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Kinetic modelling of biomass fast devolatilization using Py-MS: Model-free 
and model-based approaches 

Manel Nasfi, Marion Carrier, Sylvain Salvador 
RAPSODEE, CNRS UMR 5203, Université de Toulouse, IMT Mines Albi, Campus Jarlard, 81013 Albi CT Cedex 09, France   

A B S T R A C T

Feasibility using quantitative data obtained from a micropyrolyzer coupled to an evolved gas analysis technique, mass spectrometry, for kinetics determination has 
been long demonstrated. This paper describes for the first time how to obtain intrinsic kinetics for fast devolatilization of biomass and its lignocellulosic 
fractions (e.i., hol-ocellulose and lignins). The main challenge with online detection is assessing the time lag related to transport phenomena between the reactor 
and the detector. To do this, an experimental method was developed to derive the real-time biomass devolatilization profile; this provided ’corrected’ datasets. 
Preliminary kinetic parameters were obtained from the differential isoconversional Friedman method combined with real-time sample tem-perature history. 
Not considering the effect of thermal lag and the delay in detecting pyrolysis products by the MS leads to a certain level of inaccuracies. Isoconversional 
activation energy (Eα) dependencies obtained in the absence of heat and mass transfer limitations for biomass and its components highly varied with 
conversion, confirming the multi-step nature of the fast pyrolysis process. After demonstrating the modeling limitations of a constant activation energy model 
(CAEM), both isoconversional functions were parametrized to propose a variable activation energy model (VAEM) and used as initial inputs for the distributed 
activation energy model.   

1. Introduction

Fast pyrolysis is one of the most efficient thermochemical technol-
ogies to transform biomass into a renewable energy resource [1]. 
Biomass is rapidly heated without oxygen, producing vapors, aerosols, 
char, and non-condensable gases. Vapors and aerosols are condensed 
into a dark brown liquid called pyrolytic oil or bio-oil, which can be 
easily stored and transported [2]. The increasing and significant po-
tential of pyrolytic oil for producing energy, fuels, commodity, and 
high-value chemicals [3] depends on research breakthroughs in process 
modeling and bio-oil upgrading technologies [4–6]. Bio-oil yields and 
composition depend on reactor configuration, operating conditions, and 
the nature of biomass [7]. Considering the wide variety in the chemical 
composition of lignocellulosic biomasses and reactor types, it is unsur-
prising that controlling pyrolysis product yields and composition re-
mains challenging [8]. 

The absence of suitable experimental methods and techniques is the 
main problem in determining fast pyrolysis kinetics and reaction 
chemistry [9]. The thermogravimetric analyzer (TGA) is the most 
common equipment for studying pyrolysis kinetics. TGA gives 

information about the whole process without providing qualitative in-
formation on pyrolysis products related to mass loss. A strategy of 
coupling TGA with Fourier transform infrared (FT-IR) spectroscopy and 
mass spectrometry (MS) has been proposed to overcome this disadvan-
tage [11–15]. However, the typical heating rates of TGA 
(0.01–1.66 ◦C/s) are unsuitable for studying fast pyrolysis [14,15]. 

The Frontier micropyrolyzer allows equivalent heating of biomass 
particles to that of a fluidized bed reactor, reaching a maximum tem-
perature ramp of 110 ◦C/s for the cup containing the biomass sample 
[16]. The inability to directly monitor the reaction temperature of the 
sample has been overcome with the last findings of our group [16]. We 
have demonstrated that under certain sample preparation and heating 
and gas flow conditions, dynamic pyrolysis experiments with isothermal 
reacting samples could be conducted knowing the temperature-time 
profile, which is essential for kinetic evaluation. 

In addition, measuring the reaction kinetics of solid particles requires 
efficiently measuring the time-resolved composition of evolving product 
species. When using offline analysis mode, pyrolysis reactors must have 
milliseconds time scales to track the progress of the reaction even at 
earlier stages. For example, the particular design of the PHASR reactor 
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This paper explicitly describes overcoming kinetics inaccuracies 
when using a conventional micropyrolyzer system by developing novel 
calibration strategies for the Py-MS system to consider the effect of 

thermal lag and the delay in the detection of pyrolysis products by the 
MS. The most common differential isoconversional method applied to 
corrected Py-MS data was then used to interpret and model primary 
mechanisms of biomass devolatilization. Both constant and variable 
activation energy models were developed based on the results of the 
isoconversional method to simulate fast biomass devolatilization, and 
outcomes were compared to those of the distributed activation energy 
model. 

2. Materials and methods

2.1. Feedstock materials and characterization

Zea Mays leaves (IsoLife, Wageningen, Netherlands) and Beechwood 
(SoWood, Saint-Herblain, France) were used in this study. The size of 
samples was reduced to < 100 µm using cryogenic grinding (SPEX 6775 
model). Before analysis, biomass samples were dried for 24 h at 104 ◦C. 
Proximate analysis based on the ASTM E1131 standard using TGA/DSC 
111 Setaram and ultimate analysis using an elemental analyzer (Flash 
2000 Thermo) were performed, and the results are presented in 
Table A.1 in Supplementary material, section A. 

The lignocellulosic composition (e.i., the weight percentage of cel-
lulose, hemicelluloses, and lignins) of feedstocks (Table A.1 in Supple-
mentary material, section A) was estimated using the thermogravimetric 
method proposed by Carrier et al. [32]. Lignins and holocellulose con-
tents were also measured experimentally based on ISO 21436 and ISO 
21437 standard methods for the beechwood sample (values between 
brackets in Table A.1 in Supplementary material, section A). The cel-
lulose, hemicelluloses, and lignins contents obtained with this method 
were comparable to others in literature for beechwood (cellulose: 40–50 
wt%, hemicelluloses: 24–40 wt%, and lignins: 18–25 wt%) [33,34] and 
corn stover (cellulose: 20–40 wt%, hemicelluloses: 23–46 wt%, and 
lignins: 16–26 wt%) [33,34]. Beechwood sample contains high volatile 
matter content, which generally contributes to high bio-oil yields, while 
Zea Mays leaves with high fixed carbon may lead to high biochar yield 
[34]. Zea Mays leaves show higher content of ash than beechwood. The 
inorganic biomass sample fraction mainly consists of potassium and 
calcium (Table A.2 in Supplementary material, section A). 

2.2. Methods 

2.2.1. Data acquisition 
Raw devolatilization profiles were acquired through analytical py-

rolysis experiments performed in a multi-shot pyrolyzer (EGA/PY- 
3030D) coupled with a mass spectrometer (Agilent 5977), as shown in  
Fig. 1.a. In the pyrolyzer, the "single-shot" mode was used. The pyrolysis 
unit (Fig. 1.b) consists of a sampler that holds samples, the reactor made 
in Quartz, a heating sleeve, ceramic support, an insulator, and a heated 
interface zone to keep the pyrolysis products in the gaseous state until 
they reach the GC injection port. The micro-furnace is preheated from 
ambient temperature to the desired pyrolysis temperature (400, 420, 
430, and 450 ◦C) in less than one second [35]. The furnace was cali-
brated before experiment to ensure accuracy. 

Approximately 50 μg of biomass sample was carefully introduced to 
the deactivated stainless-steel cup to spread out as well as possible at the 
bottom of the cup and get as close as possible to the thin film configu-
ration to ensure a kinetically controlled regime [16]. The sample holder 
allows the introduction of the cup containing the biomass sample into 
the center of the microreactor by releasing the stick once the 
micro-furnace is preheated. Before introducing the sample, the micro-
reactor was purged for 2 min to remove oxygen. Pyrolytic products were 
conducted using Helium (Scientific grade 6.0, Linde France) at a flow 
rate of 100 mL/min. They left the microreactor through a needle 
attached to the bottom of the interface zone, which directs them to the 
transfer line. Temperatures of the interface zone and the GC injection 
port were set to 280 ◦C. The transfer line consists of a deactivated metal 

or wire mesh reactor facilitates the collection of primary volatiles via 
rapid separation and quenching that minimizes secondary reactions [17, 
18]; biomass pyrolysis in these reactors can be precisely controlled to 
stop the reaction in milliseconds. Alternatively, online analysis tech-
niques can be used to follow the dynamics of the formation of volatiles 
and measure reaction kinetics. However, it takes time (kiloseconds) for 
instruments like gas chromatographic systems (GC or GC-MS) to sepa-
rate the complex mixtures, making online studies difficult [17]. Online 
mass spectrometry analysis has the advantages of high sensitivity and 
high-speed acquisition (up to ms per spectrum) [19]. The evolved gas 
analysis has recently been applied, directly coupling the analytical py-
rolyzer to mass spectrometry [20,21]. However, it has been performed 
using slow heating rates. The increasing progress in online mass spec-
trometry applications exhibits its advantage in exploring the dynamics 
of volatile formation during the pyrolysis process, which is hardly ach-
ieved by offline analytical methods [19]. The time delay in species 
detection and molecular diffusion are generally present in the online 
detection technique [17]. In this study, particular efforts have been 
made to quantify the extent of molecular diffusion and advection within 
the reactor and transfer line before reaching the detector. 

A detailed mechanistic model can ideally predict the fast pyrolysis of 
biomass [10]. However, developing a rigorous mechanistic model re-
mains challenging [22]. Most models expanding the thermal decompo-
sition of biomass can be considered pseudo-mechanistic, for which 
assumptions about the underlying chemistry are required, but their ki-
netic parameters fit experimental data [23]. Devolatilization reactions 
are commonly described as chemical components (cellulose, hemi-
celluloses, and lignins) or pseudo-components. These summative models 
are based on the assumption that the devolatilization of each component 
proceeds independently. Component reactions can be combined in 
parallel, serial, or complex schemes. More advanced models increase the 
number of components to improve the accuracy of the predictions. 
Selecting a kinetic model that reasonably represents the pyrolysis pro-
cess without too many parameters is essential to prevent overfitting. 
Other approaches in solid fuel devolatilization consider using distrib-
uted activation energy (DAEM). In this case, varying the activation en-
ergy simulates a series of independent and parallel reactions. The 
distribution function can take different forms. The Gaussian distribution 
has been successfully used for the thermal decomposition of coals and 
later adapted to biomasses [24]. Model selection is a critical step in the 
model-fitting approach. The selected model needs to balance simplicity 
and goodness of fit. Various reaction models exist for the solid-state 
kinetic evaluation, and they can be categorized into three major types: 
accelerating, decelerating, and sigmoidal. Among these, the first-order 
reaction model, which falls under the decelerating type, is commonly 
used to represent the biomass decomposition process. It offers a simple 
representation where the rate is highest at the beginning and decreases 
continuously as the extent of conversion increases. However, a 
sigmoidal model, such as the Avrami–Erofeev models, is often more 
appropriate for the pyrolysis of cellulose-based materials [25]. The 
sigmoidal model captures the characteristic behavior observed in cel-
lulose decomposition, where the initial reaction rate increases, reaches a 
maximum and decreases as the process proceeds. This model provides a 
more accurate representation of the complex kinetics involved in 
biomass pyrolysis. 

Several recent studies have promoted the use of isoconversional 
methods to assess the chemical reactivity (e.g., with the determination 
of isoconversional activation energy) of a complex chemical process 
without assuming any form for the reaction model [15,26–29]. Mean-
ingful mechanistic insights can be drawn from those trends [29,30]. Yet, 
the overall prediction of the biomass pyrolysis process requires an 
explicit mathematical form for both intertwined chemical and physical 
phenomena [31]. 



tube (UADTM-2.5 N, 2.5 m lenght; 0.15 mm i.d.) that connects the 
injector and the MS detector, kept at 300 ◦C. A primary limitation of the 
experimental setup is the discrimination of detecting high molecular 
weight compounds with higher-boiling points due to the constraint of 
the GC injection port that cannot exceed 300 ◦C [36]. The released 
products were injected using a split ratio of 100:1, so only 1.0 mL/min of 
carrier gas flow rate crosses the deactivated column. The mass spec-
trometer was operated under electron impact mode at an ionization 
energy of 70 eV, scanning from 32 to 300 m/z. 

To investigate the contribution of biomass biopolymers, the main 
representative fragments of holocellulose and lignins (Table B.1 in 
Supplementary material, section B) were extracted from the devolatili-
zation profiles using the OpenChrom® data analysis system. These sig-
nals were selected based on their relative intensities and because they 
are markers of the corresponding components of biomass. 

As temperature errors can affect kinetic prediction [37], this study 
uses temperature-time histories, T(t), of biomass samples obtained using 
a thermal model developed in our previous work [16], where the 
detailed procedure is described. T(t) profiles of biomass sample for each 
furnace temperature are displayed in Fig. 2 and confirm the 
non-isothermal character of a heating period of fewer than 6 s. These T 
(t) profiles will be incorporated into the kinetic calculation.

Finally, cumulative Residence Time Distribution (RTD) measure-
ments were carried out. Indeed, molecular and convective transport 
phenomena compromise the collection of intrinsic kinetic data [17]. A 
deconvolution technique is required to obtain real-time devolatilization 
profiles to clear the intrinsic kinetic data from bias. Cumulative resi-
dence time distribution, F(t), is obtained from a step injection of gas 
mixture (10 mol.% of propene, 10 mol.% of butene-1, 10 mol.% of 
cis-butene-2, and 10 mol.% of trans-butene-2 in azote) at a flow rate of 
2 mL/min). The syringe driver pushed the gas mixture through a PTFE 
tube (Fig. 3). The end of the tube was connected to a long needle, which 
was inserted into the reactor allowing the gas mixture to be injected at 
the cup location. The mass spectrometer recorded tracer signals at the 

same experimental conditions as acquiring the devolatilization profiles. 
Two tracer injections for each set of experimental conditions ensure 
reproducibility testing. 

2.2.2. Data processing 
Raw devolatilization and cumulative residence time profiles were 

processed using Matlab R2022a software. Firstly, raw devolatilization 
signals were divided by the initial mass of samples. Signal fluctuations 
shown in Fig. C.1 in Supplementary material, section C were minimized 
by smoothing the raw devolatilization using the classic Savitzky and 
Golay methods. Then signal curves with baseline correction were 

Fig. 1. a) System configuration of the Py-MS analysis. b) Schematic description of the pyrolyzer. 1: sampler, 2: reactor (Quartz tube), 3: heating sleeve, 4: ceramic 
support, 5: insulator, 6: stick, 7: cup, and 8: split vent. 

Fig. 2. Temperature histories of biomass samples at the different furnace 
temperatures. 



constructed and normalized to the maximum intensity (Fig. C.2 in 
Supplementary material, section C). 

Tracer signals were recorded following the negative step injection 
(Fig. D.1 in Supplementary material, section D). The response to this 
negative step injection constitutes the raw cumulative residence time 
distribution curves, F(t). The positive step injection response was used to 
deal with noises of negative step responses as described in Supplemen-
tary material, section D. F(t) curves were then baseline-corrected and 
normalized to the maximum intensity (Fig. D.3 in Supplementary ma-
terial, section D). The slight variation in F(t) curves when varying 
furnace temperature indicates that the characteristic time of molecules 
transport inside the deactivated column is more significant than that 
inside the microreactor as the temperature change occurs only inside the 
reactor while the deactivated column temperature remains constant for 
all experiments. RTD curves, E(t), were obtained by differentiating F(t) 
to time and were normalized to the total area so that 

∫ +∞
0 E(t)dt = 1 

[38]. 

2.2.3. Real-time devolatilization profile determination 
Researchers commonly utilize procedures based on deconvolution 

mathematical operations to correct the time lag between product evo-
lution and product detection in the evolved gas analysis [37,39,40]. It is 
important to note that this technique differs from peak resolution, also 
known as peak deconvolution, which separates and resolves overlapping 
peaks in chromatographic separation. The underlying mathematics of 
these two techniques are distinct. 

The principle of the used technique for this study is that the observed 
profile can be described as a convolution of the real-time devolatiliza-
tion profile, g(τ), with the system response function, E(τ) [39]: 

(g ∗ E)(t) =

∫ +∞

−∞
g(τ)E(t − τ)dτ (1) 

Thus, the deconvolution operation aims to reverse the effects of this 
convolution and retrieve the real-time devolatilization profile. Two 
methods can be employed to achieve this. The first method involves 
Fourier transforming the data and dividing it by the system response 
function (E(t)). This approach allows for removing the system response 
function from the detected profile. Alternatively, the second method 
involves using an objective function that compares the measured data to 
the convolution of the instrument response function and the trial ki-
netics function, which is used in the various versions of the KINETICS 
software. 

By utilizing either of these methods, researchers can effectively 
correct the time lag and recover the real-time devolatilization profile in 
evolved gas analysis. This study used Fast Fourier Transform (FFT) to 

obtain the real-time devolatilization profile from the couple Residence 
time distribution (RTD)-raw devolatilization profile. FFT requires a high 
number of data points to ensure a satisfactory frequency resolution [41]. 
Thus, RTD and raw devolatilization profiles were zero-padded before 
FFT calculation. As deconvolution "is an improper mathematical oper-
ation, very sensitive to noise in the raw signals" [42], a further filtering 
action has been implemented. Thus, an iterative filtering method was 
performed as described by Liliedahl et al. [43]. Finally, the filtered 
devolatilization profiles were multiplied to the maximum value (inten-
sity/initial sample weight) to obtain the same unit as the raw devolati-
lization profiles. The Matlab code for the deconvolution process is 
presented in Supplementary material, section E. 

The comparison between the detected and real-time responses 
(Fig. 4) shows that the deconvoluted devolatilization profiles for 
biomass samples were offset in front, with slight changes in the "shape" 
(i.e., including the high, the width, and the tailing behavior principally). 
The advection is the main process responsible for shifting peaks because 
of species transit inside the system. However, profile shape differences 
may result from the contribution of dispersion and molecular diffusion 
inside the transfer line. The "shoulder" at the back of the devolatilization 
peak for beechwood became more apparent after the deconvolution 
process (Fig. 4.b, curve AA). It should also be noted that this "shoulder" is 
hardly recognizable in the raw devolatilization profile (Fig. 4.b, curve 
A), confirming the need to correct the devolatilization profiles to un-
derstand the kinetics of pyrolysis properly. 

2.2.4. Kinetic analysis 
Traditionally, the kinetic rate of biomass decompositions is based on 

the following equation [22]: 

dα
dt

= k(T)f (α) (2)  

where t (s) is the time, T (K) is the temperature, α is the extent of con-
version, f(α) is the reactional model, and k(T) is the rate constant usually 
expressed by the Arrhenius law: 

k(T) = Aexp
(

−
E

RT

)

(3)  

where A (s−1) is the pre-exponential factor, E (J.mol−1) is the activation 
energy, and R (J.mol−1. K−1) is the gas constant. 

For Py-MS data, the calculation of reactional conversion is based on 
measurements of ion intensity, It, in Ampere, which, once integrated 
over the pyrolysis time and multiplied by both molecular weight of 
volatile species, MW, and flow rate, V̇, results in the released mass 
during the reaction: 

α =

∫ t
0 It MW V̇dt

∫ ∞
0 It MW V̇dt

=
At

Atot
(4) 

The extent of conversion for integral data (e.g., TGA, DMA, capacity 
data) is calculated using Eq. (5) [30], whereas, for Py-MS data, it is 
computed as the case of differential data (e.g., DSC) using Eq. (6) [30]. 

α =
Xt − Xt0

Xf − Xt
(5)  

α =
Xt

Xtot
(6)  

where X is a physical property that is associated with the process 
transformation. In our case, Xt and Xtot in Eq. (6) are, respectively, the 
real-time total ion chromatogram area between 0 and t, At, and the 
entire area of the real-time devolatilization profile, Atot (Eq. 4). 

2.2.4.1. Isoconversional method. When applying the isoconversional 
kinetic methodology, the isoconversional principle is invoked (i.e., "the 

Fig. 3. Residence Time Distribution measurement setup.  



process rate at the constant extent of conversion is only a function of 
temperature") and specific recommendations made by ICTAC [29] (e.g., 
use the extent conversion range of 0.05–0.95 and experiences at 
different temperature programs) must be applied. The differential 
Friedman isoconversional method, described by Eq. (7), was used in this 
study. 

ln
(

dα
dt

)

α,i
= ln(Aαf(α) ) −

Eα

RTα,i
(7)  

where i is the index corresponding to each temperature history, Eα, and 
ln (Aα f(α)) are the isoconversional values of both effective activation 
energy and pre-exponential factor. The Friedman method assumes that 
the chemistry of the process is independent of T on a narrow tempera-
ture interval and only dependent on the extent of conversion, α. And it is 
through the plots of ln

(dα
dt

)

α,i versus 1/T that Eα and ln(Aα f(α)) can be 
determined without the assumption of the reactional model. 

Numerical differentiation of the conversion data using the finite 
difference method was carried out to obtain the derivative conversion 
data, dα/dt [27]: 

(
dα
dt

)

i
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

αi+1 − αi

ti+1 − ti
for start point

1
2

αi − αi−1

ti − ti−1
+

1
2

αi+1 − αi

ti+1 − ti
for intermediate points

αi − αi−1

ti − ti−1
for end point

(8) 

For applying the Friedman analysis (Eq. 7), (ln(dα/dt))α,i, and Tα 
need to be determined. These values were estimated based on α(t), T(t), 
and (dα/dt)-t curves using the cubic spline interpolation, ensuring ac-
curate continuity between data points. Eα/R and ln(Aα f(α)) were 
determined by linear regression based on two datasets for each tem-
perature history. The regression coefficient, R2, was also estimated. 
Finally, confidence intervals based on standard deviations were deter-
mined for Eα. 

The isoconversional method was applied for real-time devolatiliza-
tion profiles and by integrating the temperature history of samples, 
which is one of the original aspects of this study, as most similar studies 
considered a constant heating rate [20,44]. 

The same isoconversional analysis was applied to raw devolatiliza-
tion profiles and considering isothermal profiles (in this case, "i" in Eq. 
(7) represents the constant furnace set temperature) to evaluate the

impact of transport phenomena on modifying devolatilization kinetics. 
Friedman diagrams, (ln(dα/dt)(α,i) versus 1/T, can be found in Supple-
mentary material, section F for each case: isothermal and non- 
isothermal conditions with raw devolatilization profiles (Figs. F.1 and 
F.2) and non-isothermal and real-time devolatilization profiles using the
fully corrected kinetic datasets (Fig. F.3).

2.2.4.2. Variable activation energy model (VAEM). For this study, an 
empirical model with variable kinetic parameters developed by Gábor 
Várhegyi [45] was applied to model the complex devolatilization of 
biomass and its main components. This model is based on the combi-
nation of Eqs. (2 and 3) while approximating Eα and Aα × f(α) by rela-
tively simple mathematical formulas (Eq. 9). Eq. (10) is a rearrangement 
of Eq. (9) where the term (1 - α) does not reflect the assumption of the 
first-order model, but it ensures that dα/dt would be 0 at α = 1. This 
model, therefore, keeps the principle of being "model-free." A new 
parameter is introduced here, Ãα, and is equal to Aα × f(α) / (1 - α) when 
α < 1. The division by (1 - α) is not possible when α is equal to 1, so Ãα 
may have any finite value there. 

dα
dt

= Ãα(1 − α) exp
(

−Eα

RT(t)

)

(9) 

Taking the logarithm of Ãα and rearranging Eq. (9) leads to the 
following: 

dα
dt

= (1 − α) exp
(

ln
(

Ãα

)
−

Eα

RT(t)

)

(10) 

Polynomials approximate ln (Ãα) and Eα to obtain flexible approxi-
mations with limited numbers of unknowns. For this purpose, the vari-
able x equal to 2 × α - 1 is introduced, which varies from − 1 to + 1 as α 
varies from 0 to 1. Thus, Eα and ln (Ãα) were fifth-order polynomials 
described by the variable x: 

Eα = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 (11)  

ln(Ãα) = b0 + b1x + bx2 + b3x3 + b4x4 + b5x5 (12) 

The unknown parameters of the model were obtained based on the 
least squares method by minimizing the difference between the 
observed rate, (dα/dt)obs, and their counterparts calculated from the 
given model, (dα/dt)calc, as described by the following objective 
function: 

Fig. 4. Deconvolution process for determining the real-time devolatilization profiles of Zea Mays leaves (a) and beechwood (b) at Tfurnace = 450 ◦C. RTD is the 
residence time distribution curve, A is the raw devolatilization profile, AA is the deconvoluted profile, and C is the convolution test. 



OF =
∑Nexp.

j=1

∑Nj

i=1

((
dα
dt

)obs
j (ti) −

(
dα
dt

)calc
j (ti)

)2

Nj hj
2 (13) 

In this case, the objective function minimizes the difference consid-
ering all the experimental tests performed at different temperature 
programs presented by Nexp.. Nj is the number of points for each j 
experiment, and hj is the maximum observed rate of the given experi-
ment. The division by the highest observed rate is helpful to counter-
balance the magnitude differences [46]. 

The ’quasi-newton’ algorithm in Matlab® coupled with the ’fmi-
nunc’ function for unconstrained problems was built to determine the 
optimal parameters that can minimize the objective function (Eq. 13). 
Finally, the fit quality for the eight experiments, reldev8, corresponding 
to duplicate for four heating programs, is the mean root square of 
relative deviations, determined for each experiment by the following 
equation: 

reldevi(%) = 100

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑Nj

j=1

((
dα
dt

)obs
j (ti) −

(
dα
dt

)calc
j (ti)

)2

Nj hj
2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

0.5

(14)  

2.2.4.3. Distributed activation energy model (DAEM). The distributed 
activation energy model (DAEM) is used to fit experimental results and 
to be compared to the variable activation energy model (VAEM). It is a 
multiple-reaction model representing the pyrolysis process through a 
large number of independent and parallel reactions characterized by 
their own activation energy and pre-exponential factor. In this study, we 
used the 1st-order DAEM. The derivation of the 1st-order DAEM to 
obtain the final equation (Eq. 15) is presented in Supplementary mate-
rial, section G.1. 

dα
dt

=

∫ ∞

0
Aexp

[

−
E

R T(t)
−

∫ t

0
Aexp

(

−
E

R T(t)

)

dt
]

D(E)dE (15) 

In this equation, α is the extent of conversion, t (s) is the time, A (s−1) 
is the pre-exponential factor, Ei (J/mol) is the apparent activation en-
ergy, R (J.mol−1. K−1) is the gas constant, and T (K) is the absolute 
temperature. It is further assumed that all reactions share the same 
frequency factor, so the reactivity distribution is represented by a 
continuous distribution of activation energies, D(E) (mol/J). The 
Gaussian distribution (Eq. 16) centered at E0 (J/mol) with standard 
deviation σ (J/mol), widely used for biomass pyrolysis, is chosen for this 
work. This study also performs a comparative analysis of predicted re-
sults using one- and double-Gaussian DAEM. 

D(E) =
1

σ
̅̅̅̅̅
2π

√ exp

[

−
(E − E0)

2

2σ2

]

(16) 

The double-Gaussian DAEM is introduced in this study to present the 
reactivity distribution of holocellulose and lignin so: 

D(E) = c1 D1(E) + c2 D2(E) (17)  

where D1(E) and D2(E) are Gaussian distributions, and c1 and c2 are the 
weight parameters or the corresponding contributions of holocellulose 
and lignins devolatilization. 

The sample temperature profile is taken into consideration for this 
model. Thus, the DAEM is treated for a non-isothermal case. Calculating 
kinetic parameters requires iterative loops of double integral functions, 
leading to significant numerical complications [24]. This work evaluates 
the DAEM equation by the Gauss-Hermite integration, as described in 
Supplementary material, section G.2. 

Optimal parameters (A, E0, and σ for 1 G-DAEM and A1, A2, E01, E02, 
σ1, σ2, c1, and c2 for 2 G-DAEM) are obtained by minimizing the 
objective function (Eq. 13) in the same way as described earlier. 

3. Results and discussions

3.1. Devolatilization profiles of biomass fast pyrolysis

The comparison of real-time devolatilization profiles versus time 
obtained at several furnace temperatures for beechwood (BW) and Zea 
Mays leaves (ZM) (Fig. 5) reveals a significant difference in thermal 
behavior between woody and grassy materials already reported [47]. 
These results denote a pyrolysis time of ~30 s at 400 ◦C, decreasing to 
~15 s at 450 ◦C for the complete devolatilization of ZM, whereas BW 
devolatilization is almost twice longer than that of ZM devolatilization 
with a pyrolysis time of ~50 s at 400 ◦C and ~25 s at 450 ◦C. At higher 
temperatures, the maximum devolatilization of two biomasses is 
reached during the heating period, confirming that conversion achieved 
during this stage should be considered. The faster the reaction, the more 
conversion takes place during sample heating. The time evolution of 
volatile matter release is generally linked to the lignin content [48]. 
Indeed, the devolatilization of BW takes longer than that of ZM due to its 
higher lignin content of 24.5 wt% against 19.4 wt% for ZM (Table A.1 in 
supplementary material, section A). The presence of ash, which is about 
7.5 wt% for ZM, higher than that of BW, 0.3 wt%, can also cata-
lyze/inhibit pyrolysis reactions [49,50]. The detection of higher in-
tensity obtained for the pyrolysis of ZM (Fig. 5) confirms a more 
consequent release of low molecular weight compounds, which is un-
doubtedly related to the different nature of lignins [51] and the most 
significant inorganic content within straw materials [52,53]. 

Thermal conversion curves (Fig. 6) show that more than 30% of 
biomass was converted before reaching the set temperature of 450 ◦C. 
This confirms that an isothermal experiment cannot be claimed using 
this experimental equipment and the necessity of considering the sample 
temperature history when studying fast pyrolysis kinetics. The initial 
induction period, characterized by a low decomposition rate (Fig. 6), 
can be attributed to the sample heat-up process and also to the contri-
bution from the sigmoidal reaction characteristics of specific biomass 
components. However, in our case, where the experiment exhibits a non- 
isothermal behavior for a significant period, it becomes challenging to 
identify the sigmoidal characteristic of biomass decomposition. Recog-
nizing the sigmoidal characteristic is more straightforward in isothermal 
data because the rate constant, k(T), remains constant (Eq. 2). There-
fore, the shape of the kinetic curve is solely determined by the reaction 
model itself. However, under non-isothermal conditions, both the rate 
constant (k(T)) and the reaction model (f(α)) vary simultaneously, 
resulting in sigmoidal α vs. t curves. This simultaneous variation makes 
it more challenging to recognize the specific reaction model type. 

The data collection for this study is done under a kinetic-controlled 
regime as verified by the same authors in a previous study [16] and 
confirmed by investigating the sample weight effect on thermal con-
version inherent to MS spectra measured by Py-MS (see Supplementary 
material, section H). 

Py-MS spectra (with a mass-based fraction collection between m/z 
32–300) of ZM and BW devolatilization obtained at different furnace 
temperatures were time-averaged (Supplementary material, section I). 
Non-significant changes between average spectra collected at 400, 420, 
430, and 450 ◦C for both types of biomass indicate the absence of new 
low and polar molecular weight compounds that could eventually 
highlight a drastic change in the pyrolysis chemistry. An example of Py- 
MS spectra obtained at Tfurnace = 430 ◦C is shown in Fig. 7 and reveals 
the slight effect of the biomass nature in modifying the type and the 
distribution of the analyzed species. This variation is generally linked to 
the amount of cellulose, hemicelluloses, and lignins in the biomass [54, 
55]. Both spectra show a significant peak at m/z 43, the acylium ion 
originating from the electron ionization of carbonyl compounds [56]. 

The prominent peak at m/z 43 is typical of the pyrolysis of biomass 
containing alkali materials [56,57]. Alkali metals, including potassium 
and sodium, one of the most abundant inorganics in biomass, are known 
to change the kinetics of carbohydrates primary decomposition and their 



Fig. 5. Real-time devolatilization profiles and T(t) profiles at several furnace temperatures ( ̶ Tfurnace = 400 ◦C, – Tfurnace = 420 ◦C, … Tfurnace = 430 ◦C, and -.- Tfurnace 
= 450 ◦C) for a) Zea Mays leaves (ZM) and b) Beechwood (BW). 

Fig. 6. Conversion curves (on the left) for a) Zea Mays leaves (ZM) and b) Beechwood (BW) devolatilization and T(t) profiles (on the right) obtained at several 
furnace temperatures ( ̶ Tfurnace = 400 ◦C, ( - Tfurnace = 420 ◦C, … Tfurnace = 430 ◦C, and -.- Tfurnace = 450 ◦C). 



product distribution [58–60]. Their presence inhibits holocellulose 
depolymerization via transglycosylation, producing mainly levogluco-
san, anhydrosugars, and oligomers. At the same time, it promotes ring 
fragmentation reactions, which leads to low molecular weight com-
pounds (e.g., acetol, hydroxyacetaldehyde, formaldehyde, and 
furan-ring derivatives) [61]. In our case, peaks at m/z 60 and 73 confirm 
the presence of levoglucosan but are less significant than the signal at 
m/z 43, which could prove the catalytic effect of alkali inorganics during 
biomass pyrolysis. The fragment at m/z 60 can also be related to the 
presence of aliphatic carbon acids (e.g., acetic acid or glycolaldehyde) 
from hemicelluloses pyrolysis [62]. Carbon dioxide (m/z 44) is one of 
the most predominant fragments, and its formation is found to be more 
prominent for ZM pyrolysis than that of BW (Fig. 7). However, using the 
MS spectrum, it is not easy to distinguish between CO2 released during 
the pyrolysis process and that produced from the electron ionization of 
other pyrolysis compounds. Chromatograms obtained using 
Py-GC-MS/FID also showed an intense peak at the elution time of CO2, 
confirming that the high ash content within ZM could have promoted 
CO2 formation via decarboxylation and led to an intense peak [48]. 
Some specifically identified peaks are related to holocellulose pyrolysis 
products, such as aliphatic carbon acids (e.g., formic acid with m/z 45), 
some aldehydes (m/z 55), ketones (e.g., acetone with m/z 57), cyclo-
pentanone derivatives (m/z 69), furanones from cellulose (m/z 85), 
furylcarbonyl-derivatives (m/z 95 and 96), and anhydrosugars (m/z 
114) [13,63–65], which relative intensity changes according to their
botanical origin (Table B.1 in supplementary material, section B). Lignin
reactivity is also affected by the type of chemical bonds and functional
groups [33]. Peaks at m/z 124, 135, 137, 150, and 164 are typical
markers of the guaiacyl lignin monomeric unit (G) [66–69], and those at
m/z 154 and 167, 180, and 181 are derived from the syringyl lignin
monomeric unit (S) [65,69,70]. Finally, the p-hydroxyphenyl unit (H)
produces phenol derivatives products associated with m/z ratios of 66,
91, 94, 107, and 120 [67,70].

The difference in lignin structure between Zea Mays leaves (ZM) and 
beechwood (BW) can also be observed by using MS spectra (Fig. 7). 
Higher signal intensities of syringyl derivatives, a typical feature of 
hardwoods, are obtained for BW, while phenol derivatives (e.g., 4-vinyl-
phenol with m/z 120) are strong markers for ZM. No significant signals 
were detected above m/z 200 (not shown here), which can be related to 
the technical limitation of the experimental system of effectively 

capturing and analyzing high molecular weight compounds with a 
boiling point above 300 ◦C. 

Based on the detection and identification of those m/z ratios, in-
tensity profiles of each extracted ion were possible and provided in 
Supplementary material, section J. Those extracted ion profiles were 
summed up to evaluate the contribution of holocellulose and lignins 
fractions during the overall biomass pyrolysis (Fig. 8). For beechwood 
(BW), the decomposition of holocellulose begins first, followed by lig-
nins. Holocellulose for BW presents a principal peak with a late peak 
shoulder. The first peak cannot be only attributed to the presence of 
hemicelluloses. However, its decomposition is known to start before 
cellulose [71] because this latter is the main component of BW (47.9 wt 
%), and it is supposed to release more volatile matters resulting in a 
more intense peak. The selection of the heating rate range affects the 
shape of derivative thermogravimetric peaks [72], and heat/mass 
transfer limitations within particles are often invoked to explain peak 
shifts. Under fast heating, ion profiles corresponding to the simultaneous 
degradation of holocellulose and lignins highly overlap (Fig. 8). 

In the case of ZM pyrolysis, one prominent peak is detected, corre-
sponding to the simultaneous decomposition of holocellulose and lig-
nins. The catalytic effect of potassium could also enhance the overlap of 
those three main components [73]. The combined areas of both selected 
ion profiles of holocellulose and lignins (Fig. 8, dashed line) represent 
approximately 40% of the total area underneath the devolatilization 
profile of whole biomass, which is relatively limited. Indeed, to 
discriminate the thermal behavior between main components, common 
ion fragments (e.g., m/z 44, Fig. 7) could not be extracted. 

3.2. Isoconversional Eα trends for product formation 

The methodologies mentioned above have allowed the reliable 
extraction of real-time devolatilization profiles of overall biomass and its 
main components. Studying global kinetics and, more specifically, the 
variation of the effective activation energy, Eα, versus the extent of 
conversion, α, is now possible. This latter is a powerful tool for identi-
fying major pathways and establishing lumped reactional networks. 
However, reliable computational data must be obtained first. Fig. 9 
shows the impact of considering the ’real’ temperature-time history or/ 
and retention time distribution on the determination of effective iso-
conversional activation energy, in particular for BW devolatilization 

Fig. 7. Average mass spectrum ZM (a) and BW (b) at Tfurnace = 430 ◦C.  



(Fig. 9). By referring to curves obtained using real-time profiles (Fig. 9, 
blue and purple curves), we can deduce that the hypothesis of the 
isothermal experiment strongly impacts the inferred activation energies; 
at the beginning of conversion, for example, the activation energy de-
creases from approximately 145 to 49 kJ/mol for non-isothermal and 
isothermal conditions, respectively. As mentioned before, more than 

30% of conversion is reached during heating. While in isothermal con-
ditions, the temperature is assumed to be constant during this stage, 
leading to a false estimate of activation energy during the heating 
period. Not correcting the devolatilization profiles (black and green 
curves) has a comparable impact on the activation energy predictions to 
the isothermal hypothesis. The classical correction of the 

Fig. 8. Real-time devolatilization profiles for whole biomass (pink curve), holocellulose-H (green curve), and lignins-L(orange curve), for ZM (a) and BW (b) at 
Tfurnace = 430 ◦C. Curves of holocellulose and lignins are summed to obtain the pink dashed curve. 

Fig. 9. Determined activation energies, Eα, for the devo-
latilization of beechwood. The blue, green, and yellow 
curves were obtained using the deconvoluted real-time, 
raw, and zero-shifted biomass devolatilization profiles, 
respectively, incorporating the temperature profile of the 
biomass sample. The red, black, and purple curves were 
obtained using the deconvoluted real-time, raw, and zero- 
shifted biomass devolatilization profiles, respectively, 
assuming isothermal experiments. The error bars are 
calculated based on two data sets under the same experi-
mental conditions, which reflects the reproducibility 
testing.   



• Insufficient or noisy experimental data can lead to inaccurate linear
regression results, affecting the overall accuracy of the method.

• The occurrence of multi-step reactions during biomass pyrolysis can
also contribute to imperfect linear regression. It is important to note
that isoconversional methods describe the pyrolysis process using
several single-step reaction kinetic equations, each associated with a
certain extent of conversion. However, in some cases, the assumption
of single-step reactions may not hold true, leading to deviations and
inaccuracies in the method accuracy.

• Changes in the reaction steps can result in drastic variations in the
slope of the isoconversional line. It can be pointed out that if all
isoconversional lines have the same slope, only one mechanism with
one apparent activation energy is inferred. Any variation of the slope
of the isoconversional lines indicates that at least two different
mechanisms with distinct apparent activation energies are involved.

In our case, the end of the process is characterized by a decrease in ln
(dɑ/dt) with increasing temperature. Because of this behavior, the 

Fig. 10. Eα vs. α for a) ZM, b) BW, c) holocellulose of ZM, d) holocellulose of BW, e) lignins of ZM, and f) lignins of BW. R2 is the linearization coefficient. The error 
bars are derived from two data sets obtained under identical experimental conditions, demonstrating the reproducibility testing. 

devolatilization profile (yellow curve) consisting of a simple zero- 
shifting is not satisfactory as well as it leads to an overestimation of 
the activation energy values during the heating period (α < 0.4). Those 
results confirm that inadequate data collection can lead to drastic errors. 

Graphical trends of the effective activation energies obtained for Zea 
Mays leaves (ZM), beechwood (BW), and their components (hol-
ocellulose and lignins) are presented in Fig. 10. It displays the sub-
stantial variability of effective activation energy values when it comes to 
assessing the thermal reactivity of both biomass samples and their main 
components, depicting the complex nature of their fast pyrolysis 
transformation. 

It is important to note that the linear fit of isoconversional points, 
represented by the mean of the linear regression coefficient (R2), was not 
good for both low and high conversion. This indicates significant errors 
when estimating activation energies, as shown in the gray zones in 
Fig. 10. Similar errors associated with linear regression have been re-
ported in other papers [74–76]. There can be several reasons for this 
’imperfect’ linear regression in isoconversional methods:  



≈ 140 kJ/mol and Eα,2 ≈ 90 kJ/mol for the whole material and at Eα,1 
≈ 180 kJ/mol, and Eα,2 ≈ 100 kJ/mol those for its holocellulose. Those 
features can be related to two different reactional steps that are in 
competition between 0.2 < α < 0.4 for BW and 0.25 < α < 0.45 for its 
holocellulose fraction. For the grassy material (ZM), all Eα trends 
decrease and display, in general, higher energy barriers at the beginning 
compared to those of wood. For ZM, only one plateau between 
0.2 < α < 0.4 is observed. The higher ash content in ZM enhances the 
char formation process, shown by higher char yields than BW (from 9.6 
± 0.5 wt% at T = 450 ◦C to 16.6 ± 0.3 wt% at T = 400 ◦C for ZM and 
from 6.8 ± 0.3 wt% at T = 450 ◦C to 15.4 ± 0.2 at T = 400 ◦C for BW). 

Unsurprisingly, Eα variation for ZM lignins differed from that of BW 
lignins as the chemical nature of grass-derived lignins is much more 
complex than those of wood-derived lignins [33]. The thermal reactivity 
of grass-derived lignins is generally lesser than that of 
hardwood-derived lignins, which is in good correspondence with our 
work (Eα,grass > Eα,wood). It is also important to stress that for this study, 
the values of effective activation energies are representative of the 
production of the low molecular weight fractions. This could be 
particularly problematic for lignins as the formation of heavier com-
pounds, such as lignin dimers and oligomers, having higher boiling 
points cannot overcome the temperature limitation fixed at 300 ◦C by 
the GC injection port. 

Comparing our results to those from the literature is challenging due 
to the considerable disparity between experimental setups, operating 
conditions, and calculation methodologies [77]. 

Due to challenges in understanding and underlying the chemistry of 
biomass pyrolysis [9], typical and wide ranges of activation energy are 
found: 97–208 kJ/mol for cellulose [26,44,78–80], 70–200 kJ/mol for 
hemicelluloses [80–83], and 33–260 kJ/mol for lignins [81,82,84–86]. 
An even wider range is expected when considering the whole biomass: 
70–211 kJ/mol and 60–180 kJ/mol, respectively, for grassy and woody 
feedstocks [77,79,87]. The works that claimed the kinetic 
rate-controlled regime of fast pyrolysis are of particular interest. For 
example, Zhu et al. [78] found an activation energy of 97.1 kJ/mol for 
cellulose conversion between 385 and 467 ◦C using a PHASR reactor, 
and the work of Di Blasi and Branca [87] reported an activation energy 
of 141 kJ/mol for beechwood fast pyrolysis between 300 and 435 ◦C. Eα 
values found in this work were comparable to those previously reported. 

3.3. Comparative pyrolysis kinetics based on VAEM and DAEM 
approaches 

The short simplification of single-step first-order reaction could not 
capture the complex nature of biomass devolatilization reactions as 
described in Supplementary material, section L. In this section, devo-
latilization rates of both Zea Mays leaves (ZM) and beechwood (BW) 
determined based on Py-MS data at different sample temperature his-
tories were further tested with two different reactivity kinetic models: 
the variable activation energy model (VAEM) and the distributed acti-
vation energy model (DAEM). Unknown parameters were determined 

from the model fitting (Tables M.1 and M.2 in Supplementary material, 
section M). 

The models reproduce the experimental data with high precision 
(reldev8 < 3%) in this descending order: VAEM, 2 G-DAEM, and 1 G- 
DAEM for both biomass samples, as shown in Figs. M.1 to M.6 in Sup-
plementary material, section M. This confirms that the two types of 
models, whether the VAEM describing the biomass devolatilization as 
"infinitely sequential reactions" or the DAEM describing the complex 
reaction system as "infinitely parallel reactions," are suitable for the 
accurate prediction of the biomass pyrolysis behavior. The VAEM still 
retains the advantage of not assuming any form of the reaction model 
and therefore avoids errors related to the choice of reaction model, while 
DAEM double Gaussian may provide further insights in terms of phe-
nomenology. VAEM contains more parameters (twelve for VAEM vs. 
seven for 2 G-DAEM). However, in kinetic modelling, it is essential to 
select a kinetic model which reasonably represents the pyrolysis process 
without too many parameters to prevent overfitting. To detect overfitted 
data, the prerequisite is that it must be used on test data. In this study, 
obtained model parameters were tested to another experimental data set 
acquired at Tfurnace = 440 ◦C (Fig. N.1 in Supplementary material, sec-
tion N). The relative deviation between the experimental data and those 
calculated for this test dataset (reldevtest = 0.95 for ZM and 1.88 for BW) 
was comparable to those obtained based on the training data set (reldev8 
= 1.43 for ZM and 1.26 for BW), confirming the absence of overfitting in 
the model. 

From the comparison of numerical values between kinetic parame-
ters (Table M.1 in Supplementary material, section M), the effective 
activation energies determined for whole biomass devolatilization using 
1 G-DAEM are around 117 kJ/mol for ZM and 119 kJ/mol for BW. The 
found values are lower than those reported in the literature for a first- 
step reaction, 141 kJ/mol and 150 kJ/mol, reported respectively by Di 
Blasi and Branca [87] for beechwood and Wagenaar et al. [88] for pine. 
The maximum devolatilization rate increased from only 0.1–0.22 s−1 for 
ZM and from 0.05 to 0.11 s−1 for BW when varying the furnace tem-
perature (and therefore varying the heating rate). This relatively small 
rate increase suggests that the effective activation energy is smaller than 
that of previous studies. The obtained activation energies are compa-
rable to that measured by Zhu et al. [78] for α-cyclodextrin 
(97.1 kJ/mol) using the PHASR reactor known for its ability to establish 
an intrinsic kinetic regime. Using this same reactor, Maduskar et al. [17] 
measured the formation kinetics of six key molecules (levoglucosan, 
furfural, hydroxymethylfurfural, 2-methoxyphenol, 2-methox-
y4-methylphenol, and 2-methoxy-4-vinylphenol) of loblolly pine py-
rolysis. The wide range of values (70–186 kJ/mol) is comparable to the 
apparent activation values found in this study, 117 and 119 kJ/mol for 
BW and ZM, respectively. Notably, this highlights the importance of 
instrument lag corrections (temperature profile and devolatilization 
profiles). Indeed, ignoring these elements would lead to erroneous 
kinetics. 

Considering the 2 G-DAEM, the second pyrolysis step is confined to a 
lower value of activation energy (E2 = 74.04 kJ/mol for ZM and 
89.98 kJ/mol for BW). This step is essentially due to the fast devolati-
lization of lignins. Although lignin consists of cross-linked aromatic 
macromolecules, and its decomposition requires more energy to be 
accomplished, in our case, the determined kinetics are only related to 
the formation of light molecules as our system only screens low boiling 
point molecules. The parameters c1 and c2 for the 2 G-DAEM assume 
particular importance since it identifies the dominant pyrolysis step. The 
c2 values are relatively low (0.03 for ZM and 0.09 for BW), indicating 
that the primary step is the dominant mechanism. Furthermore, the 
contribution of the second step is lower than the lignin initial mass 
fraction in biomass, confirming that this step is only related to a part of 
lignin devolatilization. The first pyrolysis step with higher contribution 
can be attributed mainly to holocellulose degradation. 

calculated slope of the straight line of this region would be positive, 
resulting in a negative activation energy value. This drastic change in 
the slope of the isoconversional lines (Fig. K.1 in Supplementary mate-
rial, section K) is manifested by a sudden decrease in the regression 
coefficient value (Fig. 10). Then, linear regression coefficients start to 
have higher values towards the end (0.9 for BW, and 0.6 for ZM). 

Considering Eα vs. α curves outside the gray zones, different 
decomposition elementary steps with activation energies that vary ac-
cording to the extent of conversion for two biomass samples are 
observed. When interpreting an isoconversional Eα curve, it is important 
to understand that each plateau can be assigned an elementary reaction, 
an initial guess for selecting kinetic models. Here, under fast heating, a 
gradual decrease of Eα values is observed for both biomasses and related 
components (Fig. 10), a potential indication of the process limiting step 
changing. During BW pyrolysis, two plateaus are observed at Eα,1 



3.4. EVAEM curves 

The VAEM fitting to the experimental data for biomass samples 
(Figs. M.5 and M.6 in Supplementary material, section M) and their 
components (Figs. O.1 and O.2 in Supplementary material, section O) 
make it possible to determine the optimal parameters of the Eα functions 
(Tables M.2 and O.1 in Supplementary material). The difference be-
tween EVAEM curves and isoconversional activation energy Eα is more 
evident at the earlier conversions and in the tail zone, while the mid 
zone is almost the same for both. 

As isoconversional activation energy values were marred by errors 
related to the bad regression at the beginning and the end of the py-
rolysis process (Fig. 11) and VAEM curves are determined from exper-
imental data fitting, make these later more accurate. Thus, adequate 
mechanistic interpretations are permitted from them. 

The activation energy values at zero conversion prevail in the initial 
pyrolysis stage. As the whole biomass and holocellulose devolatiliza-
tions start at almost the same activation energy values (Fig. 11) for both 
types of biomass, the initial stage can only be linked to the degradation 
of one of the holocellulose components, probably to hemicelluloses, 
which is more reactive than cellulose. The two consecutive plateaus at 
130 and 90 kJ/mol for BW holocellulose could be associated with cel-
lulose degradation, which generally includes two steps starting with its 
depolymerization into an active intermediate, the "active cellulose," 
which laterally undergoes competitive reactions to produce char and gas 
or primary volatiles [89]. 

The participation of each major component is different for each type 

of biomass. Holocellulose degradation was prominent at α < 0.1 and 
α < 0.25 for BW and ZM devolatilization, respectively, as the activation 
energy values for these stages are comparable to those obtained for 
whole biomass. 

For conversion stages between 0.1 < α < 0.5 for BW and 
0.1 < α < 0.5 for ZM, both holocellulose and lignins participate in 
devolatilization. For further conversion, holocellulose predominates in 
BW devolatilization, while lignin contribution becomes more significant 
in ZM devolatilization. The high ash content of ZM may affect more 
severely the second degradation stage of cellulose (starting from 
α = 0.4), thus catalyzing the overall reaction, which was faster, dα/dt 
= 0.21 s−1 at 450 ◦C (Fig. M.5. in Supplementary material, section M) 
against dα/dt = 0.1 s−1 at 450 ◦C (Fig. M.6. in Supplementary material, 
section M) for BW. 

Negative activation energy values, until − 150 kJ/mol, were ob-
tained at the end of the process (α > 0.88). If negative activation en-
ergies have already been reported in the literature [90], it remains a 
little-known fact. Certain gas-phase reactions have been shown to 
have activation energies near zero or even negative [91]. In our study, 
those negative activation energies (Fig. 11) are obtained at the end of 
the process (therefore, in the presence of residual solids) and under 
isothermal conditions (see Supplementary material, section K). The 
decrease in Eα could be explained by a shift of the process-determining 
step [92] and most probably with exothermic char-forming reactions 
catalyzed by minerals with biochar and characterized by intrinsic 
negative activation energy [93,94]. However, further investigation is 
required to support this suggestion. 

Fig. 11. Comparison of isoconversional Eα (symbols) to those approximated by fifth-order polynomials in the empirical model (continuous lines) for ZM (a), BW (b), 
and their pseudo-compounds. Pink is used for the whole biomass, green for holocelluloses, and orange for lignins. The right axis represents the coefficient associated 
with linear regressions of the Freidman method (Lines connecting symbols are distinct for biomass ( ̶), holocelluloses (–), and lignins (-.-)).The error bars represent the 
variation between two data sets collected under identical experimental conditions, indicating the reproducibility of the results. 



4. Conclusions

Online analysis techniques like the micropyrolyzer coupled to the
mass spectrometer (Py-MS) used in this study are essential to follow the 
dynamics of volatile formation during biomass decomposition, making 
the commercial micropyrolyzer used not only for product identification 
and quantification but also to evaluate fast pyrolysis kinetics. In addition 
to the whole biomass devolatilization, those related to its main fractions 
(holocellulose and lignins) were determined directly by extracting the 
appropriate m/z ratios. 

However, inadequate data collection can introduce drastic errors in 
kinetic parameter determination, highlighting oversights by previous 
researchers. In particular, calculations should be performed before 
experimentation to determine experimental conditions ensuring a 
kinetically controlled regime and the true sample temperature profile 
and real-time devolatilization profile should be determined for proper 
kinetic derivation. 

The isoconversional method, combined with the true temperature 
history of the biomass sample, was applied to the deconvoluted devo-
latilization profiles. Effective activation energies highly varied for both 
beechwood (<-50 to 140 kJ/mol) and Zea mays leaves (−40 to 240 kJ/ 
mol), confirming the multi-step nature of the fast pyrolysis process. 

Although a first-order reaction model is essential for global reactivity 
comparison between different types of fuels, it can hardly capture the 
complexity of biomass devolatilization. Both VAEM and DAEM ensure a 
moderate representation of biomass heterogeneity and pyrolysis 
complexity. The VAEM retains the advantage of studying biomass 
devolatilization without assuming mathematical form for the reactional 
model, f(α). However, DAEM double Gaussian may provide further in-
sights regarding phenomenology and biopolymers contribution. 

Examining optimized EVAEM trends confirms the presence of 
exothermic char-forming reactions at the end of the pyrolysis process, 
which is characterized by an Eα near zero, even negative. The optimized 
EVEAM curves were not similar for woody and grassy biomass, confirming 
the different behavior of their devolatilization. Therefore, a general-
ization of parameters was not possible for biomass devolatilization 
modelling, whatever the type of biomass, indicating the need for further 
kinetic investigation considering the botanical origin of biomasses. 
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