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Generalization of the Wong-Sandler mixing rule to a generic cubic equation 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Wong-Sandler mixing rules has been 
generalized (g-WS MR) and validated 
against existing versions (PR and PT 
EoSs). 

• The implementation procedure of g-WS 
MR is presented. 

• 3-parameter EoSs (NEOS, PT and mPT) 
were tested with g-WS MR for different 
applications (refrigeration, oil&gas, H2, 
CCUS). 

• Excellent results are obtained with g-WS 
MR, in particular the prediction of the 
critical locus and supercritical densities. 

• The g-WS MR can be easily imple-
mented in existing process simulators 
and thermodynamic calculation 
software.  
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A B S T R A C T   

Cubic equations of state (EoS) remain the most widely used models in chemical engineering, and their predictive 
capabilities are highly dependent on mixing rules (MR). Considered as one of the most accurate, Wong Sandler’s 
(WS) MR, have been generalized in this work, to allow its use with all 2-parameter (PR, SRK, …) and 3-parameter 
(PT, mPT, NEOS, …) cubic EoSs. The procedure for implementing the generalized WS MR is presented and tested 
with PR, PT and its variants (mPT and NEOS) on vapor-liquid equilibrium (VLE) and density data on various 
classes of mixtures for different types of use (hydrogen, CCUS, refrigeration). The results clearly show the 
benefits of this type of MR, especially around the critical point and for density data without considering volume 
translation frequently used with PR and SRK EoS.   
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1. Introduction 

The design and optimization of chemical and energy processes 
require knowledge of the thermodynamic properties of the fluids (pure 
or mixtures) involved [1]. For this purpose, suitable thermodynamic 
models (activity coefficient models and/or equations of state) are 
generally used. Such models are usually optimized on the basis of 
experimental phase equilibrium data, allowing control of the fluid states 
(phase diagrams), the distribution of the various constituents in the 
different phases, and prediction of other volumetric (density, speed of 
sound) and energetic (enthalpy, heat capacity) properties [2]. For 
instance, the simulation of thermodynamic cycles relies on the use of 
equations of state (EoS), whose parameters are generally adjusted on 
Vapor-Liquid Equilibrium (VLE) properties alone [3], or on both VLE 
and energetic properties [1,4]. Moreover, accurate representation of the 
mixture’s critical point is essential to ensure correct sizing of 
trans-critical thermodynamic cycles. 

Cubic EoS are the most widely used EoS in chemical and energy 
process and oil & gas reservoir simulators, due to their simplicity and 
speed of computation. The most popular cubic equations of state are 
Soave-Redlich-Kwong (SRK) [5,6] and Peng Robinson (PR) [7]. They are 
very useful to estimate the pure component vapor pressure and quite 
accurate to predict the phase diagrams of mixtures. Numerous re-
searches have been done to improve their capability to calculate the 
pure component vapor pressure by the development of alpha functions 
(e.g. Coquelet et al. [8], Le Guennec et al. [9]) and for mixtures, the 
development of mixing rules which involves or not activity coefficient 
models. Several advanced mixing rules have been developed extending 
the applicability of cubic equations of state to the prediction of 
high-temperature high-pressure VLE for polar systems through the use of 
excess Gibbs free energy (GE) models. In 1979, Huron and Vidal [10] 
introduced the excess free energy model into cubic equation of state and 
consequently, several EoS GE model appear such as MHV1 [11], MHV2 
[12], PSRK [13], LCVM [14] and Wong Sandler [15] mixing rules (WS 
MR). Wong and Sandler have developed mixing rules that combines an 
EoS with an excess Gibbs energy model but produces the desired EOS 

behavior at both low and high densities without being density depen-
dent. These mixing rules are based on several observations including the 
second virial development and the pressure insensitivity of the excess 
Helmholtz energy of mixing. 

The main problem of the SRK and PR EoS is that they are inaccurate 
regarding the density prediction, particularly liquid and supercritical 
phase densities. Privat and Jaubert [16] have shown that for 2-param-
eter cubic EoS, Peng Robinson was the most accurate cubic EoS in 
term of liquid density prediction, particularly at saturation. In order to 
overcome this problem, two main solutions were adopted. 

The first one was introduced by Peneloux [17] and improved by 
Privat et al. [18] and Le Guennec et al. [19]. It consists of the application 
of a volume translation parameter cshift. Le Guennec et al. have 
demonstrated that the best results were obtained if cshift is calculated at a 
reduced temperature equal to 0.8. If no experimental data are available, 
cshift can be calculated using an improved Rackett equation (Eq. 1). 

cshift = vSat,EoS
L (Tr = 0.8) −

RTC

PC
Z[1+0.22/7]

RA (1) 

The calculation of liquid density is strongly improved using SRK and 
PR EoS except at the critical point as the value of the critical 
compressibility factor is fixed. Moreover, the critical compressibility 
factor value is overestimated and do not correspond to the main 
compressibility factor values of the different chemical species (Ji and 
Lempe [20]). In the case of application to mixture, Privat et al. recom-
mend to use a linear mixing rule for the cshift parameter. They also 
recommend to consider temperature independent volume-translation 
parameter to avoid inconsistency in the calculation of the thermody-
namic properties. 

The second solution was the development of 3-parameters cubic EoS. 
It consists of adding a supplementary parameter properly adjusted to 
correlate simultaneously the saturated densities and the vapor pressure 
of pure components ([21]). The main advantage is that the critical 
compressibility factor is not fixed and improved strongly the calculation 
of saturated liquid and critical densities (Coquelet et al. [22]). The most 
popular 3-parameter EoS is the Patel–Teja (PT) EoS [23] and its 

Nomenclature 

a Parameter of the equation of state (energy parameter, [J. 
m3.mol−2]) 

A Molar Helmholtz free energy, [J.mol−1] 
B second virial coefficient 
b Parameter of the equation of state (molar co volume 

parameter, [m3.mol−1]) 
c EoS parameter 
d EoS parameter 
D Wong-Sandler term 
Λ Wong-Sandler parameter (denoted “C” in the original 

paper of WS) 
F Objective function 
G Molar Gibbs energy, [J. mol−1] 
kij Binary interaction parameter 
N Number of components 
n Number of mole 
P Pressure, [bar] 
Q Wong-Sandler term 
R Perfect gas constant, [J.mol−1.K−1] 
T Temperature, [K] 
v molar volume, [m3/mol] 
x Liquid mole fraction (or composition in a phase) 
y Vapor mole fraction 
Z Compressibility factor 

Greek letters 
αij NRTL model parameter 
τij NRTL model binary interaction parameter, dimensionless 

or [J. mol−1] 
ω Acentric factor 
μ Molar chemical potential, [J.mol−1] 
ɸ Fugacity coefficient 

Superscript 
E Excess property 
R Residual 
* Perfect gas 

Subscripts 
C Critical property 
cal Calculated property 
exp Experimental property 
i, j Molecular species 
L Liquid 
Low Low-pressure reference state 
m Mixture 
r Reduced 
RA Rackett equation 
shift Used in volume translation parameter 
∞ Infinite pressure reference state  
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generalized form (Patel and Teja [24], Valderrama [25]). Like with SRK 
and PR EoS, classical mixing rules have been considered for the repre-
sentation of mixtures phase diagrams and densities. For the 3-parameter 
cubic EoS classical mixing rules and Huron-Vidal type mixing rules (Ji 
and Lempe [20]) have been developed and used. In 1997, Yang et al. 
[26] have applied the WS MR to the 3-parameter Patel-Teja (PT) EoS to 
improve in the near critical region and for highly asymmetric system. 
The main difference between the WS MR developed for two and three 
parameters cubic EoS is that the EoS parameter (denoted “C” in the 
original paper of WS [15]) is constant for SRK and PR EoS (for example, 
−0.623225 for the PR EoS) but not for Patel Teja EoS as it depends of ZC 
value. In this paper a methodology is proposed to extend the WS MR to 
other EoS and particularly in the perspective of the work of Coquelet 
et al., 2016 [22] and El Abbadi 2016 [27] who have proposed a modified 
PT EoS special for refrigerants. 

Starting from the generalized expression of the Helmholtz energy for 
the different cubic EoS, a general expression of the WS MR applicable to 
the 2- and 3-parameter cubic EoS is proposed in Section 2. In Section 3, 
the mixing rule is applied to the PR EoS, the PT EoS and two modified 
versions of the PT EoS (Forero and Velásquez 2013 [28] and Coquelet 
et al., 2016 [22]). The results obtained are then compared with those 
obtained with classical (vdW) mixing rules in terms of phase diagram 
representation particularly close to the critical point and prediction of 
mixture densities. 

2. Methodology 

Huron-Vidal type mixing rules require parameters dependent on the 
EoS used and their values are constants. This is no longer the case for 
equations of state which use 3 or 4 parameters. As with Wong and 
Sandler, the development of the mixing rules begins with the calculation 
of the Helmholtz free energy. 

2.1. Expression of the Helmholtz free energy 

The selected generalized cubic EoS (Eq. 2) is the one proposed by 
Zielke and Lempe 1997 [29], which can be transformed from or to the 
well-known generalized form proposed by Schmidt and Wenzel 1980 
[30] (see Appendix A). 

P =
RT

v − b
−

a
(v + c)(v + d)

(2) 

The excess Helmholtz free energy is calculated using the following 
equation [31]. 

AE = Am −
∑

i
xiAi − RT

∑

i
xi ln(xi) (3) 

Moreover, AR = A − A∗, so 

AE = AR
m + A∗

m −
∑

i
xi

(
AR

i + A∗
i
)

− RT
∑

i
xi ln(xi) (4)  

and then 

AE = AR
m −

∑

i
xiAR

i (5) 

From basic thermodynamic relationships and Eq. 2, the residual 
Helmholtz free energy function can be derived 

AR =

(

−

∫ v

v=∞
Pdv

)

−

(

−

∫ v=RT/P

v=∞

RT
v

dv
)

= −RT ln
[
P(v − b)

RT

]

+
a

d − c
ln

(v + c
v + d

)
(6) 

Under infinite pressure v=b and Eq. 6 became (if d∕=c) 

AR
∞ =

a
d − c

ln
(

b + c
b + d

)

(7) 

For mixture 

AR
∞,m =

am

dm − cm
ln

(
bm + cm

bm + dm

)

(8) 

Eqs. (7) and (8) can be expressed by 

AR
∞ =

a
b

Λ (9)  

where 

Λ =
b

d − c
ln

(
b + c
b + d

)

if d ∕= c (10)  

Λ = −
b

b + c
if d = c (11)  

so Eq. 5 is expressed, under infinite pressure by 

AE
∞ =

am

bm
Λ −

∑

i
xi

ai

bi
Λi (12) 

The characteristic of the parameter Λ is analyzed for several EoSs in 
Appendix A. 

2.2. The second virial coefficients 

The van der Waals type EoS can be explained as a virial series. 

Z =
Pv
RT

= 1 +
BP
RT

(13)  

where 

B = b −
a

RT
(14) 

In a mixture of N components, 

B =
∑N

i=1

∑N

j=1
xixjBij(T) (15) 

So 

bm −
am

RT
=

∑N

i=1

∑N

j=1
xixj

(
b −

a
RT

)

ij
(16) 

Eq. 16 can be related to those of the pure components by 

(
b −

a
RT

)

ij
=

(
b − a

RT

)

i
+

(
b − a

RT

)

j

2
(
1 − kij

)
(17)  

where kij is the second virial coefficient binary interaction parameter. 

2.3. Definition of the generalized mixing rule 

To develop the generalized mixing rules, it has been decided to keep 
the same definitions as in the original publication by Wong and Sandler 
1992 [15] for 2-parameter cubic EoS while adopting simplifications 
similar to those of Zhao 1995 [32] and Yang et al., 1997 [26] for cubic 
EoS with three or more parameters. The generalized mixing rules pre-
sented herein satisfy the same conditions considered by Wong and 
Sandler 1992 [15], i.e.: 1) infinite pressure Helmholtz energy is equal to 
low pressure excess gibbs free energy; 2) quadratic dependence of the 
second virial coefficient. Using Eqs. (12) and (16), the generalized 
Wong-Sandler Mixing Rule (g-WS MR) is defined as follows: 
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bm =
Q

1 − D

am =
QDRT
1 − D

(18)  

with 

Q =
∑N

i=1

∑N

j=1
xixj

(
b −

a
RT

)

ij

D =

AE
∞

RT
+

∑N

i
xi

ai

RTbi
Λi

Λ

(19) 

To simplify the development, the c and d parameters can be 
expressed as a function of the co-volume b as:  

− for pure compounds: 

ci = bi × fianddi = bi × gi (20)  

e.g. the coefficients f and g for Peng-Robinson EoS are (from  
Table A1): fi =

(
1 −

̅̅̅
2

√ )
and gi =

(
1 +

̅̅̅
2

√ )

− for mixtures: 

cm = bm × fmanddm = bm × gm (21)  

In this equation, the classical quadratic mixing rules are applied to 
fm and gm: 

fm =
∑

i

∑

j
xixjfijandgm =

∑

i

∑

j
xixjgij (22)  

where 

fij =
fi + fj

2
andgij =

gi + gj

2
(23)  

Parameter Λ calculated through Eqs. (10) and (11) is then ob-
tained using Eqs. (24–27):  

− for pure compounds: 

If ci∕=di 

Λi =
1

gi − fi
ln

(
1 + fi

1 + gi

)

(24) 

If ci=di (or fi=gi) 

Λi =
−1

1 + fi
(25)  

for mixtures: 
If cm∕=dm 

Λ =
1

gm − fm
ln

(
1 + fm

1 + gm

)

(26) 

If cm=dm (or fm=gm) 

Λ =
−1

1 + fm
(27) 

The approximation given by Wong-Sandler concerning the quasi- 
equality of GE and AE (generally the VE is very small and the GE 

models are generally used at low pressure) is maintained also in this 
work: 

GE(T, x, P = low) = AE(T, x, P = low) = AE(T, x, P = ∞) (28) 

As explain in Le Guennec’s thesis [33], if we consider a linear mixing 
rule on co-volume b (like in this work), it is desirable to have lim

P→∞
AE,EoS

res =

AE,γ
res , with subscript res which corresponds to the residual part. In order 

to respect this constraint, it is recommended of using activity coefficient 
model with no combinatorial part. Consequently, the NRTL model 
developed by Renon and Prausnitz [34] is used in this work. 

For the calculation of phase equilibria, the fugacity coefficient ob-
tained from the EoS is used together with conventional equilibrium 
resolution algorithms (e.g. Michelsen’s [35] or Sandler’s [36] book). 
The fugacity coefficient (Eq. 30) as previously developed by Zielke and 
Lempe [29] is obtained by integrating the generalized equation of state 
(Eq. 2) into the thermodynamic definition of the fugacity coefficient (Eq. 
29). 

ln Φi =

∫ ∞

v

[
1

RT

(
∂P
∂ni

)

T,v,nj∕=i

−
1
v

]

dv − ln Z (29) 

So, 

ln Φi = − ln
[
P(v − b)

RT

]

+ Z − 1 +

n
∂b
∂ni

v − b
−

a + n
∂a
∂ni

RT(c − d)
ln

(v + c
v + d

)
+

a
RT(c − d)

2×

[

n
∂c
∂ni

(

ln
(v + c

v + d

)
−

c − d
v + c

)

+ n
∂d
∂ni

(
c − d
v + d

− ln
(v + c

v + d

))]

(30) 

The derivatives of the various parameters in Eq. 30 are given in 
Appendix B. 

2.4. Calculation procedure 

Based on the formulations of the g-WS MR, the following procedure 
is employed to calculate the mixture parameters am, bm, cm and dm, as 
well as the fugacity coefficients of the generalized EoS (Eq. 2): 

i. Set initial conditions (temperature, pressure, mixture composi-
tion) and binary interaction parameters (τij, τji and kij)  

ii. Using Tc, Pc and ω, calculate pure compound parameters ai and bi 
(and ci* for 3-parameter EoS) according to the chosen EoS  

iii. Compute parameters ci and di (from Table A1 or Zielke and Lempe 
[29]), fi=ci/bi and gi=di/bi (Eq. 20), and Λi (Eqs. 24–25)  

iv. Compute fij, gij, fm and gm (Eqs. 22–23), and Λm (Eqs. 26–27)  
v. Compute excess Helmholtz free energy using NRTL model (Eq. 

B6, Appendix B)  
vi. Compute Q and D (Eqs. 17 and 19)  

vii. Compute am and bm (Equation 18), and cm and dm (Eq. 21)  
viii. Compute the derivatives (Appendix B) of am, bm, cm and dm with 

respect to ni (Eqs. B9-B12) using the following sequence of 
equations: B22, B23, B20 (or B21), B7, B18, B17, B13-B16, and 
then B9-B12  

ix. Solve the cubic equation (e.g. Cardan method) to obtain the 
molar volumes v (or compressibility factors) of each phase  

x. Calculate the fugacity coefficients of each component in each 
phase (Eq. 30) 

3. Results 

3.1. Validation of the generalized Wong-Sandler mixing rules 

In order to validate (by comparison) the development and imple-
mentation of the generalized equations (denoted by g-WS MR) presented 
in the previous section, more or less "asymmetric" systems modeled in 
the literature by two-parameter (Peng-Robinson) or three-parameter 
(Patel-Teja) cubic equations of state with WS rules were considered. 

Regarding the Peng-Robinson EoS with WS mixing rules (PR-WS), 
the parameters optimized recently by Yang et al., 2019 [37] for the 
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CO2-H2O system were used for comparison. These parameters were used 
with the original PR-WS model [15] as well as the generalized version 
proposed in this work. As shown in Fig. 1, the VLE results are perfectly 
reproduced by the generalized equations, making them valid for 
2-parameter cubic EoS. 

Similarly, the 3-parameter Patel-Teja (PT) EoS with g-WS MR was 
evaluated. The parameters proposed by Yang 1997 [26] for the CO2-H2O 
and N2-CO2 systems were used with the g-WS MR and compared with 
the original PT-WS results (Yang 1997 [26]). Fig. 2 illustrates the very 
similar VLE results obtained with the original PT-WS model and the 
generalized mixing rules. The very small deviations are due to the fact 
that the data calculated by Yang 1997 (PT-WS) and shown in Fig. 2 are 
not "real" data but rather have been extracted from their graphs. 

3.2. Applications and discussion 

In this section, the g-WS MR has been tested on VLE and density data 
for various classes of mixtures for different types of use (hydrogen, 
CCUS, refrigeration). We have tested the mixing rules on binary system 
where both VLE and density data are available. The NRTL parameter αji 
was set equal to 0.3 in all cases examined. When available, τij, τji and kij 
parameters were taken from the literature. Otherwise, the optimal 
values for NRTL parameters τ12 and τ21 were determined simultaneously 
with the binary interaction parameter kij from binary VLE data using the 
objective function: 

F =
100
Nexp

⎡

⎣
∑Nexp

1

(
xexp − xcal

xexp

)2

+

(
yexp − ycal

yexp

)2
⎤

⎦ (31) 

Fig. 1. Validation of the generalized Wong-Sandler mixing rules using Peng-Robinson EoS on the VLE of the CO2+H2O system at 323 K. Literature modeling data 
from: Yang et al. 2019 [37]. 

Fig. 2. Validation of the generalized Wong-Sandler mixing rules using Patel-Teja EoS on the VLE of the N2-CO2 (left) and CO2+H2O (right) systems. Literature 
modeling data from: Yang 1997 [26]. 
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where Nexp is the number of data points, and xexp (or xcal) and yexp (or 
ycal) are the experimental (or calculated) liquid and vapor compositions, 
respectively. 

The first system tested is the refrigerant mixture CO2-R1234yf, which 
is of great industrial interest with zero ozone depletion potential and 
very low global warming potential. To model this binary system, the 3- 
parameter cubic EoS (NEOS) developed by Coquelet et al., 2016 [22] for 
refrigerant systems was selected. The parameters of the pure compounds 
(CO2 and R1234yf) provided in their work were used. This binary system 
was modeled using the g-WS MR, and also the classical van der Waals 
(vdW) mixing rules using the binary interaction parameters (kij) from El 
Abbadi 2016 [27]. The binary interaction parameters (τ12, τ21 and k12) 
of the g-WS MR were fitted to the VLE data from Juntarachat et al., 2014 
[38], and the results are shown in Fig. 3. The VLE data are perfectly 
reproduced by the g-WS MR (ARD(x)=0.6 % and ARD(y)=1.4 %; with 

ARD = 100
Nexp

∑Nexp
i=1

⃒
⃒
⃒
⃒
x(or y)

cal
−x(or y)

exp

x(or y)
exp

⃒
⃒
⃒
⃒ is the Average Relative Deviation) 

and significantly improve the results when compared with the vdW MR 
(ARD(x)=1.9 % and ARD(y)=5.2 %). In the same figure, the prediction 
results of the mixture density as a function of pressure and at different 
compositions are compared with experimental data from the literature 
[39] and with the GERG-2008 multiparameter model (available in 

REFPROP [40]). The prediction results using the g-WS MR (ARD(ρ)<
0.7 %) are very comparable to those of GERG-2008 under the different 
conditions and without any direct adjustment on density. 

The second system studied is the H2-CO2 binary mixture, which is of 
particular interest for several industrial applications (production of 
hydrogen carrier molecules [41] and e-fuels [42], H2 and CO2 separa-
tions in syngas processes [43], CCUS and underground H2 storage [44], 
etc.). To model this binary system, the three-parameter Patel-Teja [24] 
cubic EoS was selected. The original version of Patel-Teja [24] poorly 
describes the vapor densities and enthalpy of vaporization of H2, hence 
the modified version by Forero and Velásquez [28] (denoted by mPT), 
which solves this problem by using an exponential alpha function, was 
used. In addition, the Peng-Robinson EoS with classical mixing rules 
(denoted by PR-vdW) and with g-WS MR (denoted by PR-WS) are used 
for comparison with the mPT+g-WS MR model (denoted by mPT-WS). 
The k12 for vdW MR as well as the binary interaction parameters of 
g-WS MR (τ12, τ21 and k12) were optimized on experimental VLE data 
from Fandino et al. [43] and Tsang and Street [45], and the results are 
shown in Fig. 4. In contrast to the PR-vdW model (ARD(x)=12.9 % and 
ARD(y)=9.5 %), the PR-WS model (ARD(x)=5.3 % and ARD(y)=2.2 %), 
and even better the mPT-WS model (ARD(x)=4.5 % and ARD(y)=
1.5 %), reproduce the phase diagram perfectly at different temperatures 

Fig. 3. VLE (left) and density (right) of the CO2-R1234yf system: Dotted lines: NEOS with vdw MR; dashed lines: GERG-2008 EoS (REFPROP); solid lines: NEOS with 
g-WS MR. 

Fig. 4. VLE (left) and density (right) of the CO2-H2 system: Dotted lines: Peng-Robinson with vdW MR; dashed lines: Peng-Robinson with g-WS MR; solid lines: 
modified Patel-Teja with g-WS MR. 
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and pressures, and across the entire composition range, including near 
the mixture’s critical point. Furthermore, the mPT-WS model accurately 
(ARD(ρ)<0.3 %) predicts the density of the CO2-H2 mixture at different 
conditions, with an improvement (at high pressure) over the other two 
models (PR-vdW and PR-WS). 

The third system studied is the CH4-CO2 binary, which is the main 
constituent of natural gas and biogas, and has a wide range of uses. The 
three-parameter cubic equation of state tested for this system is the 
original Patel-Teja model with g-WS MR (denoted as PT-WS). Again, for 
comparison, the PR-WS and PR-vdW models are also used. The binary 
interaction parameters of the PR-vdW and PR-WS models are taken from 
Nazeri et al. [46] and Theveneau et al. [47], respectively. For the PT-WS 
model, the binary interaction parameters (τ12, τ21 and k12) were opti-
mized in this work on literature experimental VLE data [48–50], and the 
results are shown in Fig. 5. Compared with PR-vdW (ARD(x)=4.7 % and 
ARD(y)=1.9 %) and PR-WS (ARD(x)=9.6 % and ARD(y)=3.9 %), the 
PT-WS model (ARD(x)=2.5 % and ARD(y)=2.6 %) gives the best rep-
resentation of the VLE data at different temperatures and pressures, and 
over almost the entire range of liquid and vapor compositions. Density 

predictions are also considerably improved by the PT-WS model (ARD 
(ρ)<0.6 %) for pressures up to 1000 bar and at different mixture com-
positions (20 % and 90 % CH4 in CO2). 

Moreover, Fig. 6 illustrates the results of the density prediction of the 
CH4-CO2-nC4 ternary mixture with the PT-vdW, PT-WS and GERG-2008 
models. The binary interaction parameters of the PT-vdW and PT-WS 
models were taken from Pan et al. [51] and Yang et al. [26], respec-
tively. At low temperature (294.55 K), the PT-WS model is the only one 
of the three capable of perfectly (ARD(ρ)<0.7 %) reproducing densities 
over the entire pressure range, while the PT-vdW and GERG-2008 
models reproduce density with an ARD(ρ) of 4.9 % and 7 %, respec-
tively. At higher temperature (333.15 K), the same model correctly 
captures the mixture density up to 150 bar, then diverges at higher 
pressure (ARD(ρ)<4.3 %), unlike the other two models (ARD(ρ)<
2.8 %). This can be due to a problem with the temperature dependency 
of the BIP especially at high temperature. 

Finally, to get a better view of the performance of the g-WS MR at the 
critical point, the VLE critical locus of two binary systems were 
computed. The procedure used for calculating mixtures’ critical point 
lines is that developed by Heidemann and Khalil [52] and Michelsen and 
Heidemann [53] and generalized by Stockfleth and Dohrn [54]. The 
latter proposed to calculate the first and second derivatives of the 
fugacity with respect to the mole number rather numerically (four-point 
differencing scheme) than analytically, to facilitate access to this 
method for all types of EoS and mixing rules. Fig. 7 shows the results of 
calculating the VLE critical locus of the CO2-R1234yf and CH4-CO2 
systems using the different EoS+MR combinations previously used to 
model their VLEs. For the CO2-R1234yf (nonpolar–polar binary) system, 
in contrast to the results obtained with the NEOS model combined with 
classical MR (ARD(T)<1.6 % and ARD(P)<4.1 %), the critical locus is 
perfectly reproduced by the NEOS model combined with g-WS MR (ARD 
(T)<0.5 % and ARD(P)<2.3 %) with temperature-independent binary 
interaction parameters. For the CH4-CO2 system, the difference in results 
is less significant (as these are non-polar binary systems), with a slightly 
better result from the EoSs (PR and PT) combined with g-WS MR (ARD(T 
and P)<2 %). 

In terms of predicting mixtures’ critical curves, to date, the use of 
cubic EoS but with advanced mixing rules like WS remains the most 
simple and appropriate, especially if compared with Helmholtz energy- 
explicit EoS like GERG-2008 which are excellent for pure compounds 
but can give unphysical critical curves as mentioned recently in 2020 by 
the works of Deiters and Bell [55,56]. 

Fig. 5. VLE (left) and density (right) of the CH4-CO2 system: Dotted lines: Peng-Robinson with vdW MR; dashed lines: Peng-Robinson with g-WS MR; solid lines: 
original Patel-Teja with g-WS MR. 

Fig. 6. Density of the ternary 52.32 %CH4–31.48 %CO2–16.20 %nC4 system: 
Dotted lines: original Patel-Teja with vdW MR; dashed lines: GERG-2008; solid 
lines: original Patel-Teja with g-WS MR. 
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4. Conclusions 

Cubic EoSs are still the most widely used models because of their 
simplicity and speed of calculation. While their use generally leads to 
reasonable results, the representation of particularly liquid and super-
critical phase densities of pure compounds is not precise. Moreover, for 
asymmetrical mixtures, and in some cases even for symmetrical mix-
tures, they fail to reproduce accurately the VLE, especially around the 
critical point. These weaknesses have increased the interest in using 3- 
parameter cubic EoS with advanced mixing rules combining the ad-
vantages of activity coefficient (GE) models and EoSs. 

In this work, the well-known Wong-Sandler mixing rules have been 
generalized (g-WS MR), making them usable with all existing 2- and 3- 
parameter cubic EoSs. The expressions, their derivatives and the 
sequence of calculations are presented. The g-WS MR developed has 
been validated by comparing and obtaining exactly the same results as 
the two existing versions in the literature (PR-WS and PT-WS). 

The g-WS MRs were then tested on PR EoS and three 3-parameter 
cubic EoSs: original Patel-Teja (PT), its modified version (mPT) by 
Forero and Velásquez 2013, and the EoS recently developed by Coquelet 
et al., 2016 (NEOS) for refrigerants. VLE and densities of the binary 
mixtures CO2-R1234yf, CO2-H2, and CH4-CO2 and the density of the 
ternary mixture CH4-CO2-nC4 were studied. The findings clearly 
demonstrate the advantages of employing such mixing rules, particu-
larly near the critical point where traditional ones often fall short. The 
results show that the best compromise for the representation of VLE and 
mixture density at near-critical and supercritical conditions, respec-
tively, is the use of three-parameter cubic EoS with g-WS MR, followed 
by two-parameter cubic EoS with g-WS MR and finally EoS with classical 
vdW mixing rules. These types of calculations are essential for oil&gas 
applications, modelling of trans critical fluid heat pump cycles or 

supercritical fluid extraction. 
In the perspective of this work, it would be interesting to extensively 

investigate mixtures for different industrial uses (e.g. refrigerant mix-
tures by NEOS-WS, or H2 and CO2 mixtures by mPT-WS) in order to 
provide binary interaction parameters, which could encourage the use of 
three-parameter cubic EoS with advanced mixing rules like WS. 

CRediT authorship contribution statement 

Salaheddine Chabab: Writing – original draft, Supervision, Soft-
ware, Methodology, Conceptualization. Christophe Coquelet: Writing 
– review & editing, Validation, Supervision, Investigation, Conceptual-
ization. Fabien Rivollet: Writing – review & editing, Visualization, 
Validation, Investigation. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data Availability 

Data will be made available on request. 

Acknowledgments 

Financial support from the "HYDR" project partners is gratefully 
acknowledged. The S.C. "HYDR" Chair is funded by the ISITE E2S pro-
gram, supported by ProSim SA, ANR PIA, IFPEN and Région Nouvelle- 
Aquitaine.  

Appendix A. Characteristic of parameter Λ 

Eq. 2 can be transformed into Schmidt and Wenzel’s [30] well-known generic cubic EoS: 

P =
RT

v − b
−

a
v2 + ubv + wb2 (A1)  

with 

Fig. 7. VLE critical locus (P-T diagram) of CO2-R1234yf (left) and CH4-CO2 (right) binary systems. Solid lines: EoS with g-WS MR; Dotted lines: EoS with vdW MR; 
Dashed lines: PR with g-WS MR. 
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u =
c + d

b

w =
cd
b2

(A2) 

The parameter Λ (denoted “C” in the original paper of WS), which does not have any physical dimension, can be expressed as a function of critical 
compressibility factor for different types of EoS. To calculate this parameter using Eqs. 10 or 11, the values of c and d parameters as a function of the 
EoS are listed in Table A1 for a few EoS selected in this work (for other EoS please refer to the paper of Zielke and Lempe 1997 [29]).  

Table A1 
Values of parameters c and d in function of 5 selected EoS.  

EoS Parameter c Parameter d 

van der Waals 0 0 
SRK 0 b 
PR b

(
1 −

̅̅̅
2

√ )
b
(
1 +

̅̅̅
2

√ )

Patel Teja b + c∗

2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

c∗b +

(
b + c∗

2

)2
)√

√
√
√ b + c∗

2
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

c∗b +

(
b + c∗

2

)2
)√

√
√
√

Coquelet et al. 

b

⎛

⎜
⎜
⎜
⎜
⎝

1 +
c∗

b
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1 +
c∗

b

)(

5 +
c∗

b

)√

2

⎞

⎟
⎟
⎟
⎟
⎠

b

⎛

⎜
⎜
⎜
⎜
⎝

1 +
c∗

b
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1 +
c∗

b

)(

5 +
c∗

b

)√

2

⎞

⎟
⎟
⎟
⎟
⎠

Parameters b and c* in Table A1 are expressed as follows: 

b = Ωb
RTC

PC

c∗ = ΩC
RTC

PC

(A3)  

with 

uΩb = 1 + Ωb − 3ZC

Ω3
b + ((1 − 3ZC) + (u + w))Ω2

b + 3Z2
CΩb − Z3

C = 0
(A4) 

For different EoS and for different values of ZC, some values of parameter Λ have been calculated. It is also possible to classify the different EoS as a 
function of the values of u and w [57] as mentioned in Eq. A1. Table A2 presents the list of some published equations and the corresponding u and w 
parameters. Different groups of EoS can be distinguished: for example, Patel Teja [24], Harmens and Knapp [58], Heyen [59], Schmidt and Wenzel 
[30], SRK [5,6] and PR [7] are classified with EoS where u+w=1. Van der Waals [60] is classified with EoS where u+w=0. As the Λ parameter is not 
constant, unlike vdW, PR and SRK EoS, Fig. A1 presents the behavior of the parameter Λ as a function of ZC. A remark can be made about Harmens and 
Knapp’s EoS [58], being the only one that is classified with EoS where u+w=1 and whose parameter Λ does not respect that as illustrated in Figure A1. 
The main reason is probably due its third parameter c which does not have any physical sense and is unitless contrary to the one of Patel and Teja EoS.  

Table A2 
Equations of state and their corresponding parameters (Eq. A1)  

EoS Parameters (u and w) 

van der Waals [60] u=0; w=0 
Redlich and Kwong [5,6] u=1; w=0 
Peng and Robinson [7] u=2; w=-1 
Patel and Teja [24], Harmens and Knapp [58], Heyen [59], Schmidt and Wenzel [30] u+w=1 
Coquelet et al. [22] u+w=0 
Yu and Lu [61] u-w=3 
Twu et al. [62] u-w=4   

S. Chabab et al.                                                                                                                                                                                                                                 



The Journal of Supercritical Fluids 212 (2024) 106336

10

Figure A1. Values of parameter Λ as a function of critical compressibility factor ZC for the different categories of EoS. Dash-dotted line: u+w=1; dotted line: u+w=0. 
van der Waals (u+w=0): Λ = − 1; PR (u+w=1):Λ = − 1̅ ̅

2
√ ln

( ̅̅̅
2

√
+ 1

)
; SRK (u+w=1): Λ = − ln(2). 

For 2-parameter cubic EoS (vdW, SRK, PR, etc.) the parameters Λand Λiare equal and constant. However, for cubic equations of state with more 
than two parameters, these two parameters are not necessarily equal and constant. Figure A1 shows also that it is possible to develop EoS-specific 
correlations of Λ=f(ZC). In this study, we have preferred to calculate the Λ parameter for each case study using Eqs. 10 or 11. 

Appendix B. Expressions and derivatives of g-WS MR 

The calculation of parameters a and b for the mixture is done with 

bm =
Q

1 − D

am =
QDRT
1 − D

(B1)  

Where Q and D are defined as follows 

Q =
∑N

i=1

∑N

j=1
xixj

(
b −

a
RT

)

ij

D =

AE
∞

RT
+

∑N

i
xi

ai

RTbi
Λi

Λ

(B2) 

The calculation of parameters c and d for the mixture is done with 

cm = bm × fmanddm = bm × gm (B3) 

In this equation, the classical mixing rules are applied to fm and gm: 

fm =
∑

i

∑

j
xixjfijandgm =

∑

i

∑

j
xixjgij (B4) 

Where 

fij =
fi + fj

2
andgij =

gi + gj

2
(B5) 

The coefficients fi and gi are specific to the selected cubic EoS (see Table A1, or Zielke and Lempe 1997 [29]); e.g. for Peng-Robinson EoS:fi =
(
1 

−
̅̅̅
2

√ )
and gi =

(
1 +

̅̅̅
2

√ )

The expressions for the excess Helmholtz free energy and the corresponding activity coefficient of the NRTL model (Renon and Prausnitz [34]) are 
as follows: 
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AE
∞

RT
=

∑

i

xi

⎛

⎜
⎝

∑

j
xjτjigji

∑

k
xkgki

⎞

⎟
⎠ (B6)  

lnγ∞,i =

∑

j
xjτjigji

∑

k
xkgki

+
∑

j

xjgij
∑

k
xkgkj

⎛

⎜
⎝τij −

∑

l
xlτljglj

∑

k
xkgkj

⎞

⎟
⎠ (B7)  

with 

gij = exp
(

− αijτij

)
(B8) 

The partial derivatives in Eq. 30 were derived analytically and validated using Maple software and numerical symmetric derivatives. Here are the 
developed analytical expressions: 

n
∂bm

∂ni
=

∂nbm

∂ni
− bm (B9)  

n
∂am

∂ni
=

∂nam

∂ni
− am (B10)  

n
∂cm

∂ni
=

∂ncm

∂ni
− cm (B11)  

n
∂dm

∂ni
=

∂ndm

∂ni
− dm (B12) 

Then, 

∂nbm

∂ni
=

1
1 − D

(
1
n

∂(n2Q)

∂ni

)

−
Q

(1 − D)
2

(

1 −
∂(nD)

∂ni

)

(B13)  

∂nam

∂ni
= RTD ×

(

n
∂bm

∂ni
− n

∂Λ
∂ni

×
bm

Λ

)

+
bm

Λ
×

(
ai

bi
Λi + RT × lnγ∞,i

)

(B14)  

∂ncm

∂ni
=

∂(nfmbm)

∂ni
= fmbm + bmn

∂fm

∂ni
+ fmn

∂bm

∂ni
(B15)  

∂ndm

∂ni
=

∂(ngmbm)

∂ni
= gmbm + bmn

∂gm

∂ni
+ gmn

∂bm

∂ni
(B16)  

with 
(

1
n

∂(n2Q)

∂ni

)

= 2
∑N

j
xj

(
b −

a
RT

)

ij
(B17)  

∂(nD)

∂ni
=

1
ΛRT

⎛

⎜
⎜
⎝

ai

bi
Λi + RT × lnγ∞,i − n

∂Λ
∂ni

×

(
∑N

i

(

xi
ai
bi

Λi

)

+ AE
∞

)

Λ

⎞

⎟
⎟
⎠ (B18)  

∂nAE
∞

∂ni
= RT × lnγ∞,i (B19)  

and from Eqs. 26 and 27: 
if dm ∕= cm 

(

n
∂Λ
∂ni

)

= −

n ×

(
∂gm
∂ni

−
∂fm
∂ni

)

(gm − fm)
2 ln

(
1 + fm

1 + gm

)

+
1

fm − gm
× n ×

⎛

⎜
⎜
⎝

∂gm
∂ni

1 + gm
−

∂fm
∂ni

1 + fm

⎞

⎟
⎟
⎠ (B20) 

If dm = cm (orfm = gm)

(

n
∂Λ
∂ni

)

=
n ∂fm

∂ni

(1 + fm)
2 (B21)  

where 
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n
∂fm

∂ni
= 2 ×

(
∑

j

(
xj × fij

)
− fm

)

(B22)  

n
∂gm

∂ni
= 2 ×

(
∑

j

(
xj × gij

)
− gm

)

(B23)  
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[17] A. Péneloux, E. Rauzy, R. Fréze, A consistent correction for Redlich-Kwong-Soave 
volumes, Fluid Phase Equilib. 8 (1982) 7–23. 

[18] R. Privat, J.-N. Jaubert, Y. Le Guennec, Incorporation of a volume translation in an 
equation of state for fluid mixtures: which combining rule? Which effect on 
properties of mixing? Fluid Phase Equilib. 427 (2016) 414–420. 

[19] Y. Le Guennec, R. Privat, J.-N. Jaubert, Development of the translated-consistent 
tc-PR and tc-RK cubic equations of state for a safe and accurate prediction of 
volumetric, energetic and saturation properties of pure compounds in the sub-and 
super-critical domains, Fluid Phase Equilib. 429 (2016) 301–312. 

[20] W.-R. Ji, D. Lempe, A systematic study of cubic three-parameter equations of state 
for deriving a structurally optimized PVT relation, Fluid Phase Equilib. 147 (1998) 
85–103. 

[21] H. Segura, D. Seiltgens, A. Mejía, F. Llovell, L.F. Vega, An accurate direct technique 
for parameterizing cubic equations of state: Part II. Specializing models for 
predicting vapor pressures and phase densities, Fluid Phase Equilib. 265 (2008) 
155–172. 

[22] C. Coquelet, J. El Abbadi, C. Houriez, Prediction of thermodynamic properties of 
refrigerant fluids with a new three-parameter cubic equation of state, Int. J. Refrig. 
69 (2016) 418–436. 

[23] P.N. Ghoderao, M. Narayan, V.H. Dalvi, H.S. Byun, Patel-Teja cubic equation of 
state–a review of modifications and applications till 2022, Fluid Phase Equilib. 567 
(2023) 113707. 

[24] N.C. Patel, A.S. Teja, A new cubic equation of state for fluids and fluid mixtures, 
Chem. Eng. Sci. 37 (1982) 463–473. 

[25] J.O. Valderrama, A generalized Patel-Teja equation of state for polar and nonpolar 
fluids and their mixtures, J. Chem. Eng. Jpn. 23 (1990) 87–91. 

[26] T. Yang, G.-J. Chen, W. Yan, T.-M. Guo, Extension of the Wong-Sandler mixing rule 
to the three-parameter Patel-Teja equation of state: application up to the near- 
critical region, Chem. Eng. J. 67 (1997) 27–36. 

[27] J. El Abbadi, Etude des propriétés thermodynamiques des nouveaux fluides 
frigorigènes, in, PSL Research University, 2016. 

[28] L.A. Forero G, J.A. Velásquez J, A modified Patel–Teja cubic equation of state: part 
I–generalized model for gases and hydrocarbons, Fluid Phase Equilib. 342 (2013) 
8–22. 

[29] F. Zielke, D. Lempe, Generalized calculation of phase equilibria by using cubic 
equations of state, Fluid Phase Equilib. 141 (1997) 63–85. 

[30] G. Schmidt, H. Wenzel, A modified van der Waals type equation of state, Chem. 
Eng. Sci. 35 (1980) 1503–1512. 

[31] J. Smith, H. Van Ness, M. Abbott, M. Swihart. Introduction to Chemical 
Engineering Thermodynamics, 8th Ed, McGraw Hill, 2018. 

[32] E. Zhao, Equations of state for nonelectrolyte and electrolyte solutions, University 
of Ottawa (Canada), 1995. 
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