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Abstract—This paper presents an approach to characterizing
defects - a process that consists of accurate measurement of their
geometric properties such as depth and surface area, assuming
that the defect detection process has been successfully performed
previously. Our methodology for addressing this problem involves
three key steps. The first is to reconstruct an ideal or defect-
free surface using scattered points obtained from a point cloud
scan of the inspected part. Subsequently, the distance from each
cloud point to this surface is computed, and points at a distance
higher than a specified threshold are identified as defect points.
The maximum of these distances corresponds to the depth of the
defect. Finally, the minimal 3D bounding box encapsulating the
defect points is determined, where the two largest dimensions of
this box represent the length and width of the identified defect.

Index Terms—3D point clouds, computer vision, defect charac-
terization, ideal surface approximation

I. INTRODUCTION

Detriment on the surface of an industrial product or a
structure can indicate a serious issue regarding its safety
and structural integrity. Timely detection and accurate mea-
surements of the geometric parameters of present damages,
such as depth, width, and length, provide an approximate
prediction of the remaining lifespan of the structure and can
help in mitigating associated safety risks. This process can
be automated using autonomous surveying robots with built-in
real-time software. Hence, the aircraft maintenance, repair, and
overhaul (MRO) industry is progressively adopting 3D scanning

for dent inspection, replacing the more error-prone and time-
consuming manual control methods.

The proposed methodology strongly relies on [2], with the
advantage of a bigger evaluation dataset and alteration in the
application of a more suitable surface reconstruction method
for more complex surfaces.

Our work is seen as a continuation of the DECADOM project
(2020-2023) [1] which dealt with detecting and characterizing
defects on mechanical surfaces using 2D/3D vision. The authors
focused on the application of their proposed software in the
field of aeronautics. They claim that it is essential to perform
periodic inspections, whether on structural parts before the
assembling phase, on assembled sections before delivery, or
a pre-flight inspection of an aircraft in service.

In [5] T. Reyno, C. Marsden and D. Wowk propose a 3D
scanning method for measuring surface damage on aircraft
structural panels. Dent depths were quantified by the difference
between a point cloud rendering of the damaged surface and a
surface fit approximating the original, undamaged surface.

Both their approach and ours present the novelty of recreat-
ing models of both the damaged and undamaged parts without
any pre-existing Computer-Aided Design (CAD) information.
They used image processing to measure dent length and area,
and the obtained results showed that their method is more
efficient and reliable compared to manual methods.

In [8] the only OEM-certified ‘Go/No-Go’ tool for 3D dent
mapping is introduced. dentCHECK measures and analyzes



dents, bumps, lightning strikes, and blend-outs on metallic,
composite, curved, and flat surfaces. All results are instantly
projected (superimposed) on the aircraft surface.

II. PROBLEM STATEMENT AND AVAILABLE DATA

In this work, the focus is on damage characterization, with
the assumption that the defect detection module previously
identified and localized defects on the inspected surfaces,
particularly mechanical components of aircraft, made of metal
or composite materials. Characterization is performed by pro-
cessing the 3D point clouds, utilizing traditional methods of
computer vision. The software aims to characterize identified
dents or cracks by assessing their volume (depth, width, and
length). The principal goal is precision with a mean absolute
error smaller than 0.2mm for depth estimation.

We used a dataset that was collected during the DECADOM
project [1]. The 3D scanner used in point cloud acquisition is
’Artec Space Spider’, it was manually carried by an operator
or by a cobot (automated control). ’Artec Space Spider’ is a
high-resolution 3D scanner based on blue light technology. It is
perfect for capturing small objects or intricate details of large
industrial objects in high resolution, with steadfast accuracy
and brilliant color.

In total, there are 29 defects on scanned surfaces (see Fig. 1).

Fig. 1: Aircraft mechanical parts with annotated defects.

The mechanical parts exhibit various shapes. Some surfaces
are planar, others are slightly curved, while certain parts, from
the metal sheet component, have more complex geometric
features (see Fig. 2a). Those complex shapes require a different
approach in the surface reconstruction phase.

III. OVERVIEW OF THE PROPOSED SYSTEM

Our method can be divided into four steps:
1) Pre-processing point clouds - down-sampling and outlier

removal
2) Ideal surface reconstruction
3) Defects’ depth calculation
4) Defects’ surface area calculation

The details of each step will be explained in the subsequent
subsections.

In the implementation, we extensively used well-documented
and light-weight Python libraries: Open3D [7] for point cloud
processing, Numpy [10], Matplotlib [11] and SciPy [9].

A. Pre-processing

As we aim to determine the equation of the ideal surface
upon which the defect lies, it is crucial to exclude points
belonging to the defect from this process. Hence, the code
for surface reconstruction utilized point clouds from which the
defect region had been removed, as illustrated in Fig. 2b.

(a) (b)

Fig. 2: (a) Metal sheet mechanical part, (b) Example of a point cloud with
removed defect points.

We have noticed that in the cases where the underlying
surface is planar, the residual between the fitted ideal surface
and the used points was small and tolerable. However, when
dealing with curved surfaces, integrating points within a large
area around the defect into the approximation process results
in a notable rise in the residual (by approximately 20 to 30
millimeters). This happens because the scanned surface is not
always perfectly resembling a surface with a (quadratic) poly-
nomial equation. To improve the approximation and enhance
the accuracy of measurements, we opted to utilize points within
a smaller vicinity around the defect in the surface reconstruction
of highly curved surfaces found on a particular mechanical
component.

We used statistical outlier removal functionality from
Open3D [7]. After removing outliers, point clouds underwent
down-sampling through the uniform down-sampling function
available in the Open3D library [7]. Down-sampling and outlier
removal parameters were found experimentally. These parame-
ters remain constant across all point clouds processed with the
same surface reconstruction method, but they are adjusted for
each method in order to get best results.

B. Surface Reconstruction

Since CAD models of inspected parts are not available,
we need to reconstruct a surface approximating the original
undamaged geometry of the part. In other words, we want to
create a virtual model of the part. Further, we can compare
point cloud data from the in-service, damaged part with the
reconstructed virtual model. Measuring the variance between
the original and damaged geometries results in an assessment
of the defect’s depth.

A vast amount of research literature is available on the
methods for surface reconstruction from 3D point clouds.
Reference [6] provides a comprehensive examination of these
methods. The authors classify a large number of methods
according to various factors such as the characteristics of input



data, referred to as point cloud artifacts, input requirements,
and the form of output representation. They categorize them
by considering conventional surface smoothness priors as well
as more specialized priors.

As specified, the outcome of reconstruction algorithms is
significantly influenced by the characteristics of the input point
clouds, such as sampling density, noise level, outliers, and
missing data. In our case, the most challenging property of
point clouds is missing data, since we extract the defect from
the point cloud, which leaves us with no points in that particular
region.

1) Weighted Least Squares: For all point clouds except
for defects on the metal sheet, Weighted Least squares ap-
proximation [3] was used. This method proves suitable as it
prioritizes points around defects, which is preferable for our
specific needs. By utilizing the given points, it reconstructs the
surface by inferring geometric properties in regions lacking
data. After outlier removal and down-sampling we have N
points pi = (xi, yi, zi), i ∈ {1 . . . N} located at certain
positions in R3 space.
We wish to obtain a globally defined, quadratic bivariate
polynomial f : R2 → R, defined in (2), that best approximates
the cloud points. The goal is to generate a function such that
the distance between the scalar data values zi and the function
evaluated at the points f(xi, yi) is as small as possible, with
the error functional∑

f∈Πd
m

θ (∥p̄− pi∥) · ∥f (xi, yi)− zi∥2 (1)

Where p̄ is a fixed point in R3, in our case, the mean value
of all defect points. The error is weighted by θ(di) where di
are the Euclidian distances between p̄ and the positions of data
points pi.

The equation of quadratic bivariate function f is:

f(x, y) = a · x2 + b · y2 + c · x · y + d · x+ e · y + f (2)

We used this polynomial because it performs well in both
cases: when the input point cloud resembles a plane or a
quadratic surface. In the first case, coefficients a, b, and c are
close to zero. Hence, no apriori knowledge about the shape
of the surface is needed. Moreover, the results that we got by
fitting the linear function and quadratic function, show that a
smaller residual is obtained in the second case. A plane fit is
insufficient because, in general, the surface of most parts is not
entirely flat.

For non-negative weighting function θ we chose θ(d) =
1

d2+ϵ2
, where ϵ is a constant, set to 0.15. The weighting

functions have the property of assigning higher weights to the
points that are in the proximity of the defect, and lower weights
to the points far away from it.

2) Poisson surface reconstruction: Since the metal sheet part
has a more complex shape, with a non-uniform profile (see
Fig. 2a), the surface can not be approximated with a quadratic
model or another small degree polynomial surface. For these

point clouds we used method create from point cloud poisson
from Open3D library [7] which is a wrapper of Kazhdan et al.
Poisson surface reconstruction algorithm [4]. Poisson surface
reconstruction is chosen due to its versatility in reconstructing
various surface types, its speed, and its integration into the
Open3d library. For this method, we found that the outlier
removal did not yield improved results. Therefore, we chose
not to employ it.
Following the generation of the mesh using points from the
undamaged part of the surface we need to find the distances
from defect cloud points to it.

C. Calculating depth of defects

The next step involves calculating the distances between the
defect points in the point cloud being analyzed and the surface.
To achieve this, the cropped defect region was used. Note that
the defect point cloud was first cropped and then down-sampled
by keeping every fifth point, ensuring that the execution time
remains reasonable.

To determine the distances, following the reconstruction of
the surface using WLS, we used the Lagrange multipliers
method. We implemented it using the SciPy library [9].
Looping through every point p = (px, py, pz) in defect point
cloud, the objective was to find the minimum of squared dis-
tance function f(x, y, z) = (x− px)

2
+ (y − py)

2
+ (z − pz)

2

subject to the constraint given by the implicit quadratic surface
equation.

In the case of Poisson surface reconstruction, we used
RaycastingScene class from Open3D, which provides com-
pute distance method for determining the distances be-
tween defect cloud points to the generated mesh. The com-
pute distance method converts the mesh to an implicit function
representation to efficiently determine distances from points
to the mesh surface without explicitly iterating over all mesh
vertices or faces.
Every point that has a distance greater than the predefined
threshold value, is appended to the set of defect points, and its
distance to the set of distances. The maximum distance of all
distances is the depth of the defect. Points representing defect
were illustrated in Fig. 3a. After determining which points
belong to the defect we proceed as described further.

D. Width and length of defects

The Boeing 737-400 SRM, here taken as reference, provides
the only accepted definition of dent’s measures: “The length of
the dent is the longest distance from one end to the other end.
The width of the dent is the second longest distance across the
dent, measured at 90 degrees to the direction of the length”. In
our approach, we adhere to this particular definition.

In geometry, the minimum bounding box (MBB) for a point
set S in N dimensions is the box with the smallest measure
(area, volume, or hypervolume in higher dimensions) within
which all the points lie (see Fig. 3b).



To determine the dimensions of the defect, namely its width
and length, (since the depth is already calculated) we decided
to enclose it within a minimal 3D bounding box. The two
largest dimensions of this box represent the length and width
of the inspected defect, respectively. To accomplish this, we
utilized the Principal Component Analysis (PCA) algorithm.
The bounding box is only created in the final step for the
purpose of visualization (see Fig. 3b).

(a) (b)

Fig. 3: (a) plotted defect points, b) Defect points translated and rotated to align
with Cartesian basis vectors and MBB around them.

IV. RESULTS

To assess the method’s accuracy, we conducted a comparison
between the results we obtained and manually acquired mea-
sures of defects by an operator during the DECADOM project,
which we considered as ground truth. Table I displays results,
listing measures of defects, including width, length (denoted as
w × l), and depth in millimeters.

The mean absolute error was calculated to estimate the
accuracy of the method, yielding a value of 0.15 for the depth
dimension, which falls below the specified margin, a value of
1.36 for the width, and 1.55 for the length.

The best results were achieved when dealing with planar
surfaces featuring sphere-like defects as well as slightly curved
surfaces with dents. However, estimations on highly curved and
complex parts may have lower accuracy.

CONCLUSION

We propose a method that has the following advantages:
1) it provides a robust framework that can extract precise

information about the defects’ measures;
2) characterizes various types of defects without any prior

knowledge about the surface shape or size of the defect;
3) the estimation of depth as the most important property of

defects has the highest accuracy
4) it is not limited to aircraft parts, but can be used on other

damaged surfaces
Through experimentation with the mentioned dataset, we

have noticed which surface reconstruction method performs
best with certain properties of input point clouds. For nearly flat
surfaces, utilizing a broader defect environment yields the best
results using WLS. Conversely, when applying WLS on curved
quadratic models, a smaller number of neighboring points

TABLE I: Results

Defects Thre Our method Ground truth
shold w x l depth w x l depth

D1 0.5 8.13× 12.75 3.58 8.10× 12.75 3.5
D2 0.5 6.55× 12.97 1.17 2.40× 7.01 1.51
D3 0.5 3.17× 9.71 0.7 3.13× 9.98 0.64
D4 0.5 9.41× 13.15 3.13 9.41× 13.15 3.13
D5 0.5 15.47× 15.87 1.21 14.78× 15.28 1.21
D6 0.5 13.35× 14.04 2.59 22.52× 22.71 1.27
D7 0.3 6.58× 7.26 0.38 8.13× 8.68 0.31
D8 0.3 10.15× 10.66 0.55 10.36× 10.51 0.43
D9 0.5 11.09× 11.19 1.08 9.73× 10.07 0.92
D10 0.5 25.29× 26.47 1.49 25.17× 25.89 1.61
D11 0.5 28.35× 29.24 2.14 26.27× 30.52 1.98
D12 0.2 7.03× 10.24 0.31 7.54× 11.12 0.42
D13 0.2 9.65× 10.43 0.47 13.38× 14.94 0.53
D14 0.15 17.47× 17.56 0.34 21, 41× 22.75 0.24
D15 0.1 12.36× 14.27 0.2 12.35× 12.62 0.2
D16 0.2 12.34× 12.62 0.43 12, 62× 12, 88 0.37
D17 0.15 9.45× 9.65 0.28 9, 78× 9, 94 0.29
D18 0.3 18.72× 18.96 0.62 19.14× 19.40 0.53
D19 0.3 16.05× 16.14 0.47 16.56× 16.69 0.41
D20 0.3 13.38× 13.4 0.44 13.80× 13.91 0.40
D21 0.1 5.98× 10.28 0.18 6, 37× 10, 47 0.23
D22 0.5 17.32× 18.14 0.64 18.64× 18.84 0.66
D23 0.5 15.84× 22.86 1.47 16, 26× 19, 50 1.52
D24 0.2 13.64× 17.11 0.61 13, 45× 18, 08 0.73
D25 0.2 6.63× 13.04 0.57 9.41× 13.15 0.55
D26 0.5 7.45× 8.58 0.76 4.47× 5.91 0.55
D27 0.5 2.53× 5.99 0.69 3.33× 4.00 0.48
D28 0.5 8.01× 9.63 1.77 8.60× 9.21 1.26
D29 0.5 17.03× 17.5 2.25 17.66× 17.75 1.99

around the defect should be used for the most accurate approx-
imation. Employing Poisson reconstruction with a wider point
of view is preferable for highly curved, complex surfaces that
deviate significantly from polynomial shapes. This approach
allows Poisson reconstruction to effectively learn the surface
characteristics necessary for reconstructing missing sections.

The parameter with the highest sensitivity in the proposed
methodology is the threshold value utilized to differentiate
defect points from surface points. This parameter significantly
influences the estimation of the defect’s width and length, as
lowering it can result in the identification of more points as
defects while raising it yields the opposite effect. Additionally,
its effectiveness is influenced by the quality of the surface
reconstruction process. For Poisson surface reconstruction the
size of the point cloud is the most influential tunable factor.
Furthermore, while Poisson reconstruction is known for its
speed and applicability to various surface types, it is sensitive
to the presence of missing data.

FURTHER WORK

The selection of the surface reconstruction method should
be automated, by examining the residual. If the fitted surface
using WLS results in a residual higher than a certain threshold,
then the Poisson reconstruction should be applied.
Additionally, determining the threshold that distinguishes defect
points from surface points should be automated. This step
is critical, as the distance threshold parameter significantly
influences the estimation of the defect’s width and length.
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