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A B S T R A C T
This paper provides a perspective on performance-based decision support. The chosen approach is
based on the principles of “Physics of Decision,” which considers the performance of a system as a
physical trajectory within the boundaries of its performance indicators that might be deviated through
variation of system parameters. According to the overall premise of employing the state-space method
to simulate physical systems, this work presents a decision aggregation method in dynamic systems.
The core contribution is to propose a multi-criteria performance framework to manage multi-input-
multi-output (MIMO) system performance with a combination of affordable decisions. A nonlinear
inventory-workforce management model has been used to demonstrate the proposed approach.

1. Introduction
Providing a reliable decision support system (DSS) is

a long-standing challenge in decision-making. In addition
to several fundamental properties that DSS must possess
(discussed in section 2), the following defects make im-
plementing DSSs challenging and consequently present an
imprecise imitation or simulation of real-world systems: (i)
neglecting to consider some components with underlying ef-
fects on the system performance, (ii) improper construction
of relationships between system parameters, and (iii) inac-
curate system performance predictions due to nonlinear
interactions among its parameters [1, 2, 3].

The third issue is primarily the focus of the present work,
which aims to pinpoint how individual decisions in nonlinear
circumstances can be combined and consequently estimate
their influences on the system’s performance, despite com-
plexities arising from its nonlinearity. To put it simply, if
the studied system is nonlinear, the singular impact of its
parameter variations on the system’s performance cannot
be aggregated. In other words, the effects of varying single
parameters and then aggregating their impacts on the system
performance would not yield the same result as when the
parameters vary concurrently.

In physical systems, the “explicit” method calculates the
system status at a future time from the currently known sys-
tem status, whereas the “implicit” methods attempt to find
a solution to the nonlinear system of equations iteratively
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by considering the current state of the system as well as its
subsequent (or previous) time state [4]. The implicit method,
for example, deals with the nonlinear relationship between
applied forces on the system and its physical displacement.
Figure 1 illustrates the relationships between the intensity
of applied forces to an object connected to a spring (with
constant and variable stiffness coefficient, 𝑘) and the object
displacement (𝐹 = 𝑘𝑥).

Displacement (x) Displacement (x)

For
ce (

F)

For
ce (

F)
Linear spring (constant sti�fness) Nonlinear spring (non-constant sti�fness)

Figure 1: Mass-Spring system with linear & non-linear springs

The Physics-of-Decision (POD) is a physics-inspired
framework to manage multi-input multi-output (MIMO) sys-
tems [5]. According to the original POD framework, oppor-
tunities and risks may be viewed as physical forces applied
to the system trajectory that could push the system toward
or away from its objectives in its performance space. The
practical applications of the POD framework are diverse and
impactful. For instance, in financial systems, POD can help
optimize investment strategies by modeling market forces as
dynamic entities. In supply chain management, it can assist
in decision-making by evaluating risks and opportunities
as forces affecting inventory levels and distribution effi-
ciency. In robotics, POD principles enhance control systems,
treating environmental interactions as forces that guide the
robot’s actions. Leveraging the POD framework and a well-
known physical system modeling, state-space representation
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[6, 7], the proposed work attempts to provide an implicit
method to address decision-related consequences on the
system performance in nonlinear dynamical systems. This
paper addresses solving the nonlinearity problem through
linearization methods such as the Taylor Series and Ja-
cobian Matrix, making nonlinear dynamic systems more
predictable and controllable. The overall objective is to
provide a solution to a nonlinear system to predict its
performance through individual decisions by eliminating
imposed consequences arising from the system’s nonlin-
earity and assisting the system manager in evaluating
several distinctive decisions before taking the best ones.

The paper is structured as follows. Section 2 focuses on
the Physics-of-Decision fundamentals and current research
efforts related to the topic. Section 3 first introduces the
state-space modeling, then tunes the POD framework to that.
Section 4 provides two nonlinear dynamic models to present
the work’s significance. Finally, section 5 gives conclusive
remarks and proposes areas for further research.
2. Background and related works

As asserted in [8], truth exists, and so does uncertainty.
Uncertainty acknowledges the existence of an underlying
truth that is a fact in the future. Probability, which is the
language of uncertainty, therefore aims at truth. Probabil-
ity presupposes truth; it is a measure or characterization
of truth. Probability is not necessarily the quantification
of the uncertainty of truth, because not all uncertainty is
quantifiable. Uncertainties are considered potentialities in
the decision-making context, whereas potentialities with
undesirable outcomes are referred to as “risks” and the ones
with conducive consequences as “opportunities” [5]. POD
introduces an innovative DSS based on physics laws of mo-
tion to address those quantified or quantifiable potentialities
that arise from incomplete information, lack of knowledge,
and experimental data and are reducible in the case of risk
and achievable in the case of opportunity.
2.1. Physics-based decision support system

Physics of Decision is concerned with multi-criteria
management of systems subject to almost ubiquitous in-
stability and uncertainty which have to be coped with,
and accounted for when managing the systems and their
performance [5, 9]. Decision support technologies and per-
formance management allow the examination of such sys-
tems in the following three aspects, as proposed in [10]. (i)
Intelligence: to comprehend the considered system, its Key
Performance Indicators (KPIs), its context, its current and
target performance, (ii) Design: to comprehend the potential
changes that this system and its context may undergo, and
(iii) Choice: to find a way to choose among changes and
their effects on performance to make appropriate decisions.

Through the following methodology, the POD, an in-
novative approach to decision support, might completely
encompass the Intelligence, Design, and Choice aspects of
decision support systems in the context of instability and
uncertainty [9].

(i) Intelligence through system establishment and char-
acterization: First, the intention of the considered sys-
tem (objectives considered as KPIs), its specific study
limits, the system’s associated parameters to the rec-
ognized potential, as well as the context parameters
themselves, and its internal and external (system’s
context) potentials are collected and described,

(ii) Design through system vulnerability and sustainability
identification: Second, a detailed assessment of the
investigated system through sensitivity analysis (e.g.,
simulation campaign runs, Artificial Neural Networks
(ANN), and clustering) infers the correlation matrix
between the system inputs and the intended KPIs,

(iii) Choice through strategy exploration: Finally, regard-
ing the system preferences and limits, using the opti-
mization algorithms, notably the heuristic approach,
the most desirable decisions are offered to lead the
system toward its objectives in the performance space.

The proposed methodology is included in the POD
framework, which has been studied in several contexts. Cri-
sis management context, such as the COVID-19 pandemic
crisis [9], the COVID-19 pandemic impact on air pollution
[11]. Operational management contexts, such as road traffic
management [12], supply chain management [13, 14], and
polling place management [15, 16]. Efficiency management
context, such as project management [17]. The following
section describes the preliminaries and basic concepts of the
POD framework.
2.2. Foreword, essential definitions, and notations

System characterization and identification are essential
challenges in systems theory. The mathematical represen-
tation of a system lies at the heart of the characterization
challenge. A simulation method that aims to represent the
system functionality through a performance-based approach
can be expressed as a function F from an input space U,
representing the description space of the system, into an
output space Y, representing the performance space of the
system [5]. The function F is defined implicitly by the
specified input-output pairs. The method of representing
time-dependent systems by differential equations is well-
established in systems theory and applies to a fairly large
class of systems [18]. For example, the differential equation:

𝑑𝑥(𝑡)
𝑑𝑡

≜ �̇�(𝑡) = Φ[𝑥(𝑡), 𝑢(𝑡)], 𝑡 ∈ ℝ+

𝑦(𝑡) = Ψ[𝑥(𝑡)].
(1)

where:
𝑢(𝑡) ≜ [𝑢1(𝑡), 𝑢2(𝑡),⋯ , 𝑢𝑝(𝑡)]𝑇

𝑥(𝑡) ≜ [𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)]𝑇

𝑦(𝑡) ≜ [𝑦1(𝑡), 𝑦2(𝑡),⋯ , 𝑦𝑚(𝑡)]𝑇

represents a 𝑝-input, 𝑚-output system of order 𝑛. While 𝑢𝑖(𝑡)represents the 𝑖-th input vector at time 𝑡, 𝑥𝑖(𝑡) represents the
Nafe Moradkhani et al.: Preprint submitted to Elsevier Page 2 of 14
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Figure 2: Mathematical representation of the Physics of Decision approach

𝑖-th state variable of inputs’ vectors, 𝑢1(𝑡), 𝑢2(𝑡),⋯ , 𝑢𝑝(𝑡), at
time 𝑡, and 𝑦𝑖(𝑡) represents the 𝑖-th output vector at time 𝑡.
Functions Φ and Ψ are dynamic1 “linear” or “nonlinear”
maps defined as Φ ∶ ℝ𝑛 × ℝ𝑝 → ℝ𝑛 and Ψ ∶ ℝ𝑛 → ℝ𝑚.
The function Φ presents the states of the system inputs in
space U; Since the number of inputs is considerably fewer
than their possible states (𝑝 << 𝑛), the Φ would be a
𝑛 × 𝑝 → 𝑛 dimension function. The Ψ function is used
to depict the relationship between inputs (vector 𝑢(𝑡)) and
outputs (vector 𝑦(𝑡)). The vector 𝑥(𝑡) denotes the state of
the system at time 𝑡 and is determined by the state at time
𝑡0 < 𝑡 and the input 𝑢(𝑡) defined over the interval [𝑡0, 𝑡). The
output 𝑦(𝑡) is determined by the state of the system at time
𝑡 [19, 18]. Equation 1 is referred to the input-state-output
representation of the system. This paper is concerned with
dynamic systems, which can be represented by differential
equations corresponding to the differential equation given in
Equation 1. These take the form:

𝑥(𝑘 + 1) = Φ[𝑥(𝑘), 𝑢(𝑘)],
𝑦(𝑘) = Ψ[𝑥(𝑘)]. (2)

where 𝑢(.), 𝑥(.), and 𝑦(.) are discrete-time sequences. Fig. 2
depicts the POD framework as a time-dependent technique
with the input-states-output vision.

According to equation 1, the variations of vector 𝑢(𝑡)
change the �̇�(𝑡) via function Φ. These changes go through
function Ψ and consequently deviate the system trajectory
shaped with vector 𝑦(𝑡) in the performance space Y. This
transition from the variation of vector 𝑢(𝑡) to the deviation
of the system trajectory is assumed as “physical forces” in
the POD framework.

3. Force-based paradigm in performance
management
The space Y in Fig. 2 presents the predetermined time-

independent Target (objective) and Danger (or could be less
targeted) zones concerning the intended level of quantified
KPIs (𝑦1, 𝑦2,⋯ , 𝑦𝑚) on the axes. The degree of freedom of

1Although the Φ and Ψ functions could be time-invariant (static) [9],
this study concentrates mainly on dynamic (time-variant) functions

the system to assign values to system inputs (𝑢1, 𝑢2,⋯ , 𝑢𝑝) in
the space U along with the system’s sensitivity to the critical
level of the system’s inputs is the main factor in these de-
terminations (system’s susceptibilities) in the performance
space Y. Although these levels may change over time, they
provide a forward-thinking view of the systems’ objectives.
The most essential takeaway from the presented framework
in Fig. 2 is to see the studied system as an object in its multi-
dimensional performance space Y, which might be pushed
and pulled by produced forces (𝑓1, 𝑓2, ⋯, 𝑓𝑝) resulting from
changes in the system’s parameters or in its environment
parameters (𝑢1, 𝑢2,⋯ , 𝑢𝑝) at any time 𝑡. Essentially, these
variations’ consequences are observed through the deviation
of the system ”trajectory” within the space Y, the multidi-
mensional performance space of systems’ KPIs.
3.1. Physics of Decision in practice

The presented POD framework, emphasizes the mobility
of the investigated system within its performance space Y,
where movements are studied in this multidimensional space
defined by the system’s KPIs. These KPIs evolve as a result
of changes in the system’s internal and contextual input
parameters, vector 𝑢(𝑡) in equation 1 [5].

The purpose of the POD theory, which derives from clas-
sical physics, is to facilitate the handling of the intricacies
of the observed system to assist decision-makers in steering
the system (especially in nonlinear circumstances) toward its
objectives. The following illustrates the relation between a
KPI (and its associated concepts) and physics notations such
as displacement, velocity, and acceleration.

(i) Displacement ⇔ Variation: The displacement (𝛿𝑥) of
the system on the associated axis to a KPI in the
performance space Y (e.g., 𝑦𝑖) is equivalent to the
variations of that KPI (𝛿𝑘𝑖),

(ii) Velocity ⇔ Growth: The derivative of a KPI (𝜕𝑘𝑖∕𝜕𝑡)shows its positive/negative growth, which is equalized
to the system’s velocity (𝜕𝑥∕𝜕𝑡) on the KPI’s connected
axis,

(iii) Acceleration ⇔ Fluctuation: The velocity derivation
indicates the system’s acceleration (𝜕𝑣∕𝜕𝑡 = 𝜕2𝑥∕𝜕𝑡2)
on the connected axis.
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The “Displacement” of a KPI shows where the system
is falling behind or veering off course to take corrective
action quickly, solving the issue before it escalates into a
full-blown problem. Displacement mainly gives an intuition
or insight into “Operational” decisions that seek to get closer
and closer to real-time measurement to evaluate the system
performance on a short-term basis.

The “Velocity” of a KPI monitors the progress or trend
of the system toward a stated destination (system objectives
in the performance space Y) to take “Strategic” decisions
over time. This measurement effectively requires observa-
tion over a more extended period to provide an accurate
picture of system development.

The “Acceleration” magnitude may reflect how strongly
or weakly a KPI fluctuates on its connected axis and might
help on the “Operational” decisions. At the same time, its
positive or negative direction may aid in the “Strategic”
decision and is always the same as the net force acting on
the system produced by inputs’ variations (vector 𝑢(𝑡)).

The displacement, velocity, and acceleration are equally
important; they just provide different information for differ-
ent purposes. For systems to yield all their promise, strategic
and operational decisions must be aligned so that decision-
makers at all levels may perceive the relationship between
system activity and system performance.

The POD approach focuses on a force-based vision to
assess the system’s performance. According to this vision, a
system is perceived as an object, and its performance as a tra-
jectory within the performance spaceY may veer off course
due to internal or contextual perturbations (interpreted as
risks and opportunities) viewed as physical forces acting on
the object.
3.2. Physics of Decision installation on state-space

representation
State-space representation, a well-established mathe-

matical model in physics, provides a practical and condensed
method to describe and analyze systems with multiple inputs
and outputs. The most general state-space representation of a
linear system with 𝑝-inputs, 𝑚-outputs, and 𝑛-state variables
takes the following form:

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),
𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷𝑢(𝑡) (3)

where 𝐴 is the “state matrix”, 𝐵 is the “input matrix”, 𝐶
is the “output matrix”, and 𝐷 is the “feed-through (or feed-
forward) matrix”. The first equation is the state equation and
the latter is the output equation. While all matrices (𝐴, 𝐵, 𝐶 ,
and 𝐷 ) are allowed to be time-variant (i.e., their elements
can depend on time, e.g., 𝐴(𝑡)); in the common Linear Time
Invariant (LTI) systems, matrices will be time invariant (i.e.,
the functions Φ and Ψ in equation 1 are static). This study
focuses on systems whose outputs do not influence inputs;
however, this could occur in several systems (e.g., thermostat
heater, automatic clothes iron, etc.). In such systems, the
state and output equations are influenced by a “feedback”

matrix 𝐾 from the system output2. Fig. 3 shows the block
diagram for the linear state-space representation, with feed-
back 𝐾 (indicated by a dashed line) from the system’s output
𝑦 to its input 𝑢 [6, 7]. Using transfer functions (Laplace

+
+

+
+

𝐵 ∫

𝐷

𝐴

𝐾

𝐶 𝑦�̇� 𝑥𝑢

Figure 3: General state-space representation model

transfer form) or differential equations to model complex
systems becomes laborious; this is even more true if the
system has multiple inputs and outputs [7]. The state space
method largely alleviates this complexity. Fig. 4 shows a
Mass-Spring-Damper system with its mass, 𝑚, spring con-
stant, 𝑘, and damping coefficient, 𝑏, where the external force
acting on the mass, 𝑓 (𝑡), is considered as input while its
position, 𝑝(𝑡), is considered as output. According to the free-

𝑘

𝑏

𝑚 𝑚𝑓 (𝑡)

𝑏�̇�(𝑡)

𝑘𝑝(𝑡)

𝑓 (𝑡)

𝑝(𝑡) 𝑝(𝑡)

Figure 4: Mass-Spring-Damper System

body diagram shown in dashed lines and Newton’s 2nd law,
equation 4 presents the differential equation of this system.

𝑓 (𝑡) − 𝑏
𝑑𝑝
𝑑𝑡

− 𝑘𝑝(𝑡) = 𝑚
𝑑2𝑝
𝑑𝑡2

(4)

This system is a straightforward illustration of a “linear”
state-space representation. When a system has a mass, its po-
sition and velocity are commonly chosen as state variables.
Also, position, velocity, and force (input) are sufficient to
determine this system’s future position (output). For these
reasons, position and velocity are chosen as state variables
(𝑥(𝑡) in equation 3). The input vector (𝑢(𝑡)), state vector
(𝑥(𝑡)), and output vector (𝑦(𝑡)) are shown in equation 5.

𝑢(𝑡) = 𝑓 (𝑡), 𝑥(𝑡) =
[

𝑥1(𝑡)
𝑥2(𝑡)

]

=
[

𝑝(𝑡)
�̇�(𝑡)

]

, 𝑦(𝑡) = 𝑝(𝑡). (5)
2In such systems, the equation 3 becomes: �̇�(𝑡) = 𝐴𝑥(𝑡) +𝐵𝐾𝑦(𝑡) and

𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷𝐾𝑦(𝑡) - note that 𝐾 is the feedback matrix.
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Considering the new notation in equation 5, equation 4
becomes equation 6.

𝑢(𝑡) − 𝑏𝑥2(𝑡) − 𝑘𝑥1(𝑡) = 𝑚�̇�2(𝑡) (6)
Through rearranging equations to express �̇�(𝑡) and 𝑦(𝑡) in
terms of 𝑥(𝑡) and 𝑢(𝑡), equation 7 is obtained.

�̇�1(𝑡) = 𝑥2(𝑡),
�̇�2(𝑡) = − 𝑘

𝑚
𝑥1(𝑡) −

𝑏
𝑚
𝑥2(𝑡) +

1
𝑚
𝑢(𝑡),

𝑦(𝑡) = 𝑥1(𝑡).
(7)

Finally, by organizing equation 7 into matrix format, equa-
tion 8 shows (the state and output equations) the state-space
model of the Mass-Spring-Damper system presented in Fig.
4.

[

�̇�1(𝑡)
�̇�2(𝑡)

]

=

𝐴
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

0 1
−𝑘∕𝑚 −𝑏∕𝑚

] [

𝑥1(𝑡)
𝑥2(𝑡)

]

+

𝐵
⏞⏞⏞
[

0
1∕𝑚

]

[

𝑢(𝑡)
]

,

𝑦(𝑡) =
[

1 0
]

⏟⏟⏟
𝐶

[

𝑥1(𝑡)
𝑥2(𝑡)

]

.
(8)

The POD framework studies the system’s trajectory in
the performance space Y through produced forces stem-
ming from inputs’ variations (𝑢1, 𝑢2,⋯ , 𝑢𝑝) at any time 𝑡,
as opposed to state-space representation in “Time Invariant”
systems, which only has 𝑢(𝑡) as a time-dependent force.
Given this distinction, the state-space representation would
be continuous time-variant, as equation 9 shows the matrices
and vectors used in the POD framework could be time-
variant.

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡),
𝑦(𝑡) = 𝐶(𝑡)𝑥(𝑡) +𝐷(𝑡)𝑢(𝑡) (9)

Considering the whole Mass-Spring-Damper system as an
object in its performance space Y built on the (i) system
position and (ii) system velocity as its KPIs (i.e., output
matrix 𝐶 =

[

1 1
]), Fig. 5 (II) presents the tuning of

this system to the POD framework along with the results
of several discussed investigations in the following. Con-
sidering the external force, 𝑓 (𝑡), the mass, 𝑚, the spring
constant, 𝑘, and damping coefficient, 𝑏, the input vector
of this system includes 𝑢(𝑡) = [𝑓 (𝑡), 𝑚(𝑡), 𝑘(𝑡), 𝑏(𝑡)] =
[𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡)].

To evaluate the system performance, the three following
modes are considered to assess the system performance:
(i) Inertia mode: The performance could change due to
its normal behavior and the associated consumption. In
this mode, the system is not facing any force, (ii) Passive
mode: In addition to the performance changes of Inertia, the
performance might change because there is (are) force(s)
in the system or its environment, and (iii) Active mode:
In addition to the performance changes of Inertia, the
performance could change because the system is facing some

forces (passive changes) and also because of some taken
decisions to manage the consequences of those forces [9].

It is important to note that the parameter initialization,
settings, and applied scenarios in the remaining of this
section were chosen to reflect the POD framework, which
could be irrational and impossible to implement in real-
world circumstances.

The following forces have been picked to investigate
the Mass-Spring-Damper system as a “Linear-Time-Variant”
system in the POD framework with the initial input vector,
𝑢(𝑡0) = [5𝑁, 20𝐾𝑔, 2𝑁∕𝑚, 4𝑁𝑠∕𝑚].

(i) 𝑓1: replacement of spring at time 𝑡20 with a higher
constant → 𝑘(𝑡20) = 3𝑁∕𝑚 [𝑘(𝑡0) to 𝑘(𝑡19) = 2],

(ii) 𝑓2: concurrent replacement of the following elements
at time 𝑡30. (i) mass with a lighter mass → 𝑚(𝑡30) =
10𝐾𝑔 [𝑚(𝑡0) to 𝑚(𝑡29) = 20] and (ii) damper with a
higher damping coefficient → 𝑏(𝑡30) = 6𝑁𝑠∕𝑚 [𝑏(𝑡0)to 𝑏(𝑡29) = 2],

(iii) 𝑓3: applying a greater force at time 𝑡40 → 𝑓 (𝑡40) = 8𝑁
[𝑓 (𝑡0) to 𝑓 (𝑡39) = 5].

According to the tuning of the Mass-Spring-Damper system
as a “Linear-Time-Variant” system (equation 9) to the POD
framework and applied forces, Fig. 5 (I) displays the sys-
tem’s variables 𝑥(𝑡) (position and velocity) for 50 seconds.
The passive trajectory (system variables with initial input
vector 𝑢(𝑡0)) and deviations (active trajectory) due to 𝑓1, 𝑓2,
and 𝑓3 have been depicted if the chosen forces are applied
together. In Fig. 5 (II), trajectories (passive and active) of the
tuned system into the POD framework and built on its KPIs
(output 𝑦(𝑡) = 𝑥(𝑡)) have been depicted analogously; with
the difference that the whole system viewed as an object in
this framework that is being pulled and pushed by generated
forces.

The initial passive trajectory is depicted for the period
from 𝑡0 until the moment that the first force arrives (𝑓1 at
𝑡20). In linear systems like Mass-Spring-Damper, after 𝑓1takes effect, a new passive trajectory is formed that takes into
account both 𝑓1 and the initial passive impacts with itself
starting at time 𝑡20 (input vector 𝑢(𝑡0) and 𝑢(𝑡20)). Likewise,
this rule holds for later times and possible incoming forces
applied to the system. The vector sum of applied forces is
well established in such systems (∑𝑖=𝑝

𝑖=1 𝑓𝑖 = 𝑓1+𝑓2+⋯+𝑓𝑖),making it feasible for applied forces to be aggregated (as
in classical physics). The equalized KPI-oriented concepts
(variation, growth, and fluctuation) to the Kinematic phys-
ical notations (displacement, velocity, and acceleration) in
section 3.1 is employed directly for system analyses (taking
operational and strategic decisions). If either the state or the
output equations-or both-are nonlinear, the vector sum of
applied forces is invalid (∑𝑖=𝑝

𝑖=1 𝑓𝑖 ≠ 𝑓1 + 𝑓2 +⋯ + 𝑓𝑖).The following example illustrates such systems and po-
tential solutions to deal with this issue.
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Figure 5: Mass-Spring-Damper and Pendulum systems tuning into the Physics of Decision framework and analyses

The 𝑢(𝑡) argument in equation 9 to the functions can be
dropped if the system is unforced (i.e., it has no external
force). A classic “nonlinear” system is a simple unforced
pendulum shown in Fig. 6.

𝑥

𝑦l
𝐓

𝑚𝐠

𝑚

𝜃

𝜃

Figure 6: An unforced pendulum system

Equation 10 presents the pendulum motion equation.
𝑚l2�̈�(𝑡) = −𝑚l𝑔 sin 𝜃(𝑡) − 𝑘l�̇�(𝑡) (10)

where:
• 𝑔 is the gravitational acceleration,
• 𝑘 is coefficient of friction at the pivot point,
• l is the radius of the pendulum (to the center of gravity

of the mass 𝑚).
• 𝜃(𝑡) is the angle of the pendulum with respect to the

direction of gravity,
• 𝑚 is the mass of the pendulum (pendulum rod’s mass

is assumed to be zero),

Equation 11 shows the state equation of the pendulum.
�̇�1(𝑡) = 𝑥2(𝑡),
�̇�2(𝑡) = −

𝑔
l
sin 𝑥1(𝑡) −

𝑘
𝑚l

𝑥2(𝑡).
(11)

where:
• 𝑥1(𝑡) = 𝜃(𝑡) is the angle of the pendulum,
• 𝑥2(𝑡) = �̇�1(𝑡) is the pendulum’s rotational velocity,
• �̇�2(𝑡) = �̈�1(𝑡) is the rotational acceleration.

Finally, equation 12 presents the general form of the pendu-
lum state and output equations (11).

�̇�(𝑡) =
[

�̇�1(𝑡)
�̇�2(𝑡)

]

= Φ(𝑥(𝑡)) =
[

𝑥2(𝑡)
− 𝑔

l
sin 𝑥1(𝑡) −

𝑘
𝑚l𝑥2(𝑡)

]

𝑦(𝑡) =
[

1 1
]

[

�̇�1(𝑡)
�̇�2(𝑡)

]

(12)
Similar to the Mass-Spring-Damper system example, Fig.
5 (III) and (IV), with the same equivalent legends in
(I) and (II) respectively, present the state variables (rota-
tional velocity and rotational acceleration) and output vector
𝑦(𝑡) in POD together with the initial input vector 𝑢(𝑡) =
[𝑔(𝑡), 𝑘(𝑡),l(𝑡), 𝜃(𝑡), 𝑚(𝑡)] = [𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡), 𝑢5(𝑡)]= [10𝑚∕𝑠2, 2, 8𝑚, 30◦, 5𝐾𝑔] at 𝑡0 and the deviations in
accordance with the following forces at 𝑡20, 𝑡30 and 𝑡40.

(i) 𝑓1: 𝑘(𝑡20) = 10 [𝑘(𝑡0) to 𝑘(𝑡19) = 2],
(ii) 𝑓2: including 𝑓21: l(𝑡30) = 6𝑚 [l(𝑡0) to l(𝑡29) = 8]

and 𝑓22: 𝑚(𝑡30) = 30𝐾𝑔 [𝑚(𝑡0) to 𝑚(𝑡29) = 5],
(iii) 𝑓3: 𝑔(𝑡40) = 8𝑚∕𝑠2 [𝑔(𝑡0) to 𝑔(𝑡39) = 10].
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The presented “continuous time-variant” pendulum system
is no longer linear due to the term 𝑠𝑖𝑛𝑥1(𝑡) in equation
11; hence such nonlinear systems don’t obey the forces
aggregation rule analogous to linear systems.

Since the x(t) in Fig. 5 (III) alters almost in the (−1,+1)
interval (shown in black dashed lines) and the term 𝑠𝑖𝑛𝑥1(𝑡)is almost the same as 𝑥1(𝑡) on this interval, so 𝑠𝑖𝑛𝑥1(𝑡)in the state equation is estimated with 𝑥1(𝑡) (Fig. 4 (V)).
This estimation makes the state equation linear; thus,
the forces aggregation works like linear systems. Fig. 5
(VI) depicts the linearized pendulum system, which almost
resembles the original nonlinear trajectory shown in Fig. 5
(IV) (According to Fig. 5 (V), as the pendulum moves away
from the point (0, 0), the absolute value of the approxima-
tion, 𝑥(𝑡), is greater than the actual value, 𝑠𝑖𝑛𝑥(𝑡); thus, the
movement of the pendulum is slightly faster than the original
movement, and this shift is evident when comparing the Fig.
5 (IV) and Fig. 5 (VI)).

The system equilibrium or stationary points are those
when the following condition is satisfied. The applied forces
are neutralized by each other (𝐹𝑛𝑒𝑡 = 0), so that �̇� = 0 [13].
The equilibrium points of a pendulum are those that satisfy
[

𝑥1(𝑡), 𝑥2(𝑡)
]= [

𝑛𝜋, 0
] for 𝑛 ∈ ℤ (same for the Mass-Spring-

Damper system when 𝑘𝑝(𝑡) + 𝑏�̇�(𝑡) = 𝑓 (𝑡)) in Fig. 4.
Real-world systems are almost entirely nonlinear; there-

fore, applying the state-space model to them is not straight-
forward as it is for LTI systems (equation 3). It turns out
that many nonlinear systems have characteristics that are
strikingly comparable to those of their linear counterparts.
In addition, various methods make it possible to use linear
analysis on nonlinear systems. The linearization of nonlin-
ear systems is a potent method in nonlinear analysis. In
dynamics analysis, particularly close to equilibrium points,
linearization is used to represent a nonlinear system of
ODEs as a linear system [20, 21]. It is possible to employ
linearized systems to construct dynamical system controllers
that benefit from cutting-edge linear controller approaches
to comprehend the local behavior of dynamical systems,
notably at equilibrium points [20].

The Taylor series of dynamical ODEs is one of the most
widely used linearization methods. The general 1st order
structure of the Taylor series is recalled by equation 13 to
linearize the function Φ in equation 1 around point (𝑥, 𝑢)
[21].
�̇�(𝑡) = Φ(𝑥, 𝑢) ≈ Φ(�̄�, �̄�) + 𝜕Φ

𝜕𝑥
|

|

|�̄�,�̄�
(𝑥 − �̄�) + 𝜕Φ

𝜕𝑢
|

|

|�̄�,�̄�
(𝑢 − �̄�)

(13)
If the values of 𝑥 and 𝑢 are chosen in steady state conditions
(at equilibrium points) then Φ(�̄�, �̄�) = 0 because the deriva-
tive term 𝜕Φ∕𝜕𝑢 = 0 in steady states.

The POD framework is supplemented with the lineariza-
tion method to assess the aggregation of individual decisions
(applied forces) in nonlinear case studies to control the
system trajectory in the performance space Y. To state it
plainly, in nonlinear systems, aggregation of taken indi-
vidual decisions, where the decisions are viewed as forces

that move the system in its performance space, will not
necessarily be the same as if they were taken together. This
issue mainly arises from cascading effects and subsequently
delayed implications in nonlinear systems (see Figure 1).
Section 4 goes into further detail about this issue and applies
the introduced solution to an extended example.

4. Experiments and results
The main experiments are centered on the significance of

the force-based paradigm in the POD framework as a DSS
on industrial and strategic simulation models. The presented
POD framework in this study constrains the experiments
by requiring differential equation models of the systems
being studied in this form so that the equivalent state-space
model to the system’s ordinary differential equations (ODEs)
could form (however, the other POD studies have been
implemented through different simulation approaches such
as agent based modeling (ABM) [15] and discrete event
modeling (DEM) [12] too). The most prevalent form of ODE
modeling is the System Dynamics approach (compartmental
models), consisting of compartments, flows, causal loop
diagrams (CLD), and system parameters. The POD answers
the following critical business question in nonlinear systems
that the System Dynamics approach, due to nonlinearity, can
not address.

“What if the system manager decides to take several in-
dividual decisions which cost the system less (easier path or
farther from intended danger zones, or both, in the system’s
performance space (Fig. 2)) if they were taken together and
then aggregate them to evaluate the system performance?”

The presented work and supplied procedures assess two
well-known nonlinear models: a simple illustrative model
to apply the linearization and forces aggregation, then an
industrial and complicated model, both implemented with
the System Dynamics approach to address this issue.
4.1. Bass diffusion system dynamics model

The dynamic model of a basic Bass Diffusion system
implemented with ODEs is used to illustrate the state-space
method and linearization procedures in nonlinear dynamical
systems where the state-space representation in equation 3
cannot be directly applied [22].

Potential
Adopters Adopters

AdoptionFromAd AdoptionFromWoM

ContactRate

TotalPopulation
AdoptionFractionAdEffectiveness

Adoption Rate

Figure 7: Basic Bass Diffusion system dynamic model

This model consists of a simple differential equation
describing how “new products are adopted in a population.”
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Figure 8: Individual inputs’ variations (applied forces) and their aggregations vs. output (potential adopters)

The model presents a rationale for how current and po-
tential adopters of a new product interact. The premise of
the strategy is that potential adopters might become new
customers through advertisement or word-of-mouth (WoM)
mechanisms among potential and existing consumers. The
Adoption Rate is the accumulation of these two ways of
adoption (Advertise and WoM) at any given moment [23].
The potential and current Adopters variations are considered
as state variables 𝑥1(𝑡) and 𝑥2(𝑡), respectively. The popula-
tion individuals are either customers or potential customers,
meaning that 𝑥1 + 𝑥2 = Total population (𝑢2 latter) and,
consequently, �̇�1 = −�̇�2. Equation 14 presents the state and
output equations of the Bass Diffusion presented in Fig. 7.

�̇�1(𝑡) = −(AdoptionFromAd + AdoptionFromWoM)
�̇�1(𝑡) = Φ(𝑥(𝑡), 𝑢(𝑡)) = −𝑥1𝑢1 − 𝑥1𝑥2𝑢3𝑢4∕𝑢2

�̇�(𝑡) =
[

�̇�1
�̇�2

]

=
[

−𝑥1(𝑢1 + 𝑢3𝑢4) + 𝑥21𝑢3𝑢4∕𝑢2
𝑥1(𝑢1 + 𝑢3𝑢4) − 𝑥21𝑢3𝑢4∕𝑢2

]

𝑦(𝑡) =
[

1 0
]

[

�̇�1
�̇�2

]

(14)
where:

• 𝑢1(𝑡) is AdEffectiveness: Advertisement influence co-
efficient on Adoption Rate,

• 𝑢2(𝑡) is Total Population: Total adopters and potential
adopters,

• 𝑢3(𝑡) is Adoption Fraction: The imitation rate of po-
tential adopters from current adopters,

• 𝑢4(𝑡) is Contact Rate: Contact rate between potential
adopters and current adopters,

• 𝑢(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡)].

The state equation of the Bass Diffusion model in equation
14 is nonlinear (due to the term 𝑥1𝑥2 before arrangement,
later 𝑥21) that requires linearization. The presented Jacobian
Matrix in equation 15 linearizes this state variable concern-
ing input vector 𝑢(𝑡) to be in the “continuous time-variant”
state-space form (equation 9). Note that 𝜕𝑥∕𝜕𝑥1 = −𝑢1 −
𝑢3𝑢4 + 2𝑥1𝑢3𝑢4∕𝑢2.

𝐽 ( ⃖⃗𝑥) =
[ 𝜕𝑥
𝜕𝑢1

, 𝜕𝑥
𝜕𝑢2

, 𝜕𝑥
𝜕𝑢3

, 𝜕𝑥
𝜕𝑢4

]

= [−𝑥1,−𝑢3𝑢4𝑥21∕𝑢
2
2,−𝑢4𝑥1

+𝑢4𝑥21∕𝑢2,−𝑢3𝑥1 + 𝑢3𝑥21∕𝑢2]
(15)

Fig. 8 shows the consequences of changing inputs individu-
ally (𝑢1, 𝑢2, 𝑢3, and 𝑢4 on top) on the Potential Adopters as
intended output in linear and nonlinear forms at the bottom.
The final plot (the rightmost at the bottom) demonstrates the
impact of aggregated input changes (𝑢1, 𝑢2, 𝑢3, and 𝑢4) on
the output in both linear and nonlinear situations.

According to the zoomed portion of the “Contact Rate”
variation plot in Fig. 8, the comparison between linearized
and nonlinear versions indicates the following conclusions.

(i) The 1st order linearization from the Taylor series is
sufficient (𝑥21 ≈ 0) to transform the nonlinear state
equation 14 to continuous time-variant form (equations
9) and consequently compute the effects of input varia-
tions on the output for the basic Bass Diffusion model,
yet; highly oscillated models require higher orders.

(ii) The forces have immediate impacts on the output in
the nonlinear form; however, there are considerable
behind-time impacts in the linearized versions. For
instance, consider the variation of the Contact Rate
from 50 to 350 contacts per person starting at the
beginning of the 7th year."
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Figure 9: System Dynamic model of inventory-workforce management provided in [24]

(iii) The forces aggregation in the linear version closely
resembles the application of forces together in the
nonlinear form (the depicted plots in the rightmost at
the bottom of Fig. 8).

4.2. Inventory-workforce system dynamics model
This section presents a more industrial, highly oscillated,

and continuous time-variant system dynamic approach of
an inventory-workforce model, which is entirely nonlinear
in nature. The study employs the linearization approach to
compute the linear counterpart of the nonlinear inventory-
workforce system at the time of input variations (applied
forces), and it calculates the KPIs variation, growth, and
fluctuation (section 3.1), which are connected to the phys-
ical notations of displacement, velocity, and acceleration,
respectively [13].

The inventory-workforce model illustrates how produc-
tion scheduling and employment regulations interact, po-
tentially causing inconsistency in responding to consumer
demand effectively.

The model makes some significant simplifying assump-
tions. Order backlog is ignored and customer orders are
exogenous. The inventory-workforce model emphasizes la-
bor’s importance as a production factor. When the workforce
model and the inventory model are combined, production
starts to adapt with a delay to the targeted start time. The in-
ventory level with the connected workforce model decreases
further after the demand shock (high order from customers)
than the inventory model without it.

The inventory model structure and the equations be-
tween its parameters, stocks, flows, and causal loop dia-
grams (CLD) are thoroughly described in chapter 18 of the
“Business Dynamics” book [24]. Chapter 19 discusses the
workforce model and its link to the inventory model. The
behavior of the coupled model, including oscillations and
their sources, is also explored [24].

This study avoids an in-depth repetition of how the mod-
els operate and instead provides a schematic representation
of the structure of the models and the relationships between
the parameters, stocks, and flows as presented in Fig. 9.
Dashed arrows within the diagram denote the shared pa-
rameters of the two interconnected models. Detailed expla-
nations of the dynamics and mechanisms of the inventory-
workforce model are covered in the appendix A of this paper.
This approach allows us to focus primarily on applying
the force-inspired paradigm to time-dependent nonlinear
models (e.g., system dynamic models) rather than delving
into the intricacies of the models themselves. The goal of this
research is to propose a decision-making tool that leverages
these models.

The inventory-workforce model is tuned to the POD
framework presented in section 3 as follows. The POD
framework considers the parameters in Fig. 9 with just
output arrows (this property is present in 17 parameters) as
inputs in the space U. Fig. 9 depicts the model’s inputs with
an asterisk symbol (∗). The remaining components, such as
flows (e.g., “Shipment Rate”), stocks (e.g., “Labor”), and
hybrid variables (e.g., “Desired Vacancies”) are outputs in
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Figure 10: Nonlinear and linearized trajectories for variation, growth, and fluctuation of the selected KPIs

the space Y. Input parameters are those that the simula-
tion modeler is able to assign values and alter (∗). On the
other hand, hybrid variables can be utilized as input from
a different point of view. The distinction between inputs
and outputs is clearly based on the system management’s
perspective; it is just a way to separate inputs from outputs
inside the POD framework. Following the mapping manage-
ment concepts onto physical notations, then the linearization
approach through the Taylor series and forces aggregation in
the inventory-workforce model are explored.
The experiments begin a passive trajectory with the force

of 1000 “Costumer Order,” which triggers the entire system
(other input parameters). The input parameters in Fig. 9
with the (*) symbol have been initialized to the values in
parentheses to form the passive trajectory. The following sig-
nificant experiment contrasts individual decisions and their
aggregation in linear (or linearized) versus nonlinear circum-
stances. This evaluation enables mitigating risks brought
on by unforeseen outcomes brought on by shifts in system
performance by comparing the tentative decision-making
that is not the same as definitive decision-making due to
the system’s nonlinearity. The assertion of the significant
experiment is backed by the forces having the properties
listed below. (i) Selected inputs to vary (force creation)
belong to both the inventory and workforce sectors; (ii)
Forces have indirect impacts on the concerned KPIs (Fig. 9:
to be checked through the path from input to the KPIs), and
(iii) The applied forces are studied for relatively long periods
to take into consideration the simultaneous influence of the
interacting forces on the KPIs (not only a brief shock to the
system).

(i) 𝑓1: The "Safety Stock Coverage" climbed from 2 to 4
products over the timeframe (50,70): from the inven-
tory sector,

(ii) 𝑓2: The "Productivity" descends from 40% to 25% over
a (100,150) timeframe: from workforce sector,

(iii) 𝑓3: The "Average Time to Fill Vacancies" descends
from 10 to 8 over a (120,180) timeframe: from the
workforce sector.

Fig. 10 depicts the nonlinear and linearized trajecto-
ries for inventory, labor, and vacancies on axes, respec-
tively, for variation, growth, and fluctuation. A pre-process
fit_transform has been performed on the trajectories to scale
the KPIs values to be able to have a vis-a-vis study. This
procedure allows simultaneous investigation of trajectories
despite different units of indicators (e.g., the Inventory unit
is “product” while the Labor unit is “person”). First, the
MinMaxScale estimator scales and translates each KPI indi-
vidually such that it is in the given range (in this experiment,
between zero and one instead of the actual values of KPIs);
then, the fit method calculates the mean and variance of each
present feature in the data. The transform method transforms
all the KPIs through respective mean and variance. Fig. 10
aims to illustrate the main objective of the study, which is
to highlight performance shifts in nonlinear and linearized
systems and emphasize the essential need to employ the
decision aggregation method through linearization and the
POD framework. By viewing complex systems holistically
(e.g., a moving object in a multidimensional space), these
methods provide insights into system complexities and facil-
itate affordable decision-making. This is achieved by draw-
ing analogies between management concepts and physical
notation, as well as through kinematic analysis.

Essentially, the coupled inventory-workforce model has
been designed to harness system dynamicity through param-
eter configuration and tuning, thereby fulfilling system de-
mands over time. By adjusting these parameters and employ-
ing regularization, the model applies forces that gradually
neutralize as time progresses, akin to the behavior observed
in the tail of the displacement plot in Fig. 10. Similarly, in
physics, the “restoring force” is a force that acts to bring
a body to its equilibrium position. The restoring force is
always directed back toward the system equilibrium position
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that depends only on the mass or particle position (the same
as the system viewed as an object in this study) [25].

In nonlinear systems like the inventory-workforce model,
variations in several parameters simultaneously, as op-
posed to adjustments to individual parameters, can result
in significantly different outcomes. This inherent nonlinear
dependency is pivotal as it mirrors real-world complexities
where multiple aspects of a system change concurrently.
Linearization is thus employed to simplify these interac-
tions, enhancing manageability and improving predictability
under specific conditions. This approach proves particularly
effective when deviations from a set equilibrium are slight
and the system’s responses to these changes remain rela-
tively proportional. By reducing complexity, linearization
allows for a more straightforward analysis of how changes in
system parameters impact overall behavior, making it easier
to anticipate and mitigate potential disruptions in system
performance.

The applied forces, 𝑓1, 𝑓2, and 𝑓3, have been chosen so
that the linearization significantly estimates the nonlinear
system. In other words, the applied forces are not drastic
(e.g., raising the “safety stock coverage” from 2 to 4 units),
meaning that the linear system is only an approximation that
holds for slight deviations from equilibrium. This keynote
highlights the inefficiency of decision aggregation in lin-
earization technique under crisis-like circumstances with
drastic variations in system parameters (applied forces to
the system). Despite the resemblance between the displace-
ment plots, which are primarily associated with operational
decision-making, the notable differences in the velocity and
acceleration (fluctuation) plots highlight their critical roles
in strategic decision-making. In particular, the acceleration
plot illustrates how strongly or weakly the KPIs fluctuate
in the system’s performance space (see section 3.1) and
underscores the importance of linearization in the decision
aggregation process in nonlinear systems to better predict
system performance. These distinctions between nonlinear
and linearized systems emphasize the importance of the
POD framework for a better alignment between operational
and strategic decisions, suggesting the importance of inte-
grating both perspectives to account for differing system
behaviors when formulating comprehensive strategic plans.
Overall, linearized solutions are recommended when the
system parameters are stable or exhibit only minor fluctu-
ations. In scenarios where parameters undergo significant or
rapid changes, the linear model may fail to capture the true
dynamics of the system, leading to suboptimal decisions.

5. Conclusions and perspectives
This study, on top of the "Physics of Decision" principles

[5, 9], first tunes the simulation models to well-known
physical simulation models called “state-space representa-
tion” and then addresses the aggregation of the decisions in
nonlinear systems. “The importance of decision aggregation
is that taking numerous decisions at once is cumbersome,
overpriced, and unfuturistic; in contrast, taking the same

decisions independently and then aggregating them is more
advantageous from a financial and futuristic standpoint. This
approach assists decision-makers in (i) exploring a variety of
strategies and taking the best ones, (ii) allocating resources
firmly, and (iii) driving the system toward its objectives
through constant avoidance of determined risky zones and
proximity to safe areas (targeted objectives) in the system
performance space built on systems indicators, that allows
them to be more readily in seizing opportunities and avoid-
ing risks.

The work’s significance has been examined in the exper-
iment section, first with an outdated but illustrative exam-
ple from the Bass Diffusion model, after with a nonlinear
model of an inventory-workforce system developed with the
System Dynamic modeling. Our research employs a coupled
inventory-workforce model, focusing on linearization to ag-
gregate decisions and manage perturbations effectively, as
illustrated in Fig. 10. This approach highlights the nonlinear
nature of real-world systems where simultaneous parame-
ter variations can significantly alter outcomes, making lin-
earization a useful tool for simplifying complex interactions
and enhancing predictability when deviations from equi-
librium are minimal. However, linearization’s effectiveness
is limited under conditions of drastic or rapid changes,
where it may fail to capture true system dynamics, leading
to potentially suboptimal decisions. This emphasizes the
need for cautious application of linearization, particularly in
stable environments to effectively support decision-making
processes.

Three primary places are listed below to develop the
presented work and further research.

(i) Model: The presented work deals with System Dy-
namic models implemented with Ordinary Differen-
tial Equations (ODEs); however, including alternative
simulation approaches such as agent-based modeling
(ABM), discrete event modeling (DEM), and others is
an essential development aspect,

(ii) Visualization: although the performance space is not
limited to three dimensions, it is impossible to examine
more than three KPIs simultaneously. Virtual reality
(VR) technologies could map and analyze how system
inputs affected the performance trajectory for several
KPIs at once to look at how they are related, and

(iii) Complexity: A comprehensive sensitivity analysis of
the system’s inputs and outputs could help in deter-
mining the impact pattern of inputs and outputs (such
as linear, wave-forms (sine, square, triangular, ramp),
etc.) to examine the performance trajectory of both
with and without them as well as to decompose the
performance trajectory into multiple trajectories with
distinct patterns to a have a rigorous linearization.
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A. Inventory-Workforce Model in section 4.2
The Inventory-Workforce model, as presented in this

paper, offers a fundamental understanding of how inven-
tory management and workforce dynamics interact within
a business environment to ensure effective responses to
consumer demand. This model intricately links production
rates to inventory levels through adaptive feedback loops.
For example, when inventory levels fall below the desired
threshold, the model triggers an increase in production rates,
whereas excess inventory leads to a reduction in production
activities. While our paper outlines the general principles
and basic mechanics of these interactions, including how
labor factors such as availability, productivity, and turnover
influence overall inventory management, the complexities
and full mathematical formulations of these relationships
are beyond the scope of this discussion. For those readers
seeking a deeper understanding of the underlying equations
and advanced simulations that describe the dynamic inter-
play between these elements, Chapter 19 of the "Business
Dynamics" book [24] remains an invaluable resource. This
reference provides extensive insights into the systematic
adjustments and analytical framework required to fully grasp
and implement the Inventory-Workforce model effectively.
A.1. Inventory Management

The inventory management part of the model focuses on
the flow of products through different stages of production
and inventory.

1. Work in Process Inventory (WIP): Represents the
intermediate stage where items are being processed.
The production start rate influences the production
rate, which subsequently affects the WIP inventory.
The adjustment for WIP ensures that production rates
align with the desired WIP levels, maintaining a bal-
ance between work in process and production output.
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2. Production Rate: Determined by the available labor,
productivity, and workweek hours, the production rate
is a crucial factor in managing the flow from WIP to
finished inventory. Higher productivity or an increase
in labor can boost the production rate, accelerating
the transition from WIP to finished goods. It directly
influences how quickly inventory is replenished to
meet customer demand.

3. Inventory: This is the stock of finished products
ready to meet customer orders. Inventory adjustment
is performed based on the difference between desired
inventory and actual inventory levels. This adjustment
considers factors such as the inventory adjustment
time and desired inventory levels to ensure optimal
stock levels are maintained. Inventory coverage, the
ratio of actual inventory to desired inventory, is a key
metric in determining stock adequacy.

4. Order Fulfillment: Customer orders drive the ship-
ment rate, which depletes the inventory. The model
assumes a constant customer order rate, influencing
the desired shipment and order fulfillment ratio. Order
fulfillment is essential for meeting customer demand
and maintaining satisfaction. The shipment rate must
be aligned with both current inventory levels and
anticipated customer orders.

5. Production Adjustment: Adjustments are made to
the production rate based on inventory levels and
desired production rates, ensuring that the inventory
remains at optimal levels. This involves modifying
production in response to changes in inventory to
avoid overproduction or stockouts. Factors such as the
manufacturing cycle time and the desired production
start rate play a crucial role in these adjustments.

6. Inventory Coverage: Represents the ratio of actual
inventory to desired inventory. It is a critical measure
for determining whether the inventory is sufficient to
meet expected demand. Inventory coverage helps in
making informed decisions about production rates and
adjustments needed to maintain stock levels.

7. Expected Order Rate and Change in Expected
Orders: These parameters forecast future demand and
adjust production rates accordingly. They are essential
for planning and ensuring that production schedules
align with anticipated changes in order rates. By pre-
dicting future demand, the model can preemptively
adjust production to meet upcoming needs.

8. Production Start Rate: Influences the rate at which
items enter the production process. It is adjusted based
on desired production levels and current inventory
status. Ensuring an appropriate production start rate
is vital for maintaining a smooth flow from WIP to
finished goods without creating bottlenecks.

The inventory management system dynamics model de-
scribes how production and inventory levels are regulated
within a business environment. It emphasizes the importance
of aligning production rates with inventory needs to effec-
tively meet customer demand. The model incorporates feed-
back loops where inventory levels influence production ad-
justments and vice versa. For instance, a lower-than-desired
inventory level triggers an increase in the production rate,
while a higher-than-desired inventory might reduce produc-
tion. By simulating these interactions, the model provides in-
sights into maintaining optimal inventory levels, minimizing
costs, and ensuring timely order fulfillment. It also helps in
understanding how various factors such as labor availability,
productivity, customer orders, and shipment rates interact to
affect overall inventory management.
A.2. Workforce Management

The workforce management part of the model focuses on
the dynamics of hiring, layoffs, and labor productivity.

1. Vacancies: Represents the number of open positions
within the organization that need to be filled. The
vacancy creation rate determines how many new va-
cancies are generated based on business needs, while
the vacancy cancellation rate closes vacancies that are
no longer required. Adjustments for vacancies ensure
that the number of vacancies aligns with the desired
levels.

2. Vacancy Creation Rate: Dictated by the business
needs, this rate determines how many new positions
are created. An increase in production demand or
expansion of business operations can lead to a higher
vacancy creation rate.

3. Vacancy Cancellation Rate: Represents the rate at
which open positions are canceled when they are
no longer needed. This can happen due to changes
in business strategy, automation, or a reduction in
demand.

4. Hiring Rate: Determines the rate at which vacancies
are filled by hiring new employees. The hiring rate
depends on the desired vacancies and the expected
time to fill vacancies. It directly influences the labor
available for production.

5. Labor: Represents the total workforce available for
production. It is influenced by the hiring rate, layoff
rate, and quit rate. Adjustments to labor levels are
made based on the desired labor, which is determined
by the production needs. Productivity levels and the
standard workweek also affect the effective labor con-
tributing to production.

6. Layoff Rate: Indicates the rate at which employees
are laid off. The layoff rate is influenced by factors
such as the desired layoff rate, average layoff time, and
the current labor levels. Layoffs are used to adjust the
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workforce size to align with reduced production needs
or cost-cutting measures.

7. Quit Rate: Represents the rate at which employees
voluntarily leave the organization. It affects the overall
labor levels and can impact production if not balanced
by an adequate hiring rate.

8. Productivity: Measures the efficiency of the work-
force. Higher productivity means more output per
labor hour, directly influencing the production rate.
Productivity adjustments ensure that the workforce
efficiency aligns with expected productivity levels.

9. Adjustment for Vacancies: Ensures that the number
of vacancies aligns with desired levels. It considers the
vacancy creation rate and vacancy adjustment time to
maintain an optimal balance between open positions
and business needs.

10. Adjustment for Labor: Adjusts the workforce size
based on the difference between desired labor and
actual labor levels. This adjustment considers the la-
bor adjustment time to smoothly transition workforce
levels without causing disruptions.

11. Willingness to Lay Off: Represents the organiza-
tion’s policy or inclination towards laying off employ-
ees. A higher willingness to lay off can result in a
higher layoff rate when labor adjustments are needed.

12. Average Duration of Employment: Indicates the
average time employees stay with the organization. It
affects the quit rate and can be used to forecast labor
stability and turnover.

13. Average Layoff Time: The typical time taken to
process layoffs. This parameter influences the layoff
rate and how quickly labor adjustments can be made
in response to changing production needs.

14. Average Time to Fill Vacancies: The average time
required to hire new employees for open positions.
It affects the hiring rate and the ability to quickly
respond to increases in vacancy creation rate.

15. Vacancy Adjustment Time: The time taken to adjust
the number of vacancies to align with desired levels.
This parameter helps in managing the vacancy cre-
ation and cancellation rates effectively.

16. Vacancy Cancellation Time: The average time taken
to cancel a vacancy that is no longer needed. It influ-
ences the vacancy cancellation rate and helps maintain
the balance between open positions and actual hiring
needs.

The workforce management system dynamics model
illustrates how hiring, layoffs, and productivity adjustments
influence the available labor for production. Vacancies are
created based on business needs and are canceled when

no longer required. The hiring rate fills these vacancies,
contributing to the labor pool. The labor pool is adjusted
through hiring, layoffs, and voluntary quits to maintain
optimal workforce levels for production. Productivity and
workweek parameters further refine the effective labor avail-
able for production, ensuring that the production rate meets
inventory and customer order requirements. Feedback loops
ensure that adjustments in one area (e.g., labor) affect other
areas (e.g., production rate), providing a dynamic and inter-
connected model of workforce management.
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