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A B S T R A C T

Maintenance plays a major role in air transport management. Airlines are looking to reduce aircraft unavail-
ability. Optimizing maintenance is a perspective to increase the operational potential of aircraft and offers
novel managerial implications. Maintenance tasks are traditionally organized in periodic blocks of activities.
In the modern aviation, more and more maintenance jobs can be performed between two flights, which
is called Line Maintenance Scheduling Problem (LMSP). The expected goal of our paper is to propose an
operational schedule that can be directly executed by maintainers, i.e. assigning a start time to each elementary
activity and a resource to perform it. This new problem is named Operational Aircraft Line Maintenance
Scheduling Problem (OALMSP). A scheduling assistant could help airlines to reduce maintenance costs and
resource management. Planners have to respect task deadlines imposed by regulations, precedence constraints
between certain operations and also ensure the availability of resources in order to perform specific actions.
This problem is an extension of a Resource Constrained Project Scheduling Problem (RCPSP). In this article, we
propose an industrial application of an automatic aircraft line maintenance scheduler based on a Constraint
Programming (CP) model. The flexibility of our approach means we can easily adapt to airline use cases
without changing the properties of the model. The optimization problem is generally made up of several
objectives ordered according to their importance. The objectives are respectively to plan as many tasks as
possible according to their priority, then to minimize both the use of resources and the deviation time between
scheduled dates and target dates of tasks. The lexicographical order enables the use of human reasoning and the
management of business priorities. A constructive search strategy is designed to compute a satisfying schedule
within an acceptable execution time for industry application. A practical use case based on real airline data
is presented and the results are compared with those found by an industrial solver taken as a reference.
. Introduction

Airlines continually strive to improve their Air Transport Manage-
ent (ATM), developing processes to achieve their goals with optimal
esources utilization. To be attractive, airlines must provide a personal-
zed service to their customers and ensure passenger safety. Enhancing
ircraft availability is one of the crucial concern airlines need to address
hen managing ATM. One solution to maximize operating aircraft time
s to focus on the fleet maintenance in order to optimize resource
llocation, reduce maintenance costs, and increase aircraft availability.
lthough maintenance is mandatory to ensure passenger safety, it tem-
orarily disables the aircraft from operational activities. Optimization

of maintenance management can be a competitive advantage for an
airline. Therefore, aircraft maintenance planning is both a safety and a
strategic issue for airlines.

Aircraft Scheduling Problem has been studied in many different
ways and can be classified in several sub-problems which have different
goals and can be solved sequentially (Barnhart et al., 2003). Firstly,
the schedule design or flight schedule focuses on strategic plans over
several years based on marketing studies to determine city connections.
Based on this schedule, the fleet assignment determines the type and
the configuration of the aircraft to perform a flight. This planning
can be done approximately one year before in advance. After that,
the crew assignment and the aircraft routing involve tactical decisions
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made a few months ahead. The crew assignment ensures that every 
flight is assigned to a qualified crew, taking into account the employee 
vailability and work rules. The aircraft routing manages the sequence 
of flights of one aircraft ensuring the overall maintenance plan and 
hat all flights are covered once. Lastly, the tail assignment can be 
een an operational extension of the aircraft routing which adjusts, a 
ew days before operations, the planned routes and assigns a unique 
ircraft (identified by its tail number) respecting its own maintenance 
onstraints (Gabteni and Grönkvist, 2009).
Maintenance planning ensures the safety and reliability of the ser-

ice but it is expensive considering man hours, the cost of spares, and 
elays that may occur. According to a study by the International Air 
Transport Association (IATA) on 37 airlines in 2021 (Cros, 2022), direct 
maintenance costs equate to $3.12M per aircraft. Maintenance repre-
sents 10–20% of the total operating costs of an airline (PeriyarSelvam 
et al., 2013). Some maintenance tasks are mandatory and can cause 
flight delays or even cancellations if not performed. These are critical 
ircraft On Ground (AOG) situations. According to a study by Badkook 
2016) on 28 aircraft of the same model and using AOG data collected 
from maintenance and finance departments for one year, average flight 
delay costs amounted to $22753.53. This is why it is very important 
for planners to find the best time to schedule a task both respecting 
regulations and controlling maintenance costs. In other words, the aim 
is to maximize the potential of tasks while ensuring the safety of the 
aircraft. Maintenance has two economical impacts on airlines. Firstly, 
t incurs direct maintenance costs, which involve expenses related to 
ask execution, such as man hours and equipment costs. Secondly, 
the indirect costs are generated as consequences of the maintenance 
actions. They include, as examples, the aircraft unavailability, the 
processing time and man power required to draw up the maintenance 
lanning or the cost of operational interruptions such as delays or flight 
ancellations due to unexpected events.
At present, to respect regulations and recommendations, most air-

ines use a Preventive Maintenance process detailed in the Advisory 
ircular n◦ 43-12 A of the Federal Aviation Administration (FAA, 
007). Depending on their country and routing plans, airlines have to 
espect airworthiness regulations. Tasks are defined in technical docu-
ents written by aircraft manufacturers and airlines. These documents
etail the successive actions which have to be performed by a specific
ype of resource and the specific equipment required.
Maintenance tasks are typically organized into packages called

‘maintenance checks’’. Maintenance can be classified into two main 
types. Heavy maintenance is a grouping of large tasks that need to be 
erformed in a hangar. On the other hand, line maintenance refers to 
impler tasks which encompass routine inspections and minor proce-
ures. These tasks can be performed between two flights when the 
ircraft is on the ground. The objective of Line Maintenance Scheduling 
roblem (LMSP) as defined in Shaukat et al. (2020) is to determine 
he starting time and the location of each maintenance job within a 
pecified planning horizon. The input data includes the flight plan, the 
leet of aircraft, and the list of maintenance jobs to be carried out for 
ach individual aircraft of this fleet. This scheduling problem focuses on 
he short term and operational aspect, aiming to minimize the overall 
eviation from deadlines. Carrying out some ‘‘short’’ maintenance jobs 
uring line operations, i.e. between flights, may provide airlines with
 strategic advantage. This approach helps to reduce the time spent on 
outine maintenance checks, subsequently increasing the availability of 
he aircraft (Hughes, 2006).
One of the main difficulties of the LMSP is the resource allocation. 

t requires to check the availability of the required resources during the 
cheduled maintenance slot to perform a task. Thus, LMSP can be seen 
s Resource Constraint Project Scheduling Problem (RCPSP) consider-
ng both task priority relationships and resource capacity constraints. 
owever, the existing literature on LMSP, as found in Callewaert et al.
2018), Lagos et al. (2020), Shaukat et al. (2020), does not explicitly 
onsider scheduling details within a task and does not schedule at the
minute level of granularity. Indeed, from a Maintenance Control Center
(MCC) point of view, maintenance tasks are structured into sub-tasks of
individual activity. Each activity is subject to various constraints such
as access capacity constraints, precedence relations or synchronization
constraints. To create a schedule that can be directly executed by
maintenance technicians, we delve into the scheduling process at a
finer level of granularity, looking at the smallest activity within a task
and scheduling up to the minute. We called this new problem the
Operational Aircraft Line Maintenance Scheduling Problem (OALMSP).

Today, most operational planning is carried out by humans. They
are able to decide when and where to plan a task thanks to their ex-
pertise. However, due to the complexity of the problem, it is sometimes
difficult for a human to identify the best way to ensure that all of the
constraints are met while optimizing maintenance costs. In addition,
planning is time-consuming and it is complex for a human to analyze all
the combinatorial solutions which can exceed thousands of possibilities.

An industrial solution developed by AIRBUS PROTECT (Airbus,
022) proposes a simulation of maintenance planning for a fleet of
ircraft. This solver enables the state of maintenance of the fleet to
e visualized alongside a detailed outline of required tasks in a given
aintenance slot. By setting up certain parameters, the user can very
uickly simulate a situation and choose the right configuration or test
scenario. The heuristic used mimics the practice of experts and it
ollows the principles of Shaukat et al. (2020), which consists in two
onsecutive stages, task assignment then timetabling. The Key Perfor-
ance Indicators (KPIs) highlight the value assessment of the planning.
ased on heuristics, this smart virtual assistant can generate a planning
roposal in a few minutes. Manual adjustments in the planning are then
llowed and a dynamic rescheduling can be triggered.
In this context, a maintenance optimization digital assistant could

e profitable for airlines. This tool could enable new maintenance op-
ortunities to be explored that reduce maintenance costs by optimizing
esource utilization, reducing additional rental costs, and minimizing
ask execution time. Moreover, this digital assistant could quickly
rovide valuable decision support by evaluating multiple maintenance
cenarios simultaneously to help planners select the most accurate op-
ion. To be truly effective, the solution must be quickly understandable
y a human and also reproducible. Planners must validate the schedule
nd assess the benefit of the solution. Furthermore, maintenance strate-
ies can vary from one airline to another depending of their fleet size,
oute plan, maintenance teams or service contract. Thus, the digital
olution needs to be flexible to address airlines use cases, allowing
he addition or modification of a constraint or an objective without
hanging the model itself.
The following contributions of this papers can be summed up into

wo points:

1. We model the OALMSP as an RCPSP to plan an operational
schedule that can be executed by technicians. The smallest task
granularity is considered in the model with a one-minute pre-
cision. Synchronization and precedence relations between ac-
tivities inside a task are respected. Resources availability are
considered and they are allocated to each elementary activity.
Schedule optimization is based on the resources utilization and
the potential of parts to reduce maintenance costs.

2. We propose a Constraint Programming (CP) model, adaptable to
airlines use cases and understandable by planners. CP has been
chosen for its flexible aspect, to enable or disable constraints or
to modify objectives order without compromising model itself.
Additionally, CP approaches are suited to the RCPSP (Schutt
et al., 2013). A constructive search following technical expertise
is declared in order to improve the problem-solving and an
initial satisfying solution is found in a reasonable time. The solu-
tions are analyzed with reference to particular KPIs, measuring
the number of tasks scheduled, the utilization of resources and

the potential loss between the scheduled date and the task’s



deadline. The expected goals are to find a first solution in less
than five minutes, one that closely aligns with the results of the
industrial solver and improving certain KPIs. Experiments are
carried out on real maintenance instances.

This paper is organized as follows. Firstly, Section 2 describes
in greater detail the industrial context of line maintenance and the
operational scheduling issues. Then, Section 3 presents a brief litera-
ture review of Aircraft Scheduling Problems and places our work in
the context of recent papers around the LMSP. Section 4 recalls the
standard RCPSP formalism and proposes some adaptations to model the
LMSP. After presenting briefly a background of CP and the motivations
of using it, Section 5 proposes a model for the OALMSP and describes all
constraints divided in three groups: maintenance constraints in 5.3.4,
precedence constraints in 5.3.5 and cumulative constraints in 5.3.6.
Some extensions will be introduced in 5.4 with regard to the industrial
context. The objectives are explained in 5.5 as well as an outline of
the search strategy in 5.6. Experiments are divided into two parts.
Section 6.1 proposes an evaluation of the CP model on a small repre-
sentative instance and a comparison between Constraint Programming
and Mixed Integer Programming solvers. Then Section 6.2 highlights
a practical use case of aeronautic maintenance. The industrial solver
taken as reference is described in Section 6.2.1 and compared to the
heuristic used in Shaukat et al. (2020). The performances of the CP
model and the industrial solution are detailed in Section 6.2.2 on
several instances of a real aeronautic maintenance use case. Finally,
Section 7 provides our conclusions and exposes future perspectives for
an industrial scheduling process.

2. Industrial problem description

2.1. Maintenance context

The aircraft maintenance problem consists in finding a time for each
task to perform at fleet level. The assignation of tasks must respect oper-
ational constraints such as the availability of a location and the required
human and material resources. Nowadays, preventive scheduling is
organized following a maintenance program produced by the aircraft
manufacturer and customized by airlines. These documents provide
the description of the task execution and the periodicity expressed in
various units such as flight hours (FH), flight cycles (FC) or calendar
days (Cal). According to this information, a deadline to execute each
task can be calculated and mandatory constraints are formalized.

The majority of airlines use an A-B-C-D check system as suggested
in Kinnison and Siddiqui (2013). Maintenance tasks are regrouped in
check packages depending on their periodicity. The organization of
these checks depends on the aircraft type and the airline. The maximal
interval to execute the check corresponds to the shortest due date given
in FH, FC or Cal, depending on the utilization of the aircraft. Currently
the maintenance program is organized as follows:

• A-checks are maintenance checks performed approximately every
month (or every 300 flight hours for example). They consist of
visual inspections of the airframe, circuit power, avionics and
accessories. They check all major systems of the aircraft such
as landing gear, engines and control surfaces. An A-check takes
about eight hours of downtime.

• B-checks are similar to A-checks with additional tasks, such as
inspection of panels, cowlings, fluid servicing and lubrication. It
is performed on average every three months and involves the
checking of stabilizers and ailerons. This type of check takes about
a day to perform in full.

• C-checks are carried out usually about once a year. They include
the detailed inspection of the airframe and engines. A full lubri-
cation is performed and corrosion is analyzed on the structure.
Major mechanisms and systems are tested and flight controls are
calibrated. It requires around one week to complete a C-check.
• D-checks are performed about every 4–6 years. The whole struc-
ture is inspected thoroughly and the cabin interiors are removed.
These checks stop the aircraft on average for one month.

Task maintenance can be divided into two main levels. Fig. 1
proposed by Van den Bergh (2013) illustrates this classification.

• Heavy maintenance regroups LONG-term checks as C-checks and
D-checks. These large tasks must be performed in a hangar.

• Line maintenance focuses on MID-term checks such as A-checks
and B-checks, some of which may require a hangar. Line main-
tenance includes also several SHORT-term smaller tasks such
as inspections, Transit checks, Daily checks and Weekly checks.
These recurring tasks are set up by the airlines to consolidate
their maintenance. Most of these maintenance actions can be
performed at the gate during the ground time of the aircraft.

Most of the time, maintenance is carried out while the airplane
is at a standstill. No flight is possible during maintenance actions. In
the Line Maintenance Scheduling Problem (LMSP), the flight planning
is provided by the airline and maintenance slots are deduced from
it. It is also important to check if the slots are compatible to receive
maintenance tasks (e.g., maintenance localization, hangars, equipment,
etc.). Two levels of slots can be identified:

• SHORT-term slots where the aircraft stays at the gate between two
flights, able to receive only small line maintenance tasks. These
slots are also called Turn Around Time (TAT).

• MID-term slots where the aircraft goes to a hangar, designed
to receive heavy LONG-term tasks (C or D-checks) and some
MID-term tasks (such as some A or B-checks) which cannot be
performed at the gate and requiring a hangar. These slots can also
accept SHORT-term line tasks.

Heavy maintenance is usually scheduled several years ahead, in
other problems such as the Aircraft Maintenance Check Scheduling
(AMCS) (Deng et al., 2020). This article covers the LMSP taking routine
preventive SHORT-term and MID-term tasks into consideration. The
primary economic goal is to schedule these routine tasks close to their
due dates to maximize their potential. Scheduling line maintenance
tasks, even for the smallest ones, is complex due to their high fre-
quency and limited opportunities, making slot and resource allocation
challenging. In addition, corrective and predictive maintenance are
not included in this study because they serve different goals, such as
scheduling corrective tasks as early as possible.

2.2. Operational line maintenance planning

Scheduling can be divided into three stages (Abreu and Piedade,
2018): strategic, tactical and operational scheduling. Strategic planning
provides a high-level view of the organization a long time in ad-
vance (about five years). It helps to define the global vision, the
financial aspect and the human resources. Tactical planning works on
a medium-term horizon (typically around one year) to achieve the
strategy defined by the previous planning. It includes logistical and
technical aspects, synergies between operations, and skills develop-
ment. In this phase, the process flow is analyzed through reports
and tactical decisions are made to fine-tune the process. Finally, the
operational planning schedules for day-to-day operations to make the
planned actions feasible and manage functional failures.

LMSP is part of the operational maintenance process. Usually, air-
lines mange their maintenance planning in the Maintenance Control
Center (MCC). Fig. 2 sums up the maintenance process into three steps.
First, the identification of maintenance tasks to perform according the
health condition of the aircraft and its maintenance program. Then,
planners look for a maintenance slot and resources to schedule the
identified tasks by optimizing as much as possible the planning. At

this stage, flights schedule of the aircraft are known as well as the
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Fig. 1. Taxonomy for aircraft maintenance.
Source: Van den Bergh (2013).
Fig. 2. Process of operational maintenance planning.
imetabling of resources. Finally the maintenance planning is sent
o maintenance teams to perform the tasks. Planning must take into
ccount as many details as possible. For instance, conflicts or priorities
etween activities must be considered to be as operational as possible.
he horizon time for an operational planning is a few months, after
hat the planning is submitted to over incertitude (for instance resource
imetabling) and the operational aspect is not longer relevant.
The Operational Aircraft Line Maintenance Scheduling Problem

OALMSP) considered in this study distinguishes three levels of granu-
arity:

1. Task granularity: This level looks at tasks that are ended before
their due dates and the matching of allocated slots (duration and
type). Tasks may belong to periodic series and must be executed
before a maximal period which acts as a deadline. Tasks in a
series must respect their position and the interval between them
has to be less than the series’s period. Indeed, when a task is
scheduled with anticipation, the deadlines of subsequent tasks
in the series must be adapted. This is a precedence constraint
called periodicity. Finally, some tasks are incompatible between
each other because of disjunction criteria. For instance, some
tasks require electrical power off and others power on.

2. Operation granularity: Inside each task, maintenance sub tasks
called operations are detailed with their requirements and es-
timated duration. The order between operations within a task
might be specified and must be respected. For instance, oxy-
genation operations cannot be performed at the same time as
refueling for security reasons.

3. Activity granularity: An operation is composed of several re-
quirements, also called activities. Each activity requires one spe-
cific resource (a human resource or an item of equipment respec-
tively with the right skill or reference) during a given duration,
accurate to the minute. All activities in an operation must be
executed at the same time.
In this scheduling problem, an activity must be assigned to an
available resource with the required skill. Three main categories of
maintenance resources can be distinguished:

• Human resources or staff : These are the maintenance teams (tech-
nicians) characterized by one or several mastered skills (including
accreditation). Working time of each human resource is given as
input.

• Serialized equipment : This equipment consists of metric devices,
tools, cradles, cranes, etc. necessary for technicians to perform
the task and must be booked prior to the scheduled maintenance.
They are all identified by a serial number and a unique reference
(equivalent to skill levels of staff). Their availability is known in
advance.

• Ingredients: These spares (screws, glue, bolts, etc.) are organized
in batches. They are followed from a logistical aspect (stock
available and next deliveries, specifying quantity ordered and
delivery date). Ingredients can be reusable or consumable (stock
decreases of the units consumed by the activity).

All resources have a localization (city, hangar, store, etc.). There are
restrictions on the number of human resources allowed in aircraft zones
and access panels. Staff and serialized equipment can be considered as
temporal resource which can be characterized by two states: unavailable
(off working hours or occupied on a task) or free. Moreover, all ac-
tivities are non-preemptive. A resource must fully complete an activity
before moving to another one, and an activity cannot be interrupted
once it is started. To give an example, a Weekly check can be composed
of 47 activities between 30 min and five hours including 25 activities
requiring human resource in three skills, one tool and 21 ingredients.

2.3. Business requirements

The main goal of developing a digital assistant for maintenance
optimization is to respond to business needs. Each airline has its own

organizational and tactical challenges. They do not have the same types
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of aircraft, the same maintenance bases, the same resource manage-
ment, the same subcontractor contracts or the same logistics deliveries. 
In order to adapt to each specific airline use case, the proposed ap-
proach needs to be flexible. Constraints can be adapted or new ones can 
e added. For example, an airline might have an important logistical 
nventory and might be able to relax some of the resource constraints on 
ingredients. Then, depending on the airport, some restrictions may or 
may not apply as the registration is different between countries. On the 
other hand, the priorities in the objectives may differ from one airline 
to another. Some minor optimization objectives could be added. Some 
ideas are discussed at the end of Section 5.5. In this study, we set a 
standard lexicographical order that most airlines use, but which can 
be modified. The first goal is to schedule the highest number of tasks 
while respecting task priority (MID-term then SHORT-term). Then, the 
solution may use the least additional resources. Finally, the deviation 
between the starting time of tasks and their respective deadline must 
be reduced as much as possible to minimize potential loss. However,
airlines with subcontractor agreements may have a preference for 
scheduling close to the task deadlines to conserve the potential of the 
parts even if additional resources are used, while an airline without 
a subcontractor contract will prioritize scheduling with its own staff 
team.

In addition, the scheduling assistant must be robust to changes in 
maintenance programs or new situations where there is no historical 
maintenance data. It is common that new airworthiness regulations are 
in place and new tasks (such as service bulletins) must be integrated. 
Another case can be the integration of new aircraft types into the fleet. 
The algorithm must be able to react to these special cases.

To address the OALMSP, the digital scheduler model must return 
a solution in a reasonable time frame. The accepted solving time for
an expert is less than five minutes for a medium fleet of about 10
aircraft and a scheduling horizon of about a month. The solver should 
answer quickly to allow planners to compare multiple configurations
and scenarios and to select the best option. Then, the solution must 
respect constraints at task level (periodicity, disjunction, . . . ) as well 
as the constraints at operation level. Scheduling accuracy must be up
to the minute to respect precedence relations between operations and 
activities synchronization inside an operation.

Another requirement of planners is that the scheduling solution re-
turned by the digital assistant must be deterministic and reproducible. 
Industrialists seek to use the scheduler as a simulator of scenarios and to 
be able to reproduce their simulations and compare them while adjust-
ing certain parameters. Otherwise, experts need to quickly understand 
the generated solution and optimization choices in order to make some 
adjustments. The algorithm must follow the current practice of human 
reasoning in order to be accepted.

Finally, to quickly evaluate a scheduling solution, experts look 
t some key performance indicators (KPIs), such as the number of 
scheduled tasks, the cost of additional resources used, and the average 
deviation time of tasks between their start time and their due date. The
solving time is also considered as an acceptance criterion.

3. Literature review

Aircraft Scheduling Problem has been studied from multiple as-
pects. Levin (1971) was the first to solve a fleet routing planning
with an Integer Linear Model. Bird (1976) was one of the first to
e interested in aircraft maintenance schedules and to formalize a
aintenance model. The literature is divided into four main categories
hat can be addressed sequentially (Klabjan, 2005). The Schedule (or
light) Design Problem (SDP), (Lohatepanont and Barnhart, 2004),
s a marketing-led planning process used by airlines to determine
light offerings based on revenue analysis. Subsequently, the Fleet
ssignment Problem (FAP), (Hane et al., 1995; Sherali et al., 2006),
llocates the aircraft types in the airline’s fleet, taking into account the

apacity of each aircraft type, demands, operational costs and potential
evenues. This leads us to the Crew Assignment Problem (CAP), (Hoff-
an and Padberg, 1993), which establishes the crew composition to
over all aircraft routes, considering the skills, availability and labor
ork rules of crew members. Afterwards, the Aircraft Maintenance
outing Problem (AMRP), (Gopalan and Talluri, 1998), focuses on
onstructing a feasible sequence of flights for an aircraft while adhering
o maintenance requirements without assigning a specific aircraft to the
ewly created flight plan. The Line Maintenance Scheduling Problem
LMSP), (Van den Bergh, 2013), can be seen as another problem, fo-
cusing on the short-term maintenance scheduling. Some recent studies
work on an Airline Integrated Robust Planning considering all the
previous scheduling problems as in Xu et al. (2021). The authors use
a Column Generation (CG) decomposition and a local neighbors search
to accelerate the process. Without local search, CG processing time can
be up to 24 h.

These problems are related to different types of planning and dif-
ferent time horizons. The SDP designs strategic choices of the airline
a few years ahead. The FAP is typically planned several months to
several years in advance, while the CAP and the AMRP involve tactical
decisions made several weeks to a few months before operations. Fig. 3
summarizes the different scheduling problems faced by the airlines. It
classifies the related works present in the literature and it locates the
contribution proposed in this paper.

Typically, the AMRP is approached from a tactical planning perspec-
tive to design routes for an aircraft and to regularly visit maintenance
bases to fulfill its maintenance requirements. Feo and Bard (1989)
present a large-scale Mixed Integer Programming (MIP) model to ad-
dress aircraft routing problems, considering maintenance constraints
and crew-related factors. Clarke et al. (1996) solve the Aircraft Ro-
tation Problem with feasible maintenance routes using a Lagrangian
Relaxation. The majority of research on AMRP focuses on mid-term
planning particularly considering A and B-checks. Moving to a more
operational context, in Sriram and Haghani (2003), authors suggest
a heuristic-based model to schedule the maintenance of a mid-sized
fleet of eight aircraft, minimizing maintenance costs and re-assignment
costs of aircraft to flights in a dynamic routing context. The heuristic
is based on a hybridization of random search and depth-first search.
They demonstrate that heuristic models can quickly generate solutions
for complex problems where other models might require exponential
time.

In a more operational way, other papers suggest the repetition of
a daily aircraft route plan to create a short-term operational schedule.
This problem consists in determining a valid daily aircraft routing con-
sidering the individual characteristics of one aircraft. Sarac et al. (2006)
named this problem the Operational Aircraft Maintenance Routing
Problem (OAMRP). Haouari et al. (2013) propose a reformulation-
linearization technique to propose a daily repetitive schedule with
ptimized rotations considering maintenance costs and penalties for
hort connections. In this study, hangar capacities are considered and
-check have a fixed duration. This daily schedule requires a return to
base station at the end of the day. It can be repeated over several
eeks for a tactical vision at mid-term. However, it does not take
nto account the heavy checks. Al-Thani et al. (2016) address the
OAMRP using a MIP model with a polynomial number of variables and
constraints. Their very large-scale neighborhood search algorithm was
able to return a solution close to the optimal (4%) in 140 s for a flight
network involving 16 aircraft, 226 flights and 26 maintenance stations.

Similarly, the Tail Assignment Problem (TAP), (Grönkvist and
Kjerrström, 2005), can be seen as an operational extension of the
Aircraft Maintenance Routing Problem. TAP adjusts planned routes
to various operational constraints just a few days before operations.
It assigns these routes to individual aircraft, identified by their tail
number, taking into account the appropriate maintenance for the
selected aircraft. Some hybrid approaches use Constraint Programming
(CP) in decomposition methods to accelerate their generation pro-

cess. Gabteni and Grönkvist (2009) use column generation algorithm



Fig. 3. Airline scheduling problems.
Source: Adapted from Lagos et al.
(2020).
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to address the TAP, modeling maintenance constraints with CP in the
pricing problem. CP enables to quickly produce initial solutions and to
check feasibility during a column generation based heuristic branching
algorithm. MIP and CP hybridization is also used in Aramon Bajestani
and Beck (2011) with a Bender’s decomposition to schedule aircraft
assignments to missions in a military context.

Furthermore, maintenance scheduling can also be studied in a long
term horizon to provide a strategical overview of heavy check schedul-
ing. In this case, flight schedules are simulated or an average aircraft
utilization is considered. Deng et al. (2020) propose a dynamic ap-
proach based on a Markov Decision Process to address the Aircraft
Maintenance Check Scheduling (AMCS) problem. They consider all
maintenance checks from A-check to D-check for a heterogeneous fleet
of 40 aircraft. Since B-checks are rarely used in practice, they are
included in successive A-checks as well as for D-checks which can be
incorporated into some heavy C-checks. In addition, the A-check and
C-check schedules are dependent. Some A-check tasks can be combined
within some C-check, following certain rules, without significantly
increasing the duration of the C-check. One goal of the AMCS is to
optimize the merging of these checks. Their results on real airline cases
show a potential reduction in the number of maintenance checks of
about 7% over a period of four years and generate aircraft availability.
In their following study (Deng and Santos, 2022), authors consider the
uncertainty of aircraft daily utilization and maintenance check elapsed
time to address the Stochastic Aircraft Maintenance Check Scheduling
(S-AMCS) problem. Their method first plans heavy maintenance using
deterministic forecasts and then incorporates line maintenance using
stochastic forecasts. Their experiment shows a reduction in the number
of A and C-checks and in the number of additional slots. Learning
approaches can be used to address the AMCS. Andrade et al. (2021)
present a Reinforcement Learning (RL) model with Q-Learning algo-
rithm to optimize long-term maintenance for an aircraft fleet. They
consider maintenance capacity such as the available number of hangar
slots. They schedule close to due dates to reduce the number of checks
and to improve fleet availability. Their RL model is adaptable to some
small disturbances in the initial conditions. After 20 h of training, the

solution can be obtained in a few seconds. (
In Witteman et al. (2021), authors propose a model for task alloca-
tion after solving the AMCS. The approach is inspired of a bin backing
problem to model maintenance opportunities with limited capacity. A
bin (maintenance slot) has a maintenance availability, a workforce of
resources divided by skills and respect of work time rules. A priority
rule following a practical behavior is given to schedule the most urgent
task first. The approach enables to schedule in 15 min, a five-year
horizon planning with around 50-500 maintenance checks scheduled
for a fleet of 45 aircraft. However, this study does not consider small
line tasks and precedence relations inside a bin.

After task allocation, resource assignation is another complex prob-
lem involved in operational aircraft maintenance scheduling problem.
This problem is closely related to the RCPSP (discussed in Section 4).
In Pimapunsri and Weeranant (2018), authors represent the scheduling
of heavy checks as an RCPSP incorporating skills requirements and
recedence relations between activities. They used a Design Structure
atrix and heuristic method to solve the problem. They came up with
solution enabling a reduction in waiting time of resources between
recedence-constrained activities and minimizing global makespan in
cheduling heavy checks. Others methods as Genetic Algorithms (GA)
an be used to solve an RCPSP. Works by Yuan et al. (2018) and Kowal-
ki et al. (2021) show satisfying results in a dynamic maintenance
ontext for short time windows (several hours or days maximum) with a
omputational time of around 100 s. In Yuan et al. (2018) GA is used to
est different heuristics for resource allocation in either serial or parallel
mode. Despite of that, the computational time sharply increases with
larger time windows. GA are effective in getting close to the optimal
solution of a problem because they search the optimal point not from
a single location but from several locations in search tree. However,
it is recommended to run several time the problem because GA use
stochastic algorithms, and they can generate different result with the
same inputs.

Line Scheduling Maintenance Problem is often overlooked in the
literature. This is unfortunate because the availability of the aircraft can
be improved if individual maintenance tasks are carried out every time
an aircraft is on the ground (Senturk and Ozkol, 2016). Papakostas et al.

2010) propose a simple heuristic to schedule short term maintenance
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tasks of one aircraft at a time, considering the tasks of the other aircraft 
as fixed. More recently, Shaukat et al. (2020) summarize the objective 
of the LMSP as the problem of assigning a start time and a location 
for each maintenance job to be carried out within a planning horizon 
in order to minimize total deviation from due dates, given a flight 
plan or a list maintenance slot, a fleet of aircraft and the respective
maintenance tasks to be performed on each aircraft. The LMSP is 
related as a variant of the RCPSP. They consider machines as main-
enance opportunities and that jobs have no precedence constraints. 
hey define a mathematical formalization of LMSP with a MIP model. A 
equential heuristic approach, which mimics the practice of schedulers 
is proposed to respect priority rules of the maintenance jobs. This
heuristic algorithm is divided into two steps: first, the job assignment to 
maintenance opportunities and then timetabling decisions of resource 
allocation. Their experiments provide an exact solving in an average of 
10 min and a 3.5% gap to optimality in about 10 s using the heuristic
approach.

Most of the papers in the literature address the maintenance 
scheduling at task granularity level. Maintenance checks are scheduled 
as a unit package and the activities inside a task are not precise. In
this paper, we add constraints related to the granularity of operation 
and activity scheduling to address a maintenance plan that is opera-
tionally feasible and can be executed by maintenance personnel. This
implies a (i) resource allocation to elementary maintenance activity, (ii)
precedence and synchronization relations between operations and (iii) 
capacity constraints to perform simultaneously activity in an aircraft 
zone.

Another branch of the literature studies recovery problems when 
disruptions occur compromising the feasibility of the scheduled plans 
(Eggenberg et al., 2010). These are called Airline Recovery Problems
which are not directly in the scope of this paper. Disruptions may 
be caused by many unexpected phenomenon, such as bad meteoro-
logical conditions, unpredicted maintenance repair, propagated delays 
in maintenance or unavailable resources. These disruptions may have 
multiple impacts on the original scheduled plans. A flight cancellation 
or a delay due to maintenance may compromise an aircraft route 
and flight connection for passengers. Initial maintenance and crew 
schedules become infeasible and they must be rescheduled on short 
and mid term with the propagated impacts. Recovery decisions are 
taken at the Operations Control Center (OCC). Their role is to reroute 
aircraft, adjust crew members and passenger connections in a defined 
recovery period. In Xu et al. (2023), authors propose a mathematical 
model to handle the integrated recovery by minimizing the passenger 
travel cost and minimize the weighted recovery efforts. SWAP scenarios 
are considered, when an aircraft cannot ensure a flight and must be 
replace by another aircraft. The flight schedules of two aircraft are 
swapped to ensure operability. Recovery problems are seen as reactive 
approach to re-accommodate sequentially aircraft routing, crew and 
passengers allocation. One cause of disruptions is when an aircraft re-
quire a maintenance at the end of a day, which is called a maintenance 
misalignment. Maher et al. (2014) present a MIP model for a single 
day aircraft routing problem to ensure sufficient aircraft routes ending 
n a maintenance station to perform maintenance requirements during 
the night. They propose a recoverable robust approach to penalize 
maintenance misalignment. Other approaches can be more proactive 
to anticipate disruptions in the schedule. Xu et al. (2019) propose a 
stochastic model to address the Tail Assignment Problem and increase 
the robustness of the schedule. The model considers the possible recov-
ery reactions in case of operational perturbations. Another important 
factor affecting the feasibility of aircraft routing plans is the availability 
of resources (Eltoukhy et al., 2018). Resources workforce may be 
underestimated and conflicts can emerged between resources. Wen 
et al. (2022) proposed an approach to minimize the impact of recovery 
actions on the original plan. They studied a novel strategy named SMR 
which consists to allocate maintenance resource to other airports to 
ensure the maintenance when misalignment occur. These scenarios are
 n
expensive because the resources must be sent to the airport or flight in
the aircraft but it can avoid AOG and cancellation costs. The majority of
these studies use a column and row generation to solve these recovery
problems.

As said before, the Airline Recovery or Aircraft Routing problems
are not studied in this paper. However, some links can be noticed with
OALMSP. The model proposed in this paper can be used to ensure or
test the operational maintenance feasibility of the schedule returned
for the Aircraft Routing Problem. Planners may identify some potential
conflicts and make some adjustments or anticipate requirements. Other-
wise, the operational maintenance scheduler could be useful to recover
maintenance schedules after a SWAP scenario. Finally, the OALMSP
reduces both resource conflicts and underestimated resource workforce
which are a major factors in disruptions.

4. Resource Constrained Project Scheduling Problem (RCPSP)

4.1. Basic RCPSP model

The OALMSP described in Section 2 forms part of what is re-
ferred to as the Resource Constrained Project Scheduling Problem.
The first project scheduling problem was introduced by Kelley and
Walker (1959) to minimize the critical path of job scheduling in a
resource-constrained environment. In its standard form (Artigues et al.,
2008), an RCPSP enables problems of scheduling job-activities to be
modeled, taking into account their duration and the requirement of
resources with limited availability. The schedule must respect the
precedence relations between activities. The objective consists of find-
ing the schedule by assigning a start date to each activity, respecting
all precedence constraints between activities and the availability of
resources, and minimizing the makespan, i.e., the global duration to
perform all activities.

Concretely, an RCPSP is composed of a set of n activities,  =
{𝑎1,… , 𝑎𝑛}, of respective duration 𝑝𝑗 > 0, ∀ 𝑗 ∈ {1,… , 𝑛}. By con-
vention, two activities 𝑎0 and 𝑎𝑛+1 are added to represent respectively
the start and end activity of zero duration.

Precedence relations are given by a set 𝐸 of pairs (𝑎𝑖, 𝑎𝑗 ) meaning
that activity 𝑎𝑖 must be scheduled before activity 𝑎𝑗 . This can be
represented by an acyclic graph 𝐺 where each node represents an
activity and the edges the precedence relations. A set of 𝑚 resources is
given, =

{

𝑟1,… , 𝑟𝑚
}

, with their respective availability 𝐵𝑘 > 0, ∀ 𝑘 ∈
{

1,… , 𝑚
}

. If 𝐵𝑘 = 1, the resource is unitary and if 𝐵𝑘 > 1 the resource is
called cumulative. Each activity 𝑎𝑗 requires an amount 𝑏𝑗𝑘 of resources
𝑘, called demand. Starts of activities are represented in a set 𝑆 where 𝑆𝑖
is the start of the activity 𝑎𝑖. 𝑆0 is set to 0 and 𝑆𝑛+1 is the final point of
the schedule. Minimizing the makespan means to minimize 𝑆𝑛+1. The
set 𝑡 =

{

𝑎𝑗 ∈  ∣ 𝑆𝑖 ≤ 𝑡 < 𝑆𝑖 + 𝑝𝑖
}

, represents activities
processing at the instant 𝑡. A feasible solution assigns values to 𝑆 that
satisfy all precedence constraints (1) and all resource constraints (2):

(𝑎𝑖, 𝑎𝑗 ) ∈ 𝐸, 𝑆𝑗 − 𝑆𝑖 ≥ 𝑝𝑖 (1)

∀ 𝑡 > 0,∀ 𝑟𝑘 ∈ ,
∑

𝑎𝑖∈𝑡

𝑏𝑗𝑘 ≤ 𝐵𝑘 (2)

In the literature, resources are qualified as renewable and non-
renewable (Artigues et al., 2008; Neumann and Schwindt, 2003). A
enewable resource is used by an activity and then returns to its initial
tate when the activity ends. Renewable means that the number of
nits of a resource remains the same at every time of the planning
orizon. Non-renewable means that the number of units of a resource
ecreases after utilization by an activity. In its primary form, RCPSP
onsiders renewable resources, so 𝐵𝑘 is constant through the project.
urthermore, all activities are non-preemptive that is to say they cannot
e interrupted. All the inputs are deterministic and assumed to be
on-negative integer.
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4.2. Solving RCPSP

RCPSP is one of the hardest combinatorial optimization problem
to solve. It belongs to the strongly NP-hard problems demonstrated 
by Blazewicz et al. (1983). It is very useful for modeling industrial 
problems but solving such issues can be very complex in practice.
For example, the optimal makespan of randomly generated problems 
extracted from the Project Scheduling Problems library (PSPLIB, 2005)
with 60 activities and four resources is still unsolved. Several bench-
marks (Artigues et al., 2008) for competition solvers have been created 
to compare the performances of different solving methods. To cite some 
of them, 33 of 48 instances with 103 activities named ALV103 were 
optimally solved in Beldiceanu et al. (1996) using a CP solver CHIP. 
The optimal proof required two weeks of CPU time for one-third of 
solved instances. Another famous benchmark is KSD30 which gathers 
48 groups of instances of 30 activities. Demeulemeester and Herroelen 
(1997) proved the optimal solution with a branch and bound algorithm 
(denoted DH) in an average of 14.76 s for 479 of 480 instances and 
three hours for the last remaining instance. They also measured the 
average deviation from the optimal solution, using heuristics and a 
truncated branch and bound procedure, in relation to the CPU time 
limit. The solution returned in 0.1 s with this method has an average 
deviation from the optimal less than 2% and it decreased to 0.83% for 
a time limit of one second, and less than 0.06% for a maximum time 
of one minute.

On the other hand, some methods exist to find a lower bound of 
the optimal solution. To cite some of them, PWW designs the lower 
bound obtained by solving to optimality the Linear Programming (LP) 
relaxation proposed by Pritsker et al. (1969). They proposed one of 
the first mathematical formulations of RCPSP with a 0-1 Integer Linear 
Programming (ILP) model. In addition to precedence and resource 
constraints, a constraint ensures that each activity is started exactly 
once over the planning horizon. In Christofides et al. (1987), an ILP 
model suggests a variant of precedence constraints that allows for 
stronger relaxation to the detriment of a pseudo-polynomial number of 
precedence constraints. The lower bound obtained by solving optimally
the LP relaxation is denoted CAT. Another exact approach based on 
CP, MCS (Laborie, 2005), enables the optimal makespan or a lower 
bound of it to be identified via an iterative search process. Finally, 
heuristic algorithms such as Tabu Search (Pinson et al., 1994) or Large 
Neighborhood Search (LNS) (Palpant et al., 2004) return solutions very 
close to the optimal solution.

The largest RCPSP benchmark to be solved in these standard data 
sets are instances with 120 activities. Nowadays, the optimal solutions 
for instances with 60, 90 and 120 activities are still unknown. Indeed, 
as seen in Section 6.2.2, the largest instance solved in common RCPSP 
competition benchmark is smaller than the smallest use case for the 
maintenance of two aircraft in one week composed of 345 activities.
Because of the size of industrial instances, the research of an optimal 
solution or a lower bound estimation is not considered in this article.

4.3. RCPSP extensions and adaptations to our industrial model

Several extensions of the standard RCPSP have been proposed which 
can be implemented in a real scheduling problem. A survey sums 
up these different variants (Hartmann and Briskorn, 2010). As per
its description detailed in Section 2, the industrial problem studied 
in this paper is similar to an RCPSP. Indeed, maintenance tasks are 
composed of a set of activities, requiring certain resources during a 
given duration. There are different levels of precedence relations: first 
between particular activities within a task and then between tasks from 
a same periodic series. The aim of the problem is to find a schedule by 
assigning a start date to each activity.

However, the basic RCPSP structure needs some adjustments to 
fully model our industrial problem. One particularity of the aircraft 
maintenance scheduling problem is that activities can be scheduled
only if the plane is on the ground between two flights. This cuts out
temporal possibilities. Temporal availability is not only led by resource
availability but also by slot opportunities. Then, in this industrial
problem, activities are grouped by task. Therefore, all activities of a
task must be scheduled on the same slot. Furthermore, a maximal
duration for a task can be given to complete all its activities. After
that, tasks can be also divided in operations. An operation gathers
several activities which must have the same starting date to execute
them in parallel. This task structure broken down in groups adds some
constraints and imposes to have a block reasoning.

As seen previously, there are a number of resources deployed in
aeronautic maintenance. Staff and serialized equipment are considered
as renewable and unitary resources. They must respect temporal con-
straints (Bartusch et al., 1988). Each physical person or serialized item
of equipment has its own agenda with a quantity available of 1. Then,
ingredient resources are cumulative resources. Their stock is known in
advance. However, some consumable ingredients are non-renewable.
For all ingredients, the initial stock increases after each delivery of the
quantity ordered. Non-renewable resources are not considered in the
basic form of RCPSP. An extension is proposed in Carlier et al. (2009)
o model RCPSP to include resource consumption. Another important
aspect are the multiple skills of staff. This increases the complexity of
the RCPSP because a resource can be deployed for several types of
activities but it can be only assigned to one activity at a time. This
particular type of RCPSP is called the Multi-Skill Project Scheduling
Problem (MSPSP), introduced in Bellenguez and Néron (2004). This
model considers renewable and disjunctive resources, mastering several
skills, such as staff members who can be assigned to at most one
requirement at a time. It enables personnel planning involving different
timetables to be taken into account.

The last extension needed for this aircraft maintenance scheduling
problem is the multi-objective perspective. In its basic form, the ob-
jective of an RCPSP is to minimize the makespan, but in our problem,
several strictly ordered objectives are considered. In Tian et al. (2022),
uthors proposed a multi-objective optimization framework based on
he Evolution Strategy which enables a comparison of the different
ombinations and schedule builders. Ghamginzadeh et al. (2021) also
modeled an MSPSP by minimizing both the makespan and the total cost
of labor allocation with uncertainty in estimation of activities’ duration.
In our problem, because of their business priority, the lexicographical
order is a way to manage the multi-objective aspect taken on by the
company.

5. Constraint programming model

In this section, we explain our choice of using CP to address the
OALMSP and we present our model to schedule the specific RCPSP ap-
plied to aircraft line maintenance. Constraints used will be divided into
three main categories: maintenance constraints, precedence constraints
and cumulative constraints. First of all, a brief reminder of Constraint
Programming is provided.

5.1. Background

Constraint Programming is a general purpose technique for solving
complex and high-dimensional problems, such as planning or schedul-
ing. This technique uses a high level language that enables a problem
to be modeled easily.

The problem is described as a set of discrete variables, each defined
on a finite domain, a set of constraints involving these variables, whose
goal is to find a solution satisfying all the constraints (Brailsford et al.,
1999). More precisely, the problem can be modeled by the triplet
(𝑋,𝐷,𝐶), where 𝑋 is the set of problem’s variables, 𝐷 the set of the
respective domains of each variable and 𝐶 is the set of constraints. This
constitutes a Constraint Satisfaction Problem (CSP). The CSP can handle
several types of variables such as booleans, integers, sets or subsets.
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A constraint is a relation between several variables that limits the 
set of values that these variables can take simultaneously, i.e., formally,
each constraint is a subset of the Cartesian product of the domains of 
the variables it deals with.

A solution is an instantiation of all the variables (in 𝑋) to a value 
n their respective domain (among 𝐷) that satisfy all the constraints 
in 𝐶). On the other hand, the problem is said to be unsatisfiable if no 
alues in their respective domains satisfy all constraints (Rossi et al.,
008).
A CSP can be solved to find a solution, to list all the solution, or to 

prove the absence of a solution. A CSP can be converted into a Con-
strained Optimization Problem (COP) by adding an expression (objective) 
hat is expected to be maximized or minimized (Barták, 1999). This 
nables the return of a better or even the best solution.
The quality of the model and an accurate search strategy (Kanet 

et al., 2004) are the keys to good performances both in terms of the 
quality of the solutions found and the time needed to obtain them. 
These methods can be adapted according to the complexity of the 
problem and are useful in practical cases.

5.2. Motivations of using constraint programming

Constraint Programming can be used to answer business require-
ments (Section 2.3) and it has been selected to tackle the OALMSP for 
the following reasons:

(i) CP offers great modeling flexibility but requires a good formula-
tion in the declaration of the logic model and in the elaboration
of the search strategy (Kanet et al., 2004). It is easy to inte-
grate new constraints or disable some constraints (Rossi et al.,
2006). Similarly, the lexicographical objective function offers
the possibility to manage sub-objectives and their priorities.

(ii) CP paradigm can guarantee the determinism of the method and
the replicability of the solution with the same inputs (imposed
by business).

(iii) The decision process can be expressed thanks to a constructive
search strategy. A heuristic close to a human behavior makes the
solution understandable by a human.

(iv) Filtering algorithms of CP are adapted for precedence and re-
source constraints in scheduling problems (Artigues et al., 2008;
Liess and Michelon, 2008).

(v) The paradigm of CP ensures the enumerations of all solutions of
a CSP (Rossi et al., 2006). An adapted search strategy enables
to build quickly an acceptable first solution, even for large
problems.

Based on the considerations mentioned earlier, we exclude stochas-
tic and learning methods such as Genetic Algorithms (GA) or Rein-
forcement Learning (RL). Indeed, these methods are not deterministic
and can yield different results for the same initial problem which is
not compatible with our use case. In addition, multiple solutions are
recommended with GA to obtain an average solution. Kowalski et al.
(2021). Then, in case of modifications in the model (adding constraints
or changing objective function), the steps of selection, crossover and
mutations steps in the GA process must be adapted. On the other hand,
RL can be used to model RCPSP (Sung et al., 2020; Zhao et al., 2022).
heir experiments are carried out on instances of maximum 90 and 120
ctivities and some improvements may be done to extract underlying
ecision-making rules or managerial insights from the policy. Even if RL
an be robust to small disturbances in the initial conditions (Andrade
t al., 2021), one difficulty identified with RL is to adapt to new situa-
ions. For instance, new tasks are coming frequently from airworthiness
r the airline can add a new aircraft type in its fleet. Historical data are
ot present in the training set and it is difficult to learn specific rules.
herefore, the model needs to be retrained and it can take a long time,
or instance 24 h in Andrade et al. (2021).
Furthermore, compared to heuristic solvers, CP solvers can explore
several solutions and not only one constructive solution. Thus, the opti-
mal solution is theoretically guaranteed in a COP. However, the solving
time can be inconsiderable for large instances. A heuristic search
strategy enables to build quickly a first solution for complex problems
and then to explore others solutions with local search algorithms (Rossi
et al., 2006).

A lot of papers in the literature use MIP to address Aircraft Schedul-
ing Problems. However, RCPSP uses cumulative and disjunctive con-
straints. The MIP model size increases monotonically with the cardinal-
ity of the considered tasks whilst in CP one constraint is sufficient to
model a set of n tasks in disjunction. Note that CP offers the possibility
to model non linear constraints as AllDifferent (Lauriere, 1978). In
ddition, the size of the instances explode in the OALMSP with the
onsideration of activity granularity. As a comparison, the instance
or two-week scheduling for four aircraft represents 77 maintenance
obs in Shaukat et al. (2020) while in our study, for the same horizon,
we consider 131 maintenance tasks equivalent to an RCPSP of 1250
activities. Then, for practical reason, the experiment must be carried
out on a simple laptop with memory limitations. As will be shown in
experiment 6.1, the number of variables and constraints between CP
and MIP models can be multiplied by a factor of 1000. A practical
memory problem may arise as the model size increases by several
gigabytes. Given the scale and the complexity of our problem, CP seems
to be an appropriate method to control the number of variables and
constraints.

5.3. CP model of OALMSP

In this section, the CP model of the OALMSP introduced in Section 2
is presented. First, the input data and the variables will be described.
After that, the constraints description will be presented in three parts:
first, the constraints related to maintenance context, then the prece-
dence constraints linked to the execution order of tasks and finally the
resource constraints checking resource capacity to execute tasks. Some
extensions due to the specificity of this problem will be explained at
the end. Let us explain first the constraint notations.

5.3.1. Constraint notations
As seen in the previous section, RCPSP is managed by two types

of constraints: Cumulative and Disjunctive constraints. The Constraint
Global Catalogue (GCC) (Beldiceanu et al., 2005) is taken as reference.

A Cumulative constraint (Aggoun and Beldiceanu, 1993) is defined
as Cumulative(TASKS, LIMIT) where TASKS is a set of 𝑛 task variables
and LIMIT is a non-negative integer representing the maximal capacity.
A task is defined by its origin integer variable 𝑜, its duration integer
variable 𝑑 such as 𝑑 > 0, its end integer variable such as 𝑒 = 𝑜 + 𝑑
and its height variable such as ℎ > 0, denotes resource consumption. The
Cumulative constraint ensures that at each point in time, the cumulated
height of tasks that overlap that point, does not exceed a given limit.
More precisely, we will note further Cumulative constraints as this:

∀ 𝑡 ∈ TASKS,

Cumulative
⎛

⎜

⎜

⎝

⟨ 𝑜1 𝑑1 𝑒1 ℎ1
⋮

𝑜𝑛 𝑑𝑛 𝑒𝑛 ℎ𝑛

⟩

, LIMIT
⎞

⎟

⎟

⎠

A Disjunctive constraint (Carlier, 1982) defined for a set of 𝑛 task
variables as Disjunctive(TASKS) with 𝑜𝑖 and 𝑑𝑖 ≥ 0, ∀ 𝑖 ∈ [1,… , 𝑛], the
espective origin and duration variables of tasks. The Disjunctive con-
straint ensures that no tasks in TASKS overlap. The Disjunctive con-

straint is a special case of the Cumulative constraint.



5.3.2. Input data and constants
1. Let 𝑠 and 𝑒 represent respectively the start and the end of the
planning horizon, such as 0 ≤ 𝑠 < 𝑒.

2. Let  represent the set of aircraft to maintain.
3. A zone 𝑧 indicates the geographical location in an aircraft. Each
aircraft has a set of zones 𝑎𝑐 which have a maximal capacity
𝐶𝑎𝑝𝑧 (number of people could work at the same time).

4. Let 𝑆𝑙𝑜𝑡𝑠 represent the set of available slots for maintenance
(deduced from flights planning). Each slot has a localization
𝐿𝑠𝑙𝑜𝑡, a maintenance level 𝐿𝑒𝑣𝑒𝑙𝑠𝑙𝑜𝑡, a start date 𝑠𝑠𝑙𝑜𝑡, a duration
𝑝𝑠𝑙𝑜𝑡 and an end date such as 𝑒𝑠𝑙𝑜𝑡 = 𝑠𝑠𝑙𝑜𝑡+𝑝𝑠𝑙𝑜𝑡. Let 𝑆𝑙𝑜𝑡𝑠𝑎𝑐 ⊂ 𝑆𝑙𝑜𝑡𝑠
represent the set of aircraft slots 𝑎𝑐 ∈ . Slots can have transfer
margins which are unavailable time for maintenance in slot. For
example gate transfer (𝑚𝑎𝑟𝑔𝑖𝑛𝐺𝑎𝑡𝑒) or time to go to the hangar
(𝑚𝑎𝑟𝑔𝑖𝑛𝐻𝑎𝑛𝑔𝑎𝑟). For MID-term slots, 𝑚𝑎𝑟𝑔𝑖𝑛𝑠𝑙𝑜𝑡 = 𝑚𝑎𝑟𝑔𝑖𝑛𝐺𝑎𝑡𝑒 +
𝑚𝑎𝑟𝑔𝑖𝑛𝐻𝑎𝑛𝑔𝑎𝑟, and other slots 𝑚𝑎𝑟𝑔𝑖𝑛𝑠𝑙𝑜𝑡 = 𝑚𝑎𝑟𝑔𝑖𝑛𝐺𝑎𝑡𝑒.

5. Let 𝑆𝑘𝑖𝑙𝑙 represent the set of all skills (including references for
equipment and spares).

6. Let  represent the set of temporal resources. ∀ 𝑟 ∈ , a
resource is defined by a set of skills 𝑆𝑘𝑖𝑙𝑙𝑟, a localization 𝐿𝑟 and
a set of unavailable times, 𝑟 =

{[

𝑠𝑢1𝑟 , 𝑒𝑢1𝑟

]

,… ,
[

𝑠𝑢𝑧𝑟 , 𝑒𝑢𝑧𝑟

]}

.
Let us note 𝑠𝑘𝑖𝑙𝑙 =

{

𝑟 ∈  ∣ 𝑠𝑘𝑖𝑙𝑙 ∈ 𝑆𝑘𝑖𝑙𝑙𝑟
}

.
7. Let  represent the set of ingredients. ∀ 𝑖𝑛𝑔 ∈ , an ingredient
(consumable or not) is defined by an initial stock 𝑠𝑡𝑜𝑐𝑘𝑖𝑛𝑔 ≥ 0,
a skill 𝑠𝑘𝑖𝑙𝑙𝑖𝑛𝑔 , a localization 𝐿𝑖𝑛𝑔 and a set of tuples of delivery
date and quantity ordered 𝑖𝑛𝑔 =

{(

𝑑1, 𝑏𝑑1 ),… , (𝑑𝑦, 𝑏𝑑𝑦
)}

.

8. Let  =
{

𝑡1,… , 𝑡𝑛
}

represent the set of 𝑛 tasks to schedule.
Each task corresponds to one unique aircraft. An interval of
scheduling is given for each task between an authorized release
date 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝐷𝑎𝑡𝑒𝑖 and deadline 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 (𝑠 ≤ 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝐷𝑎𝑡𝑒𝑖 ≤
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 ≤ 𝑒). Then, a task is determined by a maintenance
level 𝐿𝑒𝑣𝑒𝑙𝑖: SHORT-term for tasks that can be carried out at the
gate and MID-term for A-check and B-check requiring a hangar.
Moreover, a task can be labeled as URGENT. In this case the
task must be scheduled as soon as possible. A minimal duration
𝑝𝑚𝑖𝑛𝑖 to perform a task can be given. For instance when all
activities from a task are executed in parallel, 𝑝𝑚𝑖𝑛𝑖 corresponds
to the largest duration of activities. In the same way, a maximal
duration 𝑝𝑚𝑎𝑥𝑖 can be provided. For example the sum of the
duration of all activities if they are executed sequentially.

9. We call Series a set of tasks with the same characteristics on the
same aircraft which must be scheduled at a maximal interval
(called period) respecting their position. Let  =

{

𝑆1,… , 𝑆𝑐
}

represent the set of series. ⋃

𝑘≤𝑐 𝑆𝑘 is a partition of integer
from 1 to 𝑛. 𝑆𝑘⟨𝑟⟩ = 𝑖 defines the index 𝑖 from task at position
𝑟 ∈

[

1,… , |𝑆𝑘|
]

in series 𝑆𝑘.
10. Let 𝐷𝑘 stand for the maximal duration (called Period) between

two consecutive tasks within the same series.
11. Let 𝐺 = ⟨𝑉 ,𝐸⟩ indicate the graph of disjunction between tasks.

A node 𝑉𝑖 ∈ 𝑉 represents a task 𝑡𝑖 and an edge (𝑡𝑖, 𝑡𝑗 ) ∈ 𝐸 means
that two tasks cannot be executed at the same time.

12. Let  =
{

𝑎1,… , 𝑎𝑚
}

stand for the set all 𝑚 activities. For each
activity 𝑎𝑗 , a task is linked 𝑇 𝑎𝑠𝑘(𝑗), a skill is required 𝑠𝑘𝑖𝑙𝑙𝑎𝑗
and a duration 𝑝𝑗 ≥ 0, a demand 𝑏𝑗 > 0, and a set of zones
𝑗 ⊆  are defined. Each task 𝑡𝑖 ∈  have a set of activities
𝑖 ⊆  such as ∀ 𝑖, 𝑗 ∈ [1, 𝑛] , 𝑖 ≠ 𝑗, 𝑖 ⋂𝑗 = ∅
and ⋃

𝑖 ∈ [1,𝑛] 𝑖 = . Activities 𝑖 must be scheduled during
the execution of 𝑡𝑖. For activities requiring temporal resources
𝑟 ⊆  (staff or serialized equipment) 𝑏𝑗 = 1 and for activities
requiring ingredients𝑖𝑛𝑔 ⊆ , 𝑏𝑗 ≥ 1. Note that𝑟

⋃

𝑖𝑛𝑔 = 
and 𝑟

⋂

𝑖𝑛𝑔 = ∅. Let us note 𝑠𝑘𝑖𝑙𝑙 =
{

𝑎𝑗 ∈  ∣ 𝑠𝑘𝑖𝑙𝑙𝑎𝑗 =
𝑠𝑘𝑖𝑙𝑙

}

.
13. Let 𝑂𝑝 stand for the set of all operations. An operation 𝑜𝑝 is

a set of activities. 𝑂𝑝𝑖 refers to the operation of task 𝑡 . Note
𝑖
that ⋃𝑖∈[1,𝑛] 𝑂𝑝𝑖 = . All activities in the same operation start
at the same time. Operations from a task can be ordered and
activities must be executed respecting this order. Let us note
𝑂𝑝𝑠𝑘𝑖𝑙𝑙 =

{

𝑜𝑝 ∈ 𝑂𝑝 ∣ 𝑎𝑗 ∈ 𝑜𝑝, 𝑎𝑗 ∈ 𝑠𝑘𝑖𝑙𝑙}, the subset
in each operation of activities requiring skill 𝑠𝑘𝑖𝑙𝑙.

5.3.3. Variables
As a reminder, a variable is an unknown taking its value in a set of

authorized values called domain. The variables used in this CP model
will be defined in this section:

1. A task 𝑡𝑖 is defined by a start date 𝑠𝑖, an end date, 𝑒𝑖 and a
duration 𝑝𝑖 such that 𝑠𝑖 + 𝑝𝑖 = 𝑒𝑖. Note that 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝐷𝑎𝑡𝑒𝑖 ≤ 𝑠𝑖
and 𝑒𝑖 ≤ 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖:

∀ 𝑡𝑖 ∈  ,

𝐷(𝑠𝑖) =
[

𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝐷𝑎𝑡𝑒𝑖, 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 − 𝑝𝑚𝑖𝑛𝑖
]

(3)

𝐷(𝑒𝑖) =
[

𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝐷𝑎𝑡𝑒𝑖 + 𝑝𝑚𝑖𝑛𝑖 , 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖
]

(4)

𝐷(𝑝𝑖) =
[

𝑝𝑚𝑖𝑛𝑖 , 𝑝𝑚𝑎𝑥𝑖
]

(5)

2. An activity 𝑎𝑗 is defined by a start date 𝑠𝑗 , an end date 𝑒𝑗 and a
duration 𝑝𝑗 , such as 𝑠𝑗 + 𝑝𝑗 = 𝑒𝑗 .

∀ 𝑡𝑖 ∈  ,∀ 𝑎𝑗 ∈ 𝑖

𝐷(𝑠𝑗 ) =
[

𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝐷𝑎𝑡𝑒𝑖, 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 − 𝑝𝑚𝑖𝑛𝑖
]

(6)

𝐷(𝑒𝑗 ) =
[

𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝐷𝑎𝑡𝑒𝑖 + 𝑝𝑚𝑖𝑛𝑖 , 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖
]

(7)

3. Let us note 𝑠𝑙𝑜𝑡𝑖 the assigned slot to task 𝑡𝑖 and its domain 𝐷(𝑠𝑙𝑜𝑡𝑖)
:

∀ 𝑡𝑖 ∈  , 𝐷(𝑠𝑙𝑜𝑡𝑖) =
{

𝑠𝑙𝑜𝑡𝑘 ∣ 𝑠𝑙𝑜𝑡𝑘 ∈ 𝑆𝑙𝑜𝑡𝑠𝑎𝑐 ,

𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝐷𝑎𝑡𝑒𝑖 ≤ 𝑠𝑠𝑙𝑜𝑡𝑘 + 𝑚𝑎𝑟𝑔𝑖𝑛𝑠𝑙𝑜𝑡𝑘 ,

𝑒𝑠𝑙𝑜𝑡𝑘 + 𝑚𝑎𝑟𝑔𝑖𝑛𝑠𝑙𝑜𝑡𝑘 ≤ 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 − 𝑝𝑚𝑖𝑛𝑖 ,

𝑝𝑚𝑖𝑛𝑖 ≤ 𝑝𝑠𝑙𝑜𝑡 − 2 ∗ 𝑚𝑎𝑟𝑔𝑖𝑛𝑠𝑙𝑜𝑡𝑘 ,

𝐿𝑒𝑣𝑒𝑙𝑖 ∈ 𝐿𝑒𝑣𝑒𝑙𝑠𝑙𝑜𝑡𝑘
}

(8)

Note that we can define certain inclusions for maintenance
levels between slot and task. For instance, a task with SHORT-
term level can be executed on a MID-term slot, so 𝐿𝑒𝑣𝑒𝑙𝑆𝐻𝑂𝑅𝑇 ∈
𝐿𝑒𝑣𝑒𝑙𝑀𝐼𝐷 (but 𝐿𝑒𝑣𝑒𝑙𝑀𝐼𝐷 ∉ 𝐿𝑒𝑣𝑒𝑙𝑆𝐻𝑂𝑅𝑇 ).

4. Let 𝑟𝑎𝑗 the resource assigned to activity 𝑎𝑗 :

∀ 𝑡𝑖 ∈  , ∀ 𝑎𝑗 ∈ 𝑖

𝑟𝑎𝑗 =

{

{

𝑟ℎ ∣ 𝑟ℎ ∈ 𝑎𝑗
}

if 𝑎𝑗 ∈ 𝑟
{

𝑟ℎ ∣ 𝑟ℎ ∈ 𝑎𝑗
}

otherwise
(9)

with

𝑎𝑗 =
{

𝑟 ∣ 𝑟 ∈ 𝑠𝑘𝑖𝑙𝑙𝑎𝑗 , 𝐿𝑟 = 𝐿𝑠𝑙𝑜𝑡𝑖

}

and 𝑎𝑗 =
{

𝑖𝑛𝑔 ∣ 𝑖𝑛𝑔 ∈ , 𝑠𝑘𝑖𝑙𝑙𝑖𝑛𝑔 = 𝑠𝑘𝑖𝑙𝑙𝑎𝑗 , 𝐿𝑖𝑛𝑔 = 𝐿𝑠𝑙𝑜𝑡𝑖

} (10)

5.3.4. Maintenance constraints
First of all, certain constraints are due to the integration of main-

tenance in an operational flight planning schedule. Airlines may not
require the scheduling of MID-term maintenance actions during the
week or summer pick activities. This is presented in Gopalan and Talluri
(1998) as maintenance constraints. Here, the maintenance constraints
used in our problem are presented.

A task must be assigned to a possible aircraft maintenance slot:

∀ 𝑡𝑖 ∈  ,∀ 𝑠𝑙𝑜𝑡𝑖 ∈ 𝑆𝑙𝑜𝑡𝑠𝑎𝑐 ,
[

𝑠 , 𝑒
]

⊆
[

𝑠 + 𝑚𝑎𝑟𝑔𝑖𝑛 , 𝑒 − 𝑚𝑎𝑟𝑔𝑖𝑛
]

(11)
𝑖 𝑖 𝑠𝑙𝑜𝑡𝑖 𝑠𝑙𝑜𝑡𝑖 𝑠𝑙𝑜𝑡𝑖 𝑠𝑙𝑜𝑡𝑖
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All activities of a task must be performed during the task execution

𝑡𝑖 ∈  , 𝑠𝑖 = min
𝑎𝑗 ∈ 𝑖

(𝑠𝑗 ) (12)

max
𝑎𝑗 ∈ 𝑖

(𝑒𝑗 ) ≤ 𝑒𝑖 (13)

Let us note that activities can finish before the end of the task.
or example, some tasks need drying or cooling time after the end of
ctivities. This represents additional time to accomplish the task that
oes not require resources.
Other constraints are induced by the division of the task into

perations. Typically, all activities, belonging to the same operation,
tart at the same time:

𝑡𝑖 ∈  , ∀ 𝑜𝑝 ∈ 𝑂𝑝𝑖, ∀ 𝑎𝑗 , 𝑎𝑗′ ∈ 𝑜𝑝, 𝑠𝑗 = 𝑠𝑗′ (14)

From a resources perspective, the resource assigned to an activity
must be located in the same place as the slot it has been allocated:

∀ 𝑟 ∈ 𝑎𝑗 , 𝐿𝑠𝑙𝑜𝑡𝑖 = 𝐿𝑟 (15)

∀ 𝑖𝑛𝑔 ∈ 𝑎𝑗 , 𝐿𝑠𝑙𝑜𝑡𝑖 = 𝐿𝑖𝑛𝑔 (16)

As induced by (14), resources assigned to activities from a same
operation must all be different:

∀ 𝑡𝑖 ∈  , ∀ 𝑜𝑝 ∈ 𝑂𝑝𝑖,

AllDifferent
(

{

𝑟𝑎𝑗 ∣ 𝑎𝑗 ∈ 𝑜𝑝
}

)

(17)

5.3.5. Precedence constraints
RCPSP models are designed to take into account precedence con-

straints. In our problem, there are three levels of precedence con-
straints.

The first is due to the periodicity interval imposed by regulations
between two consecutive tasks in a same series. The time interval must
be less than the specified period 𝐷𝑘, then scheduling order must respect
the position of tasks in the series and their assigned slots must be
different. Let us consider a series 𝑆𝑘 ∈  and |

|

|

𝑆𝑘
|

|

|

= .
The separation time 𝑑𝑟 between two consecutive tasks of a same

series is defined as:

∀ 𝑟 ∈ [1,… , − 1] , 𝑑𝑟 = 𝑠𝑠𝑙𝑜𝑡𝑆𝑘⟨𝑟+1⟩ − 𝑒𝑠𝑙𝑜𝑡𝑆𝑘⟨𝑟⟩ (18)

The constraint (19) ensures that the maximal separation time cannot
xceed the period 𝐷𝑘 of the series 𝑆𝑘. The constraint (20) expresses that
task in a series must be schedule on a further slot than its previous
ask in the series.

max
∀ 𝑟 ∈ −1

(𝑑𝑟) ≤ 𝐷𝑘 (19)

𝑟 ∈ [1,… , − 1] , 𝑑𝑟 > 0 (20)

Note that, only calendar periodicity is considered in constraint
19). It exists some coefficient to convert flight hours and flight cycles
ntervals into calendar unit. However, knowing the flight schedule, it
ould be easy to add the same type of constraint to verify accurately
he periodicity in FH and FC.
Another type of precedence constraint is the disjunction between

asks when it is possible to identify in advance conflicts between tasks
rom multiples criteria.
All couple of tasks which cannot be executed at the same time can

e stored in 𝐺 = ⟨𝑉 ,𝐸⟩, the graph of tasks in disjunction.

𝑡𝑖 ∈ 𝑉 , 𝑡𝑗 ∈ 𝑉 ∣ 𝑡𝑖 ≠ 𝑡𝑗 and (𝑡𝑖, 𝑡𝑗 ) ∈ 𝐸,

Disjunctive
({

𝑡𝑖, 𝑡𝑗
})

(21)

Finally, inside a task, when the execution of an operation requires
precise order, activities scheduling must respect the order given. We
ote 𝑜𝑝𝐴 → 𝑜𝑝𝐵 the relation ‘‘operation A precedes operation B’’.

𝑡𝑖 ∈  ∣ (𝑜𝑝𝐴, 𝑜𝑝𝐵) ∈ 𝑂𝑝𝑖, ∀ 𝑎𝑗 ∈ 𝑜𝑝𝐴, ∀ 𝑎𝑗′ ∈ 𝑜𝑝𝐵 , (22)

𝑜𝑝𝐴 → 𝑜𝑝𝐵 ⟹ 𝑒𝑗 ≤ 𝑠𝑗′
.3.6. Cumulative constraints
The last essential category of constraints in an RCPSP is

umulative constraints (Aggoun and Beldiceanu, 1993). The following
onstraints enable the control of workflow and checking of resource
apacity.
Firstly, human capacity in an aircraft zone and consumption of

esource stocks need to be checked by Cumulative constraints.
There are physical constraints in the problem due to space in the

ircraft. Indeed, each part of the plane (called a zone) has a human ca-
acity. Therefore, the number of activities requiring resources working
n a same zone is limited to the zone capacity:

𝑧 ∈ , ∀ 𝑎𝑗 ∈  ∣ 𝑧 ∈ 𝑗 ,

Cumulative
⎛

⎜

⎜

⎝

⟨ 𝑠1 𝑝1 𝑒1 1
⋮

𝑠𝑞 𝑝𝑞 𝑒𝑞 1

⟩

, 𝐶𝑎𝑝𝑧
⎞

⎟

⎟

⎠

(23)

ith 𝑞 = |

|

|

{

𝑎𝑗 ∈  ∣ 𝑧 ∈ 𝑗
}

|

|

|

.
A Cumulative constraint thus ensures that activities using a reusable

ngredient may not exceed the stock available in all localization:

𝑖𝑛𝑔 ∈ , ∀ 𝑎𝑗 ∈ 𝑠𝑘𝑖𝑙𝑙𝑖𝑛𝑔 ,

Cumulative
⎛

⎜

⎜

⎝

⟨ 𝑠1 𝑝1 𝑒1 𝑏1
⋮

𝑠𝑞 𝑝𝑞 𝑒𝑞 𝑏𝑞

⟩

, 𝑠𝑡𝑜𝑐𝑘𝑖𝑛𝑔
⎞

⎟

⎟

⎠

(24)

here 𝑞 = |

|

|

𝑠𝑘𝑖𝑙𝑙𝑖𝑛𝑔 |
|

|

.
Note that the cumulative profile (𝑠𝑡𝑜𝑐𝑘𝑖𝑛𝑔) is increased by the quan-

ity ordered after each delivery. For this, we calculate the maximal
uantity of the ingredient during the simulation and we use fictive tasks
o model the unavailability before a delivery. The consumption of a
on-renewable ingredient is represented by a fictive task until the end
f the simulation.
Moreover, for temporal resources, a constraint by skill checks

hether the cumulative charge of operations is compatible with the
umulative capacity of available resources:

𝑠𝑘𝑖𝑙𝑙 ∈ 𝑆𝑘𝑖𝑙𝑙, ∀ 𝑟 ∈ 𝑠𝑘𝑖𝑙𝑙 , ∀ 𝑜𝑝 ∈ 𝑂𝑝𝑠𝑘𝑖𝑙𝑙 ,

umulative

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⟨

𝑠𝑢1𝑟1

(

𝑒𝑢1𝑟1
− 𝑠𝑢1𝑟1

)

𝑒𝑢1𝑟1
1,

⋮

𝑠𝑢𝑧𝑟𝑘

(

𝑒𝑢𝑧𝑟𝑘
− 𝑠𝑢𝑧𝑟𝑘

)

𝑒𝑢𝑧𝑟𝑘
1,

𝑠𝑚𝑖𝑛𝑜𝑝1 𝑝𝑚𝑖𝑛𝑜𝑝1 𝑒𝑚𝑖𝑛𝑜𝑝1 𝑏𝑠𝑘𝑖𝑙𝑙𝑜𝑝1 ,
⋮

𝑠𝑚𝑖𝑛𝑜𝑝𝑞 𝑝𝑚𝑖𝑛𝑜𝑝𝑞 𝑒𝑚𝑖𝑛𝑜𝑝𝑞 𝑏𝑠𝑘𝑖𝑙𝑙𝑜𝑝𝑞

⟩

, 𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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here 𝑘 = |

|

|

𝑠𝑘𝑖𝑙𝑙|
|

|

, 𝑞 = |

|

|

𝑂𝑝𝑠𝑘𝑖𝑙𝑙||
|

and 𝑠𝑚𝑖𝑛𝑜𝑝1 , 𝑝𝑚𝑖𝑛𝑜𝑝1 , 𝑒𝑚𝑖𝑛𝑜𝑝1 represent
espectively the start, duration and end of the smallest activity in
peration 𝑜𝑝1, 𝑏𝑠𝑘𝑖𝑙𝑙𝑜𝑝1 is the number of activities requiring 𝑠𝑘𝑖𝑙𝑙 in
peration 𝑜𝑝1. The cumulative profile of available resources of skill 𝑠𝑘𝑖𝑙𝑙
s represented by integrating the unavailability of each resource.

.3.7. DiffN constraint
This section applies only for temporal resources. It is evident that

hese resources may be assigned to, at most, one activity at the same
ime. As the problem is an MSPSP for staff resources, a Cumulative con-
traint by skill is not sufficient, so DiffN constraint (Beldiceanu and
ontejean, 1994) has been chosen to model resource allocation activi-
ies. In this problem, tasks are represented as rectangles with a width
epresenting a duration (an absence or an activity) and a height of 1
epresenting an individual (physical resource). Tuples are created to
epresent the binding between the skill of an activity and the skills of a
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resource and the localization of resources with localization of slot using 
a table constraint. Formally, the DiffN constraint is modeled as:

∀ 𝑟ℎ ∈ , ∀ 𝑡𝑖 ∈  , ∀ 𝑎𝑗 ∈ 𝑖,

DiffN

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⟨

< 𝑠𝑢1𝑟1

(

𝑒𝑢1𝑟1
− 𝑠𝑢1𝑟1

)

𝑒𝑢1𝑟1
, 1 1 2 >,

⋮

< 𝑠𝑢𝑧𝑟𝑘

(

𝑒𝑢𝑧𝑟𝑘
− 𝑠𝑢𝑧𝑟𝑘

)

𝑒𝑢𝑧𝑟𝑘
, 𝑘 1 (𝑘 + 1) >,

< 𝑠1 𝑝1 𝑒1, ℎ 1 (ℎ + 1) >,
⋮

< 𝑠𝑚 𝑝𝑚 𝑒𝑚, ℎ 1 (ℎ + 1) >

⟩

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(26)

with 𝑘 = ||, ℎ ∈ [1,… , 𝑘] the index of resource 𝑟ℎ in  and 𝑚 = ||.

5.4. Extensions

In order to adapt effectively to real industrial applications, some
extensions to this model can be proposed. The first is to insert the
possibility to return a ‘‘partial’’ solution even if all tasks are not sched-
uled. Indeed, because of the nature of data, configuration of simulations
or state of resources, the problem can be over-constrained. In this
case, it is requested to return the best partial solution with the more
tasks scheduled. To ensure the existence of a solution in all cases,
a ‘‘universal’’ solution with infinite resource capacity which absorbs
all constraints is added. Tasks not scheduled will be assigned to an
absorbent slot 𝑆𝑙𝑜𝑡𝑠𝑎𝑏𝑠.

On the other hand, another extension which could be helpful for
planners is the capacity to add certain additional (fictive) resources.
This enables a relaxation of resource constraints. The user manages
the number, the skills and the availability of additional resources. This
is helpful for planners to simulate how many exceeded resources they
need to schedule all tasks. For resources of type ingredient, it is simply
an additional stock. Let us call 𝑎𝑑𝑑 the set of additional temporal
resources and 𝑎𝑑𝑑 the set of additional ingredients. Resource capacity
is still controlled by DiffN constraint (26).

Naturally, the objective will be to schedule tasks with the most
resources initially given and use additional resources only as a last
resort. The man hour cost of reference (in average for all skills) is about
$75 per hour (Cho, 2021) and $100 per hour for additional resources
(depending on the rates of the individual subcontractor). To penalize
additional resources utilization, a coefficient of 1.33 is applied for the
use on an additional resource.

Furthermore, the model allows for the extension of a partial instan-
tiation, and thus to complete an existing partially filled planning. All
variables of start dates, duration and assigned slot of initial scheduled
tasks have been already instanced. The same has been done for all
activities related to scheduled tasks. The resources used to carry them
out are already assigned. Note that absorbent slots are not allowed for
tasks initially scheduled. Consequently, scheduled tasks keep exactly
the same schedule in the returned solution.

Finally, some unexpected findings may be discovered during the
execution of a task and involve some additional urgent works. A task
can take longer than expected and in the worst case the aircraft can
be frozen if the safety conditions are not adhered to. This situation
can generate disruptions and lead to economic impacts (delays, can-
cellations, emergency logistic orders, etc.). To manage these findings,
a notion of risk may be considered in the model. For example, a finding
rate with its severity can be associated with the task based on empirical
data. The risk could be interpreted as a varying duration to perform
additional works if the unexpected event occurs. Depending on the
severity and the occurrence rate of the disturbance, the risk should be
anticipated as having a proactive schedule. For this, a duration margin
depending of risky tasks in a slot could be defined. This margin would
provide time to react if the disturbances occur in the slot. The margin
time could be treated in the model as a constraint or as an objective
observing the cumulative risk of tasks in a slot. The aim would be to
avoid the scheduling tasks in critical areas where global risk is high.
 t
5.5. Objectives

The common objectives in aircraft maintenance scheduling are min-
imization of maintenance costs (Moudani and Mora-Camino, 2000;
Sriram and Haghani, 2003) and the maximization of remaining useful
life (Basdere and Bilge, 2014; Boere, 1977). Clearly, objectives are
driven by business priorities that express a multi-objective problem to
schedule the most tasks, maximizing their potential and minimizing
resource utilization to achieve it. To follow this functional reasoning,
a lexicography objective has been implemented to order different sub-
objectives. Let us recall that the lexicographical order enables to custom
the objective function to each airline preference.

The first objective (𝑜1) in lexicographical order is to schedule the
most of MID-term maintenance level tasks:

min
∑

𝑡𝑖∈𝐶

𝑐𝑜𝑠𝑡𝑠𝑙𝑜𝑡𝑖

ith 𝐶 =
{

𝑡𝑖 ∣ 𝑡𝑖 ∈  , 𝐿𝑒𝑣𝑒𝑙𝑖 = 𝐿𝑒𝑣𝑒𝑙𝑀𝐼𝐷
}

nd ∀ 𝑡𝑖 ∈  , 𝑐𝑜𝑠𝑡𝑠𝑙𝑜𝑡𝑖 =

{

1 if 𝑠𝑙𝑜𝑡𝑖 ∈ 𝑆𝑙𝑜𝑡𝑠𝑎𝑏𝑠
0 otherwise

(27)

Then, the second objective (𝑜2) is to schedule the most of SHORT-
term maintenance level tasks:

min
∑

𝑡𝑖∈𝐿

𝑐𝑜𝑠𝑡𝑠𝑙𝑜𝑡𝑖

with 𝐿 =
{

𝑡𝑖 ∣ 𝑡𝑖 ∈  , 𝐿𝑒𝑣𝑒𝑙𝑖 = 𝐿𝑒𝑣𝑒𝑙𝑆𝐻𝑂𝑅𝑇
}

(28)

After that, the third objective (𝑜3) is to prioritize the use of given
resources in the initial stock, thus minimizing the use of additional
resources:

min
∑

𝑡𝑖∈

∑

𝑎𝑗∈𝑖
𝑐𝑜𝑠𝑡𝑟𝑎𝑗

ith 𝑐𝑜𝑠𝑡𝑟𝑎𝑗 =

{

⌊1.33 ∗ 100⌋ if 𝑟𝑎𝑗 ∈ 𝑎𝑑𝑑 ⋃𝑎𝑑𝑑

0 otherwise

(29)

here 𝑟𝑎𝑗 is the resource assigned to activity 𝑎𝑗(9).
Because the exact unitary resource cost is not known, we considered

n arbitrary price of $1 for the use of an additional resource and $0 if
he resource is in the input data set. The value is multiplied by the
enalty coefficient of additional resource of 1.33. Then we multiply by
00 and we keep the integer part in order to obtain an integer value.
Let us remark that this lexicography order is likely to favor a

olution with a real resource on a farther slot than a solution with an
dditional resource on a closer slot from the task deadline.
Another objective (𝑜4) enables deviation time between task start

ate and its target date (birth date for urgent task or deadline for
thers) to be minimized. In fact, it makes it possible to identify the
losest slot to the target date:

min
∑

𝑡𝑖∈

|

|

|

𝑠𝑖 − 𝑡𝑎𝑟𝑔𝑒𝑡𝐷𝑎𝑡𝑒𝑖
|

|

|

ith 𝑡𝑎𝑟𝑔𝑒𝑡𝐷𝑎𝑡𝑒𝑖 =

{

𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝐷𝑎𝑡𝑒𝑖 if 𝑡𝑖 ∈ 𝑈𝑅𝐺𝐸𝑁𝑇
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 otherwise

(30)

Finally, if not all task durations are bounded, a last optional ob-
ective (𝑜5) is declared. It aims to minimize the deviation between
scheduled task duration and minimal task duration, 𝑝𝑚𝑖𝑛𝑖 .

min
∑

𝑡𝑖∈

|

|

|

𝑝𝑖 − 𝑝𝑚𝑖𝑛𝑖
|

|

|

(31)

Note that it would be possible to add additional objectives in
exicographical order. For instance, if a risk is defined, an objective to
inimize the global risk in the schedule could be considered. On the
ther hand, an objective to minimize the number of slots used could be
equested for an airline. For this, task distribution to other slots should
e observed (through a NValue constraint (Pachet and Roy, 1999)) and
he number of tasks in a slot would be maximized.
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Fig. 4. Sequential diagram of decision process.
5.6. Search strategy

One major difficulty in large scheduling problems is the size of the
search space and the important number of solutions. It is practically
impossible to enumerate them all.

Hence, it is essential to build a search strategy to answer to business
requirements. This custom search is designed to generate a first ‘‘good’’
solution in a ‘‘reasonable execution time’’. By ‘‘good solution’’, we mean
a solution satisfying the criteria of an expert. The schedule respects
tasks priority with a scheduling rate greater than 60%, resource uti-
lization is optimized and tasks are scheduled close to their respective
deadline. By ‘‘reasonable execution time’’ we mean that the solver
should be able to find an initial solution in less than five minutes.

It is common in scheduling problems to mimic human behavior to
search a first solution. This practice leads the solver using human exper-
tise and it makes the solution understandable by the planners. Shaukat
t al. (2020) proposes a sequential heuristic decomposed into two
tages: first the job assignment then the timetabling. The search strat-
gy presented in this study follows an expert reasoning. The decision
rocess is described by a sequential diagram in Fig. 4. The strategy
s described into two parts: the selection of variables and then the
election of values for each type of variables.

.6.1. Variable selector
One strategy used in practice is to sort tasks by priorities to try to

educe problem complexity. It is called the rule of ‘‘the most urgent
irst’’. The strategies usually follow the scheduling methods used in
ractice. In Hölzel et al. (2012) authors obtained a better optimization
y sorting tasks by decreasing labor cost hours to allocate the most
xpensive task closer to its deadline. Witteman et al. (2021) define
three classes of priorities in function of their periodicity interval. The
search strategy presented here is also driven by tasks. All tasks are
sorted to the following multi-criteria:

1. decreasing maintenance levels (first MID-term then SHORT-
term)

2. decreasing activity size
3. decreasing series size
4. increasing task positions in its series
5. increasing slot opportunities
6. decreasing task costs per hour

The first variable to be selected for a task is the assigned slot.
Afterwards, all activities from a task are sorted to this multi-criteria:

1. decreasing operation’s duration
2. decreasing activities’ duration (inside an operation)
3. skill (by alphabetic order)

For each activity (inside a task), an assigned resource variable
is selected then its start variable is selected. This makes it possible
to immediately check the consistency between the scheduling of the
current activity with the other activities of the task already assigned,
especially the constraint of maximal task duration.

After that, a task duration variable is chosen, if it is not already
assigned during the scheduling of activities. Task duration must be
assigned after scheduling activity variables, as it depends whether
activities are executed in parallel or sequentially. Starting task variables
are assigned at the end.

This selection is repeated for each task according to the initial task
sort.
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5.6.2. Value selector
A value selector is customized for each type of variable. For slot 

ariables, the value selected corresponds to the closest slot from the 
task deadline or the earliest slot for urgent tasks.

For resource variables, real resources are selected prior to additional
resources. Then, the search selects a resource which minimizes the 
global task duration by using different resources to parallelize activities 
as much as possible. After that, the most available resource in the 
selected slot is chosen. Finally, to minimize (respectively to standard-
ize) resource utilization, the selector chooses the least (respectively the 
most) used resource.

A lower bound value selector is also used for start of activity 
variables to fill the beginning of the slot first.

The value selection of task duration variable chooses the lower 
bound in the domain to minimize the makespan of the task.

The same applies for the starting task variable; the lower bound is 
hosen first.

6. Experimentation

Two experiments are proposed in this section. In the first one, the
performances of CP model are analyzed and compared to MIP solvers to
valid the choice of using CP. The second experiment presents a practical
use case on real line maintenance instances and compared the results
of the CP model with an industrial heuristic solver. Both experiments
are performed using an Intel(R) Core(TM) i7-6820HQ CPU 2.70 GHz
with 32 Go of RAM.

6.1. Performances analysis

This experimental section analyzes the performance of the CP in
comparison with MIP. For this, the model described in the previous
sections is implemented in MiniZinc 2.7.6 (Nethercote et al., 2007)
to test easily different solvers. The source code of the model and the
instance is available online.1 Two CP solvers are chosen, Choco-solver
4.10.14 and OR-Tools 9.7.2996 and two MIP solvers, CPLEX 12.10.0 and
Gurobi 10.0.3. The experiment consists in solving, up to the optimal
solution, the OALMSP on a small representative instance. The optimal
solution is the one that schedules all the tasks that are closest to their
target time without using any additional resources and with the least
task duration. Solvers are used in this experiment as a ‘‘black-box’’
without specific configurations. Because there is no lexicographical
objective in MiniZinc, we use a weighted objective respecting the
lexicographical order of Section 5.5. This works on a small instance but
ould be problematic for instances with larger domain sizes. In order
o carry out the experiment in a simple laptop, four threads are used
or each solver. A time limit of 12 h is fixed. Note that the solving
rocess is not deterministic due to the use of multiple threads. This
an lead to some variability in the solving statistics. However it does
ot compromise the purpose of the experiment to compare CP and MIP
olvers.
The instance used in this experiment simulates a simple use case of

ine maintenance scheduling for three aircraft on a two-week horizon
ime. The instance is composed of 28 tasks (one URGENT MID-term and
7 SHORT-term tasks), decomposed in 122 activities in total, with
3 available slots on two airports. Maintenance slots range from 40
o 260 min. Activity requirements are divided into 78 activities for
uman resources, 17 activities for serialized equipment, and 27 for
ngredients. The duration for each activity ranges from five minutes
o one hour. This simulation presents six periodic series composed of
hree to seven tasks with a periodicity from two to five days. Then, 12
asks are in disjunction and 14 precedence relations between operations

1 https://anonymous.4open.science/r/OALMSPmz-237F/
are represented. In addition, the resource workforce consists of seven si-
multaneous teams covering nine skills at both airports. They work eight
hours a day. Each technician is proficient in two skills. Moreover, six
serialized equipment are available on each airport and ingredients are
decomposed into five categories (three consumable and two reusable)
with sufficient quantities in stock. Additional resources are allowed
in limited quantity. Finally, maintenance activities are located in six
aircraft zones. Each zone has a limit of one to seven people at a time.

Solver performances are analyzed on three aspects: the size of the
models with the number of variables and constraints, the time to find
the optimal solution and finally the time to return a first solution and
its distance to the optimal one. As shown in Table 1, the MIP solvers
use more variables and constraints than CP solvers (maximum 10898
variables and 14406 constraints for CP solvers compared to 769635
variables and 1778571 constraints for MIP solvers). Therefore, the size
of models increases from less than 100MB for CP models to four GB for
MIP models. The compilation time to convert the model into a flatzinc
file is given for information only. On this small representative instance,
CP solvers find faster the optimal solution than MIP solvers (16 min
maximum compared to 1h15 with Gurobi). Note that CPLEX is unable
to find the optimal solution within 12 h. In addition, CP solvers are
able to find a first solution quickly, 35 s for Choco-Solver while CPLEX
needs 2h20. Even if the first solutions returned by CP solvers are far
from the optimal solution, they look like the first solution returned by
MIP solvers (within 2%).

Therefore, this experiment confirms that CP is suitable to solve the
OALMSP, in particular thanks to the small size of the model, its fast
solving time and its ability to quickly provide a first solution whose
quality can be controlled using an adapted search strategy.

6.2. Practical use case

This section presents a practical line maintenance scheduling use
case from an airline’s daily life. Aircraft maintenance experts currently
create maintenance plans. Suitable slots to schedule tasks in the main-
tenance plan are quickly found by planners thanks to their knowledge
and experience. The tasks are scheduled by priority:

1. the highest priority tasks are scheduled first to ensure the best
opportunity and available resource.

2. planning is filled by other lower priority tasks to the best avail-
able position as long as it is possible, (for example, increased
duration to execute a task, certain activities subcontracted etc.).

In order to choose the best compromise, these decisions require con-
stant discussions between maintenance planners, team leaders, flight
operators and authorities. This process can therefore take time and is
complex for humans to consider. This logical reasoning by priorities
is efficient in practice, but optimizing several objectives at once is
challenging for a human being.

In fact, airlines are looking for virtual planning support to simulate
multiple maintenance schedules, taking into account operating parame-
ters. Planners need to quickly identify how many tasks can be scheduled
depending on the simulation mode and the optimization obtained
on several indicators. AIRBUS PROTECT (Airbus, 2022) develops an
industrial solution based on a heuristic solver. The schedule generated
is considered as acceptable by planners. It will be our reference in this
part of the experiment. The heuristic used to solve the LMSP is close
to the one proposed by Shaukat et al. (2020). It is inspired by experts
practice and it is decomposed in two stages: first the task assignment,
then the timetabling of resource in a maintenance opportunity. After
the description of this heuristic solver, the CP model proposed in this
article is compared with the industrial reference solution on different
instances of a real maintenance use case. As seen in Section 4, the
aircraft line maintenance scheduling problem is an extension of RCPSP.
To recall, in the state of the art RCPSP optimally solve up to 60

activities. The smallest instance considered in our practical use case

https://anonymous.4open.science/r/OALMSPmz-237F/
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Table 1
Solvers comparison.
Solvers Choco-Solver (4.10.14) OR-Tools (9.7.2996) CPLEX (12.10.0) Gurobi (10.0.3)

Nb Boolean constraints 832 5164 0 0
Nb Boolean variables 1901 6824 352 352
Nb Integer constraints 5407 9242 1776542 1778571
Nb Integer variables 4193 4074 686831 769283
Nb Set constraints 156 0 0 0
Nb Set variables 78 0 0 0

Model size 22 MB 65 MB 4316 MB 400 0MB
Compilation time 0.57 s 1.28 s 1484.88 s 1555.19 s

Nb solutions to optimal 76 144 – 8
Solving time 963.24 s 464.37 s – 8734.79 s

Solving time for the 1st solution 35 s 3 min 1 s 2 h 20 min 40 s 43 min 8 s
Gap to optimality 99.71% 97.81% 99.71% 97.73%

Processing time (global) 16 min 9 s 7 min 46 s >12 h 1 h 14 min 26 s
S
b
M
a
h
f
i
e
l
o
c
F
r
r
a
a
u
c

t
s
a
f
o
m
c
a
W
c
s
t
e
r
S
a
t

m
a
a
i
a
a
b
t

n
a
b

is composed of 345 activities. The goal of these experiments is to
gradually measure the effect of the size of the instances in order to test
both models on a real use case and to show the limits of both solvers.
The expected time horizon to reach a real application is about one or
two months.

Since the heuristic solver can only generate one solution, only
the first solution of the CP solver will be considered. Actually, the
constructive search described in Fig. 4 has been tested on the instance
rom 6.1 with the lexicographical objective of 5.5 using Choco-Solver on
ava. It enables to provide a first solution in 14 s with a gap of seven
inutes to the minimum task duration on the last objective, which is
ery close to optimality.

.2.1. Reference industrial solution: Heuristic Solver
The industrial solution, that we call Heuristic Solver, replicates the

urrent practices of planners. The algorithm can be perceived as a
reedy algorithm, but in practice it is important to reproduce human
ehavior to ensure that the solution is understandable and acceptable
o those who intend to use it. This constructive heuristic is designed
o return within seconds or minutes at most a partial solution which
ries to minimize the potential loss objective (deviation time between
cheduled date and target date). The result of the solver helps planners
o save valuable time in drawing up maintenance planning schedules.
ith a solid understanding of the process the schedule can be further
efined quickly by planners to ensure that all of the aircraft’s main-
enance requirements are performed. In addition, to obtain a quick
limpse of the near future, it is useful for planners to simulate a number
f scenarios with different configurations. For example, testing the
easibility of maintenance on a horizon time according to available
taffing, inventory or flight schedules. Thus, staff or flight schedules
an be updated in advance, additional staff may be needed, the supply
hain can be adjusted, and certain problems can be anticipated.
Shaukat et al. (2020) give a highest priority to mandatory jobs,

.e. tasks with deadlines and jobs are sorted by deadlines. Consequently,
obs with the same priority value but earlier deadlines will be scheduled
irst in the aim to minimize their respective deviation between their
tarting time and their due time. Jobs without deadline are assigned at
he end because they present more maintenance opportunities. They
re sorted by processing time, from the shortest to the largest. To
nsure scheduling of large jobs, a large job is periodically inserted
nto the sequence. Lastly, some preferences can be included in the
orting process such as the preferred maintenance airports for certain
ypes of jobs, the availability of person-hours for specific types of jobs
t different airports, or the availability of spare parts and specialized
ools for maintenance jobs. At this task assignation stage, capacity
onstraints are roughly estimated in order to produce a more or less
easible schedule.
The Heuristic Solver follows also a strategy of the ‘‘highest priority

irst’’. In this case, all tasks are considered as mandatory. The tasks
riority is defined by its level of maintenance, MID-term tasks first then
 o
HORT-term tasks. For the same maintenance level, tasks are sorted
y their maintenance cost, from the most expensive to the cheapest.
aintenance costs include parts costs and man-hour costs. Finally, tasks
re sorted by their deadlines, to schedule first the earliest task. This
euristic determines, in pre-processing stage, possible combinations
or assigning a slot and resources to a maintenance task. The model
dentifies the time slots that match the duration of the task and it
nsures that all the required resources are present. A score is calcu-
ated for each possible combination to prioritize first the maintenance
pportunities close to the deadlines. In the same way, the score of each
ombination can take in account resource management preferences.
or example, a better score can be given to combinations using intern
esources than those using additional resources or the most available
esources in the inventory are given priority over those that are less
vailable. Like Shaukat et al. (2020), at this stage, resource capacities
re checked globally, by aggregating (by skill) the sum of resources
sed in a maintenance slot (number of resource and required duration)
ompared to the global capacity (by skill) in each maintenance slot.
The second stage of timetabling is almost identical for both heuris-

ics, except that Heuristic Solver allows multi-skilled resources by con-
idering a combination for each skill and a constraint to ensure that
resource is used on only one task at any time. Building upon the
irst stage result, the idea is to find a feasible schedule with a focus
n managing resource consumption at each moment and within every
aintenance slot. This stage ensures that simultaneously scheduled jobs
an occur within the capacity constraints of the opportunity. All jobs
re initially scheduled to begin at the start of the maintenance slot.
hen a resource violation is detected, which occurs when the resource
onsumption of scheduled tasks exceeds the capacity of available re-
ources, the conflict must be addressed by exploring alternative starting
imes. When no solution is possible, a task must be removed. Shaukat
t al. (2020) select the job for which the less resources are required and
eschedule it on the closet maintenance opportunity. In the Heuristic
olver , the second stage still uses the task priority of the first stage
nd the task with the lowest priority is removed and send back to the
ask allocation stage.
The Heuristic Solver consists of repeating the process of task assign-
ent and timetabling stages several times while scheduling a certain
mount of tasks or a maximum time limit. This approach first assigns
s many tasks as possible to their best combination. When this becomes
mpossible, it iteratively chooses a combination with a lower score until
ll tasks are scheduled. It is not possible to reschedule a task once it has
lready been scheduled. This incremental process allows the solver to
uild up the schedule step by step, optimizing the assignment of each
ask in a partially fixed schedule.
However, this model requires certain assumptions. Only mainte-

ance tasks have a start date, not individual activities. In other words,
task is considered as a block of activities in which activities can
e executed in parallel. This model does not consider the sequencing

f activities in a task. In addition, as in the RCPSP of Shaukat et al.
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Table 2
Instances description.
N◦ Instance Time horizon Fleet size Nb tasks Total activities Nb slots available Slots duration (in h)

Instance 1 1 week 2 AC 28 345 6 8.58–37.50
Instance 2 1 week 4 AC 66 743 18 8.33–37.50
Instance 3 2 weeks 1 AC 30 319 7 1.83–37.50
Instance 4 2 weeks 4 AC 131 1250 30 1.83–57.08
Instance 5 1 month 4 AC 325 3460 70 1.83–57.08
Instance 6 2 months 4 AC 731 8795 156 1.83–77.36
t
n
c
t
t
b
t
C

(2020), precedence relations such as the disjunction between the tasks
are not considered in this model. However, Heuristic Solver considers
the periodicity constraint for tasks that belong to the same series. To
approximate a human decision-making process, this solver needs to
make a large number of assumptions and perform pre-processing to
determine the score of each combination. Because of its constructive
approach, the solver does not perform a global optimization. However,
the solver is still able to assist planners in their decisions and quickly
provide a solution which conforms with current industrial standards.

6.2.2. Instances description
The following real-world instances are taken from a use case for the

maintenance department of an airline with a fleet of four A330 aircraft
of the same type. The input data is extracted from the Maintenance
Information System of the airline. The operational flight and staff
schedules are drawn from real situations. Most of the maintenance tasks
are routine checks such as Daily checks and Weekly checks. There are
a few A-checks with a periodicity of less than two months. Certain
assumptions were made to compare the two solvers:

1. Logistic inventory (equipment and ingredients) is partially in-
complete, so the use of additional resources is authorized so as
not to constrain the solver regarding this aspect.

2. Staff team is composed of 72 people covering seven skills. Skills
distribution among the staff team is proportional to the activities
skills required. Technicians are proficient in one or two skills and
they work between six hours and nine hours with two shifts per
day.

3. Additional staff is not authorized, only additional serialized
equipment and ingredients are allowed.

4. Each zone has an access limited to one or three people (depend-
ing on the size of the zone).

5. To compare with the Heuristic Solver, precedence constraints
(order) between operations in tasks are not considered. So,
all operations can be parallelized. Precedence relations will be
studied in a specific use case in 6.2.4.

6. Tasks in disjunction are not precised (not covered by Heuristic
Solver). Only periodicity constraint is considered.

7. Scheduling starts from scratch (no tasks scheduled in initial
planning).

8. Task duration is given (value of duration variable is already
assigned).

9. Risk management is not studied.

Six instances of increasing size are covered. Table 2 describes the
imensions of the instances. The horizon time of scheduling ranges
rom one week to two months and the size of the fleet increases
rom one to four aircraft. Hence, the RCPSP grows from 28 to 731
aintenance tasks i.e., from 319 to 8795 activities. The instances are
resented by time horizon and size of the fleet. The first four instances
ave a maximal task duration of seven hours and 12 min and tasks are
omposed of a maximum 47 activities. Activities last between seven
inutes and five hours. Tasks of the two last instances have a maximal
uration of 13 h and 21 min with 307 activities maximum, of duration
etween seven minutes and nine hours and 11 min. Aircraft have
ifferent flight plans. Short-haul aircraft have a lot of short slots and
edium/long-haul have less slots but longer.
Results are analyzed by examining KPIs used in a practical context
o evaluate the quality of a schedule. The criteria studied are the
umber of scheduled tasks, the number of distinct resources used, the
ost generated by the use of additional resources, the mean deviation
ime between the scheduled date of a task and its target date and finally
he solving time to reach a first solution. Only the first solution returned
y the solvers is analyzed, due to the industrially accepted solving
ime of a few minutes maximum. All simulations are performed using
hoco-solver 4.10.12. Code runs on Java 1.8.

6.2.3. Results analysis
The six instances have been scheduled using the two solvers. Results

are summarized in Table 3. The solutions provided by each solver are
examined respecting the lexicography order by followings KPIs:

1. the number of scheduled tasks which indicates the performance of
the solver scheduling first priority tasks.

2. the additional resources cost which represents the additional cost
of using additional resources to perform activities. This KPI
shows the quality of resource allocation of the schedule.

3. the mean deviation time which means the average time between
the starting time of task and their respective deadline. This
indicator highlights the quality of the schedule to minimize
potential loss.

4. the solving time which expresses the computational performances
of the solver. This KPI is rather an acceptance criterion. To
be accepted, a first solution must be returned in less than five
minutes. Values are given for information only to compare the
two solvers.

Firstly, the number of tasks scheduled by the two solvers are closed,
even if CP Solver is able to schedule one more task on Instance 2 and 4.
On Instance 5, CP Solver presents a better scheduling rate of 4%. This
is reassuring when seeking to obtain a solution close to an industrial
reference in terms of planning rate.

In terms of additional resource costs, CP Solver uses less additional
resources on the first four instances where the number of scheduled
tasks is similar for both solvers. To recall, only additional ingredients
and tools are authorized. On Instance 5, CP Solver presents an additional
resource cost higher than Heuristic Solver because CP Solver schedules
13 more tasks than Heuristic Solver. Overall, CP Solver uses fewer avail-
able time resources (people and serialized equipment) in all instances
(5.75 fewer people on average). This frees up more time and allows for
better resource allocation.

The deviation time is averaged to study the quality of the scheduled
start time of the tasks, regardless of the number of scheduled tasks.
To recall, the aim is to save the potential loss by scheduling the tasks
close to their target date. On Instance 1, the mean deviation time is
the same for the two solvers. Indeed, the two solvers scheduled exactly
the same tasks at the same time. Globally CP Solver presents a better
plan with a smaller deviation on average, except in Instance 3 where
Heuristic Solver obtained a lower mean of one minute. The difference
seems more noteworthy in large instances (1% on Instance 2, 8% on
Instance 4 and 4% on Instance 5).

Finally, as expected Heuristic Solver is faster than CP Solver in the
majority of instances, except in Instance 2 where CP Solver returns a

solution 0.463 s faster. Over a one-week horizon, for one or four aircraft



Table 3
Solver results comparison.
N◦ Instance Nb scheduled task Add. resource cost Mean deviation time Solving time

(in $) (in min) (in s)

Heuristic Solver CP Solver Heuristic Solver CP Solver Heuristic Solver CP Solver Heuristic Solver CP Solver

Instance 1 17/28 17/28 10640 9310 619 619 1.375 1.498
Instance 2 43/66 44/66 26201 23541 865 858 5.026 4.563
Instance 3 23/30 23/30 15029 13167 1558 1559 1.580 11.022
Instance 4 90/131 91/131 50806 44954 1401 1288 6.992 19.834
Instance 5 219/325 232/325 111986 126217 1433 1385 15.596 148.751
Instance 6 527/731 – 898149 – 2404 – 11.757 –
Table 4
Results of CP Solver on Instance 6, relaxing of four times maximal task duration.
KPI CP Solver

Nb scheduled tasks 554/731
Additional resource cost (in $) 454461
Mean deviation time (in min) 2063
Solving time (in s) 325.825
Maximal duration exceeda (in min) 1296
Mean duration exceeda (in min) 62.90
Standard deviation duration exceeda (in min) 209.85

a From target duration.

(Instance 1 and 2), the two solvers have similar solving time, but over a
two-week horizon time (Instance 3), CP Solver is seven times slower
than Heuristic Solver. It seems that CP Solver needs to reconsider its
branching decision several times in order to find a solution in this
instance. In Instance 4, CP Solver is three times slower than Heuristic
Solver and 10 times slower in Instance 5. However, even if solving time
is an important aspect for planners, CP Solver is always able to find a
solution within the five-minute time limit.

Instance 6 is chosen to illustrate a limiting case of two-month, four-
aircraft scheduling. CP Solver is unable to provide an initial solution
within 30 min while Heuristic Solver finds a solution scheduling 72%
of tasks in about 12 s. However, we have tried to relax the constraint
on the maximum duration of the tasks, that is, the activities of the
tasks can be scheduled in any number of slots and the solver is able
to find a solution. Therefore, we proposed to manage the relaxation
of this constraint by allowing the upper bound of the task duration to
be proportional to the target duration proposed by the airline. The best
coefficient finding a solution within 15 min is four times the target task
duration. Table 4 describes the results of this solution.

By relaxing the constraint on the maximum duration for a task to
complete all of its activities, CP Solver can find a first solution in about
five minutes. It schedules more tasks than Heuristic Solver (75% vs 72%)
with a smaller deviation time from deadlines on average. However, the
total task duration exceeds the target duration of the tasks by 10 h with
an average excess of one hour per task. The high standard deviation
indicates some tasks were overdone. It is recommended to execute all
the activities of a task within a close temporal window. This situation
deserves to be discussed with experts. Should they extend the duration
of all tasks by an average of one hour or should they extend locally
the duration of only specific tasks? Another solution could be to add
locally additional resources on specific slots. Furthermore, the objective
to reduce the exceeded time from target duration could be improved to
optimize subsequent solutions but it would take some time.

6.2.4. CP model improvements
In this section, two situations are tested where the CP Solver shows

scheduling improvements. The first case illustrates the scheduling of
priority tasks as Weekly check over a long horizon time. Then, the
second case shows how CP Solver integrates precedence constraints in
a situation where operations inside a task must be ordered to execute
it.
Table 5
Results comparison for a schedule of 26 weekly maintenance tasks on four aircraft on
seven weeks.
KPI Heuristic Solver CP Solver

Nb scheduled tasks 17/26 23/26
Additional resource cost (in $) 45 885 58121
Mean deviation time (in min) 2024 1746
Solving time (in s) 7.831 18.571

Table 6
CP Solver results for a schedule of 19 maintenance tasks respecting operations order.
KPI CP Solver

Nb scheduled tasks 19/19
Additional resource cost (in $) 0
Mean deviation time (in min) 1753
Solving time (in s) 11.885

Weekly tasks
This instance is composed of 26 Weekly checks of four aircraft over

a seven-week horizon time. These tasks gather 46 activities from 22 min
to five hours. 122 slots are available from four hours and five minutes to
52 h. This problem represents the difficulties faced in a real scheduling
situation. Indeed, planners usually allocate first large-scale tasks, as
Weekly checks, and thereafter they complete the schedule with the
remaining tasks.

In this situation presented in Table 5, CP Solver returns a better
solution in terms of scheduling rate and mean deviation time. The
additional resource cost of CP Solver is higher because of the 16 more
scheduled tasks. Both solvers use 49 available time resources (techni-
cians and serialized equipment). The CP proposition helps planners to
better distribute resources in order to schedule a greater number of
tasks.

Ordering of activities in tasks
This instance presents a future requirement for planners. Today,

precedence between operations through a task is not explicitly given as
inputs. Knowledge belongs to planners and human experts. However,
in the near future, this information will be indicated and solvers must
integrate it. That is also the reason why CP has been chosen to easily
model an RCPSP. The following example simulates a problem of 19
tasks on three aircraft between three and 25 activities distributed
from one to four operations. Nine tasks have precedence constraints
between their operations and 12 tasks have disjunctive constraints.
Tasks periodicity range from two days to five days. The maintenance
planning is composed of 23 slots between 40 min to four hours and
40 min.

This instance is given as example to illustrate the purpose. All tasks’
disjunctive constraints and precedence constraints between operations
inside a task are respected. The solver provides a solution scheduling
all tasks in 11 s (see Table 6). These results motivate to schedule more
precisely tasks sequencing in a slot to be more in adequacy with the

real execution of tasks.
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6.3. General results

The solvers are compared according general KPIs used by planners 
to evaluate a schedule. Globally the two solvers are quite close but CP 
Solver presents some significant improvements on its first solution on 
ain objectives. CP Solver has a better scheduling rate, especially on 
omplex instances. Then, it is able to optimize better resources allo-
ation and it saves additional resources. Furthermore, CP Solver saves 
ore potential by scheduling on average closer to the tasks deadlines. 

Without surprises, Heuristic Solver is faster than CP Solver but CP 
Solver returns a first solution in acceptable time of less than five 
minutes. However both of the two solvers present some limits on some 
instances. CP Solver is suitable for new types of problems thanks to its 
model flexibility. Even if its solving performances are reasonable for a 
complex RCPSP, CP Solver fails to find a solution on the largest instance 
within an acceptable time for planners. This will require further works 
to propose an industrial process for a real production application.

7. Conclusion & future works

This paper presents a Constraint Programming (CP) scheduling
model for improving air transport management by optimizing main-
tenance schedules. One preliminary step is to assist planners in the
scheduling of large-scale maintenance tasks so that resources are avail-
able for all requirements. The first contribution of this paper is to
provide an operational plan for line maintenance that can be directly
executed by technicians. This study proposes a model for the Op-
erational Aircraft Line Maintenance Scheduling Problem (OALMSP)
by allocating a resource to all the elementary activities that make
up a maintenance tasks. Therefore, all precedence relations between
operations inside a maintenance task can be scheduled. This multi-
level scheduling offers a better granularity in the operational line
maintenance scheduling and it aims to reduce maintenance costs and to
optimize the use of resources. Additionally, the solver’s rapid response
enables a reduction in the time required to create a maintenance plan.
This problem of aircraft maintenance scheduling is described as a Multi-
Skill RCPSP with some extensions applied to maintenance. Addressing
OALMSP using CP is the second contribution of this work. CP is adapted
to manage the complexity of the OALMSP and to answer to all busi-
ness requirements. It provides a deterministic method and explicable
scheduling decisions: the solution is understandable and directly usable
by schedulers. In addition, no learning stage is required and the model
can be applied to situations with no historical background. Actually,
CP offers a flexibility to adapt the model to other airlines use cases
by integrating easily new constraints or objectives. The multi-objective
optimization is based on a lexicographical order to respect hierarchical
business priorities between objectives. Because of planners’ need to
respond quickly, we only focused on an initial solution. Our approach
achieved the established goals, to address the OALMSP in a single
scheduling model and to find a first solution in a reasonable time
thanks to our constructive search strategy. The CP model has been
compared with an existing industrialized heuristics model applied to
real maintenance use cases. Results showed that our method is more
accurate in terms of the main objectives. It schedules more tasks in
representative instances, it minimizes additional resource utilization
and it schedules on average closer to the task deadlines to minimize
potential loss. However, the RCPSP presents certain limits to solving
large instances and the solving time increases significantly with the
horizon time scheduling, which is not completely satisfactory for a daily
application in an industrial context.

A future work could be to use the first solution returned by the con-
structive search and try a local search strategy to improve the quality
of the solution. Then, future works will need to focus in particular on
a process to use this model proposed in an industrialized application.
Indeed, we have encountered certain limits with a global CP model

to solve particular industrialized RCPSP in a fast time, as expected by
users. Even by improving the search strategy, it would be difficult to
ensure a result in a shorter execution time, and we are concerned about
proposing a search method that is too specific to one airline and not
generic. The main idea will be to split the general model into two sub-
problems of lower complexity. A column generation approach might be
an alternative to mathematically represent the two levels of scheduling.
The master problem could consider the task allocation and global
maintenance constraints at task level and then, the pricing problems
could manage local constraints of resource allocation at activity level.
An hybridization with CP could be used to model the pricing problem
and to benefit of CP properties (Gualandi and Malucelli, 2009; Gabteni
and Grönkvist, 2009).

Another perspective would be to make planning more dynamic and
o use it to manage unexpected events. In order to closely mirror real-
orld airline scenarios, the model could incorporate risk management
o consider unforeseen issues that may arise during task execution.
his proactive approach could predict potential failures and anticipate
he time to address them. Based on the empirical data shared by the
irline and manufacturer, the risk could take into account for each
ask the probability of finding an issue and its severity. Thanks to
he flexibility of Constraint Programming, it should be easy to insert
ew constraints or new objectives in the model. The risk would be to
ranslate these in the model as a margin duration to anticipate the delay
f disruptions occurred. Otherwise, thanks to its short solving time, this
ine maintenance solver could be used for airline recovery problems.
ence, it would enable to reschedule quickly a maintenance planning
n case of disruptions such as unscheduled resource unavailability or a
hange in flights plan due to a SWAP decision.
Once maintenance scheduling is optimized in an industrial context,
last perspective could be to analyze how maintenance optimization
ffects the reduction of maintenance duration. This could lead to the
eduction or even elimination of some maintenance slots. This would
e an improvement to the operational potential of the aircraft.
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