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1. Adsorption test for heterogeneous catalysts 

Oregon pine powder impregnated with zinc chloride was carbonized under nitrogen, 

and the resulting carbon material was treated with 11.3 wt% fuming sulfuric acid at 353K for 

1 h and then heated at 423 K for 1 h under nitrogen to obtain ZP 150. 

 Adsorption tests were performed at room temperature (301 K). The solid catalyst (0.25 

g) was mixed with the test solution (5 mL) of initial concentration at about 5.0–300 mM (each 

solute), and the mixture was shaken at 120 rpm for 24 h. Solution concentrations were 

determined by HPLC. Adsorption capacity W [mmol g−1] was determined as 
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Where i , V , C , and m  are the index referring to the species in question (5-HMF, LA, or FA), 

solution volume [L], concentration [M], and solid catalyst mass [g], respectively. 

 The results (Fig. S1) indicated that the adsorption capacity of ZP-150 exceeded that 

of Amberlyst-45. However, given that ZP-150 may promote the conversion of 5-HMF to LA 

and FA, Amberlyst-45 was chosen for the reaction/separation of 5-HMF. 

 

Fig. S1. Adsorption capacities (24 h, 301 K) of (a) ZP-150 and (b) Amberlyst-45 for 5-HMF 

( ), LA ( ), and FA ( ). 
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2. Determination of vanillin partition coefficients in H2O–CO2 for validation purposes 

The partition coefficients of vanillin were measured under two different conditions 

and compared with literature values (Table S1) [1, 2]. The deviations were within uncertainties, 

which confirmed the validity of the experimental set-up and protocol. 

 

Table S1. Partition coefficients of vanillin in the H2O–CO2 biphasic system measured herein 

and reported previously. 

T  [K] P  [MPa] vanillinK  ± ( )c vanillinu K  Ref [1] Ref. [2] 

313 20 2.02 ± 0.20 1.94 1.84 

333 15 0.81 ± 0.10 0.76 0.65 
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3. Detailed explanation of the kinetic model 

 In this work, we applied a previously reported kinetic model [3]. According to Fig. 4 

in the main manuscript, several kinetic equations were considered: 
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where labels Fru, HMF, LA, FA, and Hum denote fructose, 5-HMF, levulinic acid, formic acid, 

and humins, respectively, while inR  [mol L−1 min−1] and nC  [M] are the conversion rate and 

concentration of component n, respectively. The following equations were used to describe the 

kinetic model. 
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where +R,Hin
k  and +R,Hin

E  are the kinetic rate constant and activation energy for protons, 

respectively, with the related values listed in Table S2. 

 

Table S2. Kinetic parameters for the conversion of fructose into 5-HMF in biphasic H2O–CO2 

system. 

 R1F R2F R3F R1H R2H 

+R,Hin
k  [L mol−1 min−1] [3] 1.28 0.26 0.06 0.18 0.33 

+,Hin
E  [kJ mol−1] [4, 5] 123 148 129 92 119 

 

 The concentration of protons ( +H
C   [M]) was determined using the procedure 

described in previous research [3] based on the acid-base equilibrium relationship as 

   +
2 2CO CO LA LA FA FA wH

C K C K C K C K= + + +
,
  (S14) 

where 
2COK , LAK , FAK , and WK  are the dissociation constants of CO2, LA, FA, and water, 

respectively. These values were calculated using previously developed equations as functions 

of temperature. The determined parameters are summarized in Table S3. 

 

Table S3. pK values of acids used in this work. 

T [K] WpK  [6] 
2COpK  [7] 

LApK a) [3] FApK  [8] 

393 11.88 6.53 4.59 4.03 

403 11.75 6.60 4.59 4.09 

413 11.64 6.68 4.59 4.14 

423 11.54 6.76 4.59 4.20 

433 11.45 6.85 4.59 4.26 

a) Values at 298 K. 

 

 The concentration of CO2 (
2COC   [M]) was determined using a similar procedure 

reported previously [3]: 
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In Eq. (S15), 
2

L

COn  and 
L

totaln  are the amounts of CO2 [mol] and total matter [mol] in the liquid 

phase, respectively, while 
L

mixV  and Mw are the volume of the liquid phase in the mixture [m3] 

and the molar mass [kg mol−1], respectively, and 
2COx  is the mole fraction of CO2 in the water 

phase [-] estimated using the Peng-Robinson equation of state (PR EoS) [9]. Herein, the PR-

EoS was applied to the experimental data of the H2O(1)–CO2(2) biphasic equilibrium as a 

correlation model [10-13], and the interaction parameters for van der Waals one-fluid mixing 

rule (vdW1) were determined as 

   mix i j ij

i j

a x x a=  ( )1ij ij i ja k a a= −
,
  (S16) 

   mix i j ij

i j

b x x b=  ( )( )1 2ij ij i jb l b b= − +
,
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1 4

12 2.9386 10 5.4501 10k T− −= −  + 
,
   (S18) 

   
2 4

12 4.0504 10 1.7523 10l T− −=  − 
.
   (S19) 

The average absolute relative deviation for the correlation was determined as 6.5%. 

 The determined interaction parameters were used to calculate xCO2 and the mixture 

volume in the vapor phase of the H2O–CO2 system (described later). L

m,mix  and 
L

mix  are the 

molar density [mol m−3] and density [kg m−3] of the liquid phase, respectively. In this work, 

L

mix  was estimated using a previously reported procedure [14] as  
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where 
2H O  is the temperature- and pressure-dependent density of pure H2O calculated by the 

method reported in the literature [15], 
2COw  is the mass fraction of CO2 in the liquid phase 

calculated by the PR EoS, and 
2COv   is the molar volume of CO2 [cm3 mol−1] calculated as 

reported in the literature [16]. 

 For the semibatch reaction/separation experiment, the liquid volume at high pressure, 

L

mixV , was changed by the balance of the added water flow rate and the water extraction rate. 

L

mixV  can be obtained from 
2

L

COC  as 
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where 
2

L

H O,atmV   and 
2H O,atm   are the water volume [m3] and density [kg m−3] at atmospheric 

pressure, respectively, and 
2H O,catm  and 

2H O,Flowm  are the mass of water [kg] derived from the 

catalyst and the added/extracted water flow, respectively.  
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4. Extrapolation of 5-HMF partition coefficient by PR EoS  

 Herein, the van’t Hoff equation was used for partition coefficient extrapolation; 

however, the equation of states could also be applied. For comparison, the results of PR EoS 

calculations are shown below. 

 The same mixing rule as previously (Eqs. (S16) and (S17)) was applied, and the 

previously determined parameters of H2O–CO2 interactions were used (Eqs. (S18) and (S19)). 

The CO2(2)–5-HMF(3) interaction parameter was determined by correlation to reference data 

[17], and the H2O(1)–5-HMF(3) interaction parameter was determined by correlation to 

partition coefficient data recorded herein. For both parameters, lij was assumed to be zero. 

3

23 2.0178 7.6818 10k T−= − + 
,
   (S22) 

1 4

13 2.8015 10 5.7393 10k T− −= −  + 
.
  (S23) 

 

Figure S2. Partitioning coefficient of 5-HMF between H2O and CO2 at 25 MPa. Dashed and 

solid lines refer to data obtained using the van’t Hoff equation and the PR EoS, respectively. 
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5. Experimental and calculated results for batch reaction and kinetic analysis 

 The experimental and calculated results [M] are shown below. 

 

Fig. S3. Experimental and calculated time profiles of concentrations for 5-HMF synthesis. Data 

refer to batch-mode reactions in biphasic H2O–CO2 systems with the Amberlyst-45 catalyst at 

a pressure of 25 MPa and temperatures of (a) 393, (b) 403, and (c) 413 K. (black = Fructose, 

blue = 5-HMF, red = LA, orange = FA) 
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