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ABSTRACT

Predictive analytics is the approach to business analytics that answers the question of what might
happen in the future. Although predictive information is critical for making forward-looking deci-
sions, traditional approaches struggle to cope with the increasing uncertainty and complexity that
characterise modern supply chains. Simulation is limited by insufficient timeliness, while machine
learning is constrained by poor interpretability and data scarcity. Inspired by the complementary
nature of simulation and machine learning, an integrated predictive analytics approach is proposed
and applied to a humanitarian supply chain. By coupling simulation and machine learning, predictive
models can be developed with limited historical data, and pre-crisis performance assessment can be
performed to facilitate timely and informed decisions. The proposed approach enables managers to
gain valuable insights into the complex evolution of the uncertain future, which also opens up the
possibility of further integration with optimisation and digital twins.

1. Introduction

Predictive analytics, a branch of business analytics,
uses historical data and current conditions to forecast
future events (Kamble and Gunasekaran 2020). In sup-
ply chain management (SCM), predictive analytics can
provide insight into future possibilities and uncertainties,
thereby facilitating decision-making with a prospective
outlook (Schoenherr and Speier-Pero 2015; Waller and
Fawcett 2013). A well-known example is FedEx’s use
of package movement history for predictive analytics to
ensure on-time delivery of COVID-19 vaccines (Zayt-
sev 2023). From a technical perspective, predictive ana-
lytics traditionally involves building simulation models
grounded in business understanding and historical data
(J. A. Miller, Cotterell, and Buckley 2013). These mod-
els enable anticipation through what-if scenario analysis
(Dev et al. 2019; Power and Heavin 2017). With advances
in data science and artificial intelligence, machine learn-
ing now plays a key role in the field (Dwivedi et al. 2021;
Gunasekaran et al. 2017; Ranjan and Foropon 2021). By
exploring historical data, machine learning algorithms
can autonomously discover latent patterns and con-
struct predictive models. From a theoretical perspective,
mature theories such as operations research and decision

theory under uncertainty also help to integrate predic-
tive analytics into today’s supply chain practices (Lee and
Mangalaraj 2022).

Despite its widespread use in SCM, predictive ana-
Iytics struggles to adapt to today’s volatile, uncertain,
complex, and ambiguous (VUCA) world (Gao, Feng,
and Zhang 2021; Grzybowska and Tubis 2022; Troise
et al. 2022). Challenges are both exogenous and endoge-
nous. Exogenous challenges stem from external factors
such as geopolitical tensions, natural disasters, and mar-
ket fluctuations. These factors escalate the uncertainty of
the external environment in which supply chains operate,
making predictive analytics less reliable (Charles, Lauras,
and Van Wassenhove 2010). The failure to forecast supply
chain disruptions during COVID-19 is a good example
of such impacts. Conversely, endogenous challenges arise
as supply chains transform to remain competitive. Adap-
tations such as the pursuit of carbon neutrality increase
the internal complexity of supply chains (Pessot, Zan-
giacomi, and Fornasiero 2024). There are more variables
(such as carbon emissions and supplier sustainability rat-
ings) to consider and more indicators (such as energy
efficiency and carbon footprint) to predict, complicating
the implementation of predictive analytics.
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The above challenges manifest themselves differently
for different predictive analytics approaches. For simula-
tion, there are more potential scenarios to simulate due
to the rise in uncertainty (Dev et al. 2019; J. A. Miller,
Cotterell, and Buckley 2013). Simulation models are
more complex and time-consuming given the increas-
ing complexity of supply chains. As a result, simulation-
based approaches suffer from reduced timeliness. For
machine learning, data scarcity and poor interpretability
are the main constraints (Dwivedi et al. 2021). Increased
uncertainty hampers the collection of representative data,
thereby hindering machine learning model development.
Interpretability, defined as the degree to which humans
can understand the rationale behind a prediction (T.
Miller 2019), ranges from the holistic interpretability of
predictive models to the local interpretability of a sin-
gle prediction (Molnar 2023). Machine learning is often
criticised for this aspect. As complexity grows, it’s harder
to understand why a supply chain would behave as pre-
dicted by machine learning.

The above analysis shows that there is a clear research
gap between current predictive analytics approaches and
the needs of supply chains in the VUCA world. Since dif-
ferent methods face different dilemmas, combining them
may provide a viable solution. Inspired by the comple-
mentarity of simulation and machine learning, we believe
that coupling the two techniques in an integrated pre-
dictive analytics approach could address this research
gap. The research question (RQ) thus formulated is: How
can simulation and machine learning be combined in
predictive analytics to help supply chains better man-
age the increasing uncertainty and complexity? Answer-
ing this RQ will not only lead to a novel approach, but
also enable modern supply chains to better navigate the
VUCA world.

To this end, a comprehensive literature review is pre-
sented in Section 2, summarising current advances in
combining simulation and machine learning for busi-
ness analytics. An innovative integrated approach to pre-
dictive analytics in supply chains is then proposed in
Section 3, which couples simulation and machine learn-
ing to enhance timeliness and interpretability while alle-
viating data scarcity. A case study applying this approach
to a humanitarian supply chain is presented in Section 4
for illustrative purposes. The paper ends in Section 5,
where conclusions are drawn and future perspectives are
contemplated.

2. Literature review

This section begins with an overview of combining sim-
ulation and machine learning for general business ana-
lytics purposes. A detailed review of the literature on

the integration of simulation and machine learning for
predictive analytics in SCM is then presented.

2.1. Coupling simulation and machine learning for
business analytics

Simulation and machine learning have been widely used
for analytical purposes in SCM (Rabia and Bellab-
daoui 2022; Tirkolaee et al. 2021). Their combination is
now attracting interest in both academic and business
circles (Baryannis et al. 2019; Hiirkamp et al. 2020; von
Rueden et al. 2020). Figure 1 categorises this integration
into three different types, based on the specific analyt-
ical purpose it serves (Souza 2014). Correspondingly,
the machine learning algorithms typically employed
within each category also differ (Feki, Boughzala, and
Wamba 2016).

Descriptive analytics extracts insights from histori-
cal data to help managers understand what has hap-
pened or is happening in supply chains (Hahn and Pack-
owski 2015). It mainly involves unsupervised learning
techniques such as clustering, anomaly detection, and
association rule mining to transform supply chain data
into valuable information (Blackhurst et al. 2018; Le
et al. 2013; Nguyen et al. 2021; Tirkolaee et al. 2021). To
augment the analysis of expansive data sets, simulations
are often used to examine a multitude of potential scenar-
ios, thereby complementing empirical data from the real
world (Rabia and Bellabdaoui 2022). The combination
of simulation and machine learning here can be sum-
marised as using simulated data to enrich the input to
unsupervised learning models (von Rueden et al. 2020).
This allows decision makers not only to be aware of past
events, but also to comprehend them from a more holistic
perspective.

Predictive analytics concerns what might happen in
the future (Hahn and Packowski 2015). For predictive
tasks like demand forecasting, supervised learning tech-
niques are applied to train models using historical data
(Brahami et al. 2022; Huber and Stuckenschmidt 2020;
Kantasa-Ard et al. 2021; Tirkolaee et al. 2021). These
models can then make predictions on new inputs. Such
data-driven approaches are highly dependent on the
quality and quantity of data. When data availability is
limited, simulation can be employed to explore poten-
tial scenarios and anticipate the future (Huang 2009;
Suryani, Chou, and Chen 2012). However, constructing
simulation models requires a deep understanding of the
business. Because both simulation and machine learning
can perform predictive analytics independently, combin-
ing the two can be complex. The exchange of data and
information between the two can be bidirectional and
serve different purposes (von Rueden et al. 2020). The
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Figure 1. Coupling of simulation and machine learning for different analysis purposes.

literature on this topic is examined further in the next
subsection.

Prescriptive analytics devotes to answer what to do
next by determining the optimal future actions (Feki,
Boughzala, and Wamba 2016; Souza 2014). This fre-
quently employs simulation alongside optimisation to
formulate problems and identify solutions (Rabia and
Bellabdaoui 2022). Reinforcement learning techniques
have recently come to the forefront in this field (Rolf
et al. 2022). Intelligent agents are created with the ability
to take cumulative actions to achieve pre-defined goals
(Valluri, North, and Macal 2009). Simulations are typ-
ically used to provide the environment in which the
agents operate (Kaelbling, Littman, and Moore 1996;
Li 2017). Such methods have been explored for various
supply chain processes such as scheduling, routing, and
resource allocation (Abideen et al. 2021; Lang et al. 2021;
Puskds, Budai, and Bohdcs 2020; Rolf et al. 2022). These
studies benefit from well-established simulation methods
and quantifiable objectives. Implementing such methods
remains challenging when simulation models are difficult
to build or desired futures are difficult to characterise.

In summary, the combination of simulation and
machine learning varies for different analytical purposes
(von Rueden et al. 2020). In descriptive analytics, the
coupling of these two approaches is straightforward and
well-practised. For prescriptive analytics, their combi-
nation is intuitive and has received considerable atten-
tion. However, the integration of simulation and machine
learning in predictive analytics is more complicated and
less investigated.

2.2. Coupling simulation and machine learning for
predictive analytics

To gain a better understanding of both the advances and
limitations of existing research, an in-depth survey was
conducted with a specific focus on the integration of sim-
ulation and machine learning for predictive analytics in
SCM. Attempts to combine the two techniques to inno-
vate the approach to predictive analytics can be observed
in certain areas where predictive capability is critical to
the success of specific supply chain activities.

One factor driving this trend is the scarcity of his-
torical data, which is insufficient for machine learning
to develop predictive models and assess the reliability of
predictions. Some studies have attempted to address this
issue by incorporating simulations as an alternative data
source. One example is the scheduling approach intro-
duced by Heger et al. (2016), which uses Gaussian pro-
cess regression to predict the performance of dispatching
rules, allowing for dynamic adjustments in flow shops.
In this study, simulation is employed to generate learning
data and to evaluate the learning quality. Similarly, Caval-
cante et al. (2019) proposed a supplier selection method
in the context of digital manufacturing. Supervised learn-
ing algorithms are fed with supplier performance data
generated by simulation. Badakhshan and Ball (2022)
and Wang (2022) also used simulation to synthesise data
for machine learning to predict the occurrence of disrup-
tions for risk management purposes. The above research
has mitigated to some extent the negative impact of data
scarcity on predictive analytics.



Another factor facilitating the integration of simu-
lation and machine learning is the need for predictive
information with different granularities. Machine learn-
ing excels in estimating quantifiable metrics at a local
scale with high accuracy. Conversely, simulation is adept
at characterising complex interactions within supply
chains, enabling comprehensive anticipation. Combin-
ing the two is conducive to integrating predictive infor-
mation at different granularities to support decision-
making. Many studies are devoted to this direction.
Pereira et al. (2018) presented a machine learning-based
demand forecasting approach for omnichannel retailing
and integrated it with simulation-based optimisation to
adaptively synchronise supply and demand (Pereira and
Frazzon 2021). Similar approaches have been proposed to
optimise last-mile distribution (Gutierrez-Franco, Mejia-
Argueta, and Rabelo 2021) and inventory routing (Boru
et al. 2019; Dosdogru, Ipek, and Gocken 2021) using
anticipated demand or lead times. In addition to opti-
misation purposes, some studies have attempted to inte-
grate machine learning and simulation into digital twins,
with a particular focus on quality control. These innova-
tions first appeared in the medical (Arshad, Vrieze, and
Xu 2022) and agricultural (Melesse et al. 2022) fields,
where product quality is critical to the supply chain. Such
studies typically input local determinism estimated by
machine learning into simulation models to explore the
uncertainty on a holistic scale, which extend the scope of
predictive analytics in the decision-making process.

In summary, existing research has initially explored
ways to combine simulation and machine learning for
predictive analytics. Innovative methods have been pro-
posed to support various supply chain processes such
as scheduling, routing, supplier selection, quality con-
trol, and risk management. Predictive information such
as demand, performance, and risk are critical to the suc-
cess of these supply chain processes. This trend is mainly
driven by the constraints of data scarcity and the need
for predictive information at different levels of granu-
larity. The way in which simulation and machine learn-
ing are combined varies from study to study. Machine
learning models can be developed using simulated data.
Conversely, simulation parameters can be set based on
machine learning predictions.

However, the challenges faced by predictive analytics
in the VUCA world have not been adequately addressed
in the literature. While some studies have attempted to
mitigate the limitation of data scarcity, few have paid
sufficient attention to the needs of timeliness and inter-
pretability. This neglect makes it difficult for predictive
analytics to cope with the growing external uncertainty
and internal complexity that characterise modern sup-
ply chains. Therefore, three objectives were identified

through the presented literature review to address the
RQ of this work, namely: ensuring timeliness, improv-
ing interpretability, and overcoming data scarcity. To this
end, a novel integrated approach to predictive analytics is
proposed and presented in the next section.

3. Proposal

To cope with the increasing uncertainty and complexity
in contemporary supply chains, a novel integrated pre-
dictive analytics approach is proposed by coupling simu-
lation and machine learning. This section firstly explains
the overall architecture and technical details of the pro-
posed method, followed by an in-depth discussion of the
synergy between simulation and machine learning and
the benefits it brings.

3.1. Theintegrated predictive analytics approach

The inspiration for this work stemmed from an exten-
sive examination of the current challenges in predictive
analytics and a comprehensive review of the relevant lit-
erature. The former shaped the RQ to be addressed and
the objectives to be achieved. The latter illuminated path-
ways for integrating simulation and machine learning.
As shown in Figure 2, the overall architecture of the
proposed approach consists of two phases: a build-time
phase for constructing predictive models, and a run-time
phase for performing predictive analytics using these
models.

3.1.1. The build-time phase

The build-time phase begins with the modelling of the
supply chain system. In this step, simulation models are
constructed using historical data generated by the system
and the business understanding of the system. Depend-
ing on the supply chain process to simulate and the
abstraction level of the simulation, different simulation
methods such as system dynamics, discrete event simu-
lation and agent-based modelling can be used. Histori-
cal data is used to calibrate simulation models. Experts
can also evaluate the representativeness of these models
based on their understanding of the business.

The simulation models are then executed in offline
simulations to extrapolate possible scenarios not cov-
ered by historical data. Baseline scenarios are first defined
based on historical data, then alternative scenarios can
be developed by altering key variables. The extrapolated
scenarios should be plausible, relevant and diverse. In
this step, an integrated dataset is created by adding the
simulated data from offline simulations to the historical
data.
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Figure 2. Schematic architecture of the integrated predictive analytics approach.

Machine learning models are then built using the inte-
grated dataset, which is more comprehensive and repre-
sentative than historical data alone. Depending on the
predictive task, different supervised learning methods
such as classification and regression can be used. At the
end of the build-time phase, two types of predictive mod-
els, simulation-based and machine learning-based, are
developed for subsequent analysis.

The validation process is crucial for assessing the reli-
ability and understanding the limitations of these pre-
dictive models. There are three levels of credibility here.
The historical data has the highest credibility, which is
used to validate the simulation models. The simulated
data has the secondary credibility, which is used along
with the historical data to validate the machine learning
models. The predictions made by machine learning are
considered to be the least credible compared to others.

3.1.2. The run-time phase

The run-time phase involves the synergistic use of
simulation-based and machine learning-based predictive
models to provide predicted information and facilitate
decision-making. Various predictive tasks can be per-
formed in this phase. Simulation-based and machine
learning-based models can be used to perform the same
predictive task. They can also collaborate with each other
to accomplish their different tasks.

In the former case, machine learning-based models
can make timely predictions given a possible scenario.
Such predictions are less interpretable. It is difficult to
understand the cause of the prediction from a detailed
perspective. To this end, online simulations can be con-
ducted for the same scenario to provide additional infor-
mation. For example, the simulated order fulfillment

process can be used to interpret the predicted lead times.
The interpretability of predictions is thus improved
thanks to the information flow from simulation to
machine
learning.

In the latter case, dependencies between different pre-
dictive tasks determine how the two types of models col-
laborate with each other. Machine learning-based models
are good at predicting quantifiable variables, whereas
simulation-based models excel in describing the inter-
actions between different variables. Therefore, machine
learning-based models are used to predict independent
variables such as demand and delivery time. These pre-
dictions are then fed into online simulations to predict
dependent variables such as fill rate and on-time delivery.
This information flow from machine learning to simula-
tion facilitates a more comprehensive anticipation of the
future.

For predictive analytics, it is preferable to make prob-
abilistic rather than deterministic predictions to char-
acterise uncertainty. Machine learning algorithms such
as Gaussian process regression can be used to develop
probabilistic predictive models. For deterministic pre-
dictive models (either simulation-based or machine
learning-based), Monte Carlo experiments can be per-
formed to produce probabilistic results. Both can pro-
vide probability distributions rather than deterministic
estimates.

3.2. The synergy between simulation and machine
learning

The novelty of the integrated predictive analytics app
roach lies in the synergy between simulation and



machine learning. In the build-time phase, simulated
data is used to enrich the historical data for develop-
ing machine learning models. In the run-time phase,
simulation-based and machine learning-based models
work together to perform either the same or different pre-
dictive tasks. Thanks to the synergy between simulation
and machine learning, the proposed approach provides a
viable way to achieve the three objectives identified in the
literature review.

The timeliness of predictive analytics is ensured from
two aspects. First, machine learning models are efficient
at inference and can make timely predictions. Second,
predictive models need to be updated in a timely manner
to adapt to the evolving VUCA world. Machine learn-
ing is at a disadvantage in this regard because it takes
time to collect historical data. Conversely, simulation is
agile because even with limited historical data, simula-
tion models can still be updated based on a prospective
understanding of the business. Machine learning models
can then adapt to the newly simulated data to ensure they
are up to date.

Regarding interpretability, the more interpretable a
predictive model is, the easier it is for someone to
understand why certain predictions were made (Mol-
nar 2023). Simulation models are intrinsically inter-
pretable from this perspective. As simulated data is used
to augment historical data, the machine learning model
is trained to approximate the simulation model. Given
the same scenario, the two would make consistent pre-
dictions. With the additional information provided by
the simulation, it is easier to comprehend why the tar-
get supply chain would operate as predicted by the
machine learning model. The local interpretability of a
single prediction is thus improved in the supply chain
context.

The data scarcity is addressed by generating synthetic
data through simulations to supplement historical data.
This process yields a more comprehensive representation
of potential scenarios, allowing machine learning mod-
els to be trained on a diversified dataset. Distinguishing
our approach, it not only performs data augmentation
to increase the volume of available data but also delves
into exploring a spectrum of potential scenarios via sim-
ulation. Contrary to merely transforming existing data,
the synthetic data is grounded in simulation models that
embed the business understanding of domain experts.
This contextual data can describe the intricate interac-
tions within complex systems, where data augmentation
in the narrow sense fails.

To illustrate how to apply the proposed approach
and how it meets the above objectives, a humanitar-
ian supply chain case study is presented in the next
section.

4. Case study

As a typical system challenged in the current VUCA
world, the humanitarian organisation provides an apt
context for the illustrative case study. We applied the
proposed approach to a nationwide supply chain oper-
ated by the Indonesian Red Cross Society (Palang Merah
Indonesia, PMI). By performing pre-crisis performance
assessment, we illustrate how the integrated predic-
tive analytics approach can help supply chains cope
with the increasing external uncertainty and internal
complexity.

4.1. The humanitarian supply chain

Due to the unpredictable nature of humanitarian crises,
humanitarian organisations are constantly challenged by
uncertainty. These organisations need to conduct pre-
paredness activities during normal times to be able to
respond quickly when a crisis occurs. Failures in human-
itarian operations can result in irreversible losses, such
as casualties. Predictive analytics is therefore critical
to humanitarian organisations. Based on this consen-
sus, projects such as Forecast-based Action (FBA) and
Community Ready to Act (CoRTA) have been launched
to improve the predictive capabilities of such organ-
isations. With approximately 80% of relief operations
related to logistics, humanitarian organisations typically
operate supply chains to distribute relief supplies to
affected areas and victims (Van Wassenhove 2006). To
adapt to increasing uncertainty, humanitarian supply
chains are becoming more complex as they proactively
adopt advanced techniques to improve performance.
Predictive analytics is struggling to keep pace with
this trend.

4.1.1. Indonesian red cross society

PMI was selected for this case study because of its rep-
resentativeness in the humanitarian sector and its drive
to improve predictive capabilities. As a member of the
International Federation of Red Cross and Red Crescent
Societies (IFRC), PMI is a major provider of humanitar-
ian aid in Indonesia. As a developing country, Indonesia
is prone to humanitarian crises due to its large popula-
tion and frequent natural disasters. Efficient information
acquisition and timely damage assessment are hampered
by undeveloped infrastructure, which in turn slows down
relief operations. One example is the delayed response
to the 2004 Indian Ocean earthquake and tsunami,
due to the lack of early warning systems at the time.
Predictive analytics is crucial in such cases to inform
anticipatory action, and PMI is making efforts in this
direction.
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Figure 3. The PMI humanitarian supply chain network.

To investigate how PMI operates its humanitarian sup-
ply chain, a field survey was conducted to gather his-
torical data and business understanding (Grest, Lauras,
and Montreuil 2019). The main activities can be divided
into the preparedness stage and the response stage. A
safety stock of relief supplies needs to be maintained
during the preparedness stage, which will be distributed
through the logistics network during the response
stage.

The humanitarian supply chain network is shown in
Figure 3, ranging from donors and suppliers to bene-
ficiaries (Charles, Lauras, and Van Wassenhove 2010).
Received aid is stored in a three-tier logistics network,
consisting of regional, provincial and district warehouses.
In normal times, pre-procurement and pre-positioning
operations dynamically adjust the inventory allocation to
meet preparedness needs. During humanitarian crises,
temporary distribution points are dynamically estab-
lished in affected areas. Relief supplies are then trans-
ported to these distribution points and finally handed
over to the beneficiaries.

The performance of this humanitarian supply chain
can be assessed from two perspectives: response cover-
age and response speed (Acimovic and Goentzel 2016;
Beamon and Balcik 2008; Chakravarty 2021). The for-
mer reflects the ability to deliver aid on a continuous
basis, while the latter reflects the waiting time for vic-
tims to receive aid. The inventory management strat-
egy in the preparedness stage will result in different
performance. Adequate inventory is a prerequisite to
ensure response coverage, while proper inventory allo-
cation helps to reduce the transport distance of sup-
plies, thereby shortening lead times. During the response
stage, different management strategies (see Table 1)
can be used for sourcing, transport, replenishment and
distribution, which also have a significant impact on
performance.

4.1.2. Dilemmas for predictive analytics
The analysis of PMI clearly shows that effective SCM is
essential for achieving humanitarian aid goals. Different

combinations of management strategies will yield dif-
ferent response coverage and speed. Predictive analytics
can be used to assess this impact in advance and help
managers optimise supply chain operations accordingly.
However, traditional approaches to predictive analytics
have faced the following dilemmas.

The inherent uncertainty of humanitarian crises poses
significant challenges in anticipating their occurrence
and damage. Such uncertainty can be characterised by
various patterns of aid demand, allowing for the con-
struction and simulation of anticipatory scenarios. How-
ever, the timeliness of this predictive analytics approach is
poor when there are too many potential scenarios to con-
sider. It is also difficult to apply machine learning in this
situation. Humanitarian crises are relatively infrequent
compared to other supply chain disruptions, so histori-
cal data is scarce. The diversity of past and future crises
makes it difficult to collect representative data, which also
hampers such data-driven methods.

In addition, PMI is seeking to improve its performance
by refining its SCM strategies (see Table 1). With the
integration of advanced paradigms such as the Internet
of Things and the Physical Internet, the supply chain
components are becoming more interconnected (Ben-
Daya, Hassini, and Bahroun 2019; Montreuil 2017). As
the system becomes more flexible, it inevitably becomes
more complex. This trend also leads to more complex
and time-consuming simulation models, which further
reduces the timeliness of simulation-based predictive
analytics. As for machine learning, its black-box nature
makes it difficult to link the predicted performance to the
complex supply chain operations that lead to such perfor-
mance. Increasing complexity makes machine learning
predictions difficult to interpret, limiting their usefulness
for decision support.

This case study applied the proposed approach to help
PMI address the above dilemmas. By conducting pre-
crisis performance assessment and analysing the results,
we further illustrate how the proposed approach ensured
timeliness, improved interpretability, and overcame data
scarcity.



Table 1. The SCM strategies of PMI in the response stage.

Process Strategy
Sourcing Traditional Hierarchical sourcing
Unidirectional flow, from upstream to downstream.
Refined Matrix sourcing
Bi-directional flow, both horizontal and vertical.
Transport Traditional Dedicated deliveries
Single destination, return loaded empty.
Refined Consolidated deliveries
Multiple destinations, improved load rate.
Replenishment Traditional Long lead time
Approximately 15 days to complete the replenishment.
Refined Short lead time
Approximately 3 days to complete the replenishment.
Distribution Traditional First in first out (FIFQ)
The first order are fulfilled first.
Refined Equity

All orders are partially fulfilled by splitting inventory.

4.2. The build-time phase

To apply the integrated predictive analytics approach,
simulation-based and machine learning-based predictive
models need to be constructed first. The build-time phase
is divided into three steps: modelling, offline simulation,
and machine learning.

4.2.1. Modelling

The aim of the modelling step is to construct simulation
models which are then executed in the offline simula-
tion to generate simulated data. A humanitarian supply
chain simulation model developed in preliminary work
is used in this study, more details can be found in Grest
et al. (2021). The supply chain operations performed by
PMI during the response stage are summarised as a set of
processes and modelled using agent-based discrete event
simulation. The internal logic of the simulation model
can be explained by its architecture, which is shown in
Figure 4.

The simulation model consists of a scenario config-
urator, a virtual humanitarian operating environment,
and a performance monitor. As a result of prepared-
ness activities in normal times, the initial inventory

allocations for the response stage can be set using
the scenario configurator. In addition to the inven-
tory, the scenario configurator is also used to define
the crisis characteristics and management strategies that
serve as inputs to the simulation. Given a specific sce-
nario, the virtual humanitarian operating environment
first injects the disaster into the affected territory. The
demand for aid is then generated and fulfilled through
a series of humanitarian operations. At the same time,
the performance monitor records the performance of
the humanitarian supply chain by tracking multiple
indicators.

The historical data collected during the field survey
on PMI is mainly used in the modelling step. Some
of the historical data, such as the locations and capac-
ities of warehouses, are employed to define the simu-
lation model. Others, such as the speed and loading
limits of trucks, are used to set simulation parame-
ters. As PMI did not adopt refined management strate-
gies at the time, the historical lead times and demand
coverage are used to validate the model when simu-
lating traditional management strategies. More details
can be found in the preliminary work (Zhang et al
2023).
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Figure 4. The humanitarian supply chain simulation model (Grest et al. 2021; Zhang et al. 2023).



4.2.2. Offline simulation

Offline simulation is used to explore potential scenar-
ios and collect simulated data, ensuring that subse-
quent machine learning models are trained and tested
on a more comprehensive and representative dataset.
Therefore, twelve combinations of different management
strategies (see Table 1) are simulated in this step. Note
that the concurrent application of hierarchical sourcing
and consolidated deliveries was considered infeasible in
this case study.

For each combination of different management strate-
gies, 1,000 different scenarios with different initial inven-
tories and disaster intensities are constructed. Thus, a
total of 12,000 potential scenarios are simulated in the
offline simulation step. Each scenario can be charac-
terised by the following features:

(1) The final cumulative demand dy on day N (the
end of the response stage), determined by randomly
generated disaster intensity that follows a Gaussian
distribution.!

(2) The initial inventory i, for each warehouse (w €
W, W ={1,2,...,M}), randomly assigned to re
flect the results of the pre-procurement and pre-
positioning in normal times.

(3) The management strategies s for sourcing (s;),
transport(s;), replenishment(s;), and distribution

(sq)-

The diversity of offline simulation inputs ensures the
comprehensiveness of the simulated dataset. To assess
the response performance of the humanitarian supply
chain at different time scales, two indicators (short-term
and long-term) are collected in the offline simulation.
The short-term performance indicator is the cumulative
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(a) Cumulative delivery.

delivery p; in percentage form, defined as follows:

pt = min(dy, s¢) /ds (1)

where t is the time in days since the onset of the disas-
ter, d; is the cumulative demand up to day ¢, and s; is
the cumulative delivery up to day t. p; can be seen as
the result of the implementation of relief operations. The
response coverage accumulated up to day t can be rep-
resented directly by pr, and the response speed can be
described by the slope (dp;/dt) of the time series curve of
Pt The long-term performance indicator is the readiness
r in percentage form, defined as follows (Inan et al. 2020):

r:Zl/prt (2)

teT

where 7 = {1, 2, ..., N} is the specific time period con-
sidered to be the response stage following the onset of the
disaster. Readiness r is a comprehensive metric that pro-
vides a simple and overall measure of humanitarian sup-
ply chain performance. A value of r close to 0% indicates
a failure to deliver due to insufficient resource availabil-
ity or transport capacity, while a value of r close to 100%
indicates both good coverage and speed of response.
The distributions of the simulated performance indi-
cators are shown in Figure 5. From the trends in the
cumulative delivery p; curve, we can see that the simulated
dataset covers various potential scenarios with differ-
ent response coverage and speed performance. The 1/4
quantile curve represents the situation with low response
coverage in the first ten days, while the mean curve
indicates the situation with poor response speed in the
second week after the disaster. The 3/4 quantile curve
can be seen as an example of good performance in
both aspects. Accordingly, the comprehensive readiness
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Figure 5. The simulated dataset. (a) Cumulative delivery and (b) Readiness.



indicator r covers a range from 20% to almost 100%. The
distributions of both indicators reveal the representative-
ness of the simulated dataset, ensuring the generalisa-
tion of the subsequent machine learning models. For a
more in-depth analysis of the simulated dataset, see the
preliminary work (Zhang et al. 2023).

4.2.3. Machine learning

In this step, two machine learning models are developed
using the simulated dataset obtained from the previ-
ous offline simulation. The goal of the two models is
to predict the two indicators, readiness r to assess rela-
tively long-term performance and cumulative delivery p;
to track relatively short-term performance. There are two
types of input to both models.

(1) The scenario feature tensor f consists of the final
cumulative demand dy (normalised to a stan-
dard Gaussian distribution), the initial inventory
[i1,d9,...,iy] (normalised to a standard Gaus-
sian distribution), and the management strategies
[ss, st. s, 4] (encoded using simple binary encod-
ing).

(2) The cumulative delivery tensor p = [p1,p2,---»Pn]
for the previous n days, where n is variable. This
input can be either from an online simulation in the
run-time phase, or from real data collected in the
early response stage.

Two artificial neural networks are constructed for the
machine learning models, based on the 1-dimensional
(1D) convolutional layers and the long short-term mem-
ory (LSTM) cells, respectively. Figure 6 shows the neural
network architectures implemented using PyTorch. The
design process of the prediction networks is divided into
two steps: determining the basic architecture and setting
the hyper-parameters. The basic architecture is tailored
to the specific prediction tasks. For predicting readiness
r, the 1D convolutional layers can process successive fea-
tures of different lengths and use information such as
adjacency that is determined by the order of the fea-
tures. The rectified linear unit (ReLU) is used to ensure
better gradient propagation in the build-time phase and
efficient computation in the run-time phase. For pre-
dicting cumulative delivery p;, the LSTM cells can retain
long-term memory, which is critical for processing time
series data. After determining the basic architecture, the
hyper-parameters of the prediction networks were set by
performing a grid search on a randomly sampled sub-
set of the simulated dataset using 3-fold cross-validation.
The models were then trained and evaluated on the entire
dataset. The mean absolute error was used to assess the

prediction accuracy, which is presented in the next sub-
section.

The readiness prediction network first extracts latent
features from the cumulative delivery tensor p, then con-
catenates them with the scenario feature tensor f for the
subsequent prediction. Through this neural network, the
overall readiness r of humanitarian supply chains can be
predicted before the end of the simulated or real response
stage. The length of the cumulative delivery tensor p is
flexible. A longer input requires a longer wait for the
online simulation or real data collection, but more infor-
mation will be available to the neural network, so more
accurate predictions can be expected.

Unlike the readiness prediction network, the cumula-
tive delivery prediction network can continuously pre-
dict the cumulative delivery curve in a rolling manner.
Forecasting p; requires the input of p = [pt—p, - . .. Pr—1]
which can come from online simulation, real data or pre-
vious forecasts. A complete cumulative delivery curve in
the response stage can help managers to make better deci-
sions on appropriate adjustment measures compared to
the single readiness value.

4.3. Therun-time phase

Using the predictive models developed in the build-time
phase, predictive analytics of humanitarian supply chain
performance can be performed in the run-time phase.
Given a particular potential scenario, the online simu-
lation is run first. As the simulation takes a relatively
long time, the machine learning models step in when
the online simulation reaches the n day. The perfor-
mance indicators (readiness and cumulative delivery) are
predicted by the machine learning models before the
online simulation is completed. At the end of the online
simulation, the simulated supply chain operations are
used to explain the cause of such predicted performance
under this scenario. By coupling simulation and machine
learning in the proposed approach, the machine learn-
ing models enable continuous forecasting with better
timeliness, while the online simulation guarantees the
interpretability of the projected future. Two examples are
given below.

4.3.1. Long-term prediction: readiness

The readiness prediction network is used to predict the
relatively long-term performance of the humanitarian
supply chain in the response stage. Figure 7(a) shows the
results of the proposed approach applied to an example
scenario. First, the online simulation is run to simulate
the post-disaster response of the humanitarian supply
chain. As the online simulation takes a relatively long
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time, the readiness prediction network starts to make pre-
dictions when the online simulation progresses to the
n'" day after the disaster. The predicted readiness from
this machine learning model allows managers to assess
long-term performance before the end of the simulated
(or real) response stage, thus improving the timeliness
of predictive analytics. In addition, Figure 7(b) shows
that the prediction error? of the machine learning model
decreases as n increases, providing managers with a
trade-off between accuracy and timeliness of predictive

information. When the online simulation is complete,
the simulated relief operations provide a bridge to link
inputs to outputs, helping managers understand how the
humanitarian supply chain achieves the predicted readi-
ness in this scenario.

4.3.2. Short-term prediction: cumulative delivery

The cumulative delivery prediction network is used
to predict the relatively short-term performance of
the humanitarian supply chain in the response stage.
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Figure 7. The readiness prediction. (a) Prediction of an example scenario and (b) Prediction error.

Figure 8(a) shows the results of the proposed approach
applied to an example scenario. Similar to the long-term
prediction, the online simulation is first run to provide
the cumulative delivery for the first n days, which is then
fed into the cumulative delivery prediction network as
input. The machine learning model can then predict the
subsequent cumulative delivery curve in a rolling manner.
Figure 8(b) shows that the prediction error® for cumula-
tive delivery does not exhibit a monotonically increasing
or decreasing trend with respect to n. Therefore, extend-
ing the waiting period to increase # is not essential for
obtaining a more accurate prediction.

As noted previously, daily delivery reflects short-
term performance. The cumulative delivery curve pro-
vides more detail than a single measure of readiness.
Without the machine learning model, the full curve is
not available until the end of the online simulation.
Figure 9 shows the time cost of different predictive
models. The simulation-based model is much slower
than the machine learning-based ones. However, with the
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(a) Prediction of an example scenario.

proposed approach, machine learning can predict readi-
ness and the corresponding cumulative delivery curve
almost simultaneously before the online simulation is
completed. This further improves timeliness.

4.4. Case study summary

In summary, the proposed integrated predictive analyt-
ics approach is applied to a humanitarian supply chain
operated by the PMI. This case study demonstrates how
simulation and machine learning are coupled to pro-
vide predictive analytics in an increasingly uncertain
and complex context. Furthermore, the three objectives
of this research are well met thanks to the comple-
mentarity between simulation and machine learning.
Data scarcity is overcome by enriching the dataset with
simulated data from the offline simulation. The inter-
pretability is guaranteed by the online simulation, while
the timeliness is improved by the machine learning
predictions.

Prediction error (%)
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(b) Prediction error.

Figure 8. The cumulative delivery prediction. (a) Prediction of an example scenario and (b) Prediction error.
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Understanding why the humanitarian supply chain
would achieve the predicted performance in a given
scenario is vital for adjusting decisions. It’s difficult to
explain the relationship between inputs (demands, inven-
tories, and strategies) and outputs (performance indica-
tors) for machine learning models. However, with the
additional information (supply chain operations exe-
cuted in the simulation), it’s possible to link the pre-
dicted performance to certain supply chain-related fac-
tors. Good performance can be attributed to adequate
inventory or timely replenishment. Poor performance
may be due to inappropriate routing or waste of trans-
port resources. Since all the detailed supply chain oper-
ations during the simulation are known, such informa-
tion provides a clue to understanding how the partic-
ular demands, inventories, and strategies produce the
predicted performance. This improved interpretability
makes the predictions more valuable for decision sup-
port.

In addition, timely and accurate decision-making is
critical to the success of humanitarian relief opera-
tions. The case study above illustrates how the proposed
approach can help humanitarian organisations to anal-
yse their performance under different possibilities before
a disaster occurs. Improved timeliness is an important
benefit of the proposed approach in the humanitarian
context. From Figure 9, we can see that a full simula-
tion in this case typically takes more than 10 seconds,
while a machine learning model takes about 0.01 seconds
to make a prediction. When there are 12,000 potential
scenarios to consider, the difference between the two in
terms of time cost is magnified to 1 day versus 2 minutes.
As uncertainty and complexity increase, the improve-
ment in timeliness becomes more significant.

Although the strength of the proposed approach is
demonstrated through this case study, the limitations
and challenges of implementing the approach cannot
be ignored. Building simulation models requires a thor-
ough understanding of the target system, otherwise
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the representativeness of the resulting models can-
not be guaranteed. Scenario extrapolation needs to be
both plausible and comprehensive, which is difficult
to balance. The expertise required to apply advanced
machine learning techniques is also a relatively scarce
resource in the humanitarian sector. How to integrate
the predicted information into the decision-making
process and enable anticipatory action remains to be
investigated.

5. Conclusions and perspectives

Predictive analytics is critical to the success of SCM, yet
challenging in the VUCA world. Traditional approaches
struggle to adapt to the increasing uncertainty and com-
plexity that characterise modern supply chains. The
implementation of predictive analytics is limited by data
scarcity, while the value of predictive information is
diminished by insufficient timeliness and interpretabil-
ity. To address these challenges, this study presents a
novel integrated predictive analytics framework that syn-
ergistically leverages the strengths of simulation and
machine learning techniques. Through a comprehen-
sive case study of the Indonesian Red Cross humani-
tarian supply chain, we demonstrate the viability and
efficacy of the proposed approach and emphasise its
potential to significantly enhance the decision-making
process.

The contribution of our work can be summarised in
two aspects: theoretical and practical. The theoretical
contribution lies in the extensive review of the SCM lit-
erature, which identified the trend towards combining
simulation and machine learning to address the chal-
lenges of predictive analytics. Inspired and motivated
by this trend, we developed the integrated predictive
analytics approach, which further exploits the synergy
between simulation and machine learning to support
modern supply chains in managing the internal com-
plexity and navigating the uncertain environment. The



superiority of this synergy is manifold. Firstly, it alleviates
data scarcity by generating simulated data through sce-
nario extrapolation to complement historical data. Sec-
ondly, it enhances the timeliness of predictive analytics
through agile update of simulation models and efficient
inference of machine learning models. Moreover, our
study elevates the interpretability of predictive analytics -
a critical yet often overlooked aspect in the existing liter-
ature — by using additional information from simulation
to interpret machine learning predictions in supply chain
contexts.

The practical implications of our work are initially
illustrated by a humanitarian supply chain case study.
The implementation of our approach enables a compre-
hensive and timely assessment of response performance
under uncertainty, providing humanitarian organisations
with invaluable pre-crisis insight to inform their deci-
sions. Beyond the humanitarian context, enhanced pre-
dictive capabilities enable supply chain managers to make
proactive decisions and practitioners to take anticipatory
actions. This improvement will make supply chains to
be more resilient to disruption and more agile to adapt
to the VUCA world. Despite the innovation of the pro-
posed approach, the challenges at the implementation
level cannot be ignored. Applying the proposed predic-
tive analytics approach requires expertise in simulation
modelling and machine learning, which is still scarce in
humanitarian and industrial sectors. The business under-
standing required to develop predictive models can limit
their reusability across different enterprises and sup-
ply chain systems. Integrating predictive analytics into
existing decision-making processes also remains to be
investigated.

To amplify the implications of this work, several
avenues for future research are identified. A promising
direction is the integration of optimisation techniques
with our proposed predictive analytics approach. This
would allow for a transition from predictive to prescrip-
tive analytics. Our approach could serve as a compo-
nent of the optimisation process to provide predictive
information. This information can be used to guide the
search algorithms when applying heuristic algorithms,
or to formulate the objective functions in mathemat-
ical programming. This integration, however, presents
several challenges. First, optimisation models need to
effectively incorporate probabilistic predictions and ade-
quately account for the errors in such predictions. Sec-
ond, access to real-time data is critical to ensure that
predictions and optimisations are adaptive and respon-
sive. Finally, the integration must consider the compu-
tational feasibility, particularly under conditions of high
uncertainty. By overcoming these challenges, the combi-
nation of simulation, machine learning, and optimisation

could effectively promote the proactive and predictive
decision-making in supply chain management.

Integrating our approach with digital twins also
presents a transformative opportunity. Our approach
could enrich digital twins with advanced predictive capa-
bilities, enabling them to operate not only in real time, but
also in predicted future scenarios. This dual-state oper-
ation could improve decision-making in various supply
chain aspects. For example, it can enable proactive inven-
tory adjustments based on demand forecasts, anticipa-
tory logistics planning to mitigate potential disruptions,
and strategic resource allocation for maximum efficiency.
By comparing the predicted future with desired objec-
tives, supply chain managers could make proactive deci-
sions that align closely with strategic goals. In addition
to enhancing digital twins, predictive analytics could also
benefit from the dynamic feedback mechanisms of digital
twins. This enhancement involves continuously updat-
ing predictive models with live data feeds from supply
chain operations, allowing for real-time responsiveness.
This improvement enables predictive analytics to quickly
adapt to the evolving external environment, allowing
supply chains to timely adjust to uncertainties such as
supply disruptions and demand fluctuations.

Notes

1. The mean is 22,510 and the standard deviation is 3,330.

2. The prediction error is evaluated using mean absolute
error. The unit is the same as the unit of the readiness,
which is a percentage.

3. Similar to Figure 7(b), the unit of the prediction error is
the same as the unit of the cumulative delivery, which is a
percentage.
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