
HAL Id: hal-04302755
https://imt-mines-albi.hal.science/hal-04302755

Submitted on 23 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Physics of Decision: managing and preparing critical
supply chains to supply disruptions

Thibaut Cerabona, Manon Grest, Julien Jeany, Matthieu Lauras, Benoit
Montreuil, Frederick Benaben

To cite this version:
Thibaut Cerabona, Manon Grest, Julien Jeany, Matthieu Lauras, Benoit Montreuil, et al.. Physics of
Decision: managing and preparing critical supply chains to supply disruptions. IFAC’2023-The 22nd
World Congress of the International Federation of Automatic Control, Jul 2023, Yokohama, Japan.
pp.11135-11140, �10.1016/j.ifacol.2023.10.830�. �hal-04302755�

https://imt-mines-albi.hal.science/hal-04302755
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


IFAC PapersOnLine 56-2 (2023) 11135–11140

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2023.10.830

10.1016/j.ifacol.2023.10.830 2405-8963

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Physics of Decision: managing and preparing critical supply chains to supply 

disruptions 

Thibaut Cerabona*, Manon Grest**, Julien Jeany**, Matthieu Lauras*,***, Benoit Montreuil***, 

Frederick Benaben*,*** 

*Centre Génie Industriel, IMT Mines Albi, 

Albi, France, (e-mail: {thibaut.cerabona, matthieu.lauras, frederick.benaben}@mines-albi.fr). 

**Scalian, 

Toulouse, France, (e-mail: {manon.grest, julien.jeany}@scalian.com). 

*** ISyE, H Milton Steward School of Industrial & Systems Engineering, Georgia Institute of 

Technology, GA 30332, Atlanta, USA, (e-mail: benoit.montreuil@isye.gatech.edu). 

Abstract: Today, supply chains face many uncertainties and making well-informed decisions requires 

performant decision support systems and methods. The purpose of this study is to apply a new perspective 

of decision support: the Physics of Decision (PoD). This approach considers risks or opportunities 

(potentialities) as physical forces and which are assessed regarding their intensity and contribution towards 

or as deviations of the system’s performance trajectory compared to a target. Such an evaluation permits 

studying the effect of different mitigation actions to support the decision-making process and prioritize 

corrective measures. The approach is applied to an aerospace manufacturing case study facing a supply 

shortage, a high stake in this sector.   
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1. INTRODUCTION 

In today's increasingly dynamic and uncertain global 

environments, instability is becoming the norm (Taleb 2007, 

Benaben et al. 2021). Historical data shows that disasters 

resulting from this instability have increased dramatically in 

recent years (Munich Re, www.munichre.com). Besides, 

surveys show that Supply Chains (SC)s are quite sensitive and 

vulnerable to disruptions (Sodhi and Tang 2012; BCI 2019). 

Indeed, COVID 19 pandemic is a good example of the SC 

chaos ensured (Fortune 2020). So today, SC risk managers are 

very interested in a decision-making support to identify 

disruption scenarios, fortify networks, monitor disruptions, 

and determine actions (Ivanov and Dolgui 2020), as it is key 

for organization to remain competitive (Bititci et al. 2012).  

However, such a system able to manage and aggregated 

multiple control variables and evaluating the impact on 

complex structures, such as SCs, on the performance has long 

represented a challenge in the field of performance 

management (Bititci et al. 2012). Going back to the basics, 

Simon (1955) proposed three essential steps for managing a 

system in an unstable environment: intelligence, design and 

choice. Intelligence provides a conceptual workspace for 

decision-makers to define and understand the system, design 

creates reference models to model potential consequences, and 

choice determines the mechanisms to select from the available 

options. None of the existing approaches dedicated to decision 

support can answer these three fundamental steps to support 

the decision-maker in the face of instability (Benaben et al. 

2021).  

Physics of Decision (PoD) as an innovative decision-support 

approach, based on physics motion laws, wishes to provide 

innovative decision-support tools in the context of instability 

and uncertainty (Moradkhani et al. 2022a), by answering 

Simon’s three steps in a single approach. In the PoD approach 

(introduced in Benaben et al. 2020), the effect of potentialities 

is modelled by forces that push or pull a system like a SC in 

its performance framework (see Figure 1) by varying its Key 

Performance Indicators (KPIs). The PoD paradigm is intended 

to support decision-makers in day-to-day performance and risk 

management but it can also be applied during crisis 

management, as demonstrated in the following experiment. 

This paper examines the performance of a SC, regarded as an 

aggregated network system, for which KPIs are measured. It 

is seen as a trajectory, representing its displacements as a result 

of events caused by potentialities. The consequences of these 

variations are observed through the deviation of the SC's 

performance trajectory in its performance framework. This 

approach aims to determine how decisions and the resulting 

events can be combined to assess their influence on SC 

performance. Decision makers are often overwhelmed by KPIs 

and lack visibility into potential disruptive events, making it 

difficult to make effective decisions. To cope with these the 

PoD paradigm seeks to provide decision makers with an 

intuitive decision and performance management system, with 

an immersive visualization of system performance in a 3D 

space and multiple KPIs around a targeted and predicted 

trajectories.  
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The objectives of the paper are the following: (i) demonstrate 

the potential of PoD to deal with critical SCs with high demand 

volatility and environmental-related risks. Those are 

particularly sensitive to raw material supply shortages as of 

2020 and provide to the digital revolution ongoing and (ii) 

apply the PoD approach based on a realistic case study 

(aerospace manufacturing environment) using simulation. 

 

Figure 1. Representation of the PoD approach. 

The remainder of this article is organized as follows: Section 

2 presents the PoD paradigm and the underlying physics 

concepts. Section 3 presents an application of the PoD 

paradigm on a fictional but reality-inspired use-case. Finally, 

Section 4 concludes this article with some perspectives. 

2. BACKGROUND AND RELATED WORKS 

2.1 Physics of Decision foundations 

The PoD approach is based on two complementary modeling 

spaces (illustrated in Figure 1): the description 

space and performance space (introduced in Benaben et al. 

2021), which participate in the development of the different 

phases presented in Simon's framework. To support 

the intelligence phase, the description space is a multi-

dimensional space dedicated to the study and description of the 

evolution of the SC attributes, which constitute the dimensions 

of this space (Benaben et al. 2021). The performance 

space addresses organizations’ need to measure, monitor, and 

manage their performance across multiple dimensions 

(Nudurupati et al. 2011), by providing a dynamic multi-

dimensional measurement and visualization space (each 

dimension being one of their KPIs) to support decision-making 

(Benaben et al. 2021). In this space, potentialities are modeled 

as forces, which once activated, will deviate the performance 

trajectory of the SC (monitoring and measuring the evolution 

of its performance), positively or negatively depending on 

their type. This concrete deviation of the performance 

trajectory reflects the intensity of the impact of each 

potentiality on the SC performance. Thus, with this physics-

based approach, SC performance moves like an “object” in its 

performance space as a result of the different forces activated. 

This space is dedicated to the choice and decision-making 

stage, by studying the best combinations of forces, to join or 

stay in the target area with the least effort (possible trajectories 

in Figure 1). The target area (the shape of which remains to be 

studied and which could be, for example, a target surface, as 

in Figure 1) models the performance objectives of the SC, as 

well as their evolution after the occurrence of the potentialities 

and the decisions taken in return by the decision makers. 

These two spaces are interconnected by different mathematical 

relationships of varying complexity (corresponding to the 

design phase in Simon’s framework). In this study, only the 

input-output relations between these two spaces will be 

studied, i.e. how the variations of the value of the attributes 

(displacement in the description space) lead to impact on the 

KPIs (deviations of the different performance trajectories 

considered, seen and measured in the performance space). For 

a SC and its environment, composed of n attributes (d1, d2, …, 

dn), the description space is therefore of n dimensions which 

can be defined as the space ℝn. SC performance is measured 

from m KPIs, (p1, p2, …, pm), creating an m-dimensional 

performance space, defined as the space ℝm. These two spaces 

are linked by a function expressing the KPIs according to the 

attributes, defined by ψ∶ ℝn ⟶ ℝm. For each of its states i, SC 

can be modeled in its description space by the point Di = [d1,i, 

d2,i, …, dn,i]. Thanks to the relation ψ, its corresponding 

performance Pi can be obtained as follows: Pi= ψ(Di) and [p1,i, 

p2,i, …, pm,i]= [ψ1(Di), ψ2(Di), …, ψm(Di)].  

With these equations and the degrees of freedom of each 

attribute (called control space, blue parallelepipeds in Figure 

1), i.e. their constraints and variations related to the 

management of the system at each moment, it will be possible 

to adjust the shape of the target zone according to the 

capacities of the SC and time. For this study, the relations 

between the two spaces (being too complex to put into 

equation) will be built from a simulation model (presented in 

section 3), like a “black box” which will allow to estimate the 

relations between the attributes and the KPIs of the studied SC.  

Figure 2 summarises the analogies between the PoD approach 

and Simon's framework.  

2.2 Newton’s second law  

The principles of the PoD approach derive directly from 

classical physics, in order to assist the decision-maker in 

processing the complexities of the SC and to allow him to 

orient SC performance towards its objectives. For that 

Figure 2. Positioning of the PoD framework in relation to 

Simon's framework. 
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purpose, Newton’s second law of motion will be used. This 

law claims that the magnitude of the net force is directly 

proportional to the acceleration of an object produced by this 

net force and the mass of the object. Three measures of kinetics 

will be of particular interest in the study of the movement of 

SC performance (its management): displacement, velocity and 

acceleration. 

Displacement (ΔKPI) is the variation in the value of a KPI, 

which indicates where the SC is deviating from its optimal 

trajectory. This measure allows for quick corrective action to 

resolve the problem before it gets worse. It, therefore, offers 

an interesting opportunity for operational decisions, which are 

looking to get closer and closer to real-time performance 

measures. 

Velocity is the variation of the displacement of a KPI over an 

interval δt: dKPI/dt. According to its sign, it shows the positive 

or negative growth of the KPI, and the progress or trend of the 

SC towards its performance objectives. To be fully effective 

and to provide a more accurate picture of SC dynamics, this 

measurement needs to be monitored over a longer period of 

time than displacement. 

Acceleration is the variation of the velocity over an interval δt: 

dv/dt=d2KPI/dt2. The magnitude of the acceleration can reflect 

the strength or weakness of the fluctuation of a KPI, the sign 

of which reflects the nature of that fluctuation, i.e. whether it 

is moving towards (positive) or away from (negative) its 

targets. According to Newton's second law, the direction of its 

associated vector is always the same as the net force resulting 

from a potentiality (Moradkhani et al. 2022b).  

In this study, the velocities and accelerations will be calculated 

locally, by the following formulas: 

Velocity = [(x(t+δt) - x(t-δt))/2δt] = vx(t)                    (1) 

Acceleration = [(vx(t+δt) - vx(t-δt))/2δt] = ax(t)      (2) 

3.  EXPERIMENTS  

This paper aims at demonstrating PoD’s interest in piloting the 

performance of critical SCs. In this perspective, the assessment 

of the forces applied to an electronic card SC and different 

scenarios using simulation has been performed. The case 

study, method and results analysis are detailed in the following 

sections. 

3.1 Studied SC 

In this article, the considered SC is inspired by a real case 

study. It involves an electronic card manufacturer providing to 

a satellite assembling company. Today such a SC is regarded 

as critical as it contributes to the large demand for electronic 

components required by the digital revolution ongoing. 

However, it is today sensitive to “the electronic component 

crisis” affecting numerous industries worldwide that began in 

2020, as a result of demand exceeding supply.   

The model developed in the simulation, relying on the case 

study, embeds two production lines, one producing two 

relatively similar electronic cards, their specifications induce 

different production times on the same machine. Those, are 

sub-elements that once assembled on the second line become 

the final product sold to the client. This last is set with a stable 

demand of 5 products a month. Accordingly, but with some 

variably in quantity and frequency, the production planning of 

sub-elements is made. Triangular distributions have been used 

to reproduce the product launches based on real production 

order records obtained. Machine production times also follow 

a triangular distribution with minimum and maximum values 

gathered from the field. To ensure production, a pool of 40 

human resources has been defined in the model. Operators are 

dispatched between 2x8 hours from 6 am to 11 pm with a fewer 

capacity during the afternoon. Due to the criticality of such 

components for a satellite to operate, numerous quality 

controls are performed along the production cycle and end 

with the choc test step. This last, not performed on-site, 

requires every batch has a sample to be sent to a specialized 

laboratory. If the sample passes the test, the batch is released 

and the delivery can then proceed. For the rest, regular 

gateways following a triangular distribution with a 98% of 

average compliance rate were set. Items failing the test are 

directed to an internal quality control process. There, time is 

spent to make a diagnostic and if repair is possible, depending 

on the amount of work, it is performed on-site (10%) or sent 

to a subcontractor (70%). Else, the item is sent to the disposal 

in 20% of cases. As for the supply of the set of components 

used for the assembly, a set of suppliers with a limited capacity 

ensure the deliveries. Supply orders are triggered when the 

stock reaches a threshold value defined as the average 

consumption of the item by the machines multiplied by the 

sum of the delivery, quality inspection lead times and the stock 

coverage value set in days. The quantity re-ordered is a fixed 

quantity equal to the threshold value.    

3.2 Application of the Physics of Decision approach 

The PoD approach proposes to study three different types of 

performance trajectories (Moradkhani et al. 2022a), illustrated 

in Figure 3. The inertia trajectory is obtained by measuring the 

SC performance caused by its natural behavior, i.e. the SC 

does not face any unanticipated disturbance (Moradkhani et al. 

2022a). This trajectory is seen as a reference trajectory for the 

SC, even optimal in the absence of potentialities (it could be 

considered as the target at some point). Any deviation from 

this trajectory is considered as a potentiality and modeled by a 

force. The passive trajectory corresponds to the performance 

of the system facing a disruption without any specific reaction. 

It combined then the inertia of the SC with changes due to 

disturbances (of the SC itself or its environment). For the 

experiment, the perturbation is a supply shortage from the 

single supplier of electronic board occurring at the yearly 

beginning of the year 2020 (on day 762 of the simulation) and 

lasting for 30 weeks as an average delay as reported in media 

(finished on day 972).  

The active trajectory corresponds to the performance of the 

system facing a disruption but adding some specific reaction. 

It combines the changes in performance measured by the 

passive trajectory with the changes in performance resulting 

from decisions made by managers to counter and reduce the 

consequences of these disturbances. To face the shortage of 

electronic boards, three different practices, usually performed 
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section 3), like a “black box” which will allow to estimate the 

relations between the attributes and the KPIs of the studied SC.  

Figure 2 summarises the analogies between the PoD approach 

and Simon's framework.  

2.2 Newton’s second law  

The principles of the PoD approach derive directly from 

classical physics, in order to assist the decision-maker in 

processing the complexities of the SC and to allow him to 

orient SC performance towards its objectives. For that 

Figure 2. Positioning of the PoD framework in relation to 

Simon's framework. 
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in the industry, have been studied. The first practice is to 

increase the item safety stock and gathers compensatory stock 

to mitigate shortage effects. For the experiment, the initial 

safety stock value was set to 5 days while 30 days (from the 

beginning to the end of the simulation). The second practice 

(activated following the disruption on day 762 until the end of 

the simulation), consists of sourcing from a “broker” (i.e. 

wholesaler) generally 6% more expensive than trading with 

the manufacturer and generally giving preference to the 

highest bidders. Finally, the last scenario includes double 

sourcing (activated following the disruption on day 762 until 

the end of the simulation), which represents one of the possible 

practices of supply risk reduction where an agreement is made 

with a second supplier to activate and ramp up its capacity to 

compensate the failing supplier when it happens.              

To be able to visualize the different performance trajectories, 

the study is limited to the evaluation of the performance of this 

SC according to three business KPIs: the turnover calculated 

as the order monetary value with a discount in case of late 

delivery (0.001% of the order amount per day that cannot 

exceed a 10% reduction in total), the Working Capital 

Requirement (WCR) as the difference between the final 

product manufacturing price and the purchase costs, and the 

production lead time between the production order launching 

time and the end of the last step of the production process. The 

KPIs monitored in this use case were selected among the 

metrics mainly tracked in such a situation, after consultation 

with SC field experts. Although, it should be noted that many 

other KPIs are available and can be considered in a more 

global approach. 

For the analysis to follow, 30 replications of each of the five 

studied scenarios (inertia, passive and three actives) have been 

simulated. KPIs values were recorded after 2 years of 

simulation ramp-up and for 900 days. In addition, to make the 

comparison of KPIs possible regarding the deviations and 

variations, all obtained KPI values for each scenario have been 

normalized, so that they are bounded between [0,1], using the 

following formula: KPInorm = KPI−KPImin

KPImax−KPImin
. According to 

this normalization formula and the definitions of the different 

KPIs, the target area was defined as the point in the 

performance space (0,1,0), i.e. seeking to maximize turnover 

and minimize production lead time and WCR. 

It is important to take into consideration that the application of 

the PoD approach (generally and more particularly in this 

article) is not primarily intended to serve as an optimization 

approach, especially in obtaining the “best” active trajectories. 

By “best” active trajectories, we mean trajectories obtained by 

optimizing the characteristics of the active potentialities (the 

counter measures). The purpose of this paper is to apply the 

PoD approach for given potentialities with given 

characteristics for each specific time and thus benefit from the 

contributions of the PoD approach among these actions, which 

generates a force allowing to get as close as possible to the 

performance objectives. Of course, sensitivity analyzes could 

be performed in order to find the best combinations of the 

characteristics of the active potentialities, allowing to study the 

different zones of the description space (but also those of the 

performance space in view of the mathematical relations 

existing between these two spaces, refer to section 2 for more 

details), in order to determine the favorable and risky areas.  

As it stands, the PoD approach relies on two strong 

assumptions (directly related by Newton’s second law) to 

approximate a measure of forces applied to the SC: (i) 

considering the mass of the system as constant and (ii) 

considering the forces as summable. The constant mass 

hypothesis allows, according to Newton's second law (𝐹⃗𝐹𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑚𝑚𝑎⃗𝑎), to approximate the net force applied to the system studied 

by its global acceleration (modulo a constant factor). Based on 

this observation, all the following analyses will be derived 

from the analysis of the various accelerations measured (by 

equation 2, for a measurement performed every 30 days from 

t= 462).  

Figure 3. 3D performance trajectories. 
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4. ANALYSIS OF THE RESULTS 

From the previous study, and from a motion perspective, the 

objective is to model the significant forces. These significant 

forces are (i) the perturbation force (the force due to the 

disruption) and (ii) the compensation force (the force due to 

the envisaged mitigation measures). These forces are to be 

modeled by approximating them as accelerations. First of all, 

there is the reference acceleration (the inertia acceleration 

representing the day-by-day acceleration of the inertia 

trajectory). Then, two different accelerations of interest 

representing the forces mentioned above: (i) the disruption 

acceleration obtained by calculating the day-by-day 

acceleration of the passive trajectory minus the inertia 

acceleration, and (ii) the compensation acceleration obtained 

by calculating the day-by-day acceleration of the active 

trajectory minus the passive trajectory. These accelerations are 

described in equations (3) and (4). 

𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑𝑛𝑛 = 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 − 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  (𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑𝑛𝑛 +
 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) −  𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                                                   (3)                           

𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  −  𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 = (𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +
𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑𝑛𝑛  + 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)  − (𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑𝑜𝑜𝑛𝑛 + 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)           (4)                               

By using the previous equations, these accelerations have been 

calculated as 3D vectors within the performance space. To 

figure out the actual impact of each of these accelerations, two 

main elements must be considered: (i) the actual intensity of 

the force (approximated with the norm of the acceleration 

vector) and the contribution of the force (approximated with 

the scalar product of the acceleration vector with the vector 

connecting the current position of the performance and the 

target position). If the intensity is easy to understand, the 

contribution is less obvious. The idea to explain the 

contribution of the force is to try to find if the force is applied 

in the half space pulling the performance toward the target or 

in the other half space, pulling the performance away from the 

target. The sign of the scalar product will show if the angle 

between the force and the vector pointing to the target is lower 

than 90° (with a positive sign indicating that the force is an 

opportunity) or higher than 90° (with a negative sign 

indicating that the force is a risk). Finally, considering that the 

scalar product represents the product of the norms of both 

vectors with the cosine of their angle, by dividing it by the 

product of the norms, one can get that cosine. Finally, the 

product of the cosine by the actual norm of the force gives the 

resultant force on the direction of the target. This resultant 

force is thus the real impact of the force on the trajectory. 

Figure 4 shows these resultant forces for the four scenarios: 

one disruption resultant force (from the passive trajectory) and 

three compensation resultant forces (from the active 

trajectories). The grey dash lines represent the start and end of 

the perturbation. The purple dash line represents, for each 

scenario, the time when there is an actual shortage in stock. 

The analysis of the obtained values shows several aspects: 

• First, the perturbation resultant force is very strong 

(maximum of -0.4) during the activity period of the 

perturbation, and then there is a natural compensation due 

to the availability of the supplier. 

• Second, the safety stock resultant force is very strong in 

both directions (+0.4 and -0.3) generating oscillations. 

• Third, the broker resultant force is less strong and less 

oscillating than the safety force resultant force but still 

follows the same pattern. 

• Finally, the double sourcing resultant force is the less 

oscillating and the lowest in value (maximum of 0.1) 

while having the performance curve (see Figure 4) 

reaching almost the same end point as the inertia 

trajectory. 

Finally, from Figure 3, it was already interesting to see how 

double sourcing and broker mitigation measures were visually 

the most interesting (but what about spaces of 4D, 5D, 10D 

and more). In Figure 4, this is even more obvious and general 

to higher dimensions spaces. This result from a single use case 

does not represent the proof of anything, however, it shows 

that the motion study of performance trajectory could be a way 

to support decision-making by (i) encapsulating multiple 

dimensions in one single performance space, and (ii) opening 

the door to motion metaphor to calculate the impact of 

measures on performances of observed SCs.  

5. CONCLUSIONS AND PERSPECTIVES 

There are mainly three essential takeaways to be considered 

from the previous study. The first one concerns how a SC is 

considered as a system: here, we consider the SC an 

aggregated system, a singularity within a physical space. The 

complexity of the reality of SCs as networks of flows and 

entities should be considered in future work. The second one 

concerns the general paradigm of performance visualization 

presented in the considered use case. The trajectory paradigm, 

as illustrated in Figure 4, opens the door to a multidimensional 

performance space (with potentially a very high number of 

KPIs) in which the performance trajectory could be formally 

assessed, modeled and anticipated (even if not visualized). The 

third one concerns the “physics inheritance” that this paradigm 

brings on the stage. Let us consider all the avenues that could 

be investigated: What about the density of the performance 

space (density representing the easiness or feasibility to reach 
one part of the performance space)? What about energy and 

power (potentially linked to the cost of actions)? What about 

equilibrium (representing the resilience or robustness of a 

SC)? What about solid motion instead of point motion (the 

shape and plasticity of the solid representing the ability of the 

SC to increase or decrease its sensibility to a force or even 

absorb it or amplify it)? 
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