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Abstract: This article introduces a real-world maintenance scheduling problem that can be
defined as a Skilled Multi-Depot Vehicle Routing Problem with Due Dates and Time Windows,
or Skill-MDVRPDDTW, and addresses two methods to solve it. One is a greedy heuristic
inspired from the real-world planning processes used in a water service management context,
and the other is a version of the Ant Colony System algorithm, widely used in the literature for
the Vehicle Routing Problem and its variants and adapted to fit the features of the real-world
maintenance problem. Both the problem and the algorithms are positioned in the literature and
mathematically formulated, then experiments and results are discussed and compared through
a set of various indicators.
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1. INTRODUCTION

The Vehicle Routing Problem (VRP) is one of the most
well-known and studied optimization problems (Toth
(2002)). It is an extension of the even better-known Travel-
ing Salesman Problem (TSP) in which the distance covered
by a salesman to visit a set of given cities is minimized. In
the Vehicle Routing Problem, the salesman is replaced by
a set of vehicles (with each a capacity for the Capacitated
VRP or CVRP) and the cities are ”customers” with var-
ious needs, such as quantities of products for the CVRP,
time duration or time windows for the VRP with Time
Windows or VRPTW, skills for the Skill VRP, release and
due dates for the Multi-period VRP with Release and Due
dates or VRPRD... Moreover, there can be one or several
depots from which the vehicles start and end their routes,
and the constraint to visit every customer can either be
strict or encouraged by a system of rewards or penalties for
each visited or missed customer. All variants of the VRP
can be rendered dynamic by the addition of customers or
the update of travel and service duration during real time
execution.

In this study, we focus on a real-world application of a
VRP: the scheduling of maintenance operations required
by a water distribution network. The problem has many
specifications, for it includes time windows, multiple de-
pots, a multiple-day-horizon along with due dates, and
skill requirements. It could hence be classified as a Skill
Multi-Depot VRP with Due Dates and Time Windows or
Skill-MDVRPDDTW.

As well as the TSP or the classic VRP, this very specific
optimization problem belongs to the NP-Complete family,
and can not be optimally solved within a reasonable time
on the whole set of interventions. Therefore, water distri-
bution management companies have to establish heuristic

planning processes to be efficient in terms of service quality
as well as traveled kilometers.

The resulting research problem is the following: how to
assess the efficiency and the robustness to hazards of such
a real-world heuristic? And how to solve this complex and
specific VRP with algorithms derived from literature?

In this paper, we propose to compare a simulation of the
heuristic used in a real-world context of water network
maintenance planning with an Ant Colony System (ACS)
algorithm. Section 2 develops a better description of the
real-life problem and looks further into literature for ACS
algorithms adapted to Vehicle Routing Problems, with
various specifications, section 3 describes the present solv-
ing heuristic processes, section 4 describes the ACS model
proposed, section 5 explains the experimental protocol
used and questions the results, and section 6 opens avenues
for future work.

2. PROBLEM STATEMENT AND ASSOCIATED
BACKGROUND

This section gives a more precise definition of the real-
world application problem (a Skill Multi-Depot VRP with
Due dates and Time Windows) and provides a succinct
overview of the methods used to solve the VRP variants
in the literature.

2.1 Problem description and formulation

The real-world specifications are the following: the loca-
tion, duration and nature of every maintenance interven-
tion (the equivalent of the classical VRP ”customers” de-
scribed above) can be known several days, weeks or months
in advance, as well as the skills needed to perform them.
These interventions can be for instance new buildings to

An Ant Colony System for the Skilled,
Multi-depot VRP with Due Dates and

Time Windows

Marine Dubillard ∗ Xavier Lorca ∗ Matthieu Lauras ∗

∗ University of Toulouse – IMT Mines Albi, Industrial Engineering
Department, Albi, France (e-mail: firstName.lastName@mines-albi.fr).

Abstract: This article introduces a real-world maintenance scheduling problem that can be
defined as a Skilled Multi-Depot Vehicle Routing Problem with Due Dates and Time Windows,
or Skill-MDVRPDDTW, and addresses two methods to solve it. One is a greedy heuristic
inspired from the real-world planning processes used in a water service management context,
and the other is a version of the Ant Colony System algorithm, widely used in the literature for
the Vehicle Routing Problem and its variants and adapted to fit the features of the real-world
maintenance problem. Both the problem and the algorithms are positioned in the literature and
mathematically formulated, then experiments and results are discussed and compared through
a set of various indicators.

Keywords: Optimization, Simulation, Vehicle Routing Problem, Ant Colony System,
Maintenance Scheduling

1. INTRODUCTION

The Vehicle Routing Problem (VRP) is one of the most
well-known and studied optimization problems (Toth
(2002)). It is an extension of the even better-known Travel-
ing Salesman Problem (TSP) in which the distance covered
by a salesman to visit a set of given cities is minimized. In
the Vehicle Routing Problem, the salesman is replaced by
a set of vehicles (with each a capacity for the Capacitated
VRP or CVRP) and the cities are ”customers” with var-
ious needs, such as quantities of products for the CVRP,
time duration or time windows for the VRP with Time
Windows or VRPTW, skills for the Skill VRP, release and
due dates for the Multi-period VRP with Release and Due
dates or VRPRD... Moreover, there can be one or several
depots from which the vehicles start and end their routes,
and the constraint to visit every customer can either be
strict or encouraged by a system of rewards or penalties for
each visited or missed customer. All variants of the VRP
can be rendered dynamic by the addition of customers or
the update of travel and service duration during real time
execution.

In this study, we focus on a real-world application of a
VRP: the scheduling of maintenance operations required
by a water distribution network. The problem has many
specifications, for it includes time windows, multiple de-
pots, a multiple-day-horizon along with due dates, and
skill requirements. It could hence be classified as a Skill
Multi-Depot VRP with Due Dates and Time Windows or
Skill-MDVRPDDTW.

As well as the TSP or the classic VRP, this very specific
optimization problem belongs to the NP-Complete family,
and can not be optimally solved within a reasonable time
on the whole set of interventions. Therefore, water distri-
bution management companies have to establish heuristic

planning processes to be efficient in terms of service quality
as well as traveled kilometers.

The resulting research problem is the following: how to
assess the efficiency and the robustness to hazards of such
a real-world heuristic? And how to solve this complex and
specific VRP with algorithms derived from literature?

In this paper, we propose to compare a simulation of the
heuristic used in a real-world context of water network
maintenance planning with an Ant Colony System (ACS)
algorithm. Section 2 develops a better description of the
real-life problem and looks further into literature for ACS
algorithms adapted to Vehicle Routing Problems, with
various specifications, section 3 describes the present solv-
ing heuristic processes, section 4 describes the ACS model
proposed, section 5 explains the experimental protocol
used and questions the results, and section 6 opens avenues
for future work.

2. PROBLEM STATEMENT AND ASSOCIATED
BACKGROUND

This section gives a more precise definition of the real-
world application problem (a Skill Multi-Depot VRP with
Due dates and Time Windows) and provides a succinct
overview of the methods used to solve the VRP variants
in the literature.

2.1 Problem description and formulation

The real-world specifications are the following: the loca-
tion, duration and nature of every maintenance interven-
tion (the equivalent of the classical VRP ”customers” de-
scribed above) can be known several days, weeks or months
in advance, as well as the skills needed to perform them.
These interventions can be for instance new buildings to

An Ant Colony System for the Skilled,
Multi-depot VRP with Due Dates and

Time Windows

Marine Dubillard ∗ Xavier Lorca ∗ Matthieu Lauras ∗

∗ University of Toulouse – IMT Mines Albi, Industrial Engineering
Department, Albi, France (e-mail: firstName.lastName@mines-albi.fr).

Abstract: This article introduces a real-world maintenance scheduling problem that can be
defined as a Skilled Multi-Depot Vehicle Routing Problem with Due Dates and Time Windows,
or Skill-MDVRPDDTW, and addresses two methods to solve it. One is a greedy heuristic
inspired from the real-world planning processes used in a water service management context,
and the other is a version of the Ant Colony System algorithm, widely used in the literature for
the Vehicle Routing Problem and its variants and adapted to fit the features of the real-world
maintenance problem. Both the problem and the algorithms are positioned in the literature and
mathematically formulated, then experiments and results are discussed and compared through
a set of various indicators.

Keywords: Optimization, Simulation, Vehicle Routing Problem, Ant Colony System,
Maintenance Scheduling

1. INTRODUCTION

The Vehicle Routing Problem (VRP) is one of the most
well-known and studied optimization problems (Toth
(2002)). It is an extension of the even better-known Travel-
ing Salesman Problem (TSP) in which the distance covered
by a salesman to visit a set of given cities is minimized. In
the Vehicle Routing Problem, the salesman is replaced by
a set of vehicles (with each a capacity for the Capacitated
VRP or CVRP) and the cities are ”customers” with var-
ious needs, such as quantities of products for the CVRP,
time duration or time windows for the VRP with Time
Windows or VRPTW, skills for the Skill VRP, release and
due dates for the Multi-period VRP with Release and Due
dates or VRPRD... Moreover, there can be one or several
depots from which the vehicles start and end their routes,
and the constraint to visit every customer can either be
strict or encouraged by a system of rewards or penalties for
each visited or missed customer. All variants of the VRP
can be rendered dynamic by the addition of customers or
the update of travel and service duration during real time
execution.

In this study, we focus on a real-world application of a
VRP: the scheduling of maintenance operations required
by a water distribution network. The problem has many
specifications, for it includes time windows, multiple de-
pots, a multiple-day-horizon along with due dates, and
skill requirements. It could hence be classified as a Skill
Multi-Depot VRP with Due Dates and Time Windows or
Skill-MDVRPDDTW.

As well as the TSP or the classic VRP, this very specific
optimization problem belongs to the NP-Complete family,
and can not be optimally solved within a reasonable time
on the whole set of interventions. Therefore, water distri-
bution management companies have to establish heuristic

planning processes to be efficient in terms of service quality
as well as traveled kilometers.

The resulting research problem is the following: how to
assess the efficiency and the robustness to hazards of such
a real-world heuristic? And how to solve this complex and
specific VRP with algorithms derived from literature?

In this paper, we propose to compare a simulation of the
heuristic used in a real-world context of water network
maintenance planning with an Ant Colony System (ACS)
algorithm. Section 2 develops a better description of the
real-life problem and looks further into literature for ACS
algorithms adapted to Vehicle Routing Problems, with
various specifications, section 3 describes the present solv-
ing heuristic processes, section 4 describes the ACS model
proposed, section 5 explains the experimental protocol
used and questions the results, and section 6 opens avenues
for future work.

2. PROBLEM STATEMENT AND ASSOCIATED
BACKGROUND

This section gives a more precise definition of the real-
world application problem (a Skill Multi-Depot VRP with
Due dates and Time Windows) and provides a succinct
overview of the methods used to solve the VRP variants
in the literature.

2.1 Problem description and formulation

The real-world specifications are the following: the loca-
tion, duration and nature of every maintenance interven-
tion (the equivalent of the classical VRP ”customers” de-
scribed above) can be known several days, weeks or months
in advance, as well as the skills needed to perform them.
These interventions can be for instance new buildings to

An Ant Colony System for the Skilled,
Multi-depot VRP with Due Dates and

Time Windows

Marine Dubillard ∗ Xavier Lorca ∗ Matthieu Lauras ∗

∗ University of Toulouse – IMT Mines Albi, Industrial Engineering
Department, Albi, France (e-mail: firstName.lastName@mines-albi.fr).

Abstract: This article introduces a real-world maintenance scheduling problem that can be
defined as a Skilled Multi-Depot Vehicle Routing Problem with Due Dates and Time Windows,
or Skill-MDVRPDDTW, and addresses two methods to solve it. One is a greedy heuristic
inspired from the real-world planning processes used in a water service management context,
and the other is a version of the Ant Colony System algorithm, widely used in the literature for
the Vehicle Routing Problem and its variants and adapted to fit the features of the real-world
maintenance problem. Both the problem and the algorithms are positioned in the literature and
mathematically formulated, then experiments and results are discussed and compared through
a set of various indicators.

Keywords: Optimization, Simulation, Vehicle Routing Problem, Ant Colony System,
Maintenance Scheduling

1. INTRODUCTION

The Vehicle Routing Problem (VRP) is one of the most
well-known and studied optimization problems (Toth
(2002)). It is an extension of the even better-known Travel-
ing Salesman Problem (TSP) in which the distance covered
by a salesman to visit a set of given cities is minimized. In
the Vehicle Routing Problem, the salesman is replaced by
a set of vehicles (with each a capacity for the Capacitated
VRP or CVRP) and the cities are ”customers” with var-
ious needs, such as quantities of products for the CVRP,
time duration or time windows for the VRP with Time
Windows or VRPTW, skills for the Skill VRP, release and
due dates for the Multi-period VRP with Release and Due
dates or VRPRD... Moreover, there can be one or several
depots from which the vehicles start and end their routes,
and the constraint to visit every customer can either be
strict or encouraged by a system of rewards or penalties for
each visited or missed customer. All variants of the VRP
can be rendered dynamic by the addition of customers or
the update of travel and service duration during real time
execution.

In this study, we focus on a real-world application of a
VRP: the scheduling of maintenance operations required
by a water distribution network. The problem has many
specifications, for it includes time windows, multiple de-
pots, a multiple-day-horizon along with due dates, and
skill requirements. It could hence be classified as a Skill
Multi-Depot VRP with Due Dates and Time Windows or
Skill-MDVRPDDTW.

As well as the TSP or the classic VRP, this very specific
optimization problem belongs to the NP-Complete family,
and can not be optimally solved within a reasonable time
on the whole set of interventions. Therefore, water distri-
bution management companies have to establish heuristic

planning processes to be efficient in terms of service quality
as well as traveled kilometers.

The resulting research problem is the following: how to
assess the efficiency and the robustness to hazards of such
a real-world heuristic? And how to solve this complex and
specific VRP with algorithms derived from literature?

In this paper, we propose to compare a simulation of the
heuristic used in a real-world context of water network
maintenance planning with an Ant Colony System (ACS)
algorithm. Section 2 develops a better description of the
real-life problem and looks further into literature for ACS
algorithms adapted to Vehicle Routing Problems, with
various specifications, section 3 describes the present solv-
ing heuristic processes, section 4 describes the ACS model
proposed, section 5 explains the experimental protocol
used and questions the results, and section 6 opens avenues
for future work.

2. PROBLEM STATEMENT AND ASSOCIATED
BACKGROUND

This section gives a more precise definition of the real-
world application problem (a Skill Multi-Depot VRP with
Due dates and Time Windows) and provides a succinct
overview of the methods used to solve the VRP variants
in the literature.

2.1 Problem description and formulation

The real-world specifications are the following: the loca-
tion, duration and nature of every maintenance interven-
tion (the equivalent of the classical VRP ”customers” de-
scribed above) can be known several days, weeks or months
in advance, as well as the skills needed to perform them.
These interventions can be for instance new buildings to

An Ant Colony System for the Skilled,
Multi-depot VRP with Due Dates and

Time Windows

Marine Dubillard ∗ Xavier Lorca ∗ Matthieu Lauras ∗

∗ University of Toulouse – IMT Mines Albi, Industrial Engineering
Department, Albi, France (e-mail: firstName.lastName@mines-albi.fr).

Abstract: This article introduces a real-world maintenance scheduling problem that can be
defined as a Skilled Multi-Depot Vehicle Routing Problem with Due Dates and Time Windows,
or Skill-MDVRPDDTW, and addresses two methods to solve it. One is a greedy heuristic
inspired from the real-world planning processes used in a water service management context,
and the other is a version of the Ant Colony System algorithm, widely used in the literature for
the Vehicle Routing Problem and its variants and adapted to fit the features of the real-world
maintenance problem. Both the problem and the algorithms are positioned in the literature and
mathematically formulated, then experiments and results are discussed and compared through
a set of various indicators.

Keywords: Optimization, Simulation, Vehicle Routing Problem, Ant Colony System,
Maintenance Scheduling

1. INTRODUCTION

The Vehicle Routing Problem (VRP) is one of the most
well-known and studied optimization problems (Toth
(2002)). It is an extension of the even better-known Travel-
ing Salesman Problem (TSP) in which the distance covered
by a salesman to visit a set of given cities is minimized. In
the Vehicle Routing Problem, the salesman is replaced by
a set of vehicles (with each a capacity for the Capacitated
VRP or CVRP) and the cities are ”customers” with var-
ious needs, such as quantities of products for the CVRP,
time duration or time windows for the VRP with Time
Windows or VRPTW, skills for the Skill VRP, release and
due dates for the Multi-period VRP with Release and Due
dates or VRPRD... Moreover, there can be one or several
depots from which the vehicles start and end their routes,
and the constraint to visit every customer can either be
strict or encouraged by a system of rewards or penalties for
each visited or missed customer. All variants of the VRP
can be rendered dynamic by the addition of customers or
the update of travel and service duration during real time
execution.

In this study, we focus on a real-world application of a
VRP: the scheduling of maintenance operations required
by a water distribution network. The problem has many
specifications, for it includes time windows, multiple de-
pots, a multiple-day-horizon along with due dates, and
skill requirements. It could hence be classified as a Skill
Multi-Depot VRP with Due Dates and Time Windows or
Skill-MDVRPDDTW.

As well as the TSP or the classic VRP, this very specific
optimization problem belongs to the NP-Complete family,
and can not be optimally solved within a reasonable time
on the whole set of interventions. Therefore, water distri-
bution management companies have to establish heuristic

planning processes to be efficient in terms of service quality
as well as traveled kilometers.

The resulting research problem is the following: how to
assess the efficiency and the robustness to hazards of such
a real-world heuristic? And how to solve this complex and
specific VRP with algorithms derived from literature?

In this paper, we propose to compare a simulation of the
heuristic used in a real-world context of water network
maintenance planning with an Ant Colony System (ACS)
algorithm. Section 2 develops a better description of the
real-life problem and looks further into literature for ACS
algorithms adapted to Vehicle Routing Problems, with
various specifications, section 3 describes the present solv-
ing heuristic processes, section 4 describes the ACS model
proposed, section 5 explains the experimental protocol
used and questions the results, and section 6 opens avenues
for future work.

2. PROBLEM STATEMENT AND ASSOCIATED
BACKGROUND

This section gives a more precise definition of the real-
world application problem (a Skill Multi-Depot VRP with
Due dates and Time Windows) and provides a succinct
overview of the methods used to solve the VRP variants
in the literature.

2.1 Problem description and formulation

The real-world specifications are the following: the loca-
tion, duration and nature of every maintenance interven-
tion (the equivalent of the classical VRP ”customers” de-
scribed above) can be known several days, weeks or months
in advance, as well as the skills needed to perform them.
These interventions can be for instance new buildings to

An Ant Colony System for the Skilled,
Multi-depot VRP with Due Dates and

Time Windows

Marine Dubillard ∗ Xavier Lorca ∗ Matthieu Lauras ∗

∗ University of Toulouse – IMT Mines Albi, Industrial Engineering
Department, Albi, France (e-mail: firstName.lastName@mines-albi.fr).

Abstract: This article introduces a real-world maintenance scheduling problem that can be
defined as a Skilled Multi-Depot Vehicle Routing Problem with Due Dates and Time Windows,
or Skill-MDVRPDDTW, and addresses two methods to solve it. One is a greedy heuristic
inspired from the real-world planning processes used in a water service management context,
and the other is a version of the Ant Colony System algorithm, widely used in the literature for
the Vehicle Routing Problem and its variants and adapted to fit the features of the real-world
maintenance problem. Both the problem and the algorithms are positioned in the literature and
mathematically formulated, then experiments and results are discussed and compared through
a set of various indicators.

Keywords: Optimization, Simulation, Vehicle Routing Problem, Ant Colony System,
Maintenance Scheduling

1. INTRODUCTION

The Vehicle Routing Problem (VRP) is one of the most
well-known and studied optimization problems (Toth
(2002)). It is an extension of the even better-known Travel-
ing Salesman Problem (TSP) in which the distance covered
by a salesman to visit a set of given cities is minimized. In
the Vehicle Routing Problem, the salesman is replaced by
a set of vehicles (with each a capacity for the Capacitated
VRP or CVRP) and the cities are ”customers” with var-
ious needs, such as quantities of products for the CVRP,
time duration or time windows for the VRP with Time
Windows or VRPTW, skills for the Skill VRP, release and
due dates for the Multi-period VRP with Release and Due
dates or VRPRD... Moreover, there can be one or several
depots from which the vehicles start and end their routes,
and the constraint to visit every customer can either be
strict or encouraged by a system of rewards or penalties for
each visited or missed customer. All variants of the VRP
can be rendered dynamic by the addition of customers or
the update of travel and service duration during real time
execution.

In this study, we focus on a real-world application of a
VRP: the scheduling of maintenance operations required
by a water distribution network. The problem has many
specifications, for it includes time windows, multiple de-
pots, a multiple-day-horizon along with due dates, and
skill requirements. It could hence be classified as a Skill
Multi-Depot VRP with Due Dates and Time Windows or
Skill-MDVRPDDTW.

As well as the TSP or the classic VRP, this very specific
optimization problem belongs to the NP-Complete family,
and can not be optimally solved within a reasonable time
on the whole set of interventions. Therefore, water distri-
bution management companies have to establish heuristic

planning processes to be efficient in terms of service quality
as well as traveled kilometers.

The resulting research problem is the following: how to
assess the efficiency and the robustness to hazards of such
a real-world heuristic? And how to solve this complex and
specific VRP with algorithms derived from literature?

In this paper, we propose to compare a simulation of the
heuristic used in a real-world context of water network
maintenance planning with an Ant Colony System (ACS)
algorithm. Section 2 develops a better description of the
real-life problem and looks further into literature for ACS
algorithms adapted to Vehicle Routing Problems, with
various specifications, section 3 describes the present solv-
ing heuristic processes, section 4 describes the ACS model
proposed, section 5 explains the experimental protocol
used and questions the results, and section 6 opens avenues
for future work.

2. PROBLEM STATEMENT AND ASSOCIATED
BACKGROUND

This section gives a more precise definition of the real-
world application problem (a Skill Multi-Depot VRP with
Due dates and Time Windows) and provides a succinct
overview of the methods used to solve the VRP variants
in the literature.

2.1 Problem description and formulation

The real-world specifications are the following: the loca-
tion, duration and nature of every maintenance interven-
tion (the equivalent of the classical VRP ”customers” de-
scribed above) can be known several days, weeks or months
in advance, as well as the skills needed to perform them.
These interventions can be for instance new buildings to

An Ant Colony System for the Skilled,
Multi-depot VRP with Due Dates and

Time Windows

Marine Dubillard ∗ Xavier Lorca ∗ Matthieu Lauras ∗

∗ University of Toulouse – IMT Mines Albi, Industrial Engineering
Department, Albi, France (e-mail: firstName.lastName@mines-albi.fr).

Abstract: This article introduces a real-world maintenance scheduling problem that can be
defined as a Skilled Multi-Depot Vehicle Routing Problem with Due Dates and Time Windows,
or Skill-MDVRPDDTW, and addresses two methods to solve it. One is a greedy heuristic
inspired from the real-world planning processes used in a water service management context,
and the other is a version of the Ant Colony System algorithm, widely used in the literature for
the Vehicle Routing Problem and its variants and adapted to fit the features of the real-world
maintenance problem. Both the problem and the algorithms are positioned in the literature and
mathematically formulated, then experiments and results are discussed and compared through
a set of various indicators.

Keywords: Optimization, Simulation, Vehicle Routing Problem, Ant Colony System,
Maintenance Scheduling

1. INTRODUCTION

The Vehicle Routing Problem (VRP) is one of the most
well-known and studied optimization problems (Toth
(2002)). It is an extension of the even better-known Travel-
ing Salesman Problem (TSP) in which the distance covered
by a salesman to visit a set of given cities is minimized. In
the Vehicle Routing Problem, the salesman is replaced by
a set of vehicles (with each a capacity for the Capacitated
VRP or CVRP) and the cities are ”customers” with var-
ious needs, such as quantities of products for the CVRP,
time duration or time windows for the VRP with Time
Windows or VRPTW, skills for the Skill VRP, release and
due dates for the Multi-period VRP with Release and Due
dates or VRPRD... Moreover, there can be one or several
depots from which the vehicles start and end their routes,
and the constraint to visit every customer can either be
strict or encouraged by a system of rewards or penalties for
each visited or missed customer. All variants of the VRP
can be rendered dynamic by the addition of customers or
the update of travel and service duration during real time
execution.

In this study, we focus on a real-world application of a
VRP: the scheduling of maintenance operations required
by a water distribution network. The problem has many
specifications, for it includes time windows, multiple de-
pots, a multiple-day-horizon along with due dates, and
skill requirements. It could hence be classified as a Skill
Multi-Depot VRP with Due Dates and Time Windows or
Skill-MDVRPDDTW.

As well as the TSP or the classic VRP, this very specific
optimization problem belongs to the NP-Complete family,
and can not be optimally solved within a reasonable time
on the whole set of interventions. Therefore, water distri-
bution management companies have to establish heuristic

planning processes to be efficient in terms of service quality
as well as traveled kilometers.

The resulting research problem is the following: how to
assess the efficiency and the robustness to hazards of such
a real-world heuristic? And how to solve this complex and
specific VRP with algorithms derived from literature?

In this paper, we propose to compare a simulation of the
heuristic used in a real-world context of water network
maintenance planning with an Ant Colony System (ACS)
algorithm. Section 2 develops a better description of the
real-life problem and looks further into literature for ACS
algorithms adapted to Vehicle Routing Problems, with
various specifications, section 3 describes the present solv-
ing heuristic processes, section 4 describes the ACS model
proposed, section 5 explains the experimental protocol
used and questions the results, and section 6 opens avenues
for future work.

2. PROBLEM STATEMENT AND ASSOCIATED
BACKGROUND

This section gives a more precise definition of the real-
world application problem (a Skill Multi-Depot VRP with
Due dates and Time Windows) and provides a succinct
overview of the methods used to solve the VRP variants
in the literature.

2.1 Problem description and formulation

The real-world specifications are the following: the loca-
tion, duration and nature of every maintenance interven-
tion (the equivalent of the classical VRP ”customers” de-
scribed above) can be known several days, weeks or months
in advance, as well as the skills needed to perform them.
These interventions can be for instance new buildings to
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1. INTRODUCTION

The Vehicle Routing Problem (VRP) is one of the most
well-known and studied optimization problems (Toth
(2002)). It is an extension of the even better-known Travel-
ing Salesman Problem (TSP) in which the distance covered
by a salesman to visit a set of given cities is minimized. In
the Vehicle Routing Problem, the salesman is replaced by
a set of vehicles (with each a capacity for the Capacitated
VRP or CVRP) and the cities are ”customers” with var-
ious needs, such as quantities of products for the CVRP,
time duration or time windows for the VRP with Time
Windows or VRPTW, skills for the Skill VRP, release and
due dates for the Multi-period VRP with Release and Due
dates or VRPRD... Moreover, there can be one or several
depots from which the vehicles start and end their routes,
and the constraint to visit every customer can either be
strict or encouraged by a system of rewards or penalties for
each visited or missed customer. All variants of the VRP
can be rendered dynamic by the addition of customers or
the update of travel and service duration during real time
execution.

In this study, we focus on a real-world application of a
VRP: the scheduling of maintenance operations required
by a water distribution network. The problem has many
specifications, for it includes time windows, multiple de-
pots, a multiple-day-horizon along with due dates, and
skill requirements. It could hence be classified as a Skill
Multi-Depot VRP with Due Dates and Time Windows or
Skill-MDVRPDDTW.

As well as the TSP or the classic VRP, this very specific
optimization problem belongs to the NP-Complete family,
and can not be optimally solved within a reasonable time
on the whole set of interventions. Therefore, water distri-
bution management companies have to establish heuristic

planning processes to be efficient in terms of service quality
as well as traveled kilometers.

The resulting research problem is the following: how to
assess the efficiency and the robustness to hazards of such
a real-world heuristic? And how to solve this complex and
specific VRP with algorithms derived from literature?

In this paper, we propose to compare a simulation of the
heuristic used in a real-world context of water network
maintenance planning with an Ant Colony System (ACS)
algorithm. Section 2 develops a better description of the
real-life problem and looks further into literature for ACS
algorithms adapted to Vehicle Routing Problems, with
various specifications, section 3 describes the present solv-
ing heuristic processes, section 4 describes the ACS model
proposed, section 5 explains the experimental protocol
used and questions the results, and section 6 opens avenues
for future work.

2. PROBLEM STATEMENT AND ASSOCIATED
BACKGROUND

This section gives a more precise definition of the real-
world application problem (a Skill Multi-Depot VRP with
Due dates and Time Windows) and provides a succinct
overview of the methods used to solve the VRP variants
in the literature.

2.1 Problem description and formulation

The real-world specifications are the following: the loca-
tion, duration and nature of every maintenance interven-
tion (the equivalent of the classical VRP ”customers” de-
scribed above) can be known several days, weeks or months
in advance, as well as the skills needed to perform them.
These interventions can be for instance new buildings to
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1. INTRODUCTION

The Vehicle Routing Problem (VRP) is one of the most
well-known and studied optimization problems (Toth
(2002)). It is an extension of the even better-known Travel-
ing Salesman Problem (TSP) in which the distance covered
by a salesman to visit a set of given cities is minimized. In
the Vehicle Routing Problem, the salesman is replaced by
a set of vehicles (with each a capacity for the Capacitated
VRP or CVRP) and the cities are ”customers” with var-
ious needs, such as quantities of products for the CVRP,
time duration or time windows for the VRP with Time
Windows or VRPTW, skills for the Skill VRP, release and
due dates for the Multi-period VRP with Release and Due
dates or VRPRD... Moreover, there can be one or several
depots from which the vehicles start and end their routes,
and the constraint to visit every customer can either be
strict or encouraged by a system of rewards or penalties for
each visited or missed customer. All variants of the VRP
can be rendered dynamic by the addition of customers or
the update of travel and service duration during real time
execution.

In this study, we focus on a real-world application of a
VRP: the scheduling of maintenance operations required
by a water distribution network. The problem has many
specifications, for it includes time windows, multiple de-
pots, a multiple-day-horizon along with due dates, and
skill requirements. It could hence be classified as a Skill
Multi-Depot VRP with Due Dates and Time Windows or
Skill-MDVRPDDTW.

As well as the TSP or the classic VRP, this very specific
optimization problem belongs to the NP-Complete family,
and can not be optimally solved within a reasonable time
on the whole set of interventions. Therefore, water distri-
bution management companies have to establish heuristic

planning processes to be efficient in terms of service quality
as well as traveled kilometers.

The resulting research problem is the following: how to
assess the efficiency and the robustness to hazards of such
a real-world heuristic? And how to solve this complex and
specific VRP with algorithms derived from literature?

In this paper, we propose to compare a simulation of the
heuristic used in a real-world context of water network
maintenance planning with an Ant Colony System (ACS)
algorithm. Section 2 develops a better description of the
real-life problem and looks further into literature for ACS
algorithms adapted to Vehicle Routing Problems, with
various specifications, section 3 describes the present solv-
ing heuristic processes, section 4 describes the ACS model
proposed, section 5 explains the experimental protocol
used and questions the results, and section 6 opens avenues
for future work.

2. PROBLEM STATEMENT AND ASSOCIATED
BACKGROUND

This section gives a more precise definition of the real-
world application problem (a Skill Multi-Depot VRP with
Due dates and Time Windows) and provides a succinct
overview of the methods used to solve the VRP variants
in the literature.

2.1 Problem description and formulation

The real-world specifications are the following: the loca-
tion, duration and nature of every maintenance interven-
tion (the equivalent of the classical VRP ”customers” de-
scribed above) can be known several days, weeks or months
in advance, as well as the skills needed to perform them.
These interventions can be for instance new buildings to
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Fig. 1. The different steps of the scheduling heuristic

the first available agent with the corresponding skills.
This is what is represented in the first part of Fig. 1:
3 appointments, represented with triangles, are affected
to two agents. As shown in Algorithm 2, at each iter-
ation, all interventions are considered for every slot in
the currently constructed planning, and the feasibility
(appropriate skills, and fitting intervention and traveling
times) and cost of their addition at this precise position is
calculated. The most advantageous insertion is then kept
in the route, as schematically represented in part 2 of
Fig. 1; here, task number 5 is the closest feasible addition
to the first agent’s route. This loop continues until no
intervention can be added in the schedule, and the same
procedure is applied to the next agent with the remaining
interventions. Part 3 of Fig. 1 shows the complete route of
the first agent (no other intervention can be added after
the addition of tasks 5, 7 and 2), and part 4 the complete
routes of all agents (tasks 6, 4 and 9 have been added
to the second agent’s route). We can notice that once an
intervention has been assigned to an agent a ∈ A and on
a day d ∈ T , its affectation is never reconsidered, which
makes this heuristic a member of the greedy algorithms
family.

Algorithm 1 solveWithExistingHeuristic()

1: for d ∈ T do
2: for i ∈ Iapp do
3: while not isP lannedi do
4: a ← first agent of A
5: if a has skills and disponibility for i then
6: insert(i, beginT imei) in routea,d
7: isP lannedi ← True
8: else
9: a ← next agent in A

10: for a ∈ A do
11: while not isFulla,d do
12: i, beginT imei = bestInsertion(a, d)
13: if i = ⊘ then
14: isFulla,d ← True
15: else
16: insert(i, beginT imei) in routea,d

Finally, emergencies are added to the route of the agent
who is the closest to its location when they occur, and the
rest of his planned interventions are simply postponed as

Algorithm 2 bestInsertion(Agent a,Day d)

1: bestIntervention, bestT ime = ⊘, B
2: costbest = +∞
3: for i ∈ I do
4: if not isP lannedi then
5: for i2 ∈ routea,d do
6: if i is feasible after i2 then
7: costi = cost of adding i after i2
8: if costi ≤ costbest then
9: bestIntervention ← i

10: bestT ime = endT imei2+distancei2,i
11: costbest ← costi
12: return bestIntervention, bestT ime

described in Algorithm 3, where E represents the time of
end of the working day. The postponed interventions that
do not longer fit in the working schedule are removed from
the route.

Algorithm 3 insertEmergency(Emergency e)

1: a = closest agent to the emergency
2: insert(e, beginT imee) in routea,emergency d

3: for i ∈ routea,emergency d do
4: if endT imei ≥ beginT imee then
5: δ = duratione+ transportation time for e
6: beginT imei ← beginT imei + δ
7: endT imei ← endT imei + δ
8: if endT imei + distancei,depot ≥ E then
9: remove(i, routea,emergency d)

4. ANT COLONY OPTIMIZATION PROPOSAL

This section describes the Ant Colony System (ACS)
algorithm model we developed, and how it was adapted to
fit the specific VRP. The dynamic aspect and the addition
of emergency interventions is for the moment put aside.

4.1 Ant Colony Systems

In Ant Colony Optimization (ACO), ”artificial ants” con-
struct solutions by following probabilistic rules inspired
by the natural behavior of ant populations. Every path
xi,j between two locations i, j ∈ I2 has an associated
amount of pheromone deposit τi,j that evolves during the
algorithm’s progression. The probability for a path to be
chosen by an artificial ant is a function of its quantity of
pheromone deposit. The update of pheromone during the
algorithm progression depends on which ACO method is
chosen. Here, we apply a variant of the Ant Colony System
model or ACS, as it is described in Cordón et al. (2002).
At each iteration of the ACS algorithm, each ant provides
a solution, and the pheromone deposits are updated in
two ways: (i) online evaporation is applied on every path
visited by an ant, which means their pheromone deposits
are decreased during the solution construction, in order to
encourage diversification (a path has less chances to be
chosen during an iteration if it has already been chosen
before); (ii) At the end of every iteration, the global-best
solution is rewarded with an increase of pheromones on
all the paths it contains, in order to encourage intensifica-
tion (the more promising paths have more chances to be
selected by the next ants). On top of pheromone deposits,

hook up, sample collections for water quality measure-
ments, or proactive leak search. Some of the interventions
are planned in advance with customers (for leaks or water
shortage fixing for example), and are also attached to
time constraints: they have a specific due date, and a time
window, precise to the minute, corresponding to the hour
of the appointment. The vehicles are each associated to an
agent with specific skills, working hours and a departure
and arrival location. Moreover, the problem is solved over
several days, meaning that each day, only a fraction of the
whole set of interventions needs to be executed (a fraction
which necessarily includes the customer appointments).
Finally, reactive maintenance activities add a dynamic
dimension to the problem, as emergency interventions can
appear at any moment of the day.

To model the problem, we first have to define: A the set
of agents with their skills and working hours, I the set of
interventions with their characteristics (duration, location,
skills needed), Iapp ⊆ I set of appointments (with their
due dates and time windows), T the set of days included
in the planning horizon. Let us also define B the time of
beginning of the working days, and E the time of end.
What we want to obtain at the end of the scheduling
process is a set of non-intersecting lists of interventions
routea,d ⊆ I assigned to each a ∈ A for each day d ∈ T ,
as well as the time of beginning of execution beginT imei
for all i ∈ routea,d, for all a, d ∈ A× T .

2.2 The variants of Vehicle Routing Problems in the
literature

This very specific problem is not defined as is in the
literature, but each of its specificities has been studied
separately. Laporte (1992) defines the most commonly
used mathematical model of the simple Vehicle Routing
Problem (VRP), using a linear programming formulation.
From here, Cordeau et al. (1999) define a model including
time windows and time durations for each intervention, the
VRP with Time Windows (VRPTW). They also consider
the multi-depot variant of their model, with a specification
of each vehicle departure and arrival location (MDVRP).
On the other hand, Cappanera et al. (2011) introduce the
Skill Vehicle Routing Problem (Skill VRP), with skills re-
quired for each task, while Archetti et al (2015) introduce
the Multi-period Vehicle Routing Problem with Due dates
(MVRPD), adding a temporal dimension with multiple
days to execute the tasks. Finally, uncertainties and emer-
gency interventions are modeled in dynamic versions of
VRP, called Dynamic VRP and widely developed in Larsen
et al (2000).

All these variants have been studied and solved in many
ways. Global overviews such as Laporte (1992) or Osaba
et al. (2020) for the simple VRP, and El-Sherbeny (2010)
for VRP with Time Windows, distinguish exact methods
and approximate methods.

Exact methods include (i) Mixed Integer Linear Program-
ming (MILP) used since Dantzig et al. (1954) for the
Traveling Salesman Problem, and adapted to all variants
of VRP for both mathematical modeling and solving pur-
poses, (ii) direct tree search and (iii) dynamic program-
ming, developed in Laporte (1992) for the simple VRP,
or (iv) lagrangean relaxation and (v) column generation

developed in Cordeau et al. (1999) for the VRP with Time
windows.

Among approximate methods, we find (i) heuristics, such
as 2-opt or 3-opt algorithms, more developed in Baker
et al. (1986), (ii) metaheuristics, both single-solution based
such as Tabu Search or Simulated Annealing developed in
Laporte (1992), or large neighborhood search in Mancini
(2016) and population-based algorithms such as genetic
algorithms, particle swarm optimization, ant colony op-
timization and many others nature-inspired described in
Osaba et al. (2020). A review of metaheuristics for the
VRPTW can be found in Dixit et al. (2019). Finally and
more recently, (iii) learning-based optimization algorithm,
detailed in Li et al. (2022) for their application to the VRP.

Among the methods providing good results to large in-
stances of the VRP and all the variants that constitutes
the Skill Multi-Depot VRP with Due dates and Time
Windows, we chose to investigate the Ant Colony System
Optimization algorithm. Exact methods are more time
consuming while searching for an optimal result, which
is not an absolute necessity in this specific case. On the
contrary, simple constructive heuristics might not be ef-
ficient enough, and most importantly, a simple heuristic
is what is already presently used to solve the problem,
and what we are trying to evaluate. We found no example
of learning-based optimization for a VRP on several days
or with due date and finally, among all metaheuristics,
if many showed good results, none seems to stand out
from the others in term of time or cost efficiency. We
chose address Ant Colony Optimization for its immediate
similarity to the problem’s modeling: ants exploring paths
to find the shortest routes to visiting a set tasks can
directly be put in parallel with agents spending the less
time possible in transportation while carrying out the
interventions needed. The mathematical models of Ant
Colony Optimization’s variants are described in Cordón
et al. (2002). A successful ACS algorithm for the VRP
with Time Windows can be found in Gong et al. (2007),
and in Yu et al. (2011) or Wang et al. (2020) for the Multi-
Period VRP with Time Windows.

3. REAL-WORLD HEURISTIC DESCRIPTION

This section describes the organizational constraints used
in a water service management company, and gives a model
of their scheduling heuristic.

In order to reduce the size of the scheduling problem, the
initial set of interventions is separated in smaller sets with
geographic boundaries, within which local service managers
are independently in charge of the scheduling, with a
planning horizon of one week. Moreover, the scheduling
process uses a resource-oriented approach, meaning that
it aims to optimize the filling of the schedule of each agent
(as opposed to task-oriented, where the positioning of each
task is the first decision criteria). It also uses stricter
skill constraints, with agents executing only one type of
intervention over the day or the week. The different steps
of the scheduling process are described in pseudo-code in
Algorithms 1 and 2, and schematized in Fig. 1.

Algorithm 1 shows a two-stage scheduling heuristic. First,
interventions with strict time windows are assigned to
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Fig. 1. The different steps of the scheduling heuristic

the first available agent with the corresponding skills.
This is what is represented in the first part of Fig. 1:
3 appointments, represented with triangles, are affected
to two agents. As shown in Algorithm 2, at each iter-
ation, all interventions are considered for every slot in
the currently constructed planning, and the feasibility
(appropriate skills, and fitting intervention and traveling
times) and cost of their addition at this precise position is
calculated. The most advantageous insertion is then kept
in the route, as schematically represented in part 2 of
Fig. 1; here, task number 5 is the closest feasible addition
to the first agent’s route. This loop continues until no
intervention can be added in the schedule, and the same
procedure is applied to the next agent with the remaining
interventions. Part 3 of Fig. 1 shows the complete route of
the first agent (no other intervention can be added after
the addition of tasks 5, 7 and 2), and part 4 the complete
routes of all agents (tasks 6, 4 and 9 have been added
to the second agent’s route). We can notice that once an
intervention has been assigned to an agent a ∈ A and on
a day d ∈ T , its affectation is never reconsidered, which
makes this heuristic a member of the greedy algorithms
family.

Algorithm 1 solveWithExistingHeuristic()

1: for d ∈ T do
2: for i ∈ Iapp do
3: while not isP lannedi do
4: a ← first agent of A
5: if a has skills and disponibility for i then
6: insert(i, beginT imei) in routea,d
7: isP lannedi ← True
8: else
9: a ← next agent in A

10: for a ∈ A do
11: while not isFulla,d do
12: i, beginT imei = bestInsertion(a, d)
13: if i = ⊘ then
14: isFulla,d ← True
15: else
16: insert(i, beginT imei) in routea,d

Finally, emergencies are added to the route of the agent
who is the closest to its location when they occur, and the
rest of his planned interventions are simply postponed as

Algorithm 2 bestInsertion(Agent a,Day d)

1: bestIntervention, bestT ime = ⊘, B
2: costbest = +∞
3: for i ∈ I do
4: if not isP lannedi then
5: for i2 ∈ routea,d do
6: if i is feasible after i2 then
7: costi = cost of adding i after i2
8: if costi ≤ costbest then
9: bestIntervention ← i

10: bestT ime = endT imei2+distancei2,i
11: costbest ← costi
12: return bestIntervention, bestT ime

described in Algorithm 3, where E represents the time of
end of the working day. The postponed interventions that
do not longer fit in the working schedule are removed from
the route.

Algorithm 3 insertEmergency(Emergency e)

1: a = closest agent to the emergency
2: insert(e, beginT imee) in routea,emergency d

3: for i ∈ routea,emergency d do
4: if endT imei ≥ beginT imee then
5: δ = duratione+ transportation time for e
6: beginT imei ← beginT imei + δ
7: endT imei ← endT imei + δ
8: if endT imei + distancei,depot ≥ E then
9: remove(i, routea,emergency d)

4. ANT COLONY OPTIMIZATION PROPOSAL

This section describes the Ant Colony System (ACS)
algorithm model we developed, and how it was adapted to
fit the specific VRP. The dynamic aspect and the addition
of emergency interventions is for the moment put aside.

4.1 Ant Colony Systems

In Ant Colony Optimization (ACO), ”artificial ants” con-
struct solutions by following probabilistic rules inspired
by the natural behavior of ant populations. Every path
xi,j between two locations i, j ∈ I2 has an associated
amount of pheromone deposit τi,j that evolves during the
algorithm’s progression. The probability for a path to be
chosen by an artificial ant is a function of its quantity of
pheromone deposit. The update of pheromone during the
algorithm progression depends on which ACO method is
chosen. Here, we apply a variant of the Ant Colony System
model or ACS, as it is described in Cordón et al. (2002).
At each iteration of the ACS algorithm, each ant provides
a solution, and the pheromone deposits are updated in
two ways: (i) online evaporation is applied on every path
visited by an ant, which means their pheromone deposits
are decreased during the solution construction, in order to
encourage diversification (a path has less chances to be
chosen during an iteration if it has already been chosen
before); (ii) At the end of every iteration, the global-best
solution is rewarded with an increase of pheromones on
all the paths it contains, in order to encourage intensifica-
tion (the more promising paths have more chances to be
selected by the next ants). On top of pheromone deposits,
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Instances have been constructed so that LoadD corre-
sponds to 0.5, 1 and 1.5 times CapaD, in order to eval-
uate the quality of the different solving methods when
the density densityD of the instance vary. In all three
cases, the intervention durations di are equally distributed
between 15, 30, 60 and 90 minutes, for all i ∈ I, which
leads to instances of 537, 1074 and 1611 interventions.
Appointments are always generated with durations of 15
minutes, and they represent 10% of the 15-minute-long
interventions. Two types of skills are generated: half of
the interventions require the skill ”A” and the other half
the skill ”B”, while among the four agents, one has only
the skill ”A”, one the skill ”B” and the two others both.
Locations of interventions are randomly chosen in a set of
2000 addresses not distant from more than 80 minutes of
transportation time of each other. Two interventions can
have the same location, and the average transportation
time between two locations is 35.6 minutes.

Ant Colony System parameters The parameters relative
to the ACS algorithm have been set as in Yu et al. (2011),
where a Multi-Period VRP with Time Windows is solved
with an Improved Ant Colony Optimization algorithm.
The parameters are therefore set to these values: τ0 = 1;
ηi,j = 1/distancei,j ∀i, j ∈ I2; α = 2; β = 6; φ = ρ = 0.01.

Results The average results for both the real-world-
inspired heuristic and the ACS algorithm, on 15 instances
with densities in interventions varying between 0.5, 1 and
1.5 can be seen in Table 1. The added value indicator
C(s) (as defined before in Equation 5) is measured on
each solution s, as well as the number of interventions
planned nb p(s), the total time spent in intervention w t(s)
and in transportation t t(s) in minutes, and the time of
calculation in seconds c t(s).

Table 1. Results

Algo Density C(s) nb p(s) w t(s) t t(s) c t(s)

RWH 0.5 0.89 537 16869 2053 2
ACS 0.5 0.91 537 16869 1623 123

RWH 1 0.91 1011 27870 2870 9
ACS 1 0.93 950 29745 2078 761

RWH 1.5 0.91 1322 28649 2862 20
ACS 1.5 0.94 968 29199 1975 1360

In the first case, when the work capacity is twice the
total time of interventions (density=0.5), both algorithms

manage to schedule every intervention. The number of
interventions planned and the time spent in interventions
is therefore the same for both algorithms. However, the
time spent in transportation is reduced by 20% for the
ACS algorithm, which represents a little more than one
complete day of work of one agent. Calculation time for
its part goes from 2 seconds for the heuristic to 2 minutes
for the ACS.

When the work capacity is equal to the total time spent
in intervention (density=1), both algorithms schedule only
a part of the interventions. The balance between the time
spent in intervention and in transportation, or added value
indicator is still better for the ACS algorithm, by 2%, and
time spent in transportation is reduced by 2̃7% (which
represents more than two complete days of work) for an
increase of time in intervention of 6.7%. Calculation time
goes from 20 seconds to almost 13 minutes. An interesting
result is the number of intervention planned, by 6% higher
for the Real-World Heuristic, while the total time spent in
intervention is lower. This is because the heuristic process
is only guided by distance, while the ACS algorithm also
prioritizes the planning of the longest interventions. Indeed
the length of a detour to include an intervention in a route
is proportional to the length of the intervention. This also
gives another advantage to the ACS algorithm compared
to the Real-World Heuristic, which tends to leave for later
the longest interventions (and therefore the hardest to fit
in a schedule).

Finally, when the capacity is lower than the the total time
spent in intervention with a density of 1.5, the results
observed before (density=1) are amplified: transportation
time is decreased of 31% with the ACS algorithm, interven-
tion time increased of 1.9%, while the number of planned
tasks also falls from almost 27%. The Real-World Heuristic
is still very fast, with an average calculation time of 20
seconds, compared to 23 minutes for the ACS algorithm.

What can globally be learned from these experiments is
that although the Real-World Heuristic has the advantage
of being fast in calculation (20 seconds in average for
a 1611-intervention instance), the transportation time is
always reduced when using the ACS algorithm, and all
the more so as the instance gets bigger. When not all
interventions can fit in the schedules (density=1 or 1.5),
the Real-World Heuristic tends to plan a larger number

each path xi,j has an associated heuristic information ηi,j ,
that is set in the initialization phase of the algorithm,
and does not change during its execution. This heuristic
information will be used in the same way as pheromones to
guide the construction of routes, and contains structural
information about the problem, such as the distance be-
tween i and j, so as to increase the probability of choosing
in the same route interventions that are close to each other.

Furthermore, as indicated in Yu et al. (2011) and Wang
et al. (2020), the problem is not symmetric regarding the
time horizon, so we use a multi-dimension pheromone
matrix, with different pheromone deposit associated to
each path (i, j) for each day d.

4.2 The specific model

Let us define nIterations and nAnts the numbers of
iterations and ants. In this specific case, as specified earlier,
a solution s is a non-intersecting set of lists of interventions
routea,d assigned to each agent a ∈ A for each day d ∈ T ,
with the time of beginning of execution beginT imei for
all intervention i ∈ routea,d. In each iteration, every
ant will thus construct a solution composed of |A| × |T |
routes. The algorithm structure is described in Fig. 2.
In this structure, four steps need to be defined more
precisely: the initialization phase, the route construction
phase, the addition of appointments to daily schedules and
the pheromone update in each iteration.

Initialization In the initialization phase, a value has to
be set for the initial pheromone rate τ0 for every path
(i, j) ∈ I2 and day d ∈ T , as well as for the heuristic
information ηi,j for every path (i, j) ∈ I2. The inverse of
the distance between i and j is chosen to encourage the
selection of short paths.

τi,j,d = τ0, ∀i, j, d ∈ I2 × T (1)

ηi,j = 1/distancei,j , ∀i, j ∈ I2 (2)

Route construction A solution consists in a set of feasible
routes, one for each day d ∈ T and each available agent
a ∈ A. Ants start from their associated depot node at
departure time B. At every stage of the route construction,
let us call Nk,s ⊆ I the feasible neighborhood of ant k at
the state s, that is to say the set of interventions that
can be done by agent a on day d, that has not already
been planned in a previous state, and that fits in the
schedule timing. For each state s of the route construction,
if i is the last intervention made, the next intervention
j is chosen among all interventions with the following
probability function, where α and β are two constant
parameters that weight the balance between the influence
of pheromones and of heuristic information on the choice
of the next intervention:

psi,j,d =





ταi,j,d · η
β
i,j

l∈Nk,s
ταi,l,d · η

β
i,l

if j ∈ Nk,s

0 otherwise.

(3)

Once the next intervention j has been chosen, online
evaporation is applied on τi,j,d following this rule, where
φ ∈ (0, 1] is a decay parameter :

τi,j,d ← (1− φ) · τi,j,d + φ · τ0 (4)

Appointments addition In ACS algorithms, additional
steps called daemon actions can be added at the end of
iterations to modify solutions (most of the time to improve
them with local search methods). Here, some interventions
Iapp ⊆ I are appointments, which means they have time
windows precise to the minute, and have to be selected on
their due date ddi. To make sure they appear in every
solution, an additional step is executed on each day d
after every agent’s route has been constructed. One by
one, every intervention in i ∈ {Iapp, ddi = d} is inserted
in the route of the agent a that it degrades the less.
Every intervention of agent a after the insertion of the
appointment i is shifted in time, and interventions that
exceeds now the end time of the schedule are removed and
have to be scheduled again in the following days.

Pheromone update A solution s is evaluated on its added
value indicator, calculated as shown in Equation 5, where
di is the time duration of intervention i and ti,j is the
transportation time between the locations of interventions
i and j. The added value indicator corresponds to the rate
between the total time spent in intervention and the total
time spend in both transportation and intervention.

C(s) =


(i,j)∈s di

(i,j)∈s di + ti,j
(5)

The pheromone update is applied at the end of each
iteration on the global-best solution s∗, following the rule
defined by Equation 6, where ρ ∈ (0, 1] is a pheromone
deposit rate, and . For all day d ∈ T and all path (i, j) ∈ I2

selected in the solution s∗ on d:

τi,j,d ← (1− ρ) · τi,j,d + ρ · 10 · C(s∗) (6)

5. EXPERIMENTAL PROTOCOL AND DISCUSSION

Both the present field heuristic and the ACS model
have been experimented on several instances of the Skill-
VRPDDTW, constructed so as to represent at best the
water service management field reality. Even though it can
be handled by both algorithms, the multi-depot aspect has
been set aside from the experimental protocol to fit the
field data used to calibrate the instances, which is for the
moment concentrated on only one depot. For the existing
heuristic, as it fixes geographic boundaries between the dif-
ferent depots, the results should not differ. Every interven-
tion is only part of one geographic area and is attached to
one specific depot. For the ACS algorithm however, more
solutions could be considered because mixing geographic
areas is possible. One could therefore expect slightly better
results when adding multiple depots.

Problem parameters description An instance D of the
problem is defined by a set of agents A, a time horizon
T and and a set of interventions I. The scheduling time
horizon has been set to |T | = 20 days to represent four
weeks of maintenance, for |A| = 4 agents with 2 different
levels of skills. Let us call CapaD the working capacities, in
minutes, of all the agents of A working 420 minutes every
day of the horizon T , and LoadD the total time duration
of the set of interventions I. The density in interventions
densityD is defined as following:

densityD =
LoadD
CapaD

=
420 · |T | · |A|

i∈I di
(7)
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Fig. 2. The different steps of the ACS metaheuristic

Instances have been constructed so that LoadD corre-
sponds to 0.5, 1 and 1.5 times CapaD, in order to eval-
uate the quality of the different solving methods when
the density densityD of the instance vary. In all three
cases, the intervention durations di are equally distributed
between 15, 30, 60 and 90 minutes, for all i ∈ I, which
leads to instances of 537, 1074 and 1611 interventions.
Appointments are always generated with durations of 15
minutes, and they represent 10% of the 15-minute-long
interventions. Two types of skills are generated: half of
the interventions require the skill ”A” and the other half
the skill ”B”, while among the four agents, one has only
the skill ”A”, one the skill ”B” and the two others both.
Locations of interventions are randomly chosen in a set of
2000 addresses not distant from more than 80 minutes of
transportation time of each other. Two interventions can
have the same location, and the average transportation
time between two locations is 35.6 minutes.

Ant Colony System parameters The parameters relative
to the ACS algorithm have been set as in Yu et al. (2011),
where a Multi-Period VRP with Time Windows is solved
with an Improved Ant Colony Optimization algorithm.
The parameters are therefore set to these values: τ0 = 1;
ηi,j = 1/distancei,j ∀i, j ∈ I2; α = 2; β = 6; φ = ρ = 0.01.

Results The average results for both the real-world-
inspired heuristic and the ACS algorithm, on 15 instances
with densities in interventions varying between 0.5, 1 and
1.5 can be seen in Table 1. The added value indicator
C(s) (as defined before in Equation 5) is measured on
each solution s, as well as the number of interventions
planned nb p(s), the total time spent in intervention w t(s)
and in transportation t t(s) in minutes, and the time of
calculation in seconds c t(s).

Table 1. Results

Algo Density C(s) nb p(s) w t(s) t t(s) c t(s)

RWH 0.5 0.89 537 16869 2053 2
ACS 0.5 0.91 537 16869 1623 123

RWH 1 0.91 1011 27870 2870 9
ACS 1 0.93 950 29745 2078 761

RWH 1.5 0.91 1322 28649 2862 20
ACS 1.5 0.94 968 29199 1975 1360

In the first case, when the work capacity is twice the
total time of interventions (density=0.5), both algorithms

manage to schedule every intervention. The number of
interventions planned and the time spent in interventions
is therefore the same for both algorithms. However, the
time spent in transportation is reduced by 20% for the
ACS algorithm, which represents a little more than one
complete day of work of one agent. Calculation time for
its part goes from 2 seconds for the heuristic to 2 minutes
for the ACS.

When the work capacity is equal to the total time spent
in intervention (density=1), both algorithms schedule only
a part of the interventions. The balance between the time
spent in intervention and in transportation, or added value
indicator is still better for the ACS algorithm, by 2%, and
time spent in transportation is reduced by 2̃7% (which
represents more than two complete days of work) for an
increase of time in intervention of 6.7%. Calculation time
goes from 20 seconds to almost 13 minutes. An interesting
result is the number of intervention planned, by 6% higher
for the Real-World Heuristic, while the total time spent in
intervention is lower. This is because the heuristic process
is only guided by distance, while the ACS algorithm also
prioritizes the planning of the longest interventions. Indeed
the length of a detour to include an intervention in a route
is proportional to the length of the intervention. This also
gives another advantage to the ACS algorithm compared
to the Real-World Heuristic, which tends to leave for later
the longest interventions (and therefore the hardest to fit
in a schedule).

Finally, when the capacity is lower than the the total time
spent in intervention with a density of 1.5, the results
observed before (density=1) are amplified: transportation
time is decreased of 31% with the ACS algorithm, interven-
tion time increased of 1.9%, while the number of planned
tasks also falls from almost 27%. The Real-World Heuristic
is still very fast, with an average calculation time of 20
seconds, compared to 23 minutes for the ACS algorithm.

What can globally be learned from these experiments is
that although the Real-World Heuristic has the advantage
of being fast in calculation (20 seconds in average for
a 1611-intervention instance), the transportation time is
always reduced when using the ACS algorithm, and all
the more so as the instance gets bigger. When not all
interventions can fit in the schedules (density=1 or 1.5),
the Real-World Heuristic tends to plan a larger number



11134 Marine Dubillard  et al. / IFAC PapersOnLine 56-2 (2023) 11129–11134

of shorter interventions, which has for logical effect to
take more time in transportation for an equivalent time in
intervention. One can nevertheless see that even with the
exact same interventions planned (when the density is 0.5),
ACS brings an average reduction of 20% in transportation
time, compared to the Real-World Heuristic. It shows that
the Real-World Heuristic, choosing the closest intervention
agent by agent, gives acceptable routes in a real short time,
but also that 20% to 30% of transportation time can be
saved, and the added value rate C can increase by 2% to
3% by using more complex algorithms that explore more
widely the solution space, such as the ACS meta-heuristic.

6. CONCLUSION AND PERSPECTIVES

The Skill Multi-Depot VRP with Due Dates and Time
Windows has been introduced as well as two algorithms
to solve it: a real world heuristic already used for wa-
ter maintenance activities, and an Ant Colony System
(ACS) algorithm inspired from the literature. The results
obtained in this paper for the one-depot variant of the
problem show that the use of a metaheuristic such as the
ACS could lead to a reduction in transportation time of
20% to 30% for the forecasted scheduling, that is to say
without taking hazards into account. Hazards can occur
in the form of (i) intervention time increase or decrease,
(ii) transportation time increase or decrease, (iii) and the
addition of emergency interventions, which can radically
change the nature of the previously planned schedules.
In future work, robust optimization will be more deeply
studied so as to find strategies for rescheduling the inter-
ventions after the occurrence of said hazards.

Moreover, in the real world application, the precise time
of beginning of interventions several weeks in advance is
not necessary. In order to spare some useless calculation
time, we consider to propose a two-stage planning, with
first (i) the attribution of a day of execution for each
intervention, and (ii) then a precise schedule for the first
5 days, for example.

Both the consideration of hazards and the problem separa-
tion will certainly lead to a loss in efficiency on the various
key performance indicators. The results obtained in this
study can be considered as upper bounds for the gain in
efficiency when scheduling the maintenance activity.

REFERENCES

P. Toth et D. Vigo. The vehicle routing problem. In
Philadelphia: Society for Industrial and Applied Math-
ematics, 2002.

Gilbert Laporte. The vehicle routing problem: An
overview of exact and approximate algorithms. Euro-
pean Journal of Operational Research 59, 345–358, 1992.

J.-F. Cordeau, Guy Desaulniers, Jacques Desrosiers, Mar-
ius M. Solomon, and François Soumis. The VRP with
Time Windows. In Les Cahiers du GERAD, 1999.

P. Cappanera, L. Gouveia, et M. G. Scutellà. The Skill
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