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aUniversity of Montenegro, Faculty of Natural Sciences and Mathematics, Podgorica, Montenegro
bUniversité de Toulouse, Institut Clément Ader (ICA), CNRS, IMT Mines Albi, INSA, UPS, ISAE, Albi, France

ABSTRACT. Even though neural network methodologies have been established for a long time,
only recently have they achieved exceptional efficacy in practical deployments, pre-
dominantly due to improvements in hardware computational capacity and the large 
amounts of available data for learning. Nonetheless, substantial challenges remain 
in utilizing deep learning in many domains, mainly because of the lack of large 
amounts of labeled data that are versatile enough for deep learning models to learn 
useful information. For instance, in mechanical assembly inspection, annotating 
data for each type of mechanical part to train a deep learning model can be very 
labor-intensive. Additionally, it is required to annotate data after each modification 
of mechanical part specification. Also, the system for inspection is typically not 
available until the first few samples are built to collect data. This paper proposes 
a solution for these challenges in case of the visual mechanical assembly inspection 
by processing point cloud data acquired via a three-dimensional (3D) scanner. To 
reduce the necessity for manually labeling large amounts of data, we employed syn-
thetically generated data for both training and validation purposes, reserving the real 
sensor data exclusively for the testing phase. Our approach reduces the need for 
large amounts of labeled data by using synthetically generated point clouds from 
computer-aided design models for neural network training. Domain gap is a signifi-
cant challenge for the usage of synthetically generated data. To reduce the domain 
gap, we used different preprocessing techniques, as well as a neural network archi-
tecture that focuses more on shared features that will not significantly change 
between synthetically generated data and real data from the 3D sensor.

1 Introduction
Quality control is one of the very important parts of modern industry, both in production and
maintenance. Even before the rise of artificial intelligence, it was noticed that this process is
prone to human error and required a lot of attention.1 Much effort is being invested into automa-
tizing this phase of the process. We developed a system for automatic visual conformity inspec-
tion of mechanical assemblies by processing data acquired by three-dimensional (3D) sensors
and also using a computer-aided design (CAD) model of the assembly, as a reference. The goal is
to check if an expected mechanical part is present in the assembly, and well mounted in a position
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predefined by the CAD specification. This decision is made by processing a 3D point cloud
obtained by scanning the region of interest on the assembly.

Training deep neural networks requires a large amount of labeled data, which is hard to
obtain especially in industries such as aerospace industries. There are augmentation approaches
to increase the training dataset’s size and transfer learning techniques to gain satisfying results on
the new case with a relatively small number of acquisitions in the training dataset. However, such
techniques are not readily applicable in some cases. For example, annotating even a few point
clouds for the segmentation task can be a tedious job. Also, performing many acquisition cam-
paigns in large factories is not easily feasible, i.e., it is not practical to stop production to acquire
a lot of data. For these reasons, our goal was to completely omit the necessity for collecting
and annotating data and create a quality control system using just the CAD specification.
Such synthetically generated point clouds can be automatically annotated without any human
intervention.

Numerous deep learning architectures for processing 3D point clouds have been
proposed.2–4 They achieved very good results when data used for training and testing were
independent and identically distributed (i.i.d). However, the performance of these models
dropped significantly when trained on data obtained from one process (e.g., CAD models5), and
tested on the data from the other process (e.g., Lidar scans6). Drop in performance is caused by
differences in data distribution during training and testing, i.e., domain gap. Methods for over-
coming the domain gap problem have been heavily studied in the field of two-dimensional (2D)
images.7,8 However, there have been very few works on domain generalization in the field of
point clouds.

Formally speaking, if X is input space and Y is space of labels, domain is defined as tuple
ðD; gÞ, where D is probability distribution on X and g∶X → Y maps inputs to labels. In the task
of overcoming the domain gap, we have two domains: source domain ðDS; gSÞ and target domain
ðDT ; gTÞ. The goal is to train the model on source domain DS , which is capable of predicting
well on target domain DT when data from the target domain are not available in training time.
It is assumed that label spaces YS and YT are shared between source and target domains. There
are different setups. When samples from the target domain are known but not labeled, it is usually
called domain adaptation. The case when there is no available information from the target domain
is referred to as domain generalization. In our case, the input space is a set of point clouds with a
fixed size. The source domain is represented by a set of synthetically generated point clouds and
the target domain by a set of point clouds acquired via a 3D scanner.9

Considering the discrepancies between real-world and CAD representations, we proposed a
model that focuses more on shared features between data from 3D sensor, and synthetic data
generated from CAD models. Since we are inspecting solid mechanical parts, it is unlikely that
they will differ significantly in CAD specifications and data acquired from the 3D sensor.
However, significant differences can arise in the surrounding context. Examples of obvious
causes of domain gap include the movement of cables and pipes in the real world; not all parts,
ex. caps and protectors are represented in the CAD model. To make our algorithm focus on
common features between synthetically generated data and real point clouds, we feed our clas-
sifier with features suitable for semantic segmentation.

2 Previous Work
With advancements in computer vision, there have been numerous applications in visual inspec-
tion systems. A lot of effort is put into computer vision-based systems for different kinds of
defect detection. In the work of Huang et al.,10 authors used R-CNN to extract information about
the positions of mechanical parts in the image. Then, from the image segmentation results, the
area, perimeter, circularity, and Hu invariant moment of the contour are extracted to form the
feature vector. Finally, an SVM-based classifier was used to detect assembly defects. In the work
of Ref. 11, authors used various traditional computer vision techniques for airplane exterior
inspection and defects characterization. In the work of Mikhailov et al.,12 PointNet13 deep neural
network was used to differentiate between different types of mechanical parts mounted on an
assembly.



In the work of Boughrara et al.,14 the authors carried out a comparison of multiple classi-
fication architectures such as PointCNN,15 ShellNet,16 DGCNN,4 and PCNN17 for the purpose of
inspecting complex mechanical assemblies. The focus of their work was exploring the effective-
ness of these models in detecting if the correct type of mechanical part is mounted.

It should be noted that the dataset used in their research is identical to the one used in our
experiments. A distinctive aspect of their methodology was the training of the models on 61 types
of mechanical parts, followed by the selection of the top-performing 20 classes for further exami-
nations. This contrasts with our experiments where we used all 61 types throughout the training,
validation, and testing phases of our experiments. Additionally, the authors employed tight crops
around the mechanical parts in their experiments, whereas we used the entire point cloud as input
to our neural network. While this makes our challenge more complex, it also reduces the need for
a very accurate localization module. The authors demonstrated that among the compared models,
PointCNN showed superior results compared to the other tested architectures, especially in terms
of robustness to the differences in training and test data distributions caused by domain gap.

In work of Bolourian et al.,18 a method is proposed for detecting defects on concrete surfaces
using a model based on PointNet++,19 focusing on point cloud data. Along with point coordi-
nates, this study uses color and surface normal vectors, anticipating significant differences of
these in areas with cracks, with the aim to enhance defect segmentation accuracy and reliability.

Learning from one domain and deploying in an unseen domain presents a slightly different
challenge from the traditional machine learning setup. Typically, we assume that both the training
and test datasets are i.i.d. However, when training a model on synthetically generated data, this
assumption is often violated. Focusing on features shared between two domains can significantly
improve the performance of a deep learning model. Several studies underscore the importance of
focusing on specific features to increase model performance. Notably, most of these models have
been applied to 2D images.

In the study from Abdelrahman et al.,20 the authors generated synthetic 2D images of
mechanical parts with random real background images from industrial settings. To produce these
images, they experimented with various rendering algorithms. They trained an encoder-decoder
architecture to extract and reconstruct the mechanical part without background from such
images. The features extracted from the encoder were then used to distinguish between different
types of mechanical parts through a classification network. The outcomes of this research were
noteworthy and served as a significant inspiration for our work.

In the study by Božič et al.,21 the authors put forth a method that combines segmentation
mask learning with classification label learning for surface defect detection. They devised a novel
loss function that merges the losses from both classification and segmentation. It is very impor-
tant that their loss function can be used even when segmentation masks for all images are not
available. Additionally, this loss function assigns different weights to the bordering pixels of a
defect and the central pixels. This differentiation aims to reduce the impact of annotation errors
around the defect’s border.

In the study that demonstrated the work of Zhang et al.,22 the authors introduced an archi-
tecture aimed at disentangling features common across multiple training domains from those
specific to each domain. To improve performance, only the features shared across domains were
used for task solving.

3 Data Preparation
Our dataset consists of 61 distinct mechanical parts. For each mechanical part, we have its CAD
model and the CAD model of its surrounding context. Also, we have 3D point cloud scans from
the assembly line. Each of these scans is annotated with the expected type of mechanical part and
an additional label to indicate if the expected mechanical part is properly mounted or not. It is
possible that the mechanical part is not mounted at all, that the wrong type of mechanical part is
mounted, or that the correct type of mechanical part is mounted but there is an error in mounting,
such as a flipped part, for example. Furthermore, we have an estimated transformation matrix that
aligns the 3D sensor’s coordinate frame with the CAD model’s coordinate frame. While these
matrices from the localization module do not guarantee perfect alignment, they are sufficient to
know what we are looking at.



Figure 1 showcases a difference between real-world observations and CAD design. On the
left, we notice an unexpected protective bag, absent in the CAD representation. This instance
highlights one of the more challenging discrepancies. However, more commonly, differences
might be the cable’s shifted position or a missing protective cover.

Given our aim to use synthetically generated data for training and real sensor data for testing,
it is very important to employ effective preprocessing measures to bridge the domain gap.

All our conclusions are based on experiments with data from an industrial use case – a visual
inspection of a mechanical assembly from the aerospace industry, during production. Examples
of the CAD models of the mechanical parts of interest are given in Fig. 2. All the tested parts
belong to the type “metallic support.”

3.1 Synthetic Data Generation
To generate synthetic point clouds, we employed the PyTorch3D23 library. Since the library is
implemented in PyTorch,24 it can be used very efficiently on NVIDIA GPUs. For all the experi-
ments and data generation, we used a machine with NVIDIA RTX 3060 with 12GB of VRAM.

First, we rendered the CAD model and then unprojected the rendered depth image to obtain
the point cloud. In efforts to make the synthetically generated dataset more representative of
different scenarios, we utilized varying crop radii for the point clouds: 250, 200, and 150 mm.
This modification is very important, not solely due to the differences in crop sizes, but also as it
helps in emulating varied point distributions. In a larger crop, points are much sparser compared
to those in a smaller crop. This diversity, coupled with the strategy of random point sampling, is
advantageous in enhancing the robustness of our model. Additionally, we incorporated random
rotations and translations to the camera pose. All these simulations of different conditions add
variability to the dataset, allowing the model to be more adaptable and versatile in processing
inputs from the real 3D sensor.

Furthermore, we integrated random noise into the positions of the bounding box. This helps
to simulate inaccuracies of localization algorithms in real-world scenarios, thus preparing the
model to deal with potential inaccuracies in crop positioning.

3.2 Preprocessing Data from the 3D Sensor
It is very important to ensure that synthetically generated data are realistic enough for training
neural networks. However, preprocessing the data sourced from the 3D sensor is equally impor-
tant to achieve optimal results.

Fig. 1 (a) and (b) A comparison between the real-world scene and its corresponding CAD model
representation.

Fig. 2 (a)–(e) Examples of CAD models of the parts (supports) whose presence we aim to verify.



One of the primary challenges we encountered was the excessive noise in the point clouds
from the sensor [Fig. 3(a)]. The initial step in preprocessing was to eliminate these outliers. The
noise, which can be attributed to dust in the industrial setting, surface reflections, or sensor
configurations, could reduce our model’s accuracy, if not addressed.

Given the high density of the point cloud, containing more than 150,000 points, even the noise
fragments in the background consist of numerous points, and their count varies substantially.
To address this, we began by downsampling the point cloud to a more manageable resolution of
3000 points. After downsampling, it is expected that each noisy fragment in the background is
represented by a single point. From this, we removed 952 points identified in low-density regions,
retaining 2048. We name the remaining 2048 points, foundational points of the point cloud.

We expanded foundational points to our final point cloud, by integrating neighboring points.
Occasionally, we noticed that certain elements, like wires, were not fully represented, prompting
us to iteratively incorporate points until the gap between the retained and omitted points exceeded
1 cm. This method ensured the preservation of essential information while effectively filtering
out noise.

Given certain scenarios, such as on Fig. 3(c), where the mechanical part of interest is rep-
resented with a small number of points, we decided on our point cloud expansion technique over
the conventional radius-based or statistical outlier removal methods. By expanding the point
cloud, we ensured the retention of not just large regions but also minor components directly
linked to these large regions by some path.

In the final preprocessing step, before giving the point cloud to the input of the neural net-
work, we employed the farthest point sampling (FPS) algorithm for downsampling. This
approach aimed to align the distribution of input points between the synthetically generated data
and the real data captured from the 3D sensor as closely as possible.

After experimenting with various point counts, we discerned that an optimal value is 2048
points. PointCNN classifier achieved the best results using 1024 points, and increasing the num-
ber of points to 2048 did not gain improvement in performance. With the architecture we pro-
posed, a model trained on 2048 points obtained between 2% and 3% better accuracy than with
1024 points. This can be because we used a segmentation network as the backbone of our model,
and most of these networks are built to work with 2048 points. But also in some cases, a small
number of points can lead to the mechanical component of interest being underrepresented,
which in turn causes small differences between scenarios where the part was mounted versus
unmounted. Conversely, using too many points resulted in inefficiencies, lengthening the training
process and necessitating larger kernel sizes or deeper network architectures to capture global
information effectively. For example, using 4096 points instead of 2048 lengthens the training
process three times while not gaining any substantial results improvement.

4 Experiments and Results

4.1 Baseline Results
Our final aim is to train on synthetic data and then test on real data. Yet, as an initial step, we
trained and tested the model on real data to establish a foundational baseline. To do so, we

Fig. 3 Point cloud samples acquired via a 3D sensor. (a) Initial point cloud displaying prominent
background noise. (b) Refined point cloud after outlier removal. (c) An instance where a non-opti-
mal camera viewpoint renders the mechanical part as merely a line. Non-optimal camera viewpoint
causes a difference in a small portion of information when the mechanical part is mounted and
not mounted.



divided the real data into training and test sets, ensuring an 80-20 split for each type of support.
It is very important to take a proportionally same amount of data from each class and not just
randomly sample test data from the entire dataset because of varying sample sizes for different
mechanical parts. Otherwise, it can happen that we do not have any data for one of the splits for
some types of mechanical parts.

Following the findings from Boughrara et al.,14 where the PointCNN15 was highlighted as a
standout architecture, we chose it as our primary backbone architecture. Structurally, our model
mirrors the ModelNet40 classifier, with distinctions in the number of output classes and input
data dimensions.

In terms of outputs, our neural network offers two output probabilities for each mechanical
part: one output signals the presence of the part, whereas the other indicates its absence. With
61 different types of mechanical parts, we get a total of 122 classes. Given the very unbalanced
dataset (Fig. 4), we used the macro average metrics, as defined in Ref. 25, to evaluate perfor-
mance fairly across all classes.

It is important to note we do not have real acquisitions for all types of mechanical parts but
just for classes represented in Fig. 4. Without such a metric weighting, a classifier that assigns
all samples to the presence classes might achieve an impressive score, yet remain entirely
ineffective. Notably, in our application, overlooking defective samples poses a greater problem
than raising a false alarm.

After training, the model yielded a mean per class accuracy of 66%, precision of 0.61,
a recall of 0.66, and an F1 score of 0.63. Here we used mean per class precision, recall, and
F1 score just as in Scikit-learn.25 The primary factor behind such results is the limited number
of samples when the mechanical part is absent, making it challenging for the model to learn
effectively. With just a few samples in some classes, it is very hard to train a model even with
possibilities for augmentation. This limitation underscores the rationale for our inclination
toward using synthetically generated data. Furthermore, this model performs perfectly on cases
when a mechanical part is mounted, meaning there are not false alarms, but there is a significant
percentage of missed samples. The model mostly mixes between presence and absence cases for
the same mechanical part. This happens because of a small number of samples for training in the
dataset for absence classes, and a small difference between the two point clouds. Context remains
mainly the same, and the difference is in a small number of points [Fig. 3(c)].

4.2 Usage of Synthetic Training Data
Shifting our focus to synthetic data, we began with the identical model used in our experiment on
real data. Notably, in this phase, we used the complete real dataset exclusively for testing and
synthetically generated data for the training phase. This is in contrast to our earlier approach
where we split the real data to be used for both training and testing purposes.

After training the model, we achieved a mean per class accuracy of 61%, precision of 0.56, a
recall of 0.55, and an F1 score of 0.52. Just as with the model trained on real data, there was a
clear tendency for the model to confuse the presence and absence classes for the same mechanical
part. This observation suggests that the model gives more weight to the context surrounding the
mechanical part rather than to the actual mechanical part we inspecting. To address this, several
strategies could be employed. One such strategy is to zoom in more closely on the expected
position of the mechanical part, similar to the approach taken by Boughrara et al.14 However,
this method presents its challenges as tighter cropping results in misclassification due to

Fig. 4 Distribution of real point cloud data across various classes. Classes prefixed with “a” signify
point clouds where the corresponding mechanical part is absent.



inaccuracies in the localization module. In our work, we decided to push the model to learn more
features specific to the mechanical part we are inspecting.

Since we inspect solid objects that cannot be deformed, it is much more frequent for
surrounding contexts to differ in real-world and CAD representation. Focusing on the mechanical
part of interest will also reduce the domain gap between real data and synthetically generated
data.

An overview of our architecture is presented in Fig. 5. We aimed to align the features utilized
for determining whether a mechanical assembly is correctly assembled with those used for
segmentation. We believe that these features will encapsulate valuable information about the
mechanical part under inspection, proving more beneficial than features learned by a classifier
trained directly on raw point clouds.

Initially, we pretrained a segmentation model on synthetic data using the architecture pro-
posed in the PointCNN paper.15 Our primary objective was to extract features specific to the
mechanical part, thereby minimizing the influence of the surrounding context. We hypothesized
that the essential features for identifying the type of mechanical part would be captured within
the outputs of the XConv layers in the encoder part of the segmentation network.

Initially, our approach centered solely on using features from the deepest XConv layer.
However, this did not produce the expected improvements. This result is likely due to the
U-Net-like architecture’s data flow, where a significant amount of information can bypass the
deepest XConv layer, proceeding directly to the deconvolution layers.

To address this challenge, we aimed to merge useful features from all XConv layers into a
single feature vector. Given the varied output sizes from different layers, direct concatenation was
not possible. Inspired by PointNet13 architecture, we employed a global mean pool for each layer.
To improve features obtained after pooling, we incorporated weighting adjustments through
dense blocks. These blocks served to convert the output from each layer into a 1024-dimensional
vector per point and reweigh features from XConv blocks. Following this, we executed a global
mean pool and merged features from all layers in a global feature vector for the entire point cloud
by summing the feature vectors derived from all XConv layers.

Fig. 5 Proposed model visualization. K—kernel size, P—number of points, H—hidden channels,
D—dilatation, and O—output features.



Finally, we utilized the derived global feature vector to determine classification scores. This
was accomplished by deploying a fully connected classifier, composed of two dense layers,
which then led to an output layer. Similar to the approach in Ref. 15, we incorporated a
Dropout layer before the output layer. This addition was intended to improve the classification’s
resilience to potential discrepancies between features sourced from synthetically generated data
and those from the 3D sensor.

For our loss function, we utilized cross entropy for both the segmentation and classification
tasks. We first pretrained the segmentation network for 50 epochs to lay down a foundational
feature set. After that, we trained both segmentation and classification segments of the network
jointly for another 100 epochs. As the loss function, we used

EQ-TARGET;temp:intralink-;e001;114;616L ¼ Lcls þ λLseg; (1)

EQ-TARGET;temp:intralink-;e002;114;581Lcls ¼ Lseg ¼ −
XC

i¼0

ti logðpiÞÞ: (2)

Here, λ parameter is used to weigh between the impact of classification loss and segmen-
tation loss, C represents the number of classes, ti ¼ 1 if a sample comes from class i else it is 0
and pi represents probability assigned to class i. We evaluated models with different values for λ
parameter between 0 and 1. Empirically, we found the optimal value of λ ¼ 0.2. This can be
explained by the fact that the segmentation network is already pretrained, but small fluctuations
in features through learning can help to classification model to become more invariant. Also,
it helps not to ruin too many features learned during the pretraining phase at the beginning of
joint training due to the large learning rate.

The quality of the extracted features is intrinsically tied to the performance of the segmen-
tation network on real data. Regrettably, we could not quantify this performance using metrics,
as we lacked point-level annotations for the real data. However, the model achieved 98% overall
accuracy and 97% mean per class accuracy on unseen synthetically generated data. Additionally,
a visual assessment of its performance on real data suggests that it operates effectively in
most cases.

After training the model on synthetically generated data, we obtained classification mean per
class accuracy of 64%, precision 0.57, recall: 0.53, and F1 score 0.53 on the real data. As we can
see, we obtained significant improvement in mean per class accuracy, and slight improvements in
precision and F1 score. This can be explained by significantly better results in the case when
the mechanical part is not mounted.

To ascertain whether our proposed enhancements would be compatible with other architec-
tures, we also evaluated them using the ShellNet16 backbone while retaining our classification
part of the network.

When the ShellNet classifier was trained directly on raw point clouds, it yielded a mean per
class accuracy of 0.58, precision of 0.53, recall of 0.5, and an F1 score of 0.5. Notably, these
baseline results with ShellNet are marginally inferior to those observed with the PointCNN base-
line, which aligns with the findings of Boughrara et al.14

However, upon applying our methodology-leveraging features learned by the segmentation
network for classification. We observed a mean per class accuracy of 0.67, precision of 0.60,
recall of 0.57, and an F1 score of 0.56. It seems that ShellNet is more suitable for our adaptation.
This improvement may be attributed to its superior segmentation capabilities, which in turn
produce enhanced features. Some examples of ShellNet segmentations were given in Fig. 6.

For our approach, it would be ideal if all the input point clouds would be like the one in
Fig. 6(a), with a single mechanical part of interest present in the point cloud. Figure 6(a) shows a
sample where our method is capable of perfectly segmenting the part. Such segmentation results
provide good features for further analysis (classification). Segmentation results like Figs. 6(b)
and 6(c) are still useful because they give us good information about where the classifier should
pay attention. Our approach was created upon prior that on each point cloud only one type of
mechanical part was visible, but as we can see from Fig. 6(d), there are some cases where two
mechanical parts of interest are visible. Even though each point cloud was labeled with a single
label, there are such cases where more than one mechanical part of interest is visible, which will
cause additional confusion for our model when evaluating it on synthetically generated data.



Even though in our dataset we did not find too many such samples, it should be noted that the
classification approach is not the best one in such cases. For such cases, making tighter crops
would be useful.

4.3 Results Overview
The summary of the results from our experiments is presented in Table 1. Our approach has
successfully enhanced results across nearly all metrics when compared to classifiers trained
solely on synthetic data, for both PointCNN and ShellNet models.

From the results, we notice that our model managed to improve the results compared to the
classifier trained on synthetic data, which testifies to the success of our approach for reducing the
domain gap. We even managed to get results close to the results obtained by the model trained on
real data. This fact, combined with the significantly reduced need for human resources in our
approach, is very motivating for further investment in the direction of usage of synthetically
generated data.

There have been a few works on our particular use case. There is work of Boughrara et al.,14

where authors used the same dataset of CAD models to generate synthetic data. Their approach
differs from ours because it relies significantly on the localization module to make tight crops
around the mechanical part, which is disadvantageous and risky. Also in the testing phase, they
used only 20 classes and reported overall accuracy and weighted measurements of precision,
recall, and F1 score, which in our opinion is not the best way of measuring performance in
unbalanced datasets. To make a fair comparison, we also report weighted metrics on the same
subset of classes. A comparison with our approach is presented in Table 2. We can see that even
though our model does not rely on accurate localization, we managed to improve almost all
metrics. Improvements were especially high in cases where the mechanical part is mounted
as our model classifies most of such cases without errors.

Table 1 Summary of experimental results.

Training data Model MPA Precision Recall F1 Throughput (FPS) Support

Real Cls PointCNN 0.66 0.61 0.66 0.63 112 177

Synthetic Cls PointCNN 0.61 0.56 0.55 0.52 112 887

Synthetic Seg+Cls PointCNN 0.64 0.57 0.53 0.53 64 887

Synthetic Cls ShellNet 0.58 0.53 0.5 0.5 116 887

Synthetic Seg+Cls Shellnet 0.67 0.60 0.57 0.56 77 887

Note: Bold values indicate instances where our method outperformed the baseline approach of training clas-
sifiers directly on raw point clouds. MPA, mean per class accuracy; precision - macro averaged precision
between classes, Recall - macro averaged recall between classes, F1 - macro averaged F1-score between
classes, throughput (FPS) - measured on Nvidia RTX 3060, Support - number of samples used for testing.

Fig. 6 Examples of ShellNet segmentations on real point clouds: (a) Clear and accurate segmen-
tation. (b) Competent segmentation but with ambiguous borders. (c) The segmentation model
mixes classes of two mechanical parts but the overall shape is correct. (d) Point cloud where two
different mechanical parts are visible.



5 Conclusions
We proposed an original solution for reducing the domain gap between synthetically generated
point clouds from the CAD model and real point clouds from the 3D scanner in the use case of
inspection of mechanical assemblies.

We generated realistic synthetic data and adapted the existing point cloud classification
model so it can leverage segmentation masks available at no effort with synthetic data. By doing
so we succeeded in fully automating the pipeline for the inspection of complex mechanical
assemblies and removed the necessity for labeling data by humans while getting results com-
parable to results obtained by a model trained on real labeled data. This is a very important
feature because it gives the possibility to have an inspection model even before the first defect
occurs while reducing the work required by humans.

In addressing the domain generalization challenge, our findings suggest that improving per-
formance can be achieved by directing the learned features toward those that are shared across
domains. This alignment can be facilitated using a segmentation network to learn characteristic
features, and later using those features for training a classifier.

However, it should be noted that even our best model does not yet achieve satisfying results
for practical applications in the industrial environment, and it will require significant further
improvements.

6 Future Work
We are considering including some real data in training the models but we are seeking a way to
obtain their annotations as easily as possible. Therefore, we plan to first run a segmentation
model trained on synthetically generated data, on real point clouds. Further, we can iteratively
add real samples with good segmentations selected visually by humans, to improve the model
when tested on real data point clouds. At the end of each iteration, we will get more and more
usable segmentation masks of real clouds, which will require just small human corrections for
completely accurate annotations.

In our pursuit of further improving domain generalization for our specific task, we intend to
fuse the methodology proposed in this paper with domain randomization. A noticeable problem
for our models, especially with PointCNN, is its occasional misclassification when real-world
objects, not represented in the CAD specification, come into contact with the mechanical part
under inspection.

To address this, we will use data augmentation at various intensities. One approach involves
complete context augmentation; this would involve positioning mechanical parts in slots typi-
cally reserved for other components. We will get a mechanical part, a context from the other
mechanical part, and fuse them. After that, we will use our method for generating synthetic data
to get labeled data with highly randomized contexts. By doing so, we can get almost infinitely
many contexts. Through this, the segmentation network is expected to focus more on focusing in
on features that distinguish the various mechanical parts of interest, without focusing too much
on changes in context around it. A slightly less intensive method would be the random addition
of augmenting objects, such as pipes or planes, within the established CAD specifications.
In this approach, we will keep the same context, just augment it by adding different artifacts

Table 2 Comparison with results from work of Boughrara et al.14

Dataset Model Precision Recall F1

Absence classes cropped Model14 0.65 0.55 0.54

Absence classes Seg+Cls Shellnet (ours) 0.71 0.5 0.57

Presence classes cropped Model14 0.92 0.49 0.55

Absence classes Seg+Cls Shellnet (ours) 0.95 0.88 0.91

Note: Precision - weighted averaged precision between classes, Recall - weighted averaged recall between
classes, F1 - weighted averaged F1-score between classes.



to it. The basic idea is pretty much the same as in the case with a completely changing context,
just in this case it will not be so aggressive, so it might be easier for the network to learn.

Code and Data Availability
The data utilized in this study are coming from DIOTA company, i.e., from the aerospace industry,
and are sensitive and confidential. Consequently, the data are not available for sharing. Code is
available from the authors upon request and with permission from the DIOTA company.
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