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Abstract: Supply chain networks today comprise of various decentralized actors, subject to 
constantly evolving challenges and customer expectations, and operate in a volatile, 
uncertain, and disruption-prone environment. These challenges and complexities bring in 
informational and material flow distortions, making it hard to align demand and supply with 
agility. Building a centralized optimization model for such complex systems tends to be 
computationally expensive and unscalable for real-world application. With this motivation, 
we propose a novel, real-world applicable multi-agent-based approach for collaborative and 
agile demand-supply alignment, through dynamic prediction-driven planning and operational 
decision-making. We first demonstrate the applicability and configurability of our approach 
with a real-world supply chain network operating in a stochastic and disruptive 
environment, with the desired characteristics in congruence with the Physical Internet 
framework. We then demonstrate the simulation-testing capability of our approach by 
highlighting the potential benefits of leveraging a hyperconnected network of open 
certified production options. 

1 Introduction 

Supply chains today are complex networks with many actors such as suppliers, plants, 
distributors, and customers, that are often scattered around the world. Each of these supply 
chain networks (SCN) are interconnected as parts of global supply webs (Montreuil et. al., 
2009) and as a result, their performance becomes the complex outcome of the 
interdependent efforts and actions of its constituent actors across the globe (Montreuil et. al., 
2000).  

With this complexity and continuously evolving challenges, it is inevitable to face with 
disruptions in information (bullwhip effect, inherent forecast errors, rapidly changing 
demand patterns), production (raw material, labor, machinery), or delivery (driver shortage, 
cargo ship problems) across the network. All these disruptions make it hard to align supply 
and demand



through the supply chain network, and companies see themselves either ending up with huge 
inventories piled up at their distribution and fulfillment centers or facing sale losses. 
Furthermore, the recent years pervaded with effects of the COVID-19 pandemic and a global 
supply crisis have highlighted the ever-increasing need for demand and supply alignment.  

Achieving demand-supply alignment in a real-world SCN operating in a volatile, uncertain, and 
disruption-prone environment requires prescriptive planning and operations management, with 
the ability to dynamically adapt to evolving challenges and expectations (agility). Thinking that 
the planning and operation of SCNs can be represented as a single comprehensive model which 
can be solved optimally or near optimally in such a complex, stochastic, and large-scale context 
may often prove counterproductive, due to its modelling and computational complexities. So is 
thinking that high SCN performance in such a context can be achieved by distributing the 
planning and operational decisions to siloed actors with disconnected models and policies. 

To overcome the complexities of centrally optimizing decisions within the SCN, and 
misalignment induced by decentralized decision-making, we propose a Physical Internet 
inspired hyperconnected approach for agile and collaborative demand-supply alignment in 
SCNs, with the ability to leverage external options to mitigate the effects of uncertainties and 
disruptions. The approach fundamentally recognizes the roles and responsibilities of each actor 
as a node in the network as well as the inherent interdependences between the decision scopes 
of agents, leveraging their collective smartness, enabling their collaborative decision-making 
through daily updated prediction and optimization models, and developing the collective agility 
of SCNs. The approach aims at continually optimizing demand and supply alignment for a 
complex large-scale SCN subject to a highly stochastic and disruptive environment. 

Overall, this paper has two key contributions. Firstly, it introduces our novel multi-agent-based 
approach for demand-supply alignment optimization across various functions in a multi-
echelon manufacturing and distribution network and highlights its wide applicability and ability 
to model networks in line with the Physical Internet paradigm. Secondly, it highlights the 
simulation-testing capability of our proposed approach and provides an empirical analysis of 
the benefits of utilizing a hyperconnected network of open certified production options for a 
manufacturing firm facing uncertainties and constraints in a disruption-prone environment. 

The paper is structured as follows. Section 2 provides an overview of related literature. Section 
3 details the overall approach and key constituents. Section 4 describes our experimental setup 
and simulation results. Finally, Section 5 shares conclusion and avenues for further research.  

2 Related Literature 

Demand-supply alignment is an important measure of a SCN’s capabilities to optimize 
integrated supply chain management. This becomes furthermore pertinent in practice where 
they face continuously evolving challenges, uncertainties and disruptions stemming from 
demand, supply, and various operational aspects of the network (Ptak and Smith, 2018; 
Benaben et. al., 2021). Eruguz et. al. (2015) state that multi-echelon inventory optimization for 
integrated supply chain management improves the overall performance in terms of customer 
service level and inventory costs, although they induce significant computational complexity 
and are unable to model the various actors of the network intricately as in the real world. 

Fox et. al. (1993) described an agent-based approach for integrated supply chain management, 
enabling decision-making on the strategic, tactical, and operational levels. They proposed that 
the next generation SCNs be distributed, dynamic, intelligent, integrated, responsive, reactive, 
cooperative, and adaptable among others. Multi-Agent Systems (MAS) is a modelling and 
simulation approach influenced by the complexity paradigm and is a suitable approach for 



modelling real-world SCNs with multiple actors that are simultaneously acting, and 
continuously reacting to the actions of other actors (Dominguez et. al., 2020). 

Researchers have widely used MAS to develop representative and detailed SCN models to 
predict and improve performance of various strategic, tactical, and operational decision-making 
capabilities. Montreuil et. al. (2000) originally proposed a MAS-based approach for operational 
planning that fundamentally recognizes the roles and responsibilities of each actor as a node in 
the network, and associates to each node a software agent, or a team of such agents, creating a 
network of software agents, with a high degree of development. Abid et. al. (2004) and 
Cheeseman et. al. (2005) utilized MAS framework for collaborative production planning and 
scheduling. Behdani et. al. (2019), Wang et. al. (2019), and Namany et. al. (2020) demonstrated 
resiliency improvement in critical supply networks, and provide a simulation framework for 
decision-makers to test various disruption scenarios and mitigation strategies. 

Although MAS is a powerful tool for modelling and analyzing real-world distributed SCNs 
with constraints and options, there exists a gap in the existing literature in integrated supply 
chain management with dynamic predictive and decision-making methodologies to improve 
demand-supply alignment, when faced with uncertainties and disruptions. Furthermore, there 
is a lack of research in detailed modelling and simulation-based testing of complex SCNs with 
characteristics (modular containerization, collaboration, resource sharing, hyperconnected 
network) that enable decision makers to realize the empirical benefits of PI access and adoption. 

3 Overall approach and key constituents 

In this paper, we investigate the optimization of demand-supply alignment across SCNs subject 
to high volatility and uncertainty. We propose a collaborative and dynamic distributed-
decision-making approach for end-to-end modeling, optimizing, and simulation-testing of a 
real-world manufacturing SCN using a Multi-Agent System (MAS) modelling approach. 

We build on the approach proposed by Montreuil et. al. (2000) of recognizing the roles and 
responsibilities of each actor (facilities, humans, machines, software, or robots) as a node in the 
network, and associate to each node a software agent, or a team of such agents, creating a 
network of software agents. Our approach also encompasses the inherent interdependences 
between the decision scope of agents, and protocols for multi-agent interaction and 
accountability across the overall agent network. The decision-making process is facilitated with 
predictive and optimization models, along with smart and collaboration-enabling rule-based 
algorithms. The decision-making processes of the interacting agents consider their 
uncertainties, constraints, and options, with the goal of maximizing demand-supply alignment 
in their vicinity, and the overall system performance in both short and long-term horizons. 

The fundamental driver towards achieving demand-supply alignment is the understanding that 
sales and demand are not necessarily the same. In an ideal setting where the availability of all 
products is maintained in the network, then sales and demand are identical. But, in practice, 
with the various uncertainties and constraints, it is not always feasible to maintain availability 
of all products. Then, demand must be estimated from sales by considering substitution, 
deferral, and lost sales in case of stock-out situations (Derhami and Montreuil, 2021). A demand 
forecast agent dynamically estimates demand, and subsequently generates demand forecasts 
for each product, category, and the overall portfolio in the different geo-spatial and temporal 
settings and propagates them in the network of SCN actors, enabling agile decision-making. 

The key planning and operational decision to achieve demand-supply alignment is agile 
inventory management. We utilize autonomy-based forecast-driven replenishment strategies, 
where the medium and long-term decisions are flexible to be updated based on forecast updates. 



Autonomy denotes the ability of a SCN inventory-holding node to function seamlessly for t 
time units (e.g. 7 days) with r robustness (e.g. 99%), including protection relative to scenarios 
of interrupted supply and disrupted demand. Autonomy is computed from demand forecasts 
and updated daily by the inventory agents to estimate the inventory replenishment required. 

Each manufactured product has a unique bill-of-materials consisting of different components 
and raw materials that go through various production processes. Raw materials and other 
resources necessary for production are provided by local and global suppliers that share their 
capacities, delivery lead times, and prices with corresponding agents. The production plants are 
responsible for ensuring smooth production and shipment of finished goods to distribution 
centers (DCs). Each production plant is modeled as a family of agents. The resource agent is 
responsible for maintaining resource and raw material availability. The capacity agent assesses 
production capacity and shares with pertinent agents to facilitate production planning. With the 
finalized plans, it coordinates production within the plant, and schedules jobs at work-centers. 

The DCs hold inventory of finished goods to provide long-term network-wide resiliency in case 
of disruptions and replenish the fulfillment centers (FCs). The customer demand is satisfied by 
the FCs utilizing 3PL service providers, and hold enough inventory to meet customers in the 
short-term. The DCs and FCs are modelled as a family of agents. The inventory agent is 
responsible for keeping track of inventory levels, estimating replenishment required based on 
forecasts, and sharing the information with pertinent agents. The transportation agent 
schedules the various shipments to customers and within the network. As in plants, the resource 
agent ensures availability of resources for operational continuity. Table 1 provides an overview 
of the agents associated to physical nodes of the SCN, that facilitate decision-making with their 
ability to perceive, react, and collaborate towards achieving their goals. 

Table 1: Responsibilities of agents associated to physical nodes 

Agent Physical Node Tracking Metric Responsibility 

Demand Forecast 

Agent 
Customers 

Sales, inventory, 

promotions 

Estimate demand from sales, 

update demand forecasts daily 

Inventory Agent FC, DC Inventory, forecasts 
Estimate inventory  

replenishment required 

Capacity Agent Plants 
Production capacity, 

production plans 

Share available capacity, 

schedule production as plan 

Resource Agent 
FC, DC, 

Plants 

Resources, 

raw materials 

Procure resources  

based on requirements plan 

Transportation 

Agent 

FC, DC, 

Plants 

Transportation 

capacity 

Share available capacities,  

facilitate shipments on-time 

We utilize coordinator agents that are responsible for making the connection between the 
actions and decisions of different agents to ensure that the collective agent decision is feasible 
and enhances demand-supply alignment in their vicinity, while preventing individual agents 
from impacting a deviation in the SCN’s path towards its global objectives / goals. The 



description of three primary coordinator agents in the SCN, namely Fulfillment (FNC), 
Distribution (DNC) and Production (PNC) Network Coordinators is as follows: 

1. Fulfillment Network Coordinator facilitates the decision-making for the agents associated
to the network of FCs. It manages two primary decisions: on-demand customer order
fulfillment from closest FC with inventory availability; and daily FC replenishment in
modular containers from DCs by collaborating with the DNC. FC replenishment is done by
considering the unconstrained replenishment request (based on short-term autonomy at each
FC) from the FC inventory agents and available inventory from DNC. The coordination
enables equitable share of supply from DCs such that the minimum autonomy across FCs
is maximized, while respecting full modular container constraint for all shipments as
pertinent. In the case of excess inventory at any FC due to change in demand pattern,
transshipments between FCs are allowed to maintain inventory balance among the FCs.

2. Distribution Network Coordinator manages the inventory replenishments at DCs. Contrary
to FC replenishment, DC replenishment is done in coordination with PNC focusing on long-
term demand forecasts to prevent potential lost-sales due to lack of inventory in case of
disruptions and preparation in advance for upcoming seasonalities. The agent aims for
medium-term autonomy at DCs to be able to serve FC requests. Since DC replenishment is
constrained by production capacity and capabilities of the plants, it is crucial to utilize
production capacity efficiently to build adequate inventory that is aligned with the
forecasted demand. Aggregated weekly production capacities of the production plants are
shared with the agent by capacity agents of each plant. In addition to production capacity,
which directly depends on raw-material, labor, resource, and machinery availability,
minimum and maximum batch sizes at plants also impacts the decision processes. DC
replenishment plans are prepared by considering production, transportation, and autonomy
constraints along with the objective of maximizing long-term profit under uncertainty and
disruptiveness. Transshipment between distribution centers is considered as alternative
sourcing option in the case of unbalanced inventory or autonomy levels between DCs due
to unexpected demand realizations or disruptions in production and delivery.

3. Production Network Coordinator manages production planning in the plants network. The
agent receives the production capacity at each plant along with the replenishment requests
of DCs. The production plans are finalized with DNC, and assigned to production plants as
work-orders, after detailed examination of the production plant capacities and schedules.
Since an aggregated capacity model is shared with distribution network coordinator, the
requests are expected to be feasible to mostly produce on-time. In case of infeasibility, the
production coordinator agent allocates the capacity to requested items in a way that
minimizes the deviation from target autonomy levels at distribution centers. In addition to
dedicated production plants, there are open certified production centers (OCPC) that
provide contract-based production capacity and enable hyperconnected production.

The proposed approach relies on information sensing, daily updates of predictive algorithms, 
optimization models and solution methodologies for each agent to its support decision-making 
role according to developed collaborative protocols. The approach leverages the agent 
network’s collective smartness to enable the collaborative decision-making of each agent, and 
to develop the collective agility and resilience of the supply chain network. Figure 1 shows our 
multi-agent network, where the Agent layer corresponds to the physical nodes in the network 
and is responsible for the functional decision scope for each node in the Physical layer. 



Figure 1: Multi-agent system for the hyperconnected supply chain network 

We attain informational hyperconnectivity through pertinent information access to agents based 
on their functional requirement, and furthermore through collaborative engagement and 
negotiation between agents towards collective decision making (Montreuil et. al., 2000; 
Montreuil et. al., 2012). The agents undertake various planning and operational decisions 
regarding inventory management, production planning, transportation, and order fulfillment. 
Physical hyperconnectivity in the system is enabled with transshipments of raw materials, 
intermediate and finished goods between the nodes, and access to potential production options 
with OCPCs through long-term contracts or spot capacity allocation (Montreuil et. al., 2012). 

4 Experimental Setup and Results 

In this section, we describe the experimental setup inspired by the case of one of our industrial 
partners, and leverage an agent-oriented simulator to dynamically experiment the collective 
performance of our proposed hyperconnected approach to optimize demand-supply alignment 
in a complex real-world large-scale supply chain network subject to a highly stochastic and 
disruptive environment. 

Figure 2: Nodes in the supply chain network  Figure 3: Potential network of OCPC facilities 

Our industry partner is a major producer of a portfolio of ready-to-assemble household furniture 
and serves customers in North America. Customer orders are fulfilled from five FCs, with 
orders being placed exclusively through e-commerce companies or the company's website, 
preventing backlog of orders. The FCs are replenished from three DCs, which are in turn 
replenished from three production plants. Figure 2 shows the geographical distribution of the 
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nodes of our industry partner’s SCN. In addition to the dedicated plant network, we consider 
the accessibility of a hyperconnected network of Open Certified Production Centers (OCPC) 
that provide long-term capacity allocation contracts, as shown in Figure 3. All movements of 
raw materials to OCPC facilities and finished goods within the network are modeled to be done 
using modular containers, in line with the Physical Internet framework. 

4.1 Demand 

With the aim of highlighting the capabilities of our proposed approach in a disruptive 
environment, we here consider a single product that is a top-seller. Figure 4 shows the 
geographical location of customers for this product, with the color based on the closest FC. We 
run the agent-oriented simulation for three years: pre-disruption period (2019), COVID-19 
disrupted period (2020), and post-disruption period (2021). The selected product displays a 
varying pattern in the three periods, with considerable stock-out durations during 2020. We 
begin by estimating the demand during these stock-out periods, using exponential smoothing 
based forecasting method (Derhami and Montreuil, 2021). Figure 5 shows the daily sales and 
estimated demand for the product in the planning horizon and observe ~10.7% lost sales.  

Figure 4: Geographical distribution of demand  Figure 5: Daily observed sales and estimated demand 

With the estimated demand, we progress to generating demand forecasts with one-year horizon, 
by considering the level, trend, and various seasonalities based on historical information. We 
utilize the Bouchard-Montreuil (BM) method (Bouchard and Montreuil, 2009) adapted from 
the Holt-Winters method (Holt, 1957; Winters, 1960), which considers the various seasonalities 
based on calendar days and by allowing defining the seasons to be based on the similarity of 
patterns. Forecasts are dynamically updated daily to effectively capture the demand. Figure 6 
illustrates the evolution of our demand forecasts, where each forecast “tornado” is the 
cumulative demand forecast generated on a given day for the one-year horizon. Orange regions 
denote the confidence intervals, and the dotted line denotes the realized demand. Even though 
order backlog is not permitted, we highlight cumulative forecast performance as it is used by 
the agents for their decision-making. 

Figure 6: Evolution of cumulative demand forecasts 



4.2 Supply 

We model supply with the production capacity of the plants. The plants operate for a fixed 
duration daily, and we estimate the daily production capacity considering historical allocation 
of resources to the selected product, and required capacity based on forecasts generated at the 
start of the planning horizon. As shown in Figure 7, COVID-19 pandemic impacted the SCN 
in late March 2020, and decreased the production capacity to zero for a month. The production 
capacity recovered gradually over the next months. The first month with zero capacity 
represents the imposed lockdowns. The following days with less than full capacity represent 
supplier problems, limited lockdowns, and labor shrinkage due to illness or regulations. In order 
to contain the complexity of this exploratory experimental setup, we assume that raw material 
availability is ensured in the plants, to support short-term production planning based on 
aggregated capacity. 

Figure 7: Daily production capacity at dedicated plants and open certified production centers 

Although the production shutdown was beyond the control of the decision makers, they became 
aware of such a possibility in the near future early on, which we will utilize as a capacity 
disruption signal to demonstrate the benefit of proactively reacting to disruption signals. 
Additionally, the OCPC facilities offer additional capacity (20%, as shown in Figure 7) through 
long-term contracts, and serve as options during normal and disrupted periods. In this paper, 
we assume that from the network of OCPCs, we are assured production capacity during all 
periods, and becomes a potential for further sensitivity analysis on the reliability of OCPCs and 
disruption scenarios.  

4.3 Experimental parameters 

We model inventory replenishment to the various nodes of SCN based on autonomy, derived 
from demand forecasts. The coordinator agents aim to maintain minimum 7-days autonomy at 
the FCs and minimum 14-days autonomy at the DCs. All shipments between nodes are 
modelled as stochastic random variables, with the mean estimated based on travel time between 
nodes based on the average truck speeds in North America.  

4.4 Experiment objective 

Firstly, with the aim of demonstrating the applicability of our proposed approach and the 
improvement in demand-supply alignment in a real-world hyperconnected SCN, we highlight 
the experimental capability of our approach by comparing performance metrics in the various 
aforementioned periods for the following four DC replenishment strategies: 

1. Myopic Lean: The DCs maintain a myopic view, and consider only the upcoming
week(s) in estimating their replenishments based on autonomy for production planning

2. Farsighted: The DCs maintain a farsighted view, and consider the long-term forecasts
along with autonomy required to prepare in advance for upcoming seasonalities

OCPC contracted capacity

Dedicated plant capacity



3. Farsighted (Signal): Along with maintaining a farsighted view, the DCs proactively
react to a potential plant shut-down signal to mitigate the effects of the supply disruption

4. Farsighted (Signal, OCPC): Along with a farsighted view and response to disruption
signal, the DCs utilize the network of hyperconnected OCPC facilities when network
production capacity is unable to cater to the replenishment required by DCs

Secondly, we conduct a sensitivity analysis of capacity consideration and costs of utilizing the 
hyperconnected OCPC facilities, on SCN performance metrics and potential benefits.  

4.5 Results 

We measure demand-supply alignment performance of the DC replenishment strategies under 
three primary dimensions: demand fulfillment rates (lost sales), misaligned fulfillments (from 
further-away FCs) and average inventory levels (product availability), as shown in Table 2.  

Table 2: Performance comparison of various DC replenishment strategies  

(Pre: Pre-disruption 2019, Dis: COVID-19 disruption 2020, Post: Post disruption 2021) 

Demand 
Fulfillment 

Misaligned 
Fulfillment 

Daily Average 
Inventory 

DC replenishment strategy Pre Dis Post Pre Dis Post Pre Dis Post 

Myopic Lean 100% 86% 76% 0% 27% 42% 1,546 522 181 

Farsighted 100% 100% 82% 0% <1% 31% 3,837 2,991 285 

Farsighted (Signal) 100% 100% 89% 0% 0% 15% 3,837 4,237 789 

Farsighted (Signal, OCPC) 100% 100% 98% 0% 0% 3% 3,776 3,896 1,606 

The SCN is able to satisfy almost all the demand from preferred fulfillment centers during the 
pre-disruption period. The consequences of the supply and demand disruption are profound for 
the myopic lean approach where it only satisfies 86% of the demand with 27% of them fulfilled 
from further-away fulfillment centers. The other approaches are more resilient to disruption as 
they can maintain their performance close to the pre-disruption period. Post-disruption period 
comes with an increase in demand as can be seen in Figure 5. With all approaches there is a 
decrease in performance dimensions, however, the benefit of maintaining a farsighted view and 
utilizing OCPCs on mitigating the impact of the demand disruption is evident. 

Next, we investigate the impact of the degree of reliance on the hyperconnected OCPC network. 
Figure 8 illustrates the network-wide average daily inventory levels and demand fulfillment 
rates along with increasing OCPC production capacities for farsighted sentient approach. Here, 
the capacity ratio denotes the ratio of contracted capacity to the capacity at SCN’s production 
plants. We observe that with just 15% additional contract capacity, all lost sales are eliminated. 

The average daily inventory level has an overall decreasing trend with reliance on OCPCs. The 
fluctuation in the trend around 20% capacity ratio is a result of the sudden unforeseen demand 
peak in early 2021 and is a characteristic of the demand scenario considered. With a lower 
capacity ratio, the SCN builds inventory in preparation for the upcoming seasonalities, when it 
perceives it won’t be able to meet autonomy in the future with the capacity available. With 20% 
capacity ratio, the SCN has enough capacity, so it doesn’t need to produce in advance, but when 
faced with the demand jump, and consequently a short-lived jump in the demand forecasts, it 
is restricted by capacity. On the other hand, with higher capacity ratios, the SCN produces 



excess inventory driven by the high demand forecasts. With capacity ratios over 40%, the SCN 
has enough capacity to cater to the upcoming long-term demand and doesn’t need to produce 
much in advance, hence maintaining lower average inventory levels. 

Figure 8: OCPC sensitivity on inventory and service     Figure 9: OCPC sensitivity on profit margin 

Next, we conduct a sensitivity analysis on average profit margin per unit of the product with 
capacity ratio and profit ratio, which is a measure of the addition cost or saving from producing 
at OCPCs as compared to SCN’s plants. Figure 9 shows the change in average profit margin, 
where value of 1 represents no change on profit margin and values larger than 1 implies 
increased profit margins. We observe that for lower profit ratios, i.e., when producing at OCPCs 
is costlier than producing at plants, the profit margin decreases with increasing capacity ratio. 
On the contrary, for higher profit ratios, where it is cheaper to produce at OCPCs than at plants, 
higher reliance on OCPCs improves the profit margin, while also decreasing average inventory 
levels and eliminating lost sales.  

5 Conclusion 

In this paper, we focus on the supply-demand alignment of a supply chain network (SCN) in a 
volatile, highly uncertain and disruption-prone environment. To overcome the complexities of 
centrally optimizing decisions within the SCN towards this goal, we propose a responsibility-
oriented collaborative decision-making structure with agents that can make decisions regarding 
their own responsibilities, while collaborating with each other. The multi-agent system (MAS) 
structure we propose distributes the responsibilities to agents, and each agent has a defined set 
of performance criteria, required input-outputs, and protocols for communication with other 
agents. To prevent making infeasible or local-optimum decisions at agent-level instead of 
optimizing the global objectives, the impact of each agent’s decisions on other agents is also 
incorporated into decision-making processes by using coordinator agents and allowing 
communication/negotiation between agents. The continuous communication (information 
sharing) between the agents helps to decrease the bull-whip effect (limits the disruptions in 
information) and allows cooperative alignment of supply and demand plans. 

Daily update of demand forecasts and distributed decision-making processes enable the system 
to rapidly react to disruptions that have occurred or sensed. The decisions or problems that 
would be difficult to model and solve with all the details by using a central decision-making 
approach can be modelled and solved with finer granularity and higher sensitivity by agents. 
Furthermore, the SCN model can be tested under various disruption, helping in identifying the 
configurations and strategies that facilitate the desired performance, resilience, and agility. 



As a future research direction to effectively navigate in the unstable supply chain context, the 
model needs to be equipped with sentient capabilities. This involves enabling the system to 
perceive, understand, and analyze the situation, and transform into a goal-oriented system that 
can continually define and adjust its objectives based on the dynamic circumstances. Overall, 
to enable agile and resilient demand-supply alignment in SCNs operating in the unstable 
context, we propose a goal-oriented sentient system (GOSS) that can orient itself, argue its 
decisions, and legitimize its actions based on dynamic targets and sentient capabilities. 
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