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Highlights

High resolution and large field of view imaging using a stitching procedure coupled with

distortion corrections

Ali Rouwane, Damien Texier, Jean-Noël Périé, John-Eric Dufour, Jean-Charles Stinville, Jean-Charles

Passieux

• The proposed non-rigid stitching method estimates and corrects part of the optical distortions

using gray-levels in overlapping regions.

• The method attempts to correct image stitching as best as possible using minimal information

(small overlap, self-calibration, no extra images).

• It improves the quality of the blended image and greatly reduces blurring in the overlaps due to

lens distortion.

• The method outperforms classic stitching by reducing displacement/strain artifacts when the ob-

tained mosaics are analyzed with DIC.
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Abstract

A numerical approach was implemented to precisely stitch together images from the same projec-

tor/camera that form a mosaic by regularly moving either the projector/camera or the scene/sample.

Such an imaging approach is used, for example, in automated microscopy. The presence of optical dis-

tortions can lead to detrimental blurring artifacts in the overlaps. The present development identifies

and corrects non-affine distortion functions using the gray level conservation equation on reduced over-

lapping regions of adjacent images with sub-pixel accuracy. The present numerical development was first

tested on synthetic images with known distortions to confirm that the algorithm is capable of detecting

only non-affine distortions. Then, Digital Image Correlation (DIC) was applied to a pair of large laser

scanning confocal microscope mosaics (121 images of 1024 × 1024 pixel2, i.e., more than 100 MPixel)

created using the proposed non-rigid stitching. The method aims to improve the quality of blended im-

ages after stitching using the sample pattern in the overlapped regions. This new numerical development

significantly minimizes kinematic field artifacts due to lens distortion in overlapped regions.

Keywords: Non-rigid stitching; Distortion compensation; Image blending; Mosaicing; Digital Image

Correlation.

1. Introduction

A field of view is an open area an instrument or a person can observe. Large fields of view with a high

spatial resolution are of interest due to the combined capability to represent a large scene with high spatial

information describing the variability of the scene. Such large fields of view require high-resolution images

that can be acquired either from full-field high-resolution sensors, from scanning acquisition systems, or

from observation strategies such as the pixel shift technique, sweeping panoramas, mosaicing, or an

array of sensors, or even cameras. Each acquisition technique has advantages and drawbacks that make

images of the same physical size and numerical resolution different. For instance for optical techniques,

commercial full-frame ultra-high resolution sensors can provide up to 100 megapixels (MP) images on
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centimeter-size sensors (e.g., 102 MP BSI-CMOS 43.8×32.9 mm2 medium format sensor with a pitch

size of 4.6 µm or HASSELBLAD H6D-400C MS 53.4×40.0 mm2 sensor with pitch size of 4.6 µm).

In recent years, the development of megapixel optical sensors for smartphones has allowed significant

technological and manufacturing advances, sometimes at the expense of sensitivity, dynamic range, and

physical resolution due to numerical aperture restrictions. Micro-sized smartphone sensors can now be

of 200 MP-resolution images with photosites of 0.64 µm, as demonstrated with the Samsung Isocell

HP1 sensor. Furthermore, combining such high-resolution sensors with pixel refinement techniques, such

as the pixel shift technique, can quadruple the numerical resolution of the images [1]. To circumvent

individual sensor performance, an alternative solution for higher-resolution images is the assembly of

juxtaposed sensors. For instance, the SLAC laboratory at Stanford University has developed for the

Large Synoptic Survey Telescope (LSST) of Vera C. Rubin Observatory project the largest digital photo

sensor of 3.2 gigapixels (GP) measuring more than 600 mm on a side and is made up of 189 smaller 16 MP

sensors (pitch of 10 µm) [2]. However, this approach can be limited by the diffraction and aberration

limits imposed by the numerical aperture of the monocentric lens. Therefore, the development of multi-

sensors with a monocentric ball lens and an additional relay lens for each sensor (few GP-resolution

images for [3] and up to 50 GP-resolution images for the AWARE-2 camera [4]) or multi-camera array

microscopes (MCAM) [5] have demonstrated their ability to generate GP-resolution images. All these

techniques have the advantage of acquiring high-resolution images in a single shot, leading to relatively

fast acquisition times.

Images can also be constructed using scanning acquisition techniques, such as scanning electron mi-

croscopy, laser scanning confocal microscopy, scanning acoustic microscopy, and atomic force microscopy.

These techniques are limited by electronic controllers, sometimes encoded in formats not sufficiently re-

solved to accurately capture the signal at a precise, accurate, and repeatable position, compared to

fix arrays of full-field sensors. For instance, scanning electron microscopy (SEM) uses deflection coils

controlled by a deflection coil current whose discretion and resolution are given by the controller en-

coder. Recent developments for scanning electron microscopy allow for micrographs resolution of about

50k×40k pixels in a single acquisition, i.e. about 2 GP, with the Atlas 5 functionality proposed by ZEISS

on the ZEISS Crossbeam series (ZEISS Crossbeam and Sigma series already offer images of 32k×24k

pixels) [6, 7]. However, the larger the images, the longer the acquisition times. Therefore, as for multi-

sensor optical means, multi-beam electron microscopy was developed for high-throughput imaging and

allows for the acquisition of 91 simultaneous images, leading to an unprecedented field of view size and

resolution for fast acquisition times [8, 9].

Considering and possibly correcting image artifacts is the first concern when using imaging for metrol-

ogy. In scanning electron microscopy and other scanning techniques, artifacts in image reconstruction

can arise from beam position accuracy and repeatability, electronic drift (electrical charges of the sample

or controllers), but also from astigmatism and spherical aberrations, i.e., optical lens distortions [10].

Non-stationary step-changes in the measured displacements were evidenced using digital image correla-

tion (DIC) techniques, leading to anisotropic artifacts depending on the scanning strategy (continuous
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scanning along a direction versus line jumps in the orthogonal direction [10, 11, 12, 13, 14, 15]. Different

algorithms to correct artifacts from line jumps are developed, but are not of concern for the present

paper [10, 11, 14, 15]. For scanning drift or aberrations, progressive distortions can also be identified

and corrected using cross-grating techniques during image acquisition [12, 16]. Recently, Maraghechi et

al. [17] proposed a unified integrated DIC (IDIC) framework extended with a series of hierarchical map-

ping functions to concomitantly correct spatial distortion, drift distortion and scan line shifts. Hardware

developments for SEM incorporating phase-locked loop control aimed at minimizing positional errors

during e-beam scanning [18].

If time acquisition is not an issue, acquiring successive images at different locations with overlapping

regions is generally less expensive and may benefit from more appropriate lenses for aberration and

diffraction limits. Sweeping panoramas [19] or image stitching [20, 21] techniques can then be used to

reconstruct the multi-region blended image. Large but high-resolution stitched images are reported,

for instance, in Refs. [22, 9, 23] for collecting time of hours to days thanks to automated motion and

acquisition systems. Mosaics of images generally consist of taking an image sequence from the same

viewpoint, leading to homographies (or collineations) relationships between successive images.

Combining multiple images into one panoramic (or stitched) image can be performed with different

strategies. They can be classified into two main groups: feature-based [24, 25] and registration-based

approaches. The most common approach is based on feature detection. In panoramic image stitching, it

is common to choose large overlapping regions to get a sufficiently high number of feature points. These

feature points are usually found using robust feature detection techniques such as SIFT [26], Harris [27],

SURF [28], and many others (see e.g. [29, 30] as an example). Once the features are detected, projective

transformations represented by a 3×3 homography matrix are identified using these data points [31]. An

outlier filtering using the RANSAC algorithm [32] is also used to get a more accurate homography. We

note that the feature matching technique step can also be performed using phase correlation techniques,

i.e. by maximizing the cross-correlation between multiple feature windows a priori fixed.

In the presence of geometric distortions, simple affine/projective transformations that match over-

lapping regions cannot allow accurate stitching of images, as distortions are usually non-linear. This

becomes very problematic, especially when the overlap size is small (which is a practical choice for min-

imizing the acquisition time and the memory footprint). This induces severe limitations, as it does not

dissociate the distortion and the simple affine transformations related to the physical multi-view acqui-

sition (such as the sample/microscope translation). This leads to an inhomogeneous blurring effect that

results from averaging different matched gray-level values at the overlapping regions. When performing

Digital Image Correlation (DIC) with high-resolution images stitched as such, these distortions can affect

the quality of the displacement and strain fields [33, 34].

To limit the effects of distortion, stitching techniques have been developed that look for a deformation

of each image in addition to its rotations and translations. They are sometimes referred to as non-rigid

stitching. The deformations of the images are usually chosen as second [35] or higher order [36, 37]
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polynomials whose coefficients are optimized to better align the matching points. The goal of these

methods is generally to produce visually better mosaics, in other words, so that the imaged objects are

neither discontinuous nor blurred. However, such methods are not suitable for digital image correlation,

since these deformations, that differ between two adjacent images–and sometimes within a single image–,

generate nonphysical strain discontinuities.

Several techniques have been developed to estimate and correct optical, i.e., more physically-sound,

distortions in DIC and stereo DIC. The major sources of distortions related to optical lenses are radial,

decentering, and prismatic distortions and are taken into account in so-called ”camera models” [38]. Most

calibration procedures rely on detecting fiducial markers such as circles, ellipses, lines, line intersections,

checkerboard, or more complex patterns [39] printed or engraved on calibration objects. In addition,

photogrammetric calibration methods enable calibration without very precise and accurate calibration

objects [40, 33]. The pattern printed on the sample is considered known and bias-free; it is thus possible

to perform calibration with one single image [41]. Using microscopy, e.g. optical microscopy, laser

scanning confocal microscopy, or electronic microscopy, it is experimentally complex to first acquire or

manufacture calibration objects based on the fabrication tolerances meeting the spatial resolution of

distortions to be identified. In addition, positioning and moving a calibration object with the same

flatness - and electron charges for scanning electron microscopy - in the field of view of the imager prior

to the experiment to calibrate distortions is not trivial.

In this study, an algorithm is proposed to make the most of a minimal dataset, i.e., composed solely of

mosaic sub-images (no other images, no new experiments with different operating conditions like change

in scanning direction or change in overlap, no a priori knowledge of the pattern) and with a relatively

small overlap (10 %) to maximize the field of view with automated image acquisition for mosaics/grid

collection using microscopes. The idea is not only to reconstruct a mosaic image without blurring in

the overlapping regions, but also to apply homogeneous physically-based corrections so that the high-

resolution images can be used in DIC a posteriori. The present algorithm consists of a registration that

dissociates the rigid translations from the assumed intrinsic optical distortion of the imaging system. In

the spirit of the work of [42], a calibration procedure for high order camera models is proposed given

the reduced-size overlap. This type of method is considered as a self-consistent calibration, since it does

not require a calibration object. A minimization of a global Sum of Squared Distances (SSD) metric

over all the overlapping regions of the mosaic is thus considered. The optimization variables are the

position of the images in a global reference coordinate system and the parameters of the considered

distortion model. Finally, the corrected sub-images are stitched with standard phase correlation and

blending approaches [43, 44]. The present work can be seen as an enhancement of the 2D image stitching

as established in the work of Preibisch et al. [45] and Kaynig et al. [46] (available in the image-processing

package Fiji). Interestingly, the present correction method is not specific to a microscopy or any image

acquisition apparatus, and choices of correction modes may depend on image modality. It is worth

reminding that the present model only applies to continuous distortion fields and is not applicable to

line jump artifacts that may occur in bilateral scanning microscopy, such as electron microscopy [14, 17].
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For the validation of the method, the algorithm was first tested on synthetic dataset with known dis-

tortions to confirm the validity of the present algorithm and modes that can be identified, i.e. non-affine

distortions. A methodology is then proposed for selecting the distortion modes to be considered for real

images with improved sub-pixel corrections using the proposed approach on a real high-resolution mosaic

image. The developed code is available at https://github.com/arouwane/Distortion-correction

[47].

2. Problem setting

The present numerical development intends to improve stitching operations considering lens distortion

functions on reduced-size overlapping regions after an automated acquisition of a mosaic of images. For

such a configuration, the imaging system (microscope) is fixed, and the sample is regularly translated in

both horizontal and vertical directions to acquire the different sub-images.

Let f1 and f2 be two adjacent distorted images of the considered sample (see Fig. 1). Registration

of f1 and f2 is usually performed by satisfying the gray-level conservation equation f1 = f2 ◦ ϕ using

similarity criteria [44] or using features matching [31]. In the gray-level conservation equation, the

unknown parameter is the transformation field ϕ which, in the presence of distortions, is a complex

composition of the translation and the intrinsic distortions related to the imaging system. If no distortion

is considered, then ϕ(x) = x + ∆t where ∆t is the translation between both images. In this case, the

sum of squared differences dissimilarity can be considered as follows:

ϕ⋆ = argmin
ϕ

∑
xi∈Ω

(f1(xi)− f2 ◦ ϕ(xi))
2
. (1)

In the presence of distortions, ϕ(x) = x + ∆u where ∆u is a complex composition of both the

translation ∆t and the intrinsic distortions related to the imaging system (given by the distortion degrees

of freedom vector denoted d). To dissociate the translations from the supposed common distortion, one

can reformulate the previous dissimilarity as follows:

∆t⋆,d⋆ = argmin
∆t,d

∑
xi∈Ω

(f1 ◦P (xi,d)− f2 ◦P (xi −∆t,d))
2
, (2)

where P is the distortion correction transformation of the considered acquisition system. It is a two-

dimensional vector field, defined as the inverse of the distortion transformation.
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Figure 1: Schematic illustration of the image stitching problem with the presence of distortions.

In the present paper, a brief development of the gray-level conservation equation was considered

when performing image registration between two adjacent distorted images. The relationship between

the registered displacement field ∆u and the distortion correction P was defined. Let f̃1 and f̃2 be

the undistorted images corresponding to f1 and f2 (see again Fig. 1). Supposing that ∆t is the exact

translation of f̃2 relative to f̃1, then f̃2 = f̃1 ◦(id−∆t) where id is the identity operator. In the presence

of distortions, f̃1 and f̃2 are composed by the inverse projector P−1 (provided that the distortion field

is invertible). Performing image registration in the overlapping region subsequently consists of solving

the following equation:

f1 ◦P−1 = f1 ◦ (id−∆t) ◦P−1 ◦ (id+∆u). (3)

This results in:

P−1 −P−1 ◦ (id+∆u) +∆t = 0 (4)

Eq. (4) establishes the relationship between the unknown distortion field defined by the transformation

P and the registered displacement field between two overlapping images ∆u. When the distortion field

P is such that it can perfectly superimpose to itself, the registered displacement field ∆u is reduced to

a pure rigid body translation. If P is such that ∆u is a pure rigid body translation for all points in the

overlapping region, then the stitching artifacts disappear and the stitching is perfect. Consequently, it

is not possible to characterize such a distortion using only the gray levels in the overlap. The condition

for this is explained below.
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First, let us notice that equation (4) can be rewritten as:

P−P ◦ (id+∆t)−∆u = 0. (5)

Then, using a first order Taylor expansion of (5), it can be shown that:

JP∆t = ∆u. (6)

Since ∆t is constant, if the Jacobian JP is constant, so is ∆u. The distortion mode P will be mea-

surable if its Jacobian is not constant in the overlap. Conversely, this means that any (component of the)

distortion field that is affine in the overlap cannot be calibrated using only overlapping gray-levels. In

practice, modes that almost fulfil this condition (i.e., are almost affine in the overlap) will also be difficult

to measure. But that’s not a big problem for stitching, since these affine (or quasi-affine) modes don’t pro-

duce stitching artifacts. In the following, we just have to be careful not to introduce affine or quasi-affine

modes in the parameterization of the distortion field to ensure that the calibration problem is well posed.

In the rest of the paper, the word affine will designate affine and quasi-affine functions in the overlap,

in other words, functions that won’t be measurable in this context. The word calibration is used but is

a bit of a misnomer, since the proposed method will consist of estimating and correcting only the part

of the distortion field that results in a non-rigid ∆u, as it is the source of the stitching artifacts, as

explained in Section 3. Eq. (4) is a complex non-linear equation that can be numerically solved, but a

first registration step is, however, needed to determine the ∆u field. This step is implicitly considered

in Eq. (2). The registration cost function used to identify the distortion field will be based on Eq. (2)

and detailed in Section 4.

3. Non-parametric distortion modes

Before solving the distortion identification problem, the distortion model must be first set. The

general form of the distortion correction can be defined as follows:

P(x,d) = x+N(x)d, (7)

where x = (x, y) is the 2D position in the deformed (or distorted configuration denoted Ω̃, see e.g.

Fig. 1), N(x) is the 2D distortion shape function matrix and d are the distortion correction modes.

The distortion shape functions can derive from a physical or a parametric model or even a constrained

mesh-based (or B-spline) model. One of the most common models is the Brown-Conrady model, which

is a camera distortion model generally used to account for optical aberrations related to spherical lenses.

It is a geometric distortion model representing radial and tangential variations of the field of view [38],

as depicted in Fig. 2. A simple first-order Brown-Conrady correction field can be defined as follows [41]:

P

x

y

 =

x

y

+

d0x̃r
2 + d1(r

2 + 2x̃2) + 2d2x̃ỹ

d0ỹr
2 + 2d1x̃ỹ + d2(r

2 + 2ỹ2)


=

x

y

+

2d2x̃ỹ + 3d1x̃
2 + d1ỹ

2 + d0x̃ỹ
2 + d0x̃

3

2d1x̃ỹ + d2x̃
2 + 3d2ỹ

2 + d0ỹx̃
2 + d0ỹ

3

 ,

(8)
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where x̃ = (x − xc)/l and ỹ = (y − yc)/l and r =
√

x̃2 + ỹ2. l is a characteristic scaling length (in

pixels) used for normalization. l can be chosen as the maximum length of the mosaic sub-images. (x, y)

represents the coordinates in the image coordinate system. (xc, yc) is the distortion center (of zero

distortion), which is assumed to be fixed at the image center.

(a) (b) (c)

Figure 2: Examples of lens distortions obtained from the Brown-Conrady model of Eq. (8). (a) Positive radial distortion.

(b) Negative radial distortion. (c) Positive radial and tangential distortions.

The radial and tangential transformations modeled by this parametric model are limited and cannot

allow identifying general transformations that derive from complex optical paths, as is the case for

microscopes with corrected lenses. In the context of this work, a simple polynomial description is rather

considered. Therefore, the displacement field is expressed in the basis given by Eq. (9) for a cubic

polynomial model (without the constant shift mode).

{x̃, ỹ, x̃ỹ, x̃2, ỹ2, x̃2ỹ, x̃ỹ2, x̃3, ỹ3}. (9)

For the complete cubic polynomial model of Eq. (9), there are 9 distortion modes for each direction.

In order to illustrate the different distortion modes and to evidence ”the identifiability” of the polynomial

modes of Eq. (9), we consider visualizing a distorted grid, its horizontal and vertical shifts.

(a) (b) (c) (d) (e)x y xy
~

x²~~ ~ ~

− 2 5 0

y

x

y²~

(i)(h)(g)(f) x²y~~ xy²~~ x³~ y³~

Figure 3: Vertical deformation of a structured grid (representing the image domain) with the different distortion modes

of Eq. (9) for both the horizontal and vertical overlapping cases. (a)-(i) represent respectively the modes of Eq. (9) with

positive coefficients.
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Visually, affine and quasi-affine modes are the modes for which a translation can perfectly align the

grid lines on the overlapping regions (see e.g. Figs. 3(a)-(b)-(h) for which the lines remain parallel for

all translation values). In other words, there exists a translation that induces a problem with multiple

solutions for the distortion parameters. As mentioned above, these affine modes cannot be measured as

they induce a rigid-body distortion displacement vector. Affine and non-affine modes are represented as

red cross and green check symbols in Fig. 3 for both directions, respectively. For clarity purposes, large

distortion magnitudes were considered to illustrate each distortion mode in Fig. 3. Theoretically, one

can choose the following modes:

N(x) =

Nx(x, y) 0

0 Ny(x, y)

 with

 Nx(x, y) =
(
x̃ỹ, x̃2, ỹ2, x̃2ỹ, x̃ỹ2, ỹ3

)
Ny(x, y) =

(
x̃ỹ, x̃2, ỹ2, x̃2ỹ, x̃ỹ2, x̃3

) . (10)

Remark 1. Due to small distortion magnitudes and small overlaps, all the stretching modes in the

dominant direction are not considered. (x, x2, x3 for the x direction and y, y2, y3 for the y direction).

In this study, only significantly non-affine distortions are assumed to be relevant.

4. Identification algorithm

Let (fi)i∈J1,mK be a set of distorted images representing a high-resolution mosaic of images of a planar

sample. A regular grid of images was acquired in an automated process. To identify the distortion

correction field, a global functional is considered by summing the squared gray-level differences over all

the overlapping regions:

argmin
p

n∑
i=1

∑
x∈Ωi

(
f0
i ◦P

(
x− tf0

i
,d

)
− f1

i ◦P
(
x− tf1

i
,d

))2

. (11)

f0
i is the left (or top) image of the overlap Ωi if Ωi is vertical (or horizontal). f

1
i is the right (or bottom)

image of the overlap Ωi if Ωi is vertical (or horizontal). tf1
i
> 0 and tf0

i
> 0 are the coordinates of the

images f0
i and f1

i . The total vector of unknown parameters (translations and distortion modes) denoted

p is defined as follows:

p =
(
d1, ....,dn, tx

1, tx
1, ..., tx

m, ty
m
)T ∈ Rn+2m (12)

where d1, ...,dn are the distortion correction parameters related to the optical system and tx
i, ty

i are

the translations (or position) of the image i. n represents the number of distortion parameters, and m is

the number of images. Problem (11) is solved using a Gauss-Newton algorithm [48, 49]. The operators of

this descent scheme are obtained from the assembly of elementary operators defined on each overlapping

region. The local Hessian matrix Hi and right-hand side of the Gauss-Newton system bi relative to an

overlap Ωi at iteration k are defined as follows:

Hk,i =
∑
x∈Ωi

Jk,i(x)Jk,i(x)T and bk,i = −
∑
x∈Ωi

Jk,i(x)T
(
f0
i (x)− f1

i (x)
)

(13)

where Jk,i is the local Jacobian matrix, computed for each region and defined as follows:

Jk,i(x) =
(
∇∇∇f0

i ◦P
(
x− tf0

i
,d

))T

∇∇∇P0
(
x− tkf0

i
,dk

)
−
(
∇∇∇f1

i ◦P
(
x− tf1

i
,d

))T

∇∇∇P1
(
x− tkf1

i
,dk

)
.

(14)
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The gradient matrices of the unknown transformation (relative to the distortion parameters and the two

translations of the images) are defined as follows:

∇∇∇P0 =



(
∂Px

∂di

)
i

(
∂Py

∂di

)
i

−∂Px

∂x −∂Py

∂x

−∂Px

∂y −∂Py

∂y

0 0

0 0


and ∇∇∇P1 =



(
∂Px

∂di

)
i

(
∂Py

∂di

)
i

0 0

0 0

−∂Px

∂x −∂Py

∂x

−∂Px

∂y −∂Py

∂y


. (15)

The global operators of the Gauss-Newton linear system are parallelly assembled by adding the con-

tribution of the operators of each local overlapping region. Concerning the optimization algorithm, a

standard multi-level Gaussian blurring strategy is considered to gradually filter high-frequency displace-

ment fields [50, 51]. When distortion is appropriately corrected, the global dissimilarity indicator is

minimal and should only quantify the gray-level noise in the original images. In other words, the algo-

rithm is considered efficient if the gray level disparity (defined by Eq. (16)) on all the overlapping regions

remains in the same order of magnitude as twice the image noise.

σ
(
f0
i ◦P

(
x− tf0

i
,d

)
− f1

i ◦P
(
x− tf1

i
,d

))
(16)

σ corresponds to the standard deviation of a distribution. In practice, this disparity should not exceed 4

gray-level values. We note that a brightness offset correction is performed when computing the gray-level

disparity on each overlapping region.

5. Proof of concept: Virtual 2D multiview with distortions

A virtual (synthetic) distorted multi-view of a speckle image is first considered, as illustrated in Fig. 4.

This approach aimed at confirming modes, i.e. affine and non-affine modes, that can be identified with

the present algorithm since ground-truth distortions and image translations are known. The whole high-

resolution image, exempt from distortion, is subdivided into different individual images, denoted here as

”sub-images”. The sub-images were purposely subdivided to have an overlap of 10 %. Each sub-image is

then distorted using known distortion modes to test the validity and robustness of the present calculation

scheme. This approach aimed at confirming that it is possible to perfectly stitch distorted images even

from a dataset that can not be used to detect affine modes. Three distortion models (see e.g. Fig. 5)

were tested to validate the robustness of the distortion identification. To identify the distortion, different

sets of modes were considered from Eq. (9). Table 1 synthesizes performance indicators for the different

selections of distortion modes.
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Figure 4: 3× 3 synthetic multi-view image acquisition of a speckle texture.
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Figure 5: Deformation of a structured grid with three different distortion configurations. (a) Positive linear stretch. (b) Bar-

rel distortion. (c) Pincushion + Tangential distortion. In red: reference configuration. In blue: deformed configuration.

Starting from a zero value vector d of the distortion parameters, the Gauss-Newton algorithm has

an expected theoretical convergence. Let’s now consider the first case corresponding to Fig. 5(a). It

corresponds to a stretching distortion of the different sub-images by only considering x and y modes in

x and y directions, respectively. The optimization algorithm defined in section 4 identifies a set of a zero

distortion field and a set of translations that does not correspond to the reference translations (see the

first row in Table 1). This proves that distortions due to affine modes (stretching effects in this case)

can be compensated by overestimating the translation shift. Gray-level disparity is perfectly minimized,

and images are perfectly stitched even if an (affine) part of the distortion field is not corrected. This

confirms the choice of removing the corresponding two stretching modes. Finally, we consider two other

multi-view distorted acquisitions using the Brown-Conrady model of Eq. (8). One is a barrel distortion

(Fig. 5(b)), and the other is a pincushion-tangential distortion (Fig. 5(c)). When using Eq. (9), all the

non-zero modes and the reference translations are accurately identified, and the gray-level disparity is

perfectly minimized. However, if one uses the incomplete polynomial model of Eq. 10 then the Brown-

Conrady distortion cannot be accurately identified (see again Table 1). To conclude, the analysis of
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known distortions in synthetic images aimed at validating the present algorithm as a tool for stitching

distorted images even if the full distortion model can not be estimated.

Model used for

distorting the im-

ages

Identification

modes

Gray-level dispar-

ity

Absolute Transla-

tion error (pixels)

Absolute Distor-

tion parameters

error

(x̃) , (d0 = 8)

(ỹ) , (d1 = 8)
Eq. (10) 0.09 8 -

(
x̃ỹ2, x̃3

)(
ỹx̃2, ỹ3

) Eq. (10) 1.9 7 0.5

(
x̃ỹ2, x̃3

)(
ỹx̃2, ỹ3

) all except x and y 0.09 10−4 10−4

(
x̃ỹ, x̃ỹ2, ỹx̃2, x̃3

)(
x̃ỹ, x̃ỹ2, ỹx̃2, ỹ3

) Eq. (10) 0.25 0.5 10−2

(
x̃ỹ, x̃ỹ2, ỹx̃2, x̃3

)(
x̃ỹ, x̃ỹ2, ỹx̃2, ỹ3

) all except x and y 0.09 10−4 10−4

Table 1: Identification of the distortions used to generate the synthetic images using different polynomial modes.

6. Application: Improvement of image registration accuracy for high resolution stitched

images

6.1. DIC using confocal microscopy

In the present section, the algorithm will be tested on a real mosaic of micrographs with relatively

regular translations thanks to microscope automation. Since ground-truth distortions are not known,

a methodology is proposed to better select non-affine distortion modes using DIC results to minimize

image deformation on the overlapped regions. For the present application, real images were acquired

using a LEXT OLS 5100 laser scanning confocal microscope (LSCM) from OLYMPUS. The LSCM

operates with a 405 nm wavelength laser and acquires images with a resolution of 1024 × 1024 pixels in

a stitching/grid collection mode. A MPLAPON100XLEXT lens provided individual images with a field

of view of 128 × 128 µm. A mosaic of 11 × 11 images was acquired in an automated manner thanks to

a motorized XY stage. The adjacent images have an overlap of 10 %. The whole region of interest is

depicted in Fig. 6. For information, each intensity LSCM micrograph is a reconstruction of a stack of

2D scans acquired at different height positions thanks to a motorized Z stage on the optical path (height

pitch of 120 nm for a height range of quarters to hundreds of micrometers. The reconstructed intensity

LSCM micrographs correspond to the brightest signal for each position in the 2D image over the Z

integration. LSCM has the particularity to provide 3D images, but the out-of-plane information is not

considered here [52]. The candidate material was an Alloy 718 (polycrystalline nickel-based superalloy).
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A microtensile specimen was machined from the Alloy 718 plate and then polished down to a colloidal

silica finish and an automated polishing jig to ensure an appropriate flatness and face parallelism of the

microtensile specimen [53]. The microtensile specimen was then slightly pre-oxidized to form a speckle

pattern compatible with the resolution of the LSCM. Mosaics of images were performed before and

after tensile testing in the central region of the microtensile specimen to test the stitching algorithm

with distortion corrections. The tensile test interrupted at 0.2 % plastic strain was carried out using

an Instron 5800R electromechanical tensile testing machine with a load-cell of 5 kN using a constant

crosshead displacement rate.

Figure 6: Illustration of the mosaic of reconstructed intensity LSCM micrographs (11 × 11 images) with a resolution of

1024 × 1024 pixels each for applying the stitching with distortion correction problem.

In this section, we consider applying the suggested identification algorithm detailed in Section 4

to approximate the unknown distortion transformation of the LSCM. To perform image stitching with

distortion corrections, two strategies are considered. The first solution consists of selecting a small region

in the mosaic of images, i.e., a subset of images, and evaluating the distortion field using overlapping

regions. A minimum of 2 × 2 subsets of images is necessary to identify the distortion parameters. For

instance, different sub-set of images are illustrated in Fig. 6 and labeled from region #1 to region #5.

The distortion correction field is then applied to all the images of the mosaic. For this purpose, one has

to apply the correction field to the images. Sub-pixel gray-level interpolation was proceeded by bi-cubic

spline interpolation. The second option would be to apply the optimization algorithm on the total map

to identify at the same time the sub-image translations and the distortion field (region #6 in Fig. 6).

This latter calculation is computationally longer than the calculation of a subset of images but adjusts

the distortion parameters on all the overlapping regions. It is considered the reference calibration of the

distortion model since the minimization of the gray-level conservation is minimal with this solution.

6.2. A first validation approach for the practical mode choice

As aforementioned, mode choice can be difficult, especially due to ignorance of the distortion function.

Non-necessary modes can generate artifacts at the sub-pixel levels that digital image correlation (DIC)
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techniques can track and quantify. However, this DIC technique requires comparison between a reference

image and another to evaluate the displacement field and then image deformations. Therefore, the

present optimization of mode choice needs the acquisition of two consecutive mosaics of images of the

same region, denoted as calibration region and depicted in Fig. 7. Different sets of distortion modes

were thus tested to highlight over-compensating distortion corrections leading to additional sub-pixel

artifacts. As established in Eq. (10), odd linear stretching modes must be removed.

Figure 7: Calibration region. The image mosaic is composed of 3× 4 images.

The first configuration consisted of conventional image stitching without correcting distortions and

corresponded to the reference configuration - distortion corrections are supposed to improve the stitching

operation. A sub-pixel registration between both images was then computed to identify local displace-

ment related to errors due to the physical noise of the LSCM, scanning artifacts, and/or the stitching

operation. ϵxx, ϵyy, and ϵxy strain fields are then calculated from displacement fields (Figs. 8(a)-(c)).

Interestingly, intense strain values were found for strain maps along their principal direction, i.e., hori-

zontal red bands (y direction) for ϵyy and vertical bands (x direction) for ϵxx. The ϵxy maps are noisy,

but artifacts are less pronounced compared to ϵyy and ϵxx fields.

Different sets of distortion modes were then tested and compared to the reference configuration. Se-

lected distortion modes, along with related strain maps, were presented in Figs. 8(d)-(o). It is worth

noting that high artifacts appear when considering the odd modes ỹ3 (in x direction) and x̃3 (in y di-

rection), especially on the ϵxy fields, as depicted in Figs. 8(j)-(o). Similar but less pronounced artifacts

are found when adding the x̃2 (in x direction) and ỹ2 (in y direction) distortion modes (Fig. 8(d)-(i)).

Root-mean-square values of strain field components and gray-level residual fields are summarized in Ta-

ble 2, and minimal values are observed for Case #1 and Case #2. These results confirm (i) that the

present algorithm is capable of correcting distortion fields with sub-pixel accuracy to improve conven-

tional stitching techniques, and (ii) that trying to over-correct images with non-necessary modes leads

to higher gray-level residual values and stronger artifacts. Modes leading to the lowest root-mean-square

values for both strain components and gray-level residual fields are the one to be selected for distortion
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corrections of the whole dataset. These modes to be selected depend on the image acquisition configura-

tion and are not generic. Interestingly, the modes that allow axi-symmetric distortion corrections exhibit

strain fields with minimal artifacts and are defined by Eq. (17):

 Nx(x, y) =
(
x̃ỹ, ỹ2, x̃2ỹ, x̃ỹ2, ỹ3

)
Ny(x, y) =

(
x̃ỹ, x̃2, x̃2ỹ, x̃ỹ2, x̃3

) . (17)

Figure 8: ϵxx, ϵyy , and ϵxy strain fields between the top two consecutive mosaics of images of the same region of interest,

showing artifacts inherent to the selection of distortion modes.
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εyy εxx εxy Residual RMS

Without correc-

tion

1.56× 10−3 1.41× 10−3 1.05× 10−3 0.76

Case 1 (Row 2-

Fig. 8)

8.94× 10−4 9.63× 10−4 7.27× 10−4 0.74

Case 2 (Row 3-

Fig. 8)

8.87× 10−4 9.79× 10−4 7.34× 10−4 0.74

Case 3 (Row 4-

Fig. 8)

9.62× 10−4 1× 10−3 9.93× 10−4 0.77

Case 4 (Row 5-

Fig. 8)

9.55× 10−4 1.05× 10−3 1.14× 10−3 0.77

Table 2: Root mean square of the strain field (RMS) components and the root mean square of the gray-level residual field.

RMS quantities are computed only on the overlapping regions.

6.3. Identified distortion fields from subset of images and sensitivity analysis

Once the appropriate distortion modes were identified, the optimization algorithm was applied to

the subset of images and the whole mosaic of images to compare the errors in displacement magnitude

directly. An example of measured distortion fields, i.e. horizontal and vertical distortion fields, is

illustrated in Fig. 9. As aforementioned, the correction field is defined by P. To visualize the distorted

image, the transformation P−1 − id has to be applied to the initial field of view, as shown in Fig. 9.

Interestingly, the distortion amplitude differs for the horizontal and vertical distortion, one with negative

distortion parameters and the other with positive ones. The distortion function of the present optical

setup is thus a combination of a positive and negative radial distortion of the Brown-Conrady model due

to the complex optical path with mirrors and scanning galvanometers.

Figure 9: Identified distortion field defined by P−1 − id. (a) Vertical distortion. (b) Horizontal distortion. Deformed grid

with the amplified field (factor of 20).

The influence of the calibration size for the distortion function identification was studied by measuring
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the distortion fields for regions #1 to #6 (see Fig. 6). Interestingly, the measured distortion fields for

regions #3, #4, #5, and #6 are very similar, with a maximum Root Mean Square Error (RMSE) of

10−1 pixels between the regions #1 and #6. The identified distortion differs from region #1 to region #2

with a maximal error of 0.5 pixels. Sensitivity parameters for the different region sizes are summarized

in Table 3. While the optimization on all the images shows better results, one can pragmatically consider

a calibration on a region size of 3× 3 images to save computational time when needed.

Size 2× 2 2× 3 3× 3 4× 3 4× 4

RMSE 1.47× 10−3 8.38× 10−4 4.2× 10−4 4.17× 10−4 3.72× 10−4

Table 3: Evolution of the RMSE (relative to the distortion field obtained from calibrating the 11× 11 images) with respect

to the size of the calibration target.

6.4. Stitching quality on the overlapping regions

To stitch the different sub-images of the global mosaic, a standard blending approach (using average

or linear blending) was used as detailed in Appendix A. Overlapping regions of the blended image with

and without distortion correction are shown in Fig. 11. The magnification on the horizontal and vertical

overlapping regions demonstrates the improvement of the distortion correction prior to stitching, with

blended regions being particularly blurred in the absence of distortion correction. As the distortion

magnitude is greater for distortions in the x direction, the distortion correction particularly improves

the blended regions. One can also visualize the gray-level residual field, which is the difference between

two consecutive images on the overlapping regions. The improvement is highlighted in Fig. 10 as the

residual field is brighter for the corrected images (see Fig. 10(a) against Fig. 10(b)).
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Figure 10: Residual field on overlapping regions. (a) Zoom on a region without correction. (b) Zoom on a region with

correction.

Figure 11: Effect of distortion on image stitching

The Laplacian of the corrected and uncorrected stitched images was compared to quantify the dis-

tortion blur coming from the stitching of distorted/corrected images. The Laplacian of the corrected
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images (Fig. 12(b)) is homogeneous compared to the one of the uncorrected stitched image (Fig. 12(a)),

showing vertical and horizontal brighter bands on the overlapped regions. This result demonstrates the

improvement of the present stitching considering optical distortions. Finally, the mean of gray-level

residual dispersion over all the regions of the 11 × 11 mosaic clearly shows that the disparity between

the overlapping images is reduced when correcting the images (see e.g. Table 4).

Figure 12: Laplacian of the stitched image of Fig. 11. Left (a) Without correction. Right (b) With correction.

Indicators Max Min Mean Std

Without correction 6.65 3.01 4.39 0.66

With correction 4.35 1.55 2.12 0.35

Table 4: Quantification of the stitching quality by considering statistics of the indicator (16) over all the overlapping regions

of the mosaic.

6.5. Improvement of strain measurement accuracy

The present numerical development improved the gray-level contrast and sharpness of the blended

images from the mosaic of images. However, this analysis is at the pixel level, while applying sub-pixel

distortion during the image warping. To validate the robustness of the present numerical development,

digital image correlation (DIC) techniques were applied to the blended images before and after small

irreversible deformation to distinguish microplasticity in a metallic polycrystalline material from overlap

artifacts. DIC is an efficient technique that allows identifying sub-pixel displacements (down to one-tenth

of a pixel) when comparing two images together. In the present case, corrected and uncorrected stitched

images before and after mechanical deformation were computed using the Dense Inverse Search optical
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flow algorithm [54] available in the OpenCV library. Practically, registrations were performed with the

default ”DISOPTICAL FLOWPRESET MEDIUM” parameters. Artifacts on the overlapping regions

are very intense, sometimes as intense as the deformation relative to micro-plasticity (inclined bands), as

shown in Fig. 13. These artifacts prevent the visualization and identification of microplasticity (sub-pixel

displacement jump due to slip activity) after deformation [13]. Interestingly, artifacts on the overlapping

regions are more and more prominent when going from the top-left corner to the bottom-right corner of

the strain fields. This artifact is mainly due to the mechanical alignment of the mosaic of images for the

image acquisition before and after deformation, this image alignment being done on the images in the

top-left corner. More precisely, in the present study, the first set of images corresponds to the images

before mechanical deformation and the second set of images corresponds to the images after plastic

deformation. The mechanical test has been done ex-situ using a conventional electromechanical tensile

testing machine. Therefore, the sample was physically removed from the microscope between both the

mosaic of images. The image alignment procedure was done on the top-left corner image. The distance

of registered images far from this top-left corner images increased due to both rigid alignment errors and

cumulated displacement due to plastic deformation. This leads to increased deformation artifacts on

strain maps on the non-distorted images. For the strain fields of corrected stitched images, artifacts on

the overlapping regions were nearly suppressed, thus enabling a clear visualization of the microplasticity

on the different strain fields. Some artifacts are more pronounced for some overlapped regions potentially

due to (i) the scanning technique, (ii) slight tilt/rotation on the motorized stage due to XY-stage stroke,

(iii) Z-data integration to provide the reconstructed image. Therefore, this analysis confirms that the

present numerical development improves the gray-level contrast, sharpness, and local distortion of the

blended images at the sub-pixel level.
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Figure 13: Result on a real high-resolution mosaic (121 sub-images of 1 Mpix). Comparison of the strain fields of the

tensile test with rigid stitching (top) and the proposed non-rigid stitching (bottom). εxx (b, e), εyy (a, d) and εxy (d, f)

stand for the components of the symmetric strain tensor defined by εεε(u) = (∇u+∇uT )/2.

7. Conclusions and perspectives

Classic stitching procedures applied to images corrupted with geometric distortions generally lead

to inhomogeneous blurring and affect image registration results. This study raises the challenges of

accurately stitching distorted images solely from raw images, including those with a low degree of overlap.

To achieve sub-pixel resolution measurements, a new approach using a self-calibrated registration was

developed to dissociate translations from the intrinsic distortions of the imaging system. With this

approach, each local image of the mosaic is corrected, and the final stitching is performed with standard

blending approaches. Overall, this work represents an enhancement of 2D image stitching for the specific

use of mosaic of images acquired using automated microscopy. It aims to improve the accuracy and

quality of high-resolution image registration at the sub-pixel level.

Although the method was capable of improving the stitching quality by reducing the distortion
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blur, there are still a number of areas for improvement. One common approach to image distortion

compensation in computer vision is to use a calibration pattern. In stereo-vision, checkerboard patterns

are commonly used to determine the distortions in the image and apply the appropriate correction. One

of the perspectives of image compensation in microscopy is to use or manufacture dedicated calibration

patterns in order to determine the most complete and accurate distortion fields, i.e. the non-affine modes

but also the affine ones that cannot be identified with the present numerical development.

In addition, some geometrical tolerances have to be considered here for the optical system. In

microscopy, the tilt, which is the deviation of the sample from the ideal perpendicular position relative

to the optical axis of the microscope, can also lead to distortions, blur, and depth-dependent effects.

These effects were implicitly compensated in the 2D polynomial model but were not dissociated from

the true lens distortion. Therefore, it would be interesting to take this 3D effect into account for further

developments.

From a computational point of view, the most time-consuming computation operation of the present

algorithm is the successive correction/update of the corrected overlapping gray-levels. Even though the

algorithm is parallelized over the overlapping region, the sub-pixel evaluation of the images (by bilinear

or cubic spline interpolation) is still costly.

Appendix A. Image stitching

Image fusion or blending is a common and well-known problem in computer vision. In this appendix,

we simply recall how one can perform image blending when considering the distortion correction trans-

formation P (see e.g. Sections 3-4). For an identified distortion correction, the fused image using average

blending is defined as follows:

∀x ∈ Ω, f(x) =

m∑
i=1

ωi(x)fi ◦P(x− ti)

m∑
i=1

ωi(x)
(A.1)

where ωi is the blending function of each image. It is defined as follows:

ωi(x) =

 1 if P(x− ti) ∈ [0, sx − 1]× [0, sy − 1]

0 else
. (A.2)

sx and sy stand for the size of one sub-image of the grid of images. A second approach would be to

consider the linear blending. In this case, one can consider a weighting defined as follows:

∀x ∈ Ω, f(x) =

n∑
i=1

1∑
j=0

ωj
i (x)f

j
i ◦P

(
x− tfj

i

)
n∑

i=1

1∑
j=0

ωj
i (x)

(A.3)

where ωj
i is the blending function of each overlapping region. It is defined as follows:
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• If Ωi is vertical, then the left and right image weightings are defined respectively as follows:

ω0
i (x) =


1 if Py

(
x− tf0

i

)
∈ [0, sx − 1]× [0, sy − 1− hi

y]

Py

(
x− tf0

i

)
− (sy − 1)

−hi
y

else

. (A.4)

ω1
i (x) =


Py

(
x− tf1

i

)
hi
y

if Py

(
x− tf1

i

)
∈ [0, sx − 1]× [0, hi

y]

1 else

. (A.5)

• If Ωi is horizontal, then the top and bottom image weightings are defined as it follows:

ω0
i (x) =


1 if Px

(
x− tf0

i

)
∈ [0, sx − 1− hi

x]× [0, sy − 1]

Py

(
x− tf0

i

)
− (sy − 1)

−hi
y

else

. (A.6)

ω1
i (x) =


Px

(
x− tf1

i

)
hi
y

if Px

(
x− tf1

i

)
∈ [0, hi

x]× [0, sy − 1]

1 else

. (A.7)
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