, and
the powder bed surface is flattened to ensure consistent initial condi-
tions before recording torque measurements. The filling ratio H/R is
chosen based on the radius R, withH the maximum height of the powder
bed at the centre of the tank. This linear filling ratio is derived from the
volumetric filling ratio f% as explained in (Eq. (4)) and (Eq. (5)):

f% =
Vp

Vtank
*100 =

mp

ρbVtank
*100 (4)

f% =
H.π.Htank2
Htank.π.R2

*100 =
1
2
.
H
R
*100 (5)

Agitation and on-load torque TL measurements begin simultaneously
for each speed increment. Once the stationary regime is achieved,
identified through signal visualization, agitation continues for an addi-
tional two minutes. Before each speed increase, the paddles are returned

to their initial inclination, and the powder surface is levelled. Upon
completing torque measurements for a given filling ratio, the mixer is
emptied, and idle torque T0 measurements are recorded at the tested
speeds. The experimental protocol is summarised in Fig. 4. Tests are

Table 1
Measured characteristic of semolina and couscous.

Powder d10 (μm) d50 (μm) d90 (μm) ρb
(
kg.m− 3) ρp

(
kg.m− 3) CI% φ

Semolina 180 309 482 770 1438 5.8 0.53
Couscous 718 1005 1495 854 1591 5.3 0.57

Fig. 3. C-lab mixer a. Overall drawing showing the blade assembly, and b. Frontal view detailing the dimensions of the mixer components.

Fig. 4. Protocol for torque measurements carried out in the C-lab mixer with
semolina and couscous for four filling ratios H/R and twelve rotational
speeds ω.
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conducted in duplicate for each angular speed and filling ratio to ensure
the robustness and reliability of the results. Torque measurements are
then processed and the useful time-averaged torque T is calculated
following (Eq. (6)). The average of the time-averaged torques from both
tests is presented, with standard deviation quantifying the associated
error.

T = TL − T0 (6)

2.2.2. Shear band observation
The mesoscopic scale is an intermediate size, that focuses on the

interactions between clusters of particles and how these interactions
influence the overall behaviour of the granular material. Often termed
shear bands, this scale corresponds to narrow regions where particles
experience localised rearrangement due to shear deformation induced
by paddle movement. Shear bands typically exhibit a width of a few
dozen particles [16,32].
To visualize the speed gradient near paddles and assess the thickness

of the shear bands, a powder tracer technique was employed. This
technique consists in colouring the same tested powder by impregnating
it with an iodine solution [33]. The iodine will bind to the particles,
which will become blackish. Initially, the semolina was coloured by
spraying approximately 25 % of its mass with iodine solution
(Bétadine®) while stirring. The powder is then laid out in fine layers to
dry completely. However, colouring caused some semolina particles to
form aggregates, necessitating a grinding step. The coloured semolina is
subsequently sieved to achieve the same initial particle size distribution
as the non-coloured semolina.
Once the coloured semolina is ready, shear band visualization is

performed. About one-sixth of the total mass of black semolina is placed
in the centre of the mixer using a quarter disc, allowing the powder to be
poured in gradually using a fine funnel. The rest of the tank is filled with
non-coloured semolina, as depicted in Fig. 5. The level of the powder
bed is then flattened to obtain the same bed height throughout the tank.
The quarter discs are then carefully removed to avoid jerky movements.
The test was carried out with semolina in the C-lab mixer for 2 filling
ratios, 0.75 and 1, and 3 speeds, 3, 6 and 15 rad/s, corresponding to
Froude numbers of 0.1, 0.4 and 2.6.
The shear bands are then captured by a camera (Nikon®, Tokyo,

Japan), with images taken by the Vic snap® software every minute for
the initial five minutes and every 15 min thereafter. The shear band
thickness considered is that measured after two minutes of agitation,
corresponding to the mixing time used in our experiments. However, for
a deeper understanding of its temporal evolution, images were taken
over a longer duration.

3. Results and discussions

3.1. Paddle induced flows

3.1.1. Mesoscopic scale
The visualization of shear bands on both sides of the paddles during

powder agitation in the C-lab mixer revealed four zones, as depicted in
Fig. 6:

- Zone I is where the paddles pass, and the convection mechanism
prevails.
- Zone II is where the particles are projected in avalanches, which are
well visible during the rolling regime.
- Zone III is relatively immobile, with only the diffusion mechanism
taking place.
- Zone IV is characterised by a velocity gradient and localised shear.
This zone contains the shear band where the friction flow appears.
The width W of the band is determined as shown in Fig. 6.

These observations are consistent with findings in the literature [16],
where it has been demonstrated that in the zone directly above the
intruder, particles exhibit a velocity close to that of the intruder (zone I).
This reference also illustrates the existence of shear zones from both
sides of the intruder (zone IV), where the particles tend to rearrange, and
friction forces predominate. The flow within these shear zones is sus-
tained throughout the entire agitation process by the consistent fre-
quency of paddle passes through the powder bed. Another observation
aligning with Lehuen’s work is the void that appears behind the passage
of the paddle, as shown in Fig. 7, particularly noticeable at relatively low
speeds as the void is quickly filled by the passage of the following paddle
at high speeds. The friction between individual particles within the
shear bands, representing the mesoscopic scale differs from the “bulk”
friction coefficient of the whole powder, which is of macroscopic nature.
The shear band widthW corresponds to the width of the coloured region
at the bottom of the tank, extending from the lateral edges of the blade
where a velocity gradient is observed, as shown in Fig. 6.W is measured
at the bottom to focus on shearing mechanisms, as nearer to the surface,
avalanches disturb the powder bed state, creating a diffusion of parti-
cles. Tests are carried out in duplicate.
The experiments with coloured semolina to evaluate the evolution of

the shear band width W over time were carried out for three angular

Fig. 5. Tracer initial position in the C-lab mixer.

Fig. 6. Observation of four flow zones during agitation in the C-lab mixer and
measurement of the shear band width W, corresponding to the coloured region
width extending from the lateral edges of the paddle.
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speeds ω (3, 6, and 15 rad.s− 1) and two filling ratios H
R (0.75 and 1), as

illustrated in Fig. 8.W is found to be higher for higher angular speeds, at
a same filling ratio. Additionally, it increases gradually during the initial
5 min of agitation, followed by a slow widening.
A choice has been made to work with the average width at 6 rad.s− 1

corresponding to Fr = 0.44. This choice aligns with both the duration of
the conducted tests and the industrial applications, it corresponds
effectively to the dense regime under investigation (Fr < 1). A width W
of around 1 cm will therefore be considered. It may be linked with the
d50 of semolina (308 μm) and the number of particles involved in the
shear band k through:

W = k× d50 (7)

In the present case, k equals approximately 30 semolina particles.

In this work, the shear band thickness is considered to be the same
across all filling ratios, although it has been found to slightly decrease
with increasing bed pressure according to Fig. 8. Additionally, the par-
ticle size and shape are two factors slightly impacting the shear band
thickness according to the literature. However, the order of magnitude is
always around a few dozen particles [17,20,32]. Given the complexity of
conducting this type of tests to visualize the shear band, tests were
limited to those with semolina and k is considered the same for both
tested powders. The width W of shear bands during couscous agitation
will therefore be considered equal to 3 cm.
Additionally, given the narrow gap between the tip of the paddle and

the wall of the mixer tank, shear bands are considered to form solely
along the paddle sides rather than at the front, due to limited space. The
impact of wall friction was deemed negligible for our experimental
conditions. Therefore, the analysis focuses on the shear behaviour taking
place primarily on the sides of the paddle, where it is expected to have
the most significant influence on the powder flow dynamics.
Observations indicate that the flow in the shear band region shows

liquid-like behaviour, with particles sliding past each other continu-
ously. This aligns with the dense flow regime description, which is the
primary focus of our study.

3.1.2. Macroscopic scale
Torque measurements conducted in the C-lab mixer, aim to explore

the in-system rheology. At a macroscopic scale, it represents the resis-
tance of the powder bed to the mechanical action of the impeller, forced
to maintain a constant angular speed. The mean of useful time-averaged
torque T obtained from two repetitions with semolina for four linear
filling ratios H

R and twelve angular speeds ω is illustrated in Fig. 9.
Based on the Froude number Fr, calculated following (Eq. (3)), two

regimes were identified by Legoix in the C-lab mixer, which are the
rolling regime when Fr < 1 and the cataracting regime when Fr > 1
[12].
For Fr < 1, i.e. a rotational speed smaller than 9 rad.s− 1, the useful

torque increases with increasing filling ratios, as expected, given that
displacing a higher mass of a free-flowing powder requires a greater
shear force. Across different rotational speeds, the torque remains
relatively constant. In this rolling regime, gravity predominates over the
centrifugal forces, prompting the powder to follow the paddle move-
ment. When the paddle reaches a vertical position, it cascades down in
avalanches. The constant torque profile may be attributed to the

Fig. 7. Void appearance behind the paddle during agitation in the C-lab mixer.

Fig. 8. Variations in the evolution of shear band width over time of semolina agitation for two filling ratios H/R = 0.75 and H/R = 1 across three different angular
speeds ω = [3 rad.s-1, 6 rad.s-1, 15 rad.s-1].
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resistance of the powder bed to paddle movement, which remains the
same regardless of rotational speed due to the enduring contact between
the powder and the paddle.
Once Fr > 1, a notable rise in torque is observed, demonstrating a

shift in flow regimes from rolling to cataracting. At those high speeds,
the powder is expelled on either side of the blades, creating a clearance
zone that follows their movement. During the cataracting regime, the
particles are no longer in permanent contact with the paddles as they are
constantly projected in the air following the same trajectory of that of
the paddles. At high filling ratios and rotational speeds, the gain in
momentum, combined with bed expansion, results in a significant in-
crease in torque. This indicates that, in contrast to low speeds, the me-
dium faces greater difficulty in rearranging itself due to more frequent
passages of the paddles through the powder bed. This is particularly true
for high filling ratios as the bed dilatancy is more important.
While agitating the powder in the C-lab mixer, aside from the

transition of regimes that takes place at the surface and is characterised
by the Froude number, an immersed flow area can be observed. Fig. 10
shows both the flow that arises at the surface, which is essentially
described by the Froude number, and the flow dynamics within the
immersed region, which can be depicted through the velocity gradient
from both side of a rotating paddle. The velocity gradient takes place
within shear bands, where immersed flows take place [19].

3.2. Derivation of μ(I)-rheology through dimensional analysis

The Inertial Number I, often employed to describe dense flows, helps
quantify the relative importance of particles inertia, arising from the
applied shear, and interparticle friction, which opposes particle motion.
However, while it provides insight into the predominance of inertia or
friction within the granular media, it does not effectively measure the
friction forces. Another parameter, the effective friction coefficient μeff ,
quantifies the local friction coefficient in the shear bands, providing a
more detailed characterization of the dense flow dynamics. μeff is solely
a function of I, which makes it a local law, referred to as μ(I)-rheology,
describing the dense flow in the shear bands.
In order to apply the μ(I)-rheology in the C-lab mixer, a dimensional

analysis was carried out through the Buckingham-Pi theorem. It states
that a system that is represented by a number n of physical variables Vi
measured by p fundamental dimensions can be described by a function
between n − p dimensionless numbers πi, in a plane shear geometry that
can be described by five key variables illustrated in Fig. 11.a:

- The mean particle diameter d (m) of particles in the sliding region.
- The particle density ρp (kg. m

− 3).
- The normal stress σ (Pa) applied on the flowing region of height hW.
- The shear stress τ (Pa), corresponding to the tangential force applied
by moving wall on the flowing powder region.
- The shear rate γ̇ (s− 1) representing the rate within the flowing region,
at which layers of particles slide past each other due to the trans-
lation of the wall.

By analogy with the plane shear configuration, as shown in Fig. 11.b,
and considering the C-lab mixer as a semi-confined system, the variables
are henceforth defined as follows:

- The mean particle diameter d (m) of particles in the shear bands.
- The particle density ρp (kg. m

− 3).

Fig. 9. Evolution of T as a function of ω for semolina in the C-lab mixer for increasing H/R (bottom to top) illustrating a shift in the behaviour once Fr exceeds 1,
marked by a change from a rolling to a cataracting regime based on Fr.

Fig. 10. Visualization of flow patterns in the C-lab mixer, depicting surface
flow observations on top of paddles (left) and flow behaviour in the immersed
area pushed by paddle motion (right).
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- The normal stress σ (Pa) applied on the shear bands from both sides
of the paddle.
- The shear stress τ (Pa), corresponding to the tangential force applied
by the paddle on the powder.
- The shear rate γ̇ (s− 1) representing the rate at which layers of par-
ticles slide past each other due the mechanical agitation within the
shear band.

Table 2 summarizes the fundamental dimensions p of the five cited
variables, which consists in length [L], mass [M], and time [T]. Thus, the
system, defined by these five variables that are measured by three
fundamental dimensions, can be represented by two independent
dimensionless numbers: the effective friction coefficient μeff and the
inertial number I.
The effective friction coefficient μeff is the ratio of the shear stress τ to

the normal stress σ. The shear stress is defined as the tangential force F
per unit surface area. The forces acting on the paddle are illustrated in
Fig. 12.a. In this work, the shear stress is assumed to be uniform
following the trajectory of the paddle. Additionally, the torque used for
calculation is time-averaged over a two-minute agitation during the
stationary regime. By definition, the torque is the product of force (F)
and the perpendicular distance, which is the paddle length (Lp)
considered to be equal to the radius R of cylinder given the small gap.

τ =
F
S
=

T
SLp

(8)

Where S represents the friction surface (m2) and Lp the paddle length
(m). To base calculations consistently on time-averaged torque T, S is
assumed to be equal to the whole filled cross-section area Af described in
Fig. 12. Additionally, the sheared surface is assumed to remain constant
regardless of whether the powder is at rest or in motion. Given the ex-
istence of two shear bands on either side of the paddle, the friction
surface is deemed to be twice the cross-sectional area. Fig. 12.b shows
how the parameters are defined for the cylinder and the surface
assumption made. The surface of friction calculated following (Eq. (9)):

S = 2×Af = f ×2× π*R2 (9)

f is the volumetric filling ratio representing the volume occupied by
the powder.
Since wall effects are neglected and the powder bed depth remains

below the Janssen threshold, the normal stress σ applied on the shear
bands is considered equal to the hydrostatic pressure P [29,34,35].
Moreover, the dynamic pressure has been deliberately excluded from
these calculations, as particle interactions in dense flows are primarily
governed by contact forces, likely minimizing the impact of dynamic
pressure. Additionally, this study focuses on the stationary regime. Thus,
the hydrostatic pressure P is calculated as:

σ = P = ρbghx (10)

ρb is the powder bulk density (kg.m
− 3), g the gravitational acceler-

ation (m.s− 2) and hx is the average height of the powder bed (m), which
is calculated differently depending on whether the powder bed is less
than, equal to, or greater than the radius of the cylinder, as illustrated in
Fig. 13. Depending on its position, a paddle may be fully, partially, or
not at all immersed in the powder bed. Therefore, the average height hx
corresponds to the average variation of the powder bed height as the
paddle rotates, with α representing the angle corresponding to the
paddle’s position relative to the powder bed surface. In the case where
the mixer is filled up to the shaft axis, i.e., the maximum powder bed
heightH, corresponding to the paddle position when α = − π

2, equals the
radius of the mixer R and the length of the paddle Lp. Therefore, the
average powder bed height is denoted h1. Then, if the mixer is filled
above the shaft axis, hx becomes hH

R>1
. If it is filled below the axis, it will

be denoted hH
R<1
.

To calculate the average height, the sine function in triangles is used
to derive the powder bed height h(α) in front of the paddle as a function
of its position α. The angle-averaged height hx is then determined using
the Mean Value Theorem by integrating h(α) from α0, which is the first
intersection of the paddle with the powder bed, to the angle where the
paddle is fully out of the powder bed. The details of calculations are
provided in Appendix.
The average height hx of the powder bed for a filling ratio H/R equal

to 1 (x = 1), which is the simplest scenario, is equal to:

h1 =
2R
π (11)

For filling ratios smaller than 1:

hH
R<1

=
R

π
2 − α0

cosα0 − R.sinα0 (12)

With α0 = sin− 1
(

1 − h
R

)

.

Fig. 11. Definition of key parameters for dimensional analysis within a shear plane geometry (a) and their analogy in the C-lab mixer (b): The shear stress τ, The
normal stress σ, The shear rate γ, The paddle linear speed V and the powder bed height h.

Table 2
Fundamental dimensions p of physical variables Vi describing the system.

Vi Units p

h m [L]
Vw m. s− 1 [L. T− 1]
σ Pa [M⋅L − 1⋅T − 2]
τ Pa [M⋅L − 1⋅T − 2]
γ̇ s− 1 [T− 1]

H. Boussoffara et al. Powder Technology 451 (2025) 120469 

8 



For filling ratios greater than 1:

hH
R≥1

=
R

π
2 − α0

(1+ sinα0) (13)

With α0 = sin− 1
(

h
R − 1

)

.

Thus, according to (Eq. (9)) and above, the effective friction coeffi-
cient can be calculated as:

μeff =
τ
σ =

T
ρbghxSL

(14)

On the other hand, the inertial number I as defined in the literature is
calculated as follows:

I =
γ̇d
̅̅̅̅̅̅̅̅̅̅
P
/

ρp

√ (15)

Where the shear rate γ̇ is the ratio of the linear speed of the paddle VP

to the width of the shear band given in (Eq. (7)). The inertial number in
our study is then calculated using below:

I =
ωLp

k
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ρb
/

ρp
)
ghx

√ =
ωLp

k
̅̅̅̅̅̅̅̅̅̅̅

Φghx
√ (16)

Φ, is assumed to be equal to the maximum packing fraction given in
Table 1.
It is worth noting that he inertial number I, as defined in our study, is

reminiscent of the Froude number Fr which describes flows appearing at
the surface of a powder bed during mechanical agitation. I and Fr are
related through the following, which is a combination of (Eq. (3)) and
(Eq. (16)):

I =
1
k

̅̅̅̅̅̅̅̅̅
FrLp
Φhx

√

(17)

Consequently, Fr(I) relationship adheres perfectly to a squared
power law as follows:

Fr = a.I2 (18)

Accordingly, the proportionality constant a can be expressed by (Eq.
(19)) as L and R are considered equivalent in this work. a is a function of
the shear band width, the packing of the powder bed and the filling
ratio. Table 3 shows values of a corresponding to the present case.

Fig. 12. Cross-sectional schematic of the C-lab mixer illustrating the shear and normal forces applied on the paddle (a) and the assumption on the friction surface
during agitation (b).

Fig. 13. Cross-sectional diagram illustrating three scenarios based on mixer filling. a. Filling below shaft axis hH/R<1, b. filling up to the shaft axis h1 and c. Filling
above shaft axis hH/R>1.

Table 3
Values of proportionality constant a calculated using (Eq. (19)) across four HR
for semolina and couscous.

Filling ratio a - semolina a - couscous

0.5 158 173
0.75 237 258
1 302 338
1.25 363 406
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a = k2.Φ.
hx
L

≈ k2.Φ.
hx
R

(19)

The Froude number Fr has always played a crucial role in describing
flows within mixers with rotating effect. Its significance extends beyond
industrial applications to academic research. However, it was found that
relying solely on Fr may not provide a comprehensive understanding of
powder behaviour during convective mixing, let alone accurately pre-
dict scale-up process. While Fr has been correlated with other dimen-
sionless numbers, such as the power number Np or the Newton number
Ne, the integration of particle interactions and material properties has
often been conducted without fully accounting for their specific
characteristics.
Furthermore, during agitation, Fr describes the overall behaviour of

the powder at the surface. However, the paddle—induced dense flows
were shown to arise within shear bands from both sides of the moving
paddles. Therefore, the μ(I)-rheology, which describes dense flows is
more adequate to understand and then predict flow behaviour of free-
flowing powders in convective mixers.
Having defined the two dimensionless numbers that compose the

μ(I)-rheology, this empirical framework will be studied for semolina and
couscous, similar powders of different particle size.

3.3. μ(I)-rheology assessment in the C-lab mixer

3.3.1. Global observation of dense regime
The evolution of μeff as a function of I for the agitation of semolina

and couscous in the C-lab mixer for four filling ratios and twelve angular
speeds is illustrated Fig. 14.
For both powders, the initial observation indicates that the values of

I fall within the dense regime range according to the limits set by Da
Cruz

[
10− 2; 0.2

]
. Additionally, the evolution of μeff with I exhibits a

similar profile to that observed in the work of Da Cruz et al., in plane
shear configuration. However, it is noteworthy that these limits are still
vague in literature, as the dense regime ranges from 10− 3 to 10− 1 ac-
cording to Chevoir et al., [23,24]. However, in the work of GDR MiDi,
the collisional regime was characterised by an S-shaped curve, with μeff

reaching saturation and then slightly decreasing. This trend is not

observed in our study. Therefore, the limits to be considered in this work
are those given by Da Cruz. Nevertheless, the uncertainty surrounding
these limits, along with our data’s close proximity to the quasi-static and
collisional regime boundaries, raises doubts regarding the interpretation
of extreme data points. Yet, this is not problematic as mixing equipment
in industrial conditions seldom, if ever, operates within such shear rate
ranges—either very low or very high.

3.3.2. Shear rate impact on μ(I)-rheology
The same pattern is observed for both powders. In the left-hand part

of semolina and couscous charts illustrated in Fig. 14, μeff remains
relatively constant, indicating that the powder flow is shear-
independent and particle interactions are primarily due to friction
forces. This behaviour can be attributed to the resistance of particles to
flow in the shear band, where the shear rate is relatively weak. Conse-
quently, particles around the paddle have time to rearrange themselves
and return to their initial state. The force network within the shear band
is important, but the shear rate is high enough to maintain a liquid-like
flow. Therefore, the flow is considered insensitive to shear rate varia-
tions during this first phase of the dense regime.
However, at a certain critical value of inertial number that will be

referred to as Ic, μeff starts increasing significantly with I. This critical
value Ic marks the threshold above which the particles, still within the
dense regime, are no longer able to return to their initial rearrangement,
causing the powder bed to expand. Consequently, the interparticle
friction in the shear bands becomes strongly influenced by variations in
shear rate, primarily due to instantaneous collisions between particles.
In the first phase of the dense regime, where frictional forces domi-

nate, the flow is termed “frictional dense flow.” As the system ap-
proaches the critical inertial number Ic and moves past into the second
phase, the flow behaviour transitions into what is termed “pre-colli-
sional flow.” This phase precedes the transition to the collisional regime
and is characterised by significant interparticle collisions that dominate
the flow dynamics. Fig. 15 illustrates the differentiation between these
two phases for semolina at a filling ratio of HR = 1.
The observed pattern remains consistent across approximately all

tested filling ratios for both powders. Moreover, μeff demonstrates
equivalent values for both powders in the frictional dense regime, which

Fig. 14. (I)-rheology describing paddle-induced flows of semolina (●), couscous (■) in the C-lab mixer showing a dense flow regime and evidencing the existence of a
transition in flow behaviour for four filling ratios.
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means that it seems independent of particle size. In the pre-collisional
dense regime, it becomes smaller for couscous than for semolina. This
change begins within the transition zone, as inertial forces start to
dominate the frictional forces, as depicted in Fig. 16.
In the frictional dense regime, no difference can be observed between

both particle types. Conversely, in the pre-collisional dense regime,
semolina particles experience more collisions, as these are more
numerous in a unit of volume than couscous particles. As a consequence,
μeff is greater for semolina.
The pattern observed has then been fitted by Hatano’s equation (2).

Fig. 17 shows an example of least-square fit obtained with semolina for a
linear filling ratio H

R = 1, which corresponds to 50 % of volumetric filling
ratio (f). Hatano’s equation demonstrates a good fit in this case, vali-
dating the presence of two distinct regimes within the dense flow itself
with a transition observed around an Ic value of 0.05.
The fitting equation of μ(I)-rheology shows a coefficient of correla-

tion NRMSE (Normalised Root Mean Squared Error) of 2,8 %. This
translates to an average difference between the predicted and actual
values of approximately 3 % of the total range of the data. This suggests

a relatively small deviation between the model’s predictions and the
actual observations. Therefore, this law is considered to adequately fit
the developed experimental model under these conditions. The different
components of this relationship are:

- The minimum dynamic friction coefficient μ0, which corresponds to
the interparticle friction in a dynamic state at very low inertial
numbers in the frictional dense regime, is equal to 0.45,
- The pre-exponential factor b describing the magnitude of increase of

μeff with respect to I, might be attributed to the response of the
particles in the shear bands to the shear rate. b is 55.69 for H

R = 1,
- The exponent n describing the nature of the change of μeff with
respect to I, implies an accelerating relationship in this case as n =

2.45 (n > 1).

Furthermore, it is important to underline the observed disparity in
the values of μeff for high and low filling ratios as depicted in Fig. 14.
Therefore, it is interesting to assess Hatano’s law for both semolina and
couscous across the tested filling ratios.

3.3.3. Application of Hatano’s law on the developed μ(I)-rheology
Experiments were conducted at four filling ratios, both below and

above the shaft axis. For H
R < 1, the powder bed is considered shallow,

whereas for HR ≥ 1, it is considered deep. Fig. 18 shows the data for HR < 1
and H

R ≥ 1, plotted separately for couscous and semolina, with the
transition zone, illustrated by dashed lines. The transition zone varies
with varying filling ratios. For H

R < 1, Ic ranges between 0.07 and 0.09,
while it ranges from 0.05 to 0.07 for HR ≥ 1. These findings highlight that
I governs the transition from one regime to another by simply increasing
the shear rate or decreasing the pressure, which was evidenced by GDR
MiDi [14].
The sixth point of every μeff (I), corresponding to a Froude number

Fr = 1, falls within the transition zone for HR ≥ 1, but lies before reaching
it for H

R < 1. This proves that Fr does not govern the transition between
the two observed behaviours in the dense regime. As the Froude number
is designed to characterize flows at the surface rather than within
immersed areas, this finding highlights the importance of considering
μ(I)-rheology for paddle-induced flows.
The partition between the μ(I) law based on the filling ratio may

Fig. 15. Representation of the two observed flow behaviour in the μ(I)-
rheology in the C-lab mixer with semolina for H/R = 1: frictional shear-
independent and pre-collisional shear-dependent dense flows.

Fig. 16. Comparison of μ(I)-rheology of semolina (●) and couscous (■) in the
C-lab mixer at H/R = 1.

Fig. 17. Fitting of μ(I)-rheology of semolina for H/R = 1 by Hatano’s equation,
showing the threshold interval Ic (outlined in red) around which the transition
between frictional and pre-collisional regimes appears. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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result from the different behaviour of the powder during agitation.
During experiments, it was observed that at low filling ratios (0.5 and
0.75), the powder in the middle of the tank is emptied due to the
movement of the paddles. This phenomenon becomes more pronounced
at higher speeds, corresponding to the cataracting regime according to
the Froude number Fr and to pre-collisional regime according to the
inertial number I. Our study, founded on immersed flows that take place
when the powder is mechanically agitated, might be challenged at low
filling ratios where the mixer is sparsely filled with powder. This is
particularly true regarding the assumption of hydrostatic pressure being
considered as the normal stress.
The obtained fitting parameters for semolina and couscous are

summarised in Table 4. Consistently, the values of the parameters in
these equations support the observed partition between the μ(I) −
rheology at HR < 1 and

H
R ≥ 1.

For both semolina and couscous, μ0 and n exhibited a consistent
trend, showing approximately the same values, with two distinct classes,
as depicted in Fig. 19.

- Class I: Powder behaviour significantly sensitive to shear rate. This
category includes shallow powder beds (HR < 1), where the move-
ment of the paddles through the centre of the mixer’s tank displaces
the powder towards the sides of the tank. The average minimum
friction coefficient is μ*0 = 0.52 (± 0.02). Additionally, the average
exponent n* is 4.23 (± 0.41) and the pre-exponential factor b
significantly high, is showing a considerable discrepancy between H/
R = 0.5 and H/R = 0.75 for semolina.
- Class II: Powder behaviour less sensitive to shear rate. Deep powder
beds (HR ≥ 1) fall into this category, where particles pack together and
transmit forces more robustly, making the flow less susceptible to
changes with shear rate and increasing its tendency to shear band
formation. Under these conditions, average μ*0 is 0.44 (± 0.01)
average n* is 2.38 (± 0.3).

These observations imply that the flow within shallower powder
beds is more sensitive to shear rate than in deeper beds. The higher
normal stress applied to particles within shear bands at high filling ratios
leads to more densely packed flow areas. These findings are consistent
with Legoix’s work [13], where the exponent of the employed power law
was also found to be dependent on the filling ratio. Additionally, based
on the NRMSE, which corresponds to the average difference between the
predicted and actual values of μeff over the total range of the data, the
fitting of μ(I)-rheology exhibited a better accuracy for deep beds (4 %)
than for shallow beds (8 %). Nevertheless, both powders present a fairly
good fit, as the NRMSE values are below 12 %, indicating a good pre-
diction of the law relative to the experimental data.
The analysis of the experimental rheological law μ(I)-rheology ob-

tained for semolina and couscous along with the fitting parameters of
Hatano’s law, suggest that the μ(I)-rheology, which describes the
paddle-induced flow behaviour of powders, effectively accounts for the

Fig. 18. Discrepancy of μ(I)-rheology of semolina (●) and couscous (■) in the C-lab mixer between low filling ratios (left) and high filling ratios (right) with the
transition zone delineated by dashed lines.

Table 4
Parameters of Hatano’s equation applied to μ(I)-rheology of semolina and
couscous.

Filling ratios H/R = 0.5 H/R = 0.75 H/R = 1 H/R = 1.25

μ0 Semolina 0.52 0.51 0.45 0.43
Couscous 0.51 0.55 0.45 0.45

b Semolina 3298.30 799.08 55.69 59.39
Couscous 500.29 604.81 70.69 17.03

n Semolina 4.84 3.98 2.45 2.32
Couscous 4.10 4.01 2.74 2.00

NRMSE Semolina 0.13 0.04 0.03 0.04
Couscous 0.08 0.08 0.03 0.04
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particle size difference when considering powders of the same particle
shape. This is particularly obvious in the initial phase of the dense flow
regime (Fig. 16), referred to as the frictional dense flow, where particles
are closely packed, and shear bands are uniform from a flow and
thickness perspective.
Given that b shows significant variation across different filling ratios,

while μ0 and n exhibit similar values within the same scenario (deep or
shallow powder bed), a linearization of Hatano’s law through (Eq. (20))
is performed. This involved fixing μ0 and n to their average values for
deep and shallow beds, respectively, and then observing the variation of
b. The results of this fitting are illustrated in Fig. 20 and the obtained

values of b are reported in Table 5.

Fig. 19. Minimum effective friction coefficient μ0 and exponent n obtained by fitting μ(I)-rheology of semolina (●) and couscous (■) by Hatano’s equation showing
the classification between shallow (Class I: green area) and deep (Class II: orange area) powder beds. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 20. Linearisation of μ(I)-rheology for semolina (●) and couscous (■) across four filling ratios H/R, along with linear fitting (solid for semolina and dashed for
couscous) of the logarithmic variation of (μeff − μ0) as a function of the logarithm of I,with μ0 and n fixed. The error metric NRMSE is referred to as Esem and Ecscs.

Table 5
Pre-exponential factor b obtained by fixing μ0* and n in Hatano’s law for the
μ(I)-rheology of semolina and couscous.

Filling ratios H/R = 0.5 H/R = 0.75 H/R = 1 H/R = 1.25

b
Semolina 950.80 1271.27 50.12 62.56
Couscous 595.58 1248.64 31.01 46.09
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ln
(

μeff − μ0
)
= ln(b)+n.ln(I) (20)

The pre-exponential factor b, capturing the magnitude of change in
μeff with respect to I, is found to be consistently greater for semolina than
couscous. This can be attributed to the semolina particles, three times
smaller, being more sensitive to the shear rate change, although both
powders exhibit similar behaviour when the shear rate tends to 0 (μ0).
The NRMSE obtained for all μ(I)-rheology data, except for semolina at
H
R = 0.5 (13 %) and couscous at H

R = 0.75 (15 %), translates to a fair
fitting of Hatano’s equation to the developed empirical model. Overall,
the NRMSE values, along with the visual scatter of data around the fitted
line, show that Hatano’s equation is less accurate for shallow powder
beds (HR < 1) in comparison to deep powder beds (HR ≥ 1).
Additionally, the higher NRMSE obtained for shallow powder beds

supports the earlier observation that the μ(I)-rheology model better
accounts for the behaviour of paddle-induced powder flow for deeper
beds. At HR ≥ 1, the powder bed height is sufficient to form well-defined
shear bands, which are critical for the dense flow regime that μ(I)-
rheology is designed to describe. These shear bands facilitate a more
consistent and predictable flow behaviour, making the model’s as-
sumptions and linear fitting more applicable and reliable. Conversely, at
lower filling ratios H

R < 1, the powder bed is shallower, and the shear
band formation may be affected with potential variations in local par-
ticle packing and rearrangement. Moreover, the shape of the powder bed
is more subjected to change through mixing at low filling ratios [31].
These factors introduce more variability into the flow behaviour, lead-
ing to greater scatter in the data and a less accurate fit with the μ(I)-
rheology under these conditions, as compared to agitation of deeper
beds (Fig. 20).
The analysis of μ(I)-rheology of semolina and couscous across four

filling ratios revealed that the developed model can be effectively
described by Hatano’s equation despite the significant difference in
particle size. Therefore, a unified power law can be suggested to describe
the flow behaviour of both semolina and couscous in the C-lab mixer.
The fitting parameters correspond to the average values for deep and
shallow beds, respectively. The fitting equations are described by (Eq.
(21)) for H

R < 1 and (Eq. (22)) for H
R ≥ 1. Subsequently, the linear rep-

resentation following (Eq. (20)) is plotted in Fig. 21.
For shallow beds

μeff = 0.52+1017I4.2 (21)

For deep beds

μeff = 0.44+47I2.4 (22)

As expected for shallow bed, the linear representation of the data
around a unique fitting line presents a greater scatter than for deep beds.
The NRMSE decreases from 14% at HR < 1 to 9% at HR ≥ 1. This reinforces
the assumption that the μ(I)-rheology better predict flow behaviour at
high filling ratios. However, comparatively larger deviations from the
fitted line are observed at low shear rates. In the case of deep powder
beds, the scatter is more pronounced for ln(I) < − 3 (I ≈ 0.05), whereas
data roughly fall into a single master line at high shear rates (I > 0.05).
For shallow powder beds, the scatter becomes less significant starting
from ln(I) > − 2.5 (I ≈ 0.08), which also belongs to the defined
threshold interval.
The value from which the unified law adequately fits the data be-

longs to the reported threshold interval where Ic is located where the
transition zone takes places for both deep and shallow beds.
Powder mixing, where mechanical agitation is exerted on powder

through paddle movement, essentially operates with deep powder beds

Fig. 21. Unified linear law to describe semolina’s (●) and couscous’ (■) μ(I)-rheology for H/R < 1 (on the left) and H/R ≥ 1 (on the right).
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and at Fr ≈ 1. This choice is due to the recommended balance between
gravitational and inertial forces, allowing paddles to induce sufficient
vertical movement and shear forces within the powder bed to overcome
interparticle forces, such as friction or cohesion, thereby promoting
effective mixing. Furthermore, operating at Fr ≈ 1 avoids unnecessary
energy consumption associated with very high paddle rotational speeds
(thus high Fr), and minimizes the risk of particle degradation at high
shear forces, while ensuring a good mixture homogeneity. According to
(Eq. (20)), the Froude numbers Fr for deep filling ratios corresponding to
I = 0.05 have been calculated and are reported in Table 6 for both
powders. Notably, the transition to the pre-collisional regime starts at a
significantly smaller Fr, indicating that the dense flow behaviour does
not depend on the Froude number.
Focusing on the inertial number rather than the Froude number

might offer additional opportunities for energy savings in industrial
applications, while still achieving optimal mixing performance. This
approach is supported by the observation that paddle-induced flows are
primarily governed by interactions between the paddles and the shear
bands, rather than by phenomena occurring at the surface.
Consequently, the application of the unified law of the developed

rheological model μ(I)-rheology provides good insight into under-
standing in-depth paddle-induced flow behaviour during mechanical
agitation, offering a reliable framework for modelling and optimizing
powder mixing processes. Despite several assumptions, such as consid-
ering only hydrostatic pressure and the approximate estimation of shear
band width, which may introduce a degree of approximation, the μ(I)-
rheology-like law has demonstrated consistent results for two real
powders, semolina and couscous, across various filling ratios.

4. Conclusions

Observing and understanding the physical phenomena during mix-
ing processes have been the focus of many studies. However, the main
emphasis has often been on surface flows, which have proven insuffi-
cient for accurately describing and predicting overall flow behaviour.
This study provides a comprehensive analysis of powder rheology in a
laboratory mixing set-up, concentrating on dense flow and the interac-
tion between the agitation mobile (the paddle) and the powder bed.
The μ(I)-rheology framework offers a promising basis for under-

standing and modelling the flow behaviour of powders. In this frame-
work, the development of μ(I)-rheology for mechanically agitated
systems relies on key assumptions, such as considering the flow geom-
etry as a plane shear rate and visually assessing the width of shear bands.
These assumptions help overcome challenges in measuring complex
powder parameters, such as particle velocities and the normal stress
applied on the paddle by the powder bed, therefore establishing a
practical model that can be easily applied.
The developed μ(I)-rheology seems to be an accurate descriptor for

beds of any relative powder height, perhaps more so for deep powder
beds than shallow ones. This can be attributed to modifications occur-
ring within the powder beds during mechanical agitation. It also
exhibited good predictive capabilities for flow behaviours of powders of
similar particle shapes but different sizes. Even if the C-lab mixer used in
this work for studying and implementing the μ(I)-rheology has a
configuration distinct from that of an industrial mixer, paddle-powder
interaction can be claimed to remain the same. In other words, the

present work may serve directly for other mixers.
Future research should focus on using advanced techniques, such as

high-speed cameras and Discrete Element Method (DEM) simulations, to
gain deeper insights into powder flow dynamics. These techniques can
help validate the μ(I)-rheology model across different powder types and
industrial conditions. Additionally, investigating the influence of
different mixer configurations, along with other free-flowing powders
and agitation speeds will be essential for refining the model and
enhancing its applicability in industrial processes. These studies are the
focus of forthcoming research.
By addressing these limitations and exploring the outlined perspec-

tives, the comprehension of powder flow behaviour in mixing processes
can be notably advanced, paving the way for more efficient and
dependable industrial operation. To the best of our knowledge, there
remains an absence of a comprehensive rheological law that fully in-
corporates powder-specific characteristics to support accurate scaling
up of mixing processes. Developing such a model could facilitate better
predictions for diverse powders under varying operational conditions,
providing valuable insights for process optimisation and design on an
industrial scale.

Nomenclature

Af Filled cross-section area (m2)
AM Agitation mobile (− )
CI% Carr Index (− )
d10 Mean diameter - First decile (μm)

d50 Mean diameter - Median decile (μm)

d90 Mean diameter - Last decile (μm)

f volumetric filling ratio (− )
Fr Froude number (− )
g Gravitational acceleration

(
m.s− 2

)

h Average powder bed height (m)

hW Flowing powder bed (m)

H Maximum powder bed height (m)

I Inertial number (− )
k Number of particles (− )
Lp Paddle (blade) length (m)

lp Paddle (blade) width (m)

NRMSE Normalised Root Mean Squared Error (− )
P Hydrostatic pressure (Pa)
R Radius (tank or cell) (m)

S Friction surface (m2)
T Torque (N.m)
Vw Linear speed (m. s− 1)
W Shear band width (m)
γ̇ Shear rate

(
s− 1

)

μ0 Minimum dynamic friction coefficient (− )
μeff Effective friction coefficient (− )
ρb Bulk density

(
kg.m− 3)

ρp Particle density
(
kg.m− 3)

ρt Tapped bulk density
(
kg.m− 3)

φ Bed compacity (− )
σ Normal stress (Pa)
τ Shear stress (Pa)
ω Angular speed

(
rad.s− 1

)
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Table 6
Froude numbers Fr calculated using
Eq. (18) for I = 0.05 for semolina and
couscous at HR = 1 and HR = 1.25.

H
R

Fr

1 0.75
1.25 0.90
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Appendix A. Appendix

Powder bed height calculation for three scenarios.
Case 1: H/R ¼ 1 (The simplest scenario)
H: Powder height
h1(α) : Height at an angle α
H1 = h1 : Average height
L: Paddle length = R: Radius of the cross-section of the cylinder

Fig A1. Filling ratio H/R = 1.

The law of Sines

sinα =
h1(α)
R

h1(α) = R.sinα

The Mean Value Theorem

h1 =
1

b − a

∫ b

a
h1(α)dα

In this specific case: a = 0; b = π
2

h1 =
1

π
2 − 0

R
∫ π
2

0
sinαdα

h1 =
2R
π [ − cosα]

π
2
0

h1 =
2R
π
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Case 2: H/R < 1
hH
R<1

(α) : Height at an angle α

HH
R<1

= hH
R<1
: Average height

Fig A2. Filling ratio H/R < 1.

The Pythagorean theorem

sinα =

hH
R<1

(α) + (R − H)

R

hH
R<1

(α) = R.(sinα) − R+H

The Mean Value Theorem

hH
R<1

=
1

b − a

∫ b

a
hH
R<1

(α)dα

In this case: a = α0; b = π
2

sinα0 =
R − H
R

= 1 −
H
R
;α0 = sin− 1

(

1 −
H
R

)

hH
R<1

=
1

π
2 − α0

∫ π
2

α0
(R.(sinα) − R+H )dα

HH
R<1

=
1

π
2 − α0

(
R[ − cosα]

π
2
α0 − (R − H)[α]

π
2
α0

)

hH
R<1

=
R

π
2 − α0

⎛

⎜
⎝cosα0 − sinα0*

(π
2
− α0

))

hH
R<1

=
R

π
2 − α0

cosα0 − R.sinα0
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Case 3: H/R > 1

Fig. A3. Filling ratio H/L > 1.

hH
R>1

(α) = h1(α)+

⎛

⎜
⎝h1(α) − hH

L<1
(α)

⎞

⎟
⎠

sinα0 =
H − R
R

; α0 = sin− 1
(
H
R
− 1

)

Pour α ∈ [α0;0] hH
R>1

(α) = Rsinα

Pour α ∈ [0; − α0] hH
R>1

(α) = 2Rsin( − α)

Pour α ∈
[
− α0; − π

2

]
hH
R>1

(α) = Rsin( − α)+ Rsinα0

The Mean Value Theorem

hH
R>1

= −
1

π
2+ α0

⎡

⎢
⎣

∫ 0

α0
hH
R>1

(α)dα+

∫ − α0

0
hH
R>1

(α)dα+

∫ π
2

− α0
hH
R>1

(α)dα

⎤

⎥
⎦

hH
R>1

= −
1

π
2+ α0

[ ∫ 0

α0
Rsinα dα+

∫ − α0

0
2Rsin( − α) dα+

∫ π
2

− α0
Rsin( − α)+Rsinα0dα

]

hH
R>1

= −
1

π
2+ α0

⎡

⎢
⎣
R
α0

(cosα0 − 1)+
R

α0 − π
2
cosα0 +Rsinα0

⎤

⎥
⎦

hH
R>1

= −
R

π
2+ α0

⎡

⎢
⎣
(cosα0 − 1)

α0
+

cosα0
α0 − π

2
+ sinα0

⎤

⎥
⎦

Data availability

Data will be made available on request.
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