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A B S T R A C T

Knowledge management has become a cornerstone of decision support and system engineering. Knowledge
acquisition has traditionally been performed manually, and the trend now is to automate knowledge extraction
from the huge amount of information contained in daily produced data. This article proposes a contribution in
the artificial intelligence domain through a hybrid approach for the discovery of concept-instance couples to
populate an ontology. The proposed framework combines automated domain-independent rule-based extraction
for unsupervised relation extraction and semantic-oriented machine learning techniques for knowledge base
enrichment. In the engineering field, another contribution resides in the generic aspect of the framework,
leading to the possibility to populate ontologies and automatically build knowledge bases in various domains.
The case study supporting this framework and its technical implementation show that the proposed method
can be applied identically (1) to different data sources and (2) with different ontologies, regardless of the
domain or subdomain they describe or the structure they have. Changing these inputs can be done without
affecting the performance of the rule-based extraction, which is around 60% in terms of precision. Three
different matching methods are also presented. Their ability to match new instances to their corresponding
ontological class (or concept) is evaluated through a case study on biochemistry annotated textual data. The
best matching method achieves an average precision score of 70% and an average recall of 74%.
. Introduction

From industries to individuals, and from world-scale companies to
mall businesses, everyone produces data. Within these heterogeneous
ata, everyone produces knowledge. On the other side, if one considers
system, whatever it is (a chemical plant, a humanitarian crisis, an
ssembly line), knowledge about this system is the first necessity to
nderstand it, interact with it and finally make decisions that impact
t. Since the emergence of the Semantic Web, the formalization of
ntologies, and the growing use of inference engines, many fields
f research have been focused on ontology-driven decision systems.
rom medical science to crisis management, the literature is full of
ecision systems based on ontological reasoning. Building a domain-
elated ontology is considered a process in itself, requiring both domain
xperts and ontology management experts in order to organize the
nowledge of a domain into concepts and properties. This process of
onceptualization is definitely required for anyone who wants to build
n ontology that covers the entirety of a domain. Although the decision

systems mentioned above provide some valuable help and information
to decision-makers, they also have a major remaining weakness: they
require a populated (i.e. instantiated) ontology to be run on specific
cases. However, the step of manually instantiating an ontology remains
one of the largest time and resource-consuming tasks in the ontology
management domain. In addition, while an ontology aims to represent
a very high-level view of a domain and is suitable for any specific case
that sticks to that domain, the instantiated version of the same ontology
will necessarily fluctuate with the different use cases it is meant to
describe. Since we have these changes, the instantiation of an ontology
cannot be done once but must be done each time a single use case is
considered.

1.1. Automation of the ontology population process

To facilitate the population of an ontology and to make it easily
replicable, the trend is towards the automation of the instantiation
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process. Harvesting several distinct data sources (Wikipedia articles, 
edical report database, verbatims, etc.) thus means facing many 

obstacles, among which in particular (i) the heterogeneity of the data,
(ii) the plurality of sources and (iii) the unstructured nature of the 
latent information.

Despite a large number of research topics already dedicated to the 
task of automating ontology population, most of it remains tied to a 
specific domain (health, agriculture, complex event processing) and 
provides domain-centric solutions. Consequently, the systems proposed 
in these approaches are hardly transferable or replicable to other 
domains, or even to a different use case within the same domain.

Other strategies succeed in implementing a generic pipeline for the 
building of an ontology from scratch rather than populating existing 
ontologies. This kind of approach can be very suitable and appropriate 
to avoid the step of creating an ontology in domains where no ontology 
has been proposed yet. Nonetheless, for domains where an ontology 
already exists, these approaches deprive themselves of the knowledge 
contained in that ontology.

1.2. Proposal

Two main concerns have been identified in the field of automated 
ontology population, which are (i) the need for genericity in the 
approach in order to remain independent from the domain and (ii)
the need for data source coverage due to the variability aspect of big 
data. The aim of this article is to present unsupervised and independent
extraction techniques to extract ontology-related instances from textual 
data. Each of these techniques shares the following common properties:

• They are designed to be used in an unsupervised context. This
means that they can be applied to a domain of expertise even if
that domain is relatively poor in terms of labelled and annotated
data.

• They take advantage of the knowledge contained in predefined
ontologies that need to be instantiated without being bound to a
specific ontology.

• They remain generic regarding the domain described by the
ontology. This means that, no matter which ontology is used for
instantiation, the extraction techniques will remain effective.

This article focuses on hyponymy relation extraction from textual
ata. However, the same methodology can be adapted and applied to
ifferently formatted data such as structured text, databases or even
mages.
Besides being adaptable to distinct ontologies, the framework uses

he knowledge they contain. This knowledge lies in the concepts and
elations between concepts that are defined within the ontology to be
nstantiated. Since they are the result of a previous domain-specific
nowledge acquisition process, they constitute a primary reference for
he instantiation process.
The contributions conveyed by the proposed extraction framework

re presented through two main blocks, which are (i) the definition
f an information extraction pipeline and algorithm supported by nat-
ral language processing methods (ii) the extension of the extraction
ipeline with a semantic retroactive loop used to broaden the extraction
pectrum.
The remainder of this article is structured as follows. In Section 2 we

resent the past and ongoing related work on the subject of ontology
anagement. In Section 3, we introduce our general iterative frame-
ork for collecting information from heterogeneous data sources and
e present the different processing pipelines and methods involved.
n Section 4 we apply our methodology to a chemical case study.
ections 4.4 and 4.5 respectively present the results of the application
o this case study and provide the evaluation of respectively, rule-based
xtraction and semantic loop. In Section 5 we open the discussion about
urrent limitations and future enhancements of the framework.
. Related work

An ontology, as conceptualized by Gruber (1993), is a formal rep-
resentation of knowledge within a specific domain, encompassing con-
epts, relationships, and properties. This formalization aims at facili-
ating knowledge sharing and interoperability among different systems
nd applications. As many ontologies are available in various domains,
ost of them remain unused because filling them manually with in-
tances is a time-consuming task. This section lists and compares the
ifferent existing approaches for the acquisition of a populated ontol-
gy from unstructured text. The comparison, summed up in Table 1
lso reveals the interest of a combined approach including rule-based
xtraction and machine learning techniques to fully automate the ex-
raction of knowledge without using prior data while remaining domain
ndependent.

.1. Ontology learning, ontology enrichment, ontology population

The term of ontology management refers to different tasks that
nclude the building of an ontology and the extension of an ontology
r a knowledge base (Konys, 2018, 2022). The design of an ontology is
very complex task because it involves both technical domain related

knowledge and ontological design skills (Nicola et al., 2009).
Some studies, such as Louge et al. (2018), Paukkeri et al. (2012),

Rani et al. (2017), all cope with the issue of ontology learning and
ddress the problem of automatic or semi-automatic building of ontolo-
ies from domain-related knowledge resources. As underlined
y Khadir et al. (2021), all the proposed ontology-building methods
follow a similar pattern, involving (i) concept detection in data fol-
lowed by (ii) extraction of relations involving these patterns. Khadir
et al. (2021) also insist on the fact that none of the current methods
allow building an actionable ontology without involving an expert to
redesign it.

Other studies, such as Arnold and Rahm (2014), Bosselut et al.
(2019), Rajput and Gurulingappa (2013), Vicient et al. (2013), fo-
cus on the completion and enrichment of existing knowledge bases
sing ontology matching techniques such as string-based similarity
easures or semantic-based similarity measures. All these methods
ave shown effectiveness and good performances in several domains
or the automated construction or completion of an ontology directly
rom data. However, they cannot be assimilated to the task of ontology
opulation because they either modify the structure of the ontology
hey enrich or build a whole ontology from scratch. Similarly, graph
nowledge building which is a close research area also proposes the
reation of structured knowledge. However, despite being adaptable
o several domains, these approaches never refer to an existing on-
ology and often build the knowledge structure from scratch. In their
pproach (Leshcheva and Begler, 2022) propose to map the extracted
knowledge graph to the targeted domain ontology after an initial
formatting ontology-guided extraction step.

2.2. Information and knowledge extraction methods for ontology population

To perform the population of an ontology, the main task is to find
instances of a given concept, that is, a specific occurrence of a concept.
For example, one can consider that a car is an instance of the higher-
level concept vehicle, or that red wine is an instance of the more
generic concept wine. The relation between a generic concept and a
more specific form of that concept (i.e., an instance) is a relation of
hyponymy (also called is-a relation). When collecting instances, one of

the main tasks is then to identify the occurrence of hyponymy relations.



f
n
a
d
m

e
i
r
t
(
p
F
a
b
r
i
i
i
t
a
R
2

t
a
t
e
e
a

Table 1
Comparison of approaches for the acquisition of a populated ontology from unstructured text. (OE : Ontology Enrichment, OL : Ontology Learning, OP : Ontology Population).
Reference Method Prior need Data specificity Ontology vol. Domain dep. Task

Alec (2023) Rule based extraction None Classified ads NA Medium OP
Arnold and Rahm (2014) Ontology matching tool Back. Know. None > 5 000 cpt. Low OL
Paukkeri et al. (2012) Self Organizing Map (Clustering) Not needed Describes concepts 166 cpt. Low OL
Bosselut et al. (2019) Language Model (Transformers) Prior triples Task specific NA Low OE
De Silva and Jayaratne (2009) K-Means, Rule based extraction None Wikipedia articles NA Medium OL
Geng et al. (2020) Neural Network (LSTM) Ann. dataset None 17 cpt., 9 rel. High OP
Kaushik and Chatterjee (2018) Pattern Extraction None Task specific 1 cpt., 4 rel. High OP
Leshcheva and Begler (2022) ontology guided extraction None Semi structured 3 cpt., 3 rel. High OP
Lomov et al. (2020) Language Model (NN) Train. couples None NA High OE
Louge et al. (2018) DBSCAN (Clustering) None Task specific 100 cpt. Medium OL
Pennacchiotti and Pantel (2006) Rule based extraction None None NA Low OP
Rajpathak (2013) Co-occurrence analysis None Repair verbatims 6 cpt., 7 rel. High OP
Rajput and Gurulingappa (2013) Background ontology querying Prior triples None 1 147 cpt., 21 rel. Medium OE
Thongkrau and Lalitrojwong (2012) Latent Semantic Analysis Prior Know. Web documents 3 cpt. Medium OP
Vicient et al. (2013) NER and Web-scale statistics NER model None NA Low OE
Youn et al. (2020) Domain specific embeddings Wikip. corpus None 100 cpt. High OP
Zhang et al. (2018) Coupling CNN and RNN Train. relations Task specific 1 cpts, 4 rel. High OP
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2.2.1. Rule-based methods
Rule-based extraction includes all the methods where a generic

pattern is defined prior to the extraction and is built in order to extract
a specific target. These patterns can be defined at different granularity
levels and for different types of data sources. The main advantage of
rule-based extraction methods is their high precision rate, due to the
fact that each extraction rule is designed to extract a specific relation.
Another advantage of rule-based methods is that they do not need
any training dataset to get extracted instances, but only predefined
rules. In return, these methods suffer from low recall performance
since any data that does not match the predefined extraction rules
will not be seen, even when they carry a strong hyponymy relation.
Still, rule-based methods remain probably the most classical way to
extract knowledge from data. The idea of these methods is to define
a pattern which is an abstract representation of some kind of relation
between terms. As listing covering rules for automated extraction from
semi-structured data is possible, as proposed by Zhang and Li (2022)
or XML documents, it is more difficult for unstructured data such as
atural language. The complexity lies in the definition of this pattern
s it should be generic enough in order to extract knowledge in large
ata sources and specific enough to avoid noise extraction that would
atch the pattern but will not carry any interesting knowledge.
Hearst (1992) defined a set of part-of-speech-based patterns to

xtract hyponymy (IS-A, or concept-instance) relations from raw text
n order to enrich WordNet (Miller et al., 1990) with new semantic
elations. Hearst’s pattern consists of a sequence of part-of-speech tags
hat are to be found in a sentence as the expression of a hyponymy
concept-instance) relation. Textual data is then scanned with this
attern, and a relation is extracted each time the sequence is found.
rom these patterns, Pennacchiotti and Pantel (2006), but also De Silva
nd Jayaratne (2009) used instance extraction systems built on the rule-
ased approach to automatically extract domain-specific instances from
aw text and Wikipedia articles, respectively. As mentioned above and
nitially highlighted by Hearst, one of the weaknesses of this method
s the low recall. Language is indeed so fine and changing that it is
mpossible to find the exhaustive list of patterns that would describe a
ype of relation. Following this work, Herbelot and Copestake (2006)
imed at improving the extraction recall of Hearst patterns using
obust Minimal Recursion Semantics representation (Copestake et al.,
005; Copestake, 2006).
To push the limits of rule-based extraction methods a bit fur-

her, Pennacchiotti and Pantel (2006) also proposed a bootstrapping
lgorithm based on Hearst (1992)’s previous work, in order to iterate
he process and extract new patterns from existing hyponymy relation
xtracted features. The idea of the algorithm is to take the two terms
ngaged in the previously detected hyponymy relation as a reference

nd to search for new occurrences of these terms in the data. Once t
ome new occurrences are found, the pattern that linked these occur-
ences is extracted as a new pattern qualifying the hyponymy relation.
his pattern can afterwards be used to extract new instances that are
ifferent from the first ones. The main difficulty of the bootstrapping
ethod is that it still requires an initialization step. If the ontology
emains completely unpopulated, there should be at least one pattern
r one example of a related instance and concept per relation to
nitiate the algorithm. To address this limit, Nguyen et al. (2007) are
roposing to start the process by automating the extraction of initial
nstances from Wikipedia. Also Toutanova et al. (2015) uses labelled
ext and existing knowledge base to find relational patterns and build
n embedded representation of them through a convolutional neural
etwork. Another aspect of the bootstrapping algorithm that can be
imiting is the large number of rules, not necessarily relevant, that
an be inferred during the bootstrapping step. To cope with this large
umber of rules, Ruiz-Casado et al. (2005) also proposed an algorithm
o merge different patterns into a single pattern.
Kaushik and Chatterjee (2018), who worked on an agricultural on-

ology, proposed to extend pattern extraction techniques to a larger set
f relations. Besides hyponymy relation (is-a), other relations defined
ithin the ontology may have strong meanings. For instance, they
efined a pattern detection method to extract is-intercrop relations,
hich express the capability of two agricultural species to grow in the
ame field. Although this pattern is very limited in terms of domain cov-
rage, it still provides some guidance for defining generic patterns to
xtract non-taxonomic relations. Similarly, Alec (2023) defines a whole
ule-based and knowledge-based process for ontology population from
extual data. Despite the author’s argument for a domain-independent
pproach in term of vocabulary, the proposed algorithm uses patterns
hat could not be reused for the extraction of other concept instances.
Rule-based methods are not new and have been widely used for

nstance detection tasks. Nevertheless, they remain to be a strong and
recise method to extract knowledge from a document and are still
upported by many natural language processing tools. More broadly,
ule-based methods are still very much used for the extraction of
ifferent kinds of relations in various domains.

.2.2. Statistical and machine learning approaches
Even if rule-based methods are considered as accurate methods,

hey cannot extract much information and require either some expertise
o build the rules or already populated ontologies to instantiate the
ootstrapping algorithm.
With the perspectives offered by the Internet of Things (Atzori et al.,

010), the development of linked open data (Auer et al., 2007) and the
mprovement of computing power, more and more studies are using
tatistical methods and machine learning driven approaches to tackle

he problems of automatic knowledge extraction. In particular, the
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development of efficient natural language processing tools allows better 
tatistical analysis of textual data.
One way to invoke statistical analysis is to look at co-occurrences 

etween words. De Boer et al. (2007) propose a method to extract re-
ations involving components of an existing ontology. To choose which 
airs of components should be linked, the authors study the statistical 
istribution of these instances within different documents and deduce 
hich terms highly co-occur. This methodology showed good results 
hen applied to deduce non-taxonomic relations between artists and 
usical genres. Similarly, Rajpathak (2013) extracts relations based on 
he co-occurrences between defective automobile pieces and actions 
aken.
A more global approach is taken by Thongkrau and Lalitrojwong 

2012), who derive new instances of concepts from existing instances
by representing the meaning of a term in a Latent Semantic Analysis 
(LSA) space. This LSA space, which represents the semantic meaning of 
a word in statistical terms, allows us to compute distances between this 
word and existing instances in order to deduce new concept-instance 
pairs by semantic similarity. These methods can also be referred to as 
close-world information extraction as they build models which suppose 
that every relation that they will be faced with is of the same nature as 
the one they have seen to build the statistical representation.

Not far from statistical approaches, the field of machine learning 
and deep learning carry many solutions for ontology population. Many
studies use supervised learning to learn concepts and relations from 
ground true examples. Ferhat et al. (2022) couple ontology reasoning 
and machine learning to detect new defaults that are further proposed 
to an expert for the population of an existing knowledge base. This type 
of method, despite necessitating human intervention, can be assimi-
lated to zero-shot learning, as new unseen defaults are extracted from 
real-world using existing knowledge but without prior occurrences of 
these defaults. Lomov et al. (2020) train a neural network to extend 
the set of concepts already identified within an ontology. The authors 
extract features from the context in which a term appears and train 
their model from these context features. Zhang et al. (2018) also use 
neural networks to extract drug-protein relations from medical reports. 
They combine recurrent neural network (RNN) and convolutional net-
work (CNN) to handle both long and short sequences of data. The main 
limitation of these approaches is the need for annotated data or expert 
intervention since the algorithms used are trained in a supervised 
manner.

Besides the use of neural networks, the uprising of language models 
nd word embedding participated in the emergence of new methodolo-
ies for relation extraction and ontology population. Ayadi et al. (2019)
ropose a method similar to Thongkrau and Lalitrojwong (2012)’s that 
ssimilates an instance to a concept by comparing its representation 
ithin a word embedding to the representation of existing instance 
or which the concept is known already. This kind of approach is 
eally common in the field and many studies try to take advantage 
f the ability of language models to represent the semantic aspect of 
ords or even relations (Luo et al., 2020; Geng et al., 2020; Chen 
t al., 2018; Sanagavarapu et al., 2021; Huang et al., 2023). Such 
pproaches deduce new relations from a large model. They can then 
e classified as open-world information extraction techniques, due to 
heir ability to adapt to a wide range of domains of interest without 
etraining a model. Also, the use of a pre-trained language model has 
nteresting advantages as it can be applied without further supervised 
raining. Nevertheless, some of the approaches remain supervised since 
he language model is only used as a tool to generate semantic features 
epresenting an instance or a relation. The proper classification or 
elation detection algorithms remain supervised as they are trained 
rom ground-true examples. However, this does not mean that unsu-
ervised learning is never used for information extraction. Paukkeri 
t al. (2012) for example, use clustering algorithms recursively in 
rder to build a taxonomy from previously extracted terms. Other 
ethods, such as Youn et al. (2020) require the creation of domain-
pecific embeddings, supposing that domain-specific data is available 
or training.
2.2.3. Interest of a combined method
As explained in Sections 2.2.1 and 2.2.2, both approaches (rule-

based and statistical) have their strengths and weaknesses. To over-
come these limitations, some studies tend to use a hybrid strategy
that combines both rule-based extraction and statistical or machine
learning techniques. Kaushik and Chatterjee (2018) couple their rule-
based approach for domain-related term identification with a statistical
methodology in order to detect relations between these terms. Sim-
ilarly, Alicante et al. (2016) use generic patterns to extract named
ntities from Italian text. These named entities are then enriched with
dditional contextual information. A clustering algorithm (k-means)
s then applied to extracted entities in order to group potential re-
ations. Torii et al. (2009) apply the hybridization methodology in
everse, first using statistical methods (hidden Markov model) to detect
iomedical named entities before refining them with extraction rules.
hese studies show the interest of combining rule-based and statistical
ethods to improve the extraction process. Therefore, in the remainder
f this article, the proposed approach is based on a combination of
ule-based extraction and machine learning.

. An hybrid generic framework for ontology population

.1. Overall framework

The overall framework proposed in this work can be divided into
wo groups of processes. The first set of processes consists of parametric
ules building, rule-based extraction, and data model building and form
he rule-based process. This group of processes provides information
nd relations in order to instantiate the metamodel into a first data
odel. The rules are called parametric because their final form depends
n the classes of the ontology, as presented in Section 3.2.1. These
lasses are also used to instantiate concepts of the data model.
The second set of processes includes Candidates extraction, Concept-

andidate matching and Data model completion and builds up a seman-
ic retroactive loop that leads to the registration of relations into the
nowledge base through an alignment step with the initial classes of
he ontology that has also been represented in the data model.
Once the rule-based process has been run on data and some hy-

onymy relations have been included in the ontology thanks to pre-
efined parametric extraction rules, the semantic retroactive loop can
e used. The initial data source is used more than once as it is needed
or applying extraction rules and for exploring new relations based on
alidated hyponymy relations.
Fig. 1 provides a representation of the framework that has been

escribed just before. In this article, Sections 3.2 through 3.3 fo-
us on parametric rules building and rule-based extraction and Sec-
ions 3.4 and 3.5 focus on the semantic retroactive loop and associated
oncept-candidate semantic matching step.

.2. Ontology-guided specific pattern extraction

The following sections detail the steps of construction of hyponymy
elations extraction schemes from ontology concepts. Hearst patterns
re presented, as well as the generalization method defined in this study
nd based on dependency parsing trees.

.2.1. Patterns specification principle
A rule-based approach to information extraction requires the defi-

ition of domain-independent rules. In the specific case of text mining
hese rules take the form of extraction patterns. The difficulty in defin-
ng generic patterns, such as Hearst (1992)’s patterns is that they may
dentify a lot of hyponymy relations, even if the relation is not related
to the domain. Using Hearst’s patterns directly on a given text would
then necessarily result in a lot of relations, among which a consequent
number of relations will turn out to be irrelevant relatively to the

ontology. Therefore, in order to limit the field of matched hyponymy



r
H
o
c

3

i
F
u
l
t
T
p
i

Fig. 1. Overall framework of the ontology population system.
Fig. 2. Concept tagging process from ontology classes.

elations, the concepts of the ontology are used to specify generic
earst’s patterns so that they become domain-specific. This process
f pattern specification can be adapted to any ontology as long as it
ontains concepts, what makes it generic.

.2.2. Concept identification in data
The first step of the rule-based extraction task is to identify concepts

n raw text based on their name, identified in the targeted ontology.
or this purpose, classical natural language processing operations are
sed. Lemmatization is applied to the classes of the ontology. Obtained
emmas are used to create concepts in the data model. At the same time,
he textual data is processed with tokenization and lemmatization.
hen, a text matcher fed with the concept names is used on the
reprocessed data to tag each term (or group of terms) as a concept
f its lemma matches the concept. Fig. 2 summarizes this process.

3.2.3. Formal definition and application of patterns
In order to allow a reproducible application of patterns, a formal

definition is needed. For this purpose, generic Hearst’s patterns, defined
by Chasseray et al. (2023), are applied to dependency parsing trees
resulting from previous natural language processing steps. In Chasseray
et al. (2023), such a pattern is defined by three sequences of restric-
tions. These sequences are called (1) part of speech sequence 𝑝, (2)
dependency sequence 𝑑 and (3) navigation sequence 𝑛. Elements of
Fig. 3. Data model building process from raw data.

a 𝑝 sequence are lists of possible part of speech tags that need to be
encountered at each step. Similarly, an element of 𝑑 sequence is a list
of dependency tags that should link terms of the pattern having the
correct part of speech tags. 𝑛 sequence is used to indicate whether to
seek next element of the pattern among the descendant (+1) or the
ancestors (−1) of the current term. The combination of these three
sequences draws the path that has to be matched between an identified
concept and the targeted instance. Fig. 3 shows the application of the I
aux C pattern to the example used earlier. The I aux C pattern is defined
by the three following sequences : 𝑝 = [ [𝑎𝑢𝑥], [𝑝𝑟𝑜𝑝, 𝑝𝑟𝑜𝑝𝑛, 𝑛𝑜𝑢𝑛] ], 𝑑 =
[ [𝑎𝑡𝑡𝑟], [𝑛𝑠𝑢𝑏𝑗] ] and 𝑛 = [−1, +1]. When matched with the preprocessed
sentence, this pattern allows to detect the hyponymy relation between
the instance benzene and the concept molecule. The actions resulting
from this detection are described in Section 3.3.

3.2.4. Handling mismatching patterns
The algorithm presented in Chasseray et al. (2023) is used to

generically apply a pattern. Nevertheless, when patterns are applied
straight as they are defined, some matching sequences may lead to
incomplete – and consequently incorrect – extraction of information.
As these mistakes can be corrected manually during a validation step,
it may harm the automated aspect of the proposed framework.

Depending on the different nature of patterns, some additional
processing has been added to (i) possibly extract several instances when
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Fig. 4. Example of a post-processing step after the identification of an instance through C pred I pattern.
Fig. 5. Example of a post-processing step after the identification of an instance through C pred I pattern.
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he pattern C pred I is used and (ii) complete matching instances by the
attern C pred I.

etection of a sequence. The C pred I pattern has a particularity as it
ften identifies the first instance of a sequence of instances. Despite
his first detected term is easily identified and registered as an instance,
he following instances can be identified thanks to post-processing
fter applying the initial extraction pattern. To do so, an additional
ule is applied to extract the remaining instances. This extraction rule
tarts from the first identified instance and recursively looks for a
oken having the following characteristics: 𝑝 = [𝑝𝑟𝑜𝑝, 𝑝𝑟𝑜𝑝𝑛, 𝑛𝑜𝑢𝑛], 𝑑 =
𝑐𝑜𝑛𝑗, 𝑎𝑑𝑝] and 𝑛 = [+1], where p is the dependency linking the next
nstance to the already identified instances, d is the part of speech of
he targeted token, and s is the direction in which the token is searched.
ig. 4 illustrates the application of this method through an example. In
his example, a sequence of four instances is encountered. The post-
rocessing procedure outlined in this section enables the identification
f three additional terms, specifically carbohydrate, protein, and acid, as
nstances belonging to the concept of molecules.

ompletion of instances. As a dependency tree is used to depict the
yntactic relations occurring between terms, the identified term that
upposedly reflects the targeted instance remains unique. In many
ases, however, an instance can be expressed through a sequence of
ords. In order to recover this sequence, the extraction algorithm
avigates the subtree of the targeted instance that has been detected by
he pattern application algorithm and tries to find additional modifiers
hat complete the instance.
In the example presented in Fig. 4, the extracted instance, ‘‘acid’’,

emains incomplete due to the omission of the nucleid modifier. Fig. 5
llustrates the application of the completion method to extract the last
erm of the sequence in its entirety (nucleic acid).
It is important to emphasize that while the example demonstrates

nstance completion within the context of sequence detection, this
ompletion method can be applied universally to complete instances
ith modifiers in various patterns.

.3. Information extraction and data model building

Once a pattern has matched a hyponymy relation in textual data,
everal pieces of information are extracted around this relation to
xtend the data model. The extracted elements concern the identified
nstance, and the Relation that connects it to the already known Concept.
he purpose of this part is to describe the elements that are extracted
rom raw data in order to create a data model according to the classes
f the metamodel defined by Chasseray et al. (2021b).
 t
.3.1. Contextual elements
An identified instance is registered in the data model with the

emma of the corresponding tokens of the text. However, much ad-
itional contextual information can be extracted from raw data such
s the frequency of the instance in text, the length of the instance
n terms of tokens or characters, its position in the sentence, etc. In
he generic metamodel for information extraction defined by Chasseray
t al. (2021b), a Context class, is proposed in order to integrate this
ind of information into the data model. It can be reused later to char-
cterize, through learning mechanisms, instances that are more likely
o be integrated into the ontology or refuted during human validation.
his article focuses on a particular type of contextual information,
hich is the contextualized word vector built by applying a pre-trained
ERT model to the instance related terms (Devlin et al., 2018). The
mbedding vector is built using the embedding layer of the transformer
odel. The extracted sentence in which the concerned instance has
een identified is processed to merge all terms of the identified in-
tance into one token. Then the transformer model is applied to the
reprocessed sentence in order to build the embedding representation
f the group of terms representing the instance. The same operation
s also executed for the concept that is linked to the instance and
as been merged during the process tagging step. This process ensures
hat different sentences, and then different extraction contexts lead
o different embedding representations of both the instance and the
oncept.

.3.2. Registering hyponymy relation
When the Instance is extracted and registered in the data model, the

elation that links it to its concept must also be stored. Thus, each time
pattern detects a relation (implying an instance), the metamodel’s
elation class is instantiated to associate the Instance lying in the data
odel with the concept from which it was detected. A relation is then
efined with several attributes, which are :

• The name of the relation, directly deduced from the pattern that
has been used to detect the relation.

• The subject concerned by relation, which, in the case of hy-
ponymy relation, is the name of the extracted Instance.

• The object of the relation, which, in the case of hyponymy rela-
tions, is the name of the concept used to apply the pattern.

Extraction rules used in the case study presented in Section 4 are
edicated to hyponymy relation extraction. However, since ontologies
an also have horizontal relations, patterns can be defined in order to
etect relations that are not only taxonomic. Thus, another attribute is
et that specifies whether a relation is taxonomic or not, depending on
he rule used for extraction.
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3.3.3. Extracted data class instantiation
The built model also contains instantiated versions of the Extracted 

data class in order to keep track of the raw data in the data model. 
Each time an instance is registered in the data model, the Extracted data 
class is instantiated with the sentence in which the instance has been 
found. Thus, the same instance can have multiple extracted data linked 
to it because it is found in several different sentences. Extracted data 
is then reused to support human validation and quickly contextualize 
instances.

3.4. Human validation

Since the patterns used remain relatively generic, the accuracy of 
the initial extraction remains uncertain. In order to evaluate the preci-
sion of the method it is necessary to involve an expert for a validation 
tep. During this step, extracted concept-instance couples are presented
to the expert in a contextualized manner, as they appear in textual data. 
As the same couple may have several occurrences in the same group 
of data, each of these occurrences is used as a contextualized version 
of the extracted couple in order to ease the decision. The domain 
expert can also provide further observations that can help identify the 
causal reason for an incorrectly extracted instance, or at least, signal an 
uncommon behaviour of the extraction patterns. 4 validation scenarios 
are proposed to the expert once a relation has been extracted, leading 
to 4 categories after validation:

• Val: The Concept-Instance relation is valid.
• QVal: The relation is correct but the involved Instance remains
incomplete, incorrectly extracted or not specific enough to be
considered as interesting in terms of knowledge intake.

• Unc: The extracted relation seems correct but the raw data is in
contradiction with the expressed relation (wrong concept, unclear
relation in the data).

• Inc: The Concept-Instance relation is not validated because de-
clared incorrect, absurd or irrelevant by the domain expert.

The precision of the extraction is computed from Val, QVal, Unc and
nv categories distribution :

=
%𝑉 𝑎𝑙 + %𝑄𝑉 𝑎𝑙

2

%𝑉 𝑎𝑙 + %𝐼𝑛𝑐 + %𝑄𝑉 𝑎𝑙+%𝑈𝑛𝑐
2

(1)

It is important to note the limited role of the human validation step,
hich is used to provide results to accurately assess the performances
f the system. Its aim is not to guide the extraction, since the proposed
ystem works in a fully automated manner. Compared with the previous
teps (pattern extraction and data model building), validation is the
ore demanding step in terms of time, as each concept-instance couple
equires 5 s for validation in average. However, the time taken by
alidation is not considered a limitation since the whole extraction
ystem does not need the validation step to be executed.

.5. Semantic retroactive loop

One of the characteristics of the framework is its iterative nature.
his section is dedicated to the presentation of the semantic retroactive
oop defined in the framework, which allows the discovery of new
nowledge from previously validated relations. Relationships extracted
sing generic extraction rules can also be used as a support for the
uilding of semantic extraction tools. This section gives details about
he components used in the semantic retroactive loop.
While some instances fit the extraction patterns, a very large ma-

ority of them cannot be detected, simply because they do not appear
xplicitly near their associated concept in the explored data. As ex-
lained in the previous section, this represents a large amount of
nrecognized knowledge. Nevertheless, the objective of this section
s to extract these implicit instances and match them to the correct
oncept, based on context and previously validated instances. This
s done through two main steps, which are (i) statistical candidate
election and (ii) candidate matching to ontology concepts. This section
ocuses specifically on the candidate matching step, while the candidate
election method is discussed in Section 5.1.

.5.1. Use of word embeddings
Word embeddings, from the Word2Vec algorithm to transformers,
ake it easy to build a semantic representation of vocabulary. Trans-
ormers models have the advantage of semantically representing a
erm according to the context in which it occurs. The metamodel used
o extract information from textual sources allows the definition of
ontextual information, through the context class. This context is then
sed to store a contextual vector derived directly from the instance’s
ord embedding representation (as depicted in Fig. 3). Each vector
s built by running RoBERTa pre trained transformers on the sentence
rom which the associated instance is extracted. This vector reflects the
eaning of the instance as well as its context.

.5.2. Matching process
In order to use the already extracted instances for the extraction of

ew instances among the statistically extracted candidates we introduce
he concept of a matcher, whose role is to match a concept to a
andidate when it makes sense to do so.
All defined matchers base their reasoning on a common hypothesis

hich assumes that two ontological objects share the same concept
s long as they remain semantically close to each other. Thus, the
bjective of each matcher is to define a semantic distance between a
andidate and a concept of the data model. The shortest distance be-
ween candidates and concepts leads to the construction of a matching
elation. Depending on the matcher different methods are used :

• WordNet similarity: WordNet distance is computed thanks to the
WordNet lexical database using the graph distance between the
synsets including each term. The main limitation of this method
is the lack of vocabulary in WordNet when it comes to specific
and technical terms. WordNet distance principle is illustrated in
Fig. 6 (left). The distance between two instances is calculated by
taking the shortest path length between their respective WordNet
synsets.

• Word vector cosine similarity: This measure uses the cosine
similarity between instances’ vectors to compute a similarity be-
tween instances and concepts. Word vector cosine similarity dis-
tance principle is illustrated in Fig. 6 (right). In certain scenarios,
a single instance can manifest in multiple contexts, leading to
several vectors representing it. In such instances, we calculate an
average vector and subsequently compute distances based on this
averaged representation.

The similarity between a candidate’s name and a concept’s name
does not reveal the hyponymy relation that potentially links a candidate
to a concept. Therefore, this similarity measure cannot be used directly
between a candidate and a concept. However, the similarity between
a candidate’s name and an existing instance’s name makes more sense.
Then, to match a candidate with a concept, similarities are computed
with the instance’s names instead of the concepts’ names. In Fig. 7,
doted lines represent semantic similarities. In this example, Candidate
1 (Cand 1) presents higher semantic similarities with Instance 1 (Ins
1) and Instance 2 (Ins 2), whereas Candidate 2 (Cand 2) demonstrates
a stronger semantic similarity with Instance 3 (Ins 3). Based on these
similarity scores, it is more likely that Candidate 1 is associated with
Concept 1 (Cpt 1), while Candidate 2 is linked to Concept 2 (Cpt 2).

A third matcher, illustrated in Fig. 8, uses the word vectors of
validated instances to train a feed-forward neural network for proba-
bilistic classification. Validated instances’ vectors are used to train the
classifier to pair each instance with the concept they are linked to in



Fig. 6. Detailed representation of semantic similarities between a candidate and a validated instance.
Fig. 7. Matching process between validated instances (left) and unmatched candidates (right) (Sem. Sim. : Semantic Similarity).
Fig. 8. Representation of the classifier matching process.
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the data model. Word vectors of candidates are then used as features to
determine to which ontology class the corresponding candidate should
be assigned. The similarity between a candidate and a concept is then
inferred from the probability of an instance being classified in the
related class by the trained neural network.

3.6. Technical architecture

A technical implementation of the presented framework has been
developed based on the components presented in Fig. 1 and listed in
 l
ig. 9. In the presented architecture, the data model and an image of
he ontology are stored thanks to a Neo4j graph database, which allows
graph representation of relations that is coherent with the definition
f the information extraction metamodel and most ontology schema
efinitions. All data processing, including raw data pre-processing,
atural language processing pipelines, candidates and relations ex-
raction, alignment step and retroactive loop is provided by Python
rogramming. Human validation is provided through a user interface
uilt with a Django application. This user interface can also be used to
aunch extraction and retroactive loop.
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Fig. 9. Python modules of the technical implementation and their interactions with
external components.

4. Application on textual data in the chemical and biochemical
domain

4.1. Task distinction

The testing of the framework is divided into two groups of tasks.
The goal is to test the pattern extraction pipeline and the semantic
retroactive loop separately. Since the pattern extraction step is the first
step of the pipeline, it can be directly applied and tested on textual
data, as long as an ontology is available. The performance evaluation
of this part of the framework is done by manual validation through the
validation interface included in the prototype. On the other hand, the
semantic retroactive loop assumes the existence of already extracted
and validated instances that constitute a first knowledge base. In order
to avoid approximation and bias due to the imperfection of pattern
extraction and candidate selection, the semantic retroactive loop is
tested on annotated data. A subset of this annotated data is used to
simulate an initial knowledge base, while the rest of the data is used
to test the semantic retroactive loop.

4.2. Selected ontologies

The first ontologies containing a significant number of classes (>
1 000) have been developed in the medical domain. In one of its
first releases, the Unified Medical Language System gathered around
900,000 classes (Bodenreider, 2004). Later, and notably through the
OBOFoundry (Smith et al., 2007), the number of available ontologies
grew considerably and is covering today a wide range of domains in
other related areas such as biomedical domain and biochemistry.

In this article, the prototype is applied to chemistry and biochem-
istry. Then, three ontologies, covering different aspects of these do-
mains have been selected :

• ChEBI (Chemical Entities of Biological Interest): ChEBI de-
scribes molecular elements that are relevant in the field of biol-
ogy.

• MOP (Molecular Process Ontology): The MOP ontology gathers
a terminology for the description of molecular reactions between
chemical entities.

• RXNO (Name Reaction Ontology): This ontology can be consid-
ered as an extension of the two previous ontologies that detail or-
ganic interactions happening in the chemical processes described
in the MOP ontology.

While the RXNO and MOP ontologies have several classes in com-

on, they both differ from the ChEBI ontology in that they do not i
describe exactly the same domain. It was decided to use these three
different ontologies to challenge the extraction system and analyse its
ability to adapt to different sets of classes.

4.2.1. Gathering major concepts by splitting the ontology

Algorithm 1: HighLevelClassesSelection (𝐻𝐿𝐶𝑆)
Data: 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 : classes of the ontology

𝑚𝑖𝑛𝑁𝑏𝐵𝑟𝑐ℎ𝑠 : minimal number of branches to consider the
class as a high level class

Result: 𝑛𝑏𝑆𝑢𝑏𝐵𝑟𝑐ℎ : number of branches under the input classes
ℎ𝑙𝑐 : Set of high level classes of the ontology

begin
𝑛𝑏𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 ⟵ 0
ℎ𝑙𝑐 ⟵ ∅
for 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 do

𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑒𝑠 ⟵ 𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠(𝑐)
𝑛𝑏𝑆𝑢𝑏𝐵𝑟𝑐ℎ𝑠, 𝑠𝑢𝑏𝐻𝑙𝑐 ⟵ HLCS(𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑒𝑠, 𝑚𝑖𝑛𝑁𝑏𝐵𝑟𝑐ℎ𝑠)
for 𝑠𝑐 ∈ 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑒𝑠 do

if 𝑠𝑐 has descendants then
𝑛𝑏𝐵𝑟𝑐ℎ𝑠 ⟵ 𝑛𝑏𝐵𝑟𝑐ℎ𝑠 + 1

else
𝑛𝑏𝐵𝑟𝑐ℎ𝑠 ⟵ 𝑛𝑏𝐵𝑟𝑐ℎ𝑠 + 1∕2

for 𝑠ℎ𝑙𝑐 ∈ 𝑠𝑢𝑏𝐻𝑙𝑐 do
𝑒𝑥𝑡𝑒𝑛𝑑(ℎ𝑙𝑐, 𝑠𝐻𝑙𝑐)

if 𝑠𝑢𝑏𝑁𝑏𝐵𝑟𝑐ℎ𝑠 > 𝑚𝑖𝑛𝑁𝑏𝐵𝑟𝑐ℎ𝑠 then
𝑒𝑥𝑡𝑒𝑛𝑑(ℎ𝑙𝑐, 𝑐)

Some ontologies offer a very exhaustive level of granularity
and can look like knowledge bases because they contain very precise
concepts (e.g. Margherita pizza in the pedagogical pizza ontology). In
order to retrieve concepts that have only a high level of granularity,
one chooses to keep only the most generic classes of the ontology. This
section describes the method used to estimate the level of conceptualiza-
tion at which a class is found and thus recover only high-level classes to
guide the extraction.

The algorithm 1 details how to select from the top classes of an
ntology a subset of all classes of the ontology to guide an extraction,
ince they are considered to be high-level classes. Instead of defining
he level of granularity from the top of the ontology, i.e. the most
eneric class, the algorithm looks at the number of finer classes associ-
ted with each class. Once this point of view is set, a class is considered
mportant as soon as it is linked to enough finer classes. This threshold
s set manually depending on the number of generic classes wanted. To
etermine the level of granularity for a class, a score of granularity is
alculated using the following definition :

𝐺𝑐 = 𝑊𝑐 +
1
2
∗ |𝐶𝐹𝑐 | +

∑

𝑐𝑝∈𝐶𝑃𝑐

𝑆𝐺𝑐𝑝 (2)

here :

• 𝐶𝑃𝑐 is the set of subclasses of 𝑐 having no subclass itself.
• 𝐶𝐹𝑐 is the set of subclasses of 𝑐 having itself at least one subclass.
• 𝑊𝑐 is defined as follows :

𝑊𝑐 =

{

1 if 𝑐 has at least one subclass
1∕2 either

(3)

.3. Data presentation

This section is dedicated to the presentation of data used to test
he proposed framework. The chosen ontologies for population are
elated to chemistry and biochemistry. One of the assumptions made

n the building of the extraction framework is the coherence between
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the ontology to be populated and the data that are processed. In fact, 
in order to make the concepts of the chosen ontology relevant for 
he pattern extraction process, it is necessary to choose textual data 
elated to the same domain, i.e. in which instances of the classes of the 
ntology are likely to appear.

.3.1. For the evaluation of the pattern extraction pipeline
In the presented framework, the pattern extraction step is fully 

nsupervised. Therefore, its performance should be estimated on raw 
nd unlabelled text. For this purpose, several data sources have been 
elected. All of them contain textual data, presented in different for-
ats, allowing to test the prototype on text with different levels of 
nowledge:

• Wikipedia articles related to pericyclic reactions
• Two different chemistry books in PDF format :

– Effects of Nanoconfinement on Catalysis (Poli, 2017)
– The organometallic chemistry of the transition metals (Crabtree,
2009)

4.3.2. For the evaluation of the semantic retroactive loop
Using the extracted dataset for the evaluation of the semantic

retroactive loop seems to be relatively uncertain as the extracted cou-
ples are biased by the type of rule that has been used for their ex-
traction. This aspect is discussed and detailed in the discussion section
(Section 5). Moreover, in a classical use of the extraction system, these
instances should all already be present in the data model since they
have been extracted by a previous rule extraction. Therefore, it makes
more sense to perform the semantic pairing and evaluate this pairing
on a different kind of instances, that should not be extracted by the
defined pattern.

In order to simulate such a situation – where a set of instances have
been extracted and matched to a concept, and other (candidates) are
waiting to be paired – the National Centre for Text Mining (NaCTeM)
Dataset (Shardlow et al., 2018) has been used. This dataset is made
f instances directly labelled from raw text and human annotations.
It is used here for validation only, which does not mean that the
framework needs annotated data to extract knowledge. It should be
noted that the NaCTeM also includes the annotations of relations
between labelled instances. As our dedicated task remains limited to
the detection of hyponymy relations, only labelled instances from 6
different concepts (Metabolite, Chemical, Protein, Specie, Biological ac-
tivity and Spectral Data) have been considered. The dataset have been
preprocessed to avoid the consideration of other relations’ labels so that
only concept-instance relations are considered.

Concept-instance couples and associated semantic vectors are ex-
tracted from the annotated data and the associated textual sources.
A subset of these couples leads to relations involving each associated
concept in the data model. This method allows the generation of a pre-
extracted and validated couples set (extracted set). Once the data model
is filled with these couples, they can be used as a reference in order
to match the remaining couples (candidates set) and thus evaluate the
different pairing methods. The extracted set is used to train or guide
the different matchers, while the candidate set is used to test these
matchers on new instances.

4.4. Syntactic pattern extraction results

To apply extraction patterns the textual data is pre-processed in the
following steps :

• Tokenization step during which each sentence of the text is split
into several pieces.

• POS-Taging step applied to attribute a specific part-of-speech tag

to each token, revealing its role in the sentence.
Table 2
Evaluation result on Poli (2017)’s document for three different ontologies.
Ontologies Nextr Neval % Val % Qval % Inc % Inv P

ChEBI 929 452 (49%) 0.30 0.17 0.30 0.23 0.50
MOP 535 434 (81%) 0.42 0.16 0.26 0.17 0.62
RXNO 544 544 (100%) 0.37 0.14 0.28 0.22 0.55

Table 3
Extraction results on the MOP ontology using the three different sources of data.
Source Nextr Neval % Val % Qval % Inc % Inv P

Poli (2017) 535 434 (81%) 0.42 0.16 0.26 0.17 0.62
Crabtree (2009) 560 342 (61%) 0.41 0.15 0.21 0.23 0.62
Wiki articles 240 101 (42%) 0.47 0.13 0.20 0.21 0.63

• Dependency parsing step whose role is to deduce from part-
of-speech tags, what syntactic relations each token has with the
other tokens of the sentence.

• Concept tagging step based on selected concepts from the ontol-
ogy as described in Section 3.2.2.

Fig. 10 shows the variability of selected concepts when processing
the same pattern-based extraction with different domain ontologies. It
can first be noticed that; within a single ontology, there is a disparity in
terms of the number of concepts that are extracted. In MOP related ex-
traction for example most of the instances concern the concepts Process,
Group and Catalysis. It can be explained by the generic aspect of these
concepts, whose instances are more likely to be found in all parts of
a document about chemical knowledge than instances of more precise
concepts such as Oxydation, Reduction, Hydrolysis or Macromolecule. A
deeper analysis can be made by comparing the results on different
ontologies. As explained in Section 4.2, MOP and RXNO describe the
chemical domain with similar concepts. Due to this conceptual prox-
imity, the relation extraction with the two ontologies involves globally
the same concepts (Macromolecule, Hydrolysis, Oxidation, Reduction,
Process). Catalysis instances, on the other hand, can only be found
when using the MOP ontology, since this concept is only defined in
the MOP ontology. For its part, the ChEBI ontology contains many
concepts that cannot be found in the other two ontologies (Polymer,
Ligand, Protein,Mixture, etc.). Thus, processing the same extraction with
ChEBI ontology opens a wide new range of possible relations compared
to MOP and RXNO ontologies. This shows the interest of the proposed
method, which is able to focus specifically on the concepts defined on
the ontology chosen for the extraction, without the need for manual
adaptation. This is true within the same domain, for ontologies un-
derlying different aspects of the domain, but also between completely
distinct domains (Chasseray et al., 2021a).

In terms of performance, the Tables 2 and 3 show the results of
human validation and the associated performance for different data
sources and different ontologies. While the rules seem to perform
slightly better on the MOP ontology, their performance remains very
stable when applied to different documents. This observation confirms
and completes the previous one, as the system can be applied to
different ontologies and different textual documents without drastically
affecting its performance. If we extrapolate the validation rate over
the whole set of extracted relations, the global process results in the
addition of 278 instances (ChEBI - Poli), 224 instances (MOP - Poli),
201 instances (RXNO - Poli), 229 instances (MOP - Crabtree) or 112
instances (MOP - Wikipedia) depending on the source of data and ontol-
ogy considered. After the extraction process, the considered ontology is
enriched with these instances and the taxonomic relations linking them
to their corresponding concepts. Fig. 10 shows the repartition of these
nstances among the main concepts of the ontologies.
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Fig. 10. Distribution of the 8 concepts leading to the most extracted relations for each ontology from Poli’s (Poli, 2017) document. Concepts specific to one ontology (purple) are
istinguished from concepts shared across 2 (orange) or 3 (red) ontologies.
Fig. 11. Confusion matrices built after the matching of candidates on annotated articles (each row indicates initial annotation which is compared to matching result (columns)).
.5. Semantic loop performances

This section aims to prove the possibility of using a semantic
etroactive loop to detect new instances from the relations extracted by
yntactic patterns and validated by human validation. To accomplish
his task, the three previously described methods – namely WordNet-
ased similarity, word-vectors cosine distance and feed-forward neural
etwork – have been implemented. As described in Section 4.3.2,
biochemical data are used for this application. The two datasets used
contain 3 444 (ABS) and 17 207 (ART) concept-instance couples respec-
tively. Non-taxonomic relations of the dataset have been filtered to only
keep concept-instance couples. Once duplicated couples are removed
the size of the datasets drops to 1493 (ABS) and 4 520 (ART). Both are
divided into reference instances and test instances. The ABS test dataset
represents 15% (678 instances) of the whole ART dataset whereas the
ART test dataset represents 30% (448 instances) of the whole ABS
dataset. The train datasets respectively contain the remaining 85%
(3 842 instances) of ART dataset and 70% (1 045 instances) of ABS
dataset. Figs. 11(a) to 11(c) show the resulting confusion matrices for
the three different matching methods used on the two types of datasets.
On these matrices, the diagonal coefficients represent the number of
candidates that were correctly affected to their label, representing an
ontology class. Table 4 gives a summarized view of the matching
performances on both the ABS and ART datasets.

It can be noticed that the WordNet-based pairing method behaves
poorly for almost every concept. As WordNet is a finite thesaurus,
domain-specific terms are not necessarily included within this the-
saurus. Thus, only a few candidate-instance pairs lead to the calculation
of a distance based on WordNet. This explains why the number of
classified candidates is lower when using the WordNet matcher. Nev-
ertheless, Protein and Specie related performances are exceptions that
confirm the previous idea as some species and proteins may have names
that are common in the general speaking language and thus exist within
WordNet. In fact, the WordNet matcher shows better precision for
Protein instances because as soon as the instance exists in the WordNet

thesaurus, it is relatively easy to match it to its concepts. Still, the
recall remains low because many protein names are not referenced in
WordNet. On the contrary, the WordNet matcher shows good recall
performances for Specie instances, since most of the species (rat, human,
mouse, apes, . . . ) are expressed with common words.

The similarity computed directly from word vectors shows a better
performance for most of the concepts. However, the fact that the ma-
jority of the couples involve the concept Chemical results in a semantic
ambiguity around this term. Because of this ambiguity, many chemical
instances are incorrectly assigned to another concept. Using a neural
network to build a model from the word vectors seems to reduce the
semantic ambiguity, limiting it to the closest concepts only, such as
Chemical and Metabolite for instance.

Another aspect is that the concepts are semantically close to each
other and not completely exclusive, with some instances being paired
with several concepts in the dataset. Since the classification allows
multiple concepts but not multiple labelling, only the most represented
annotation is kept for the building of the couples. Some instances
present a classification that is considered incorrect even though they
could have been labelled in this sense. For example, if a given in-
stance has been labelled three times as a chemical but only once as
a metabolite, the kept concept for this instance is chemical.

5. Discussion

This article addressed the issue of automated and domain-
independent ontology population. This section discusses the limitations,
applications and possible extensions of the proposed framework.

5.1. Statistical candidate selection

Matching candidates based on previously validated instances can
only be assured if one has already extracted some candidates from data.
Here, a candidate is defined as a word or a group of words representing
an object identified in the data, that can later be identified as an
instance of a given concept. Basically, the hypothesis is made that a
candidate can be discovered among all the common nouns that can be
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Table 4
Performance of the three different matchers computed for each concept of the labelled NaCTeM datasets.

Biol. act. Chemical Metabolite Protein Specie Spect. data Global

P R P R P R P R P R P R P R

ABS - WV 0.70 0.40 0.31 0.79 0.11 0.01 0.55 0.36 0.66 0.56 0.14 0.03 0.41 0.64
ART - WV 0.94 0.17 0.27 0.81 0.30 0.03 0.20 0.19 0.80 0.27 0.45 0.45 0.37 0.59
ABS - NN 0.73 0.71 0.75 0.77 0.33 0.05 0.25 0.55 0.64 0.78 0.86 0.60 0.66 0.72
ART - NN 0.94 0.63 0.76 0.84 0.20 0.03 0.51 0.59 0.82 0.73 0.55 0.87 0.72 0.76
ABS - WN 0.45 0.23 0.04 0.67 – 0.00 0.80 0.09 0.65 0.94 – – 0.25 0.56
ART - WN 0.17 0.13 0.27 0.50 – 0.00 1.00 0.31 0.64 0.88 – 0.00 0.40 0.47
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found in the textual data. However, since most of the common nouns
in a technical text are not specifically related to the domain, there is a
wide field of research that could be explored to orient the extractions
towards topic-related terms.

In order to open new avenues in this field, we adapted the well-
known TF-IDF measure for the extraction of relevant common nouns
within a single document. The TF-IDF metric is used in order to
enlighten terms of a document that are relevant, relatively to a corpus
of documents. The limitation of TF-IDF is that it is not suitable for text
that is not divided into several documents. Then, in order to detect
terms of interest, a revised version of this metric could be investigated
in order to be applicable to a single document.

5.2. Pattern-based extracted data bias

Section 4.3.2 suggests an underlying bias when using semantic
imilarity with previously pattern-based extracted couples for further
nnotation.
This is especially true for all the instances that include the name

f the concept, which is the case for instances extracted by the modifier
ule (carbon atom classified as an atom, for instance). The risk of having
significant amount of these kinds of instances is that their associated
emantic vectors would only attract instances that include the name
f their concept in their denomination, which is clearly only a small
raction of the instances that are interesting, even more so if they have
lready been extracted by a pattern. The underlying problem is that
f the initially extracted instances are not sufficiently representative of
he variety of instances to which a concept could be associated, the
ystem may have difficulty in associating new candidates with these
oncepts. This applies to the morphology of the extracted instances but
lso concerns their number. It should be difficult to correctly assign new
nstances to a concept if that concept is initially associated with a small
umber of instances and associated semantic vectors. It also seems that
he concepts that allow the most instances to be extracted by pattern
pplication are some of the most generic concepts of the ontology. This
act means that further extraction is likely to favour these concepts,
imiting the possibilities for more specific concepts to be associated
ith new instances since their chances of being associated are null if
o instance has been previously extracted for the former concept.

.3. Interest in targeted document analysis

A direct application of a system like the one proposed in this article
oncerns the exploration of a domain with self-defined concepts. For
xample, in the chemical domain, where many terms may be specific
o a single reaction or reaction step, using the extraction system with
recise concepts can be a method to get small interesting extracts of a
ocument that contain instances of the given concept and that would
ot have been extracted with other methods (using keyword-based
xtraction for example).

.4. Limits inherent to the unsupervised nature of the approach

All of these three matching methods present a major limitation due
o made hypothesis that semantic relations between a candidate and
nstances mean that this candidate belongs to the same concept as the
nstance. Matchers, as they tend to match a concept for candidates
ould match candidates that should not as they have no corresponding
oncept in the ontology. Matching performance is then really impacted
y the quality of the extracted candidates. Yet, another condition
eeded to guarantee good performance in the matching step is to
ave candidates that are instances of at least one of the classes of the
ntology. Still, this is a challenge when adopting an unsupervised and
omain-free method.

.5. Domain related limits

In this article, the methodology has been applied to three ontologies
bout the chemical domain. It has been noticed that the classes of the
ntology that are more likely to be populated are relatively generic
egarding the domain (molecule, process, alcohol, protein, etc.). It is
hen possible that the used patterns are not designed for more specific
lasses, whose instances do not appear close to the class occurrence.
t can then legitimately be asked if more specific ontologies about
echnical domains may limit the extraction capacity of patterns.

.6. Extension to other data sources and other relations

The proposed framework and method have been implemented for
extual data and extraction of hyponymy relations. However, ontologies
ot only convey taxonomic relations but can express other types of
elations. The same framework can nevertheless be used to cover
ifferent types of data (speech, image, structured text) or to search
or other types of relations. Future work on this topic could then be
o define the patterns or rules that can be used to treat new types of
ither sources or relations. Searching for relations could then be a way
o overcome the specific domain limitation as relations may link classes
hich are not efficiently populated through hyponymy patterns, but
ould be through other types of relation patterns.

. Conclusion

This article presented a complete framework for unsupervised ontol-
gy population. Several blocks of the framework have been detailed,
rom high concept selection in the targeted ontology to rule-based
xtraction mechanism and semantic retroactive loop matching process.
hese blocks have been implemented and showed good results that
1) prove the possibility of extracting instances for several types of
ocuments and different domain ontologies with reasonable impact on
he performance and (2) show the possibility of enriching a knowledge
ase within the framework by using already extracted instances to
iscover new ones. Some future work has been identified with the
bjective of extending the framework to other types of data and rela-
ions. Limitations concerning the usage of generic word embeddings has
lso been evoked opening new perspectives on the training of domain-
pecific word embeddings for better semantic matching on specific
omains.
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