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African vultures optimization algorithm based Choquet fuzzy 
integral for global optimization and engineering design 
problems

Maha Nssibi · Ghaith Manita · Francis Faux · Ouajdi Korbaa · Elyes Lamine

Abstract
Addressing complex optimization problems demands innovative solutions capable of navi-
gating the interdependencies among variables, a reality often oversimplified by traditional 
metaheuristics. To address this challenge, this paper presents an enhanced African Vul-
tures Optimization Algorithm, termed ci-AVOA, that incorporates the Choquet Integral, 
a powerful operator adept at considering criteria significance and interconnectedness in 
optimization scenarios. Unlike its predecessor, the ci-AVOA treats optimization problems 
in their true complexity by recognizing and accounting for the relationships between varia-
bles. The performance of ci-AVOA is evaluated on ten CEC2020 benchmark functions and 
four engineering design problems, pitted against other renowned optimization algorithms 
and the original AVOA. Across low and high dimensional benchmark functions, ci-AVOA 
consistently outperforms its counterparts, underpinning its superiority. This superior per-
formance is further validated using non-parametric statistical tests, solidifying ci-AVOA 
as an effective and robust tool for tackling complex optimization problems. In essence, this 
study provides a significant contribution by augmenting a well-known metaheuristic with 
the Choquet Integral to devise a superior algorithm, ci-AVOA. This innovation extends the 
problem-solving capabilities of metaheuristics, promising more accurate and robust solu-
tions for complex, real-world optimization problems.

Abbreviations
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ci − AVOA 	�Choquet Integral African Vultures Optimization Algorithm
AOAVOA	� Improved Hybrid Acquila Optimizer and African Vultures Optimization 
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AOS	� Atomic Orbital Search
AVG	� Average results
AVOA	� African Vultures Optimization Algorithm
Best	� Best Results
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F	� Starvation rate
GA	� Genetic algorithm
GWO	� Grey Wolf Optimizer
h	� A random number between [− 2,2]
IAVOA	� Improved African Vultures Optimization Algorithm
iter	� Number of iterations
L1	� Probability parameter to select the first best vulture
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	�A random number between [0,1]
randp1 	�A random number between [0,1]
randp2 	�A random number between [0,1]
randp3 	�A random number between [0,1]
Sin	� Function of sine
SSA	� Salp Swarm Optimization
STD	� Standard Deviation
TAVOA	� Enhanced African Vultures Optimization Algorithm with tent map and 

time varying mechanism
ub	� The Upper bound of search spaces
Vi 	�Fitness value of best vultures
w	� A parameter that determines the probability of entering the exploration and 

exploitation phases
z	� A random number between [− 1,1]

1 Introduction

Optimization problems can be defined as the process of choosing the optimal solution from 
a set of possible ones. These problems are of great interest in many applications where it is 
necessary to maximize profit, production, and efficiency in many scientific fields, including 
engineering issues, operations research, economics, etc. (Du and Pardalos 1998).



Deterministic techniques and stochastic methods can be used to categorize existing opti-
mization problems (Pardalos et al. 2000).

Deterministic methods (or gradient based methods) such as Conjugate Gradient and the 
Newton–Raphson method (Costilla-Enriquez et al. 2020), require knowledge of the gradi-
ent of the fitness function to direct the search effectively. These algorithms guarantee find-
ing the optimal solutions but are only helpful in solving small dimension problems. Indeed 
when faced with more complex problems gradient-based methods suffer from three seri-
ous limitations: a slow rate of convergence, a strong dependence on the starting point and 
finally the risk of falling into an optimal local solution. Solving large-scale problems using 
exact algorithms requires a lot of time and resources, which is practically impossible with 
deterministic approaches.

This has been the main reason for the development of metaheuristic algorithms that take 
inspiration from observations of natural phenomena (nature, swarms, and physical pro-
cesses). Indeed metaheuristics can address NP hard problems (multi-modal, non-convex, 
discontinuous and non-differentiable) including those with many local optima. The main 
advantages of metaheuristics are an acceptable time of convergence, low consumption and 
the absence of reliance on gradient information (Greco et al. 2021).

Consequently, metaheuristics algorithms are essential for various engineering appli-
cations, including engineering design (Carbas et al. 2021), feature selection (Manita and 
Korbaa 2020; Nssibi et al. 2021), electrical engineering (Razmjooy et al. 2021), parameter 
extraction, image segmentation, and path planning (Ramadas and Abraham 2019; Ouertani 
et al. 2022). Metaheuristic algorithms fall into a number of areas, including those based on 
evolution (Opara and Arabas 2019), trajectory (Dekkers and Aarts 1991), swarms (Mafarja 
et al. 2020), bio-inspiration (Faris et al. 2018), physics/chemistry (Abualigah et al. 2022), 
humans (Askari et al. 2020), and plants (Yang 2012).

Metaheuristic algorithms work in a particular way using two main steps: exploration 
and exploitation. The exploration phase tries to find a solution in the unknown spaces of 
the problem. The exploitation phase searches more precisely in the area found in the explo-
ration phase in order to decrease the algorithm’s level of randomness and to improve the 
level of accuracy (Khajehzadeh et al. 2011). When the exploration phase of the algorithm 
is prioritized, it converges more rapidly enabling the algorithm to search the solution space 
more randomly. Hence it yields solution sets with greater diversity of elements. In the 
exploitation phase, the objective is to find solutions in a more localized area in order to 
increase the quality and accuracy of the solution sets. However there are some difficulties. 
Exploitation capacity will suffer if the exploration capacity is increased, and vice versa. 
These effects are reciprocal. So it appears difficult to find an acceptable balance between 
these two stages.

In this paper we are interested in the African Vultures Optimization Algorithm (Abdol-
lahzadeh et al. 2021) i.e., a swarm-based metaheuristic that mimics the foraging and navi-
gation behaviors of African vultures in nature. While AVOA is known for its ability to find 
global optima by combining exploration and exploitation, it often encounters difficulties 
in the latter phase. When solutions are closely clustered or when a problem demands a 
delicate balance between multiple objectives, this may lead to less-than-optimal solutions.

This study introduces an advanced metaheuristic global optimization algorithm, ci-
AVOA, aiming to improve upon the existing African Vultures Optimization Algorithm. 
The newly proposed ci-AVOA addresses the shortcomings of AVOA by leveraging the 
Choquet Integral operator (Choquet 1954). This method is specifically designed to consider 
the significance and interdependence of optimization criteria, offering a more comprehen-
sive approach to solve complex optimization problems where criteria are interconnected. 



The integration of the Choquet Integral enables the ci-AVOA to deliver more robust per-
formance when dealing with multi-criteria optimization problems, particularly those where 
the criteria are not entirely independent and to effectively model real-world scenarios, sig-
nificantly enhancing its ability to deliver more accurate and robust solutions.

The structure of the remainder of this study is organized as follows: Sect.  2 outlines 
related works concerning the combination of metaheuristics with uncertainty approaches. 
Section  3 offers a concise description of the foundational African Vulture Optimization 
Algorithm (AVOA), the Choquet integral, and the newly proposed ci-AVOA algorithm. 
Section  4 presents the results from two separate experiments, the CEC2020 test suite 
benchmark functions, and provides a comprehensive analysis of the performance of vari-
ous algorithms. Section  5 illustrates the practical application of the ci-AVOA algorithm 
to solve engineering problems. In Sect.  6, the strengths and limitations of the proposed 
approach are discussed, alongside potential future research directions. Finally, Sect. 7 sum-
marizes the main findings and conclusions of this study.

2  Related work

As mentionned in the introduction, metaheuristic algorithms can identify optimal/near-
optimal solutions by mimicking natural behaviours but may suffer from some limitations. 
Although in some cases they can be very efficient and converge rapidly to the optimal solu-
tion, in other cases there might be a very long execution time or a non-satisfactory solution 
might be obtained (Chopard et al. 2018).

A solution to overcome these drawbacks is to improve the exploration or exploitation 
strategy. In the literature, many recent papers address this issue. For example the Moth 
flame o ptimization ( MFO) algorithm based on the principle o f navigation t echnique o f 
moth toward moon suffers from an inability to make a good trade-off between global and 
local search. Hence, a modified dynamic opposite learning (DOL) strategy is proposed in 
Sahoo et al. (2023) and an exploration operator, namely Weibull flight distribution in addi-
tion with a Fibonacci search process-based technique is presented in Sahoo et al. (2023). 
The Whale optimization algorithm (WOA) based on the hunting behavior of humpback 
whales has a considerable convergence speed but suffers from diversity in the solution due 
to the low exploration of search space. In Chakraborty et al. (2022) the random solution 
selection process is altered to increase exploration and the whale’s cooperative hunting 
strategy is incorporated to balance the exploration and exploitation phase of WOA. A vari-
ant of Butterfly Optimization Algorithm employs a self-adaptive parameter setting and a 
local search strategy embedded with Levy flight search to make a better trade-off between 
exploration and exploitation (Sharma et al. 2022). In the same way, a modified backtrack-
ing search algorithm (BSA) framework based on the quasi reflection-based initialization, 
quantum Gaussian mutations, adaptive parameter execution, and quasi-reflection-based 
jumping limitation is presented in Nama et al. (2022).

Another solution to increase robustness will be the hybridization of metaheuristics with 
algorithmic components originating from other techniques. Numerous examples of hybrid-
ization can be found in literature. A hybrid sine cosine butterfly optimization algorithm 
(m-SCBOA), in which a modified butterfly optimization algorithm is combined with sine 
cosine algorithm to achieve superior exploratory and exploitative search capabilities is pro-
posed in Sharma et al. (2022). Based on the Slime Mould algorithm, four areas of hybridi-
zation, progress, changes, and optimization are discussed in Gharehchopogh et al. (2023). 



In order to resolve the travelling Salesman Problem considered as NP-hard, a Farmland 
Fertility Algorithm and a hyperheuristic technique based on the Modified Choice Func-
tion (MCF) has been presented in Gharehchopogh et  al. (2022) to discover the shortest 
Hamilton route that visits each city precisely once and then returns to the starting point. A 
hybrid approach based on a binary version of the Farmland Fertility Algorithm achieves 
feature selection in the classification of Intrusion Detection Systems (IDSs). Results tested 
on two valid IDSs datasets, namely NSL- KDD and UNSW-NB15 shows that the method 
performs better than the classic machine Learning classifiers (Naseri and Gharehchopogh 
2022).

Different usages of the Quantum Computing concept, i.e., a new field of research that 
includes elements from mathematics, physics, and computing in metaheuristics has been 
reviewed in Gharehchopogh (2023). For community detection in complex networks, the 
Cuckoo Search Optimization algorithm disadvantaged by problems of premature conver-
gence, is improved using a Genetic Algorithm in order to increase performances in the 
exploration and the exploitation phases (Shishavan and Gharehchopogh 2022). Concern-
ing the sparrow search algorithm, a literature review on variants, improvement, hybridiza-
tion, and optimization is detailed in Gharehchopogh et al. (2023). In the context of social 
behaviour simulation, the particle swarm optimization (PSO) algorithm that has a high risk 
to fall into a poor local optimum, is hybridized with the backtracking search optimization 
algorithm to resolve the original PSO algorithm’s problems (Zaman and Gharehchopogh 
2022). Experimental results outperforms several state-of-the-art PSO variants on almost all 
of the benchmark problems (Zaman and Gharehchopogh 2022). A hybrid method based on 
the fruit fly algorithm and the ant lion optimizer algorithm has acceptable performance on 
simulation results on the dataset KDD Cup99, NSL- KDD, and UNSW-NB15 in the con-
text of the intrusion detection system (Samadi Bonab et al. 2020). In Mohammadzadeh and 
Gharehchopogh (2021) the authors introduce an approach to solve the problem of lower 
convergence rate and lower population diversity in metaheuristics using a multi-agent sys-
tems (MASs) where several metaheuristic algorithms are considered as separate competi-
tive and cooperating agents. The hybrid model tested on 32 complex benchmark functions 
and shows effectiveness and powerfulness for solving high-dimensional optimization prob-
lems. Finally the Salp Swarm Optimization (SSO) and the African Vulture Optimization 
Algorithm (AVOA) have been hybridized and evaluated on 52 benchmarks with excellent 
performance in solving global optimization problems (Gharehchopogh 2022).

A complementary approach to increasing the robustness of metaheuristics is to consider 
uncertainty, due to imprecise observation of natural phenomena, in the modelling process 
(2020). In fact, ignoring uncertainty is one strategy, but such an approach could produce a 
sub-optimal solution. Various models can be chosen in function of the nature of the uncer-
tainty such as probabilistic modelling (Bianchi et al. 2002; Wang and Zhao 2022) or fuzzy 
sets (Alkan and Kahraman 2020). For example, a combination of the Fuzzy c-means clus-
tering algorithm and Chemical Reaction Optimization metaheuristic is used in Nayak et al. 
(2017) to obtain optimal cluster centers. In a similar vein, Zhang and Ma (2020) a hybrida-
tion of fuzzy clustering and PSO metaheuristic is used to balance exploration and exploita-
tion in Zhang and Ma (2020) or to improve the accuracy of Intrusion Detection Systems 
(Mishra and Naik 2019). In Arriola et al. (2022) the authors carried out a study that aimed 
to analyze the progress of current research related to energy and sustainability and utilized 
the fuzzy optimization approach of 96 retrieved publications. The article shows that fuzzy 
optimization enables significant results on technological, environmental, and economical 
factors. Still in the context of energy consumption, a hybrid metaheuristic (particle filter 
and particle swarm optimization) (Pozna et  al. 2022) or a gentic algorithm (Wang et  al. 



2023) enables to the optimal tuning of fuzzy-controllers. In order to design an optimal tax-
ing strategy of carbon emissions, fuzzy random matrix generators have been used in tan-
dem with the cuckoo search technique in Ganesan and Elamvazuthi (2022). In the domain 
of multi-attribute group decision-making, an algorithm based on complex intuitionistic 
fuzzy values and using the particle swarm optimization algorithm is presented in Rani and 
Garg (2022).

Moreover, different fuzzy measures and fuzzy integrals have been successfully imple-
mented to solve and optimize a variety of problems. The non-additive Choquet Integral is 
particularly interesting as it can simulate interactions between criteria, such as redundancy 
or synergy, in addition to the relative relevance of each criterion (Choquet 1954). The lit-
erature concerning hybridizing metaheuristic algorithms and Choquet Integral is sparse 
and recent. For instance, in the study of Boissiere et al. (2007), authors used Choquet Inte-
gral as the aggregated objective function to guide the Tabu Search metaheuristic. The pro-
posed approach was applied to a multi-criteria public transport network design problem. 
The results obtained on a classical benchmark network are quite attractive compared to 
those from over-tested techniques. The Choquet integral was used as an aggregation opera-
tor to allow for trade-offs between the criteria such as travel time, cost, and CO2 with the 
Tabu Search metaheuristic in a system called DyCOS for optimizing dynamic carpooling 
(Cheikh-Graiet et  al. 2020). In a study by Khalouli et  al. (2008), a multi-criteria hybrid 
flow shop scheduling problem was addressed by combining a multi-criteria Ant Colony 
Optimization (ACO) algorithm with the Choquet Integral method. The proposed method 
produced multiple schedules based on different criteria and performed well compared to 
other constructive heuristics in terms of quality and computation time. Similarly, in Branke 
et al. (2016), the Choquet Integral was used as a preferred model in interactive evolution-
ary multi-objective optimization. The authors introduced an interactive multi-objective 
evolutionary algorithm to determine the most preferred part of the Pareto-optimal set and 
compared it with other methods on benchmark problems in various dimensions.

The ci-AVOA algorithm presented in this article is a continuation of previous work 
considering fuzzy measures such as the Choquet integral to consider the significance and 
interdependence of optimization criteria. This point is the main motivation of the proposed 
study, where the use of the non-additive Choquet integral along with a metaheuristic opti-
mization algorithm is introduced.

3 � Proposed approach ci‑AVOA

In this section, a description of African Vultures Optimization Algorithm (AVOA), and 
Choquet Integral method as well as the proposed approach combining AVOA and Choquet 
Integral are provided.

3.1 � Conventional AVOA

The African Vultures Optimization Algorithm (AVOA), as described in Abdollahzadeh 
et  al. (2021), imitates the behavior of African vultures, including crawling, foraging, 
and competing for food. It utilizes two exploration strategies to generate diverse solu-
tions and four exploitation strategies to improve potential solutions. Additionally, tran-
sition strategies are implemented to balance the exploration and exploitation phases. 



According to the authors, this new metaheuristic proved efficient in solving large-scale 
optimization problems.

3.1.1 � Identifying the best vulture in a group

To determine the best vulture in any group, the process begins by creating an initial 
population, and then calculating the fitness values of all the solutions. The best vulture 
of the first group is determined by selecting the solution with the highest fitness value, 
while the best vulture of the second group is determined by selecting the solution with 
the second highest fitness value. The rest of remaining vultures move towards the best 
solutions using Eqs. 1 and 2. The fitness values of all vultures are recalculated within 
each iteration.

where Ri represents the position vector of one of the two best vultures selected in the cur-
rent iteration, BestVulture1 refers to the position vector of the best vulture in the first group 
in the current iteration, and BestVulture2 refers to the position vector of the best vulture in 
the second group in the current iteration. The L1 and L2 parameters take values between 
0 and 1, with their sum being 1. Pi is obtained according to the roulette wheel strategy as 
shown in Eq. 2. Vi represents the fitness value of the first and second group of vultures, and 
n represents the total number of first and second group of vultures.

3.1.2 � Starvation rate of vultures

When vultures are full, they have high energy and travel longer distances in search 
of food. When they’re hungry, they don’t have enough energy to fly long and forage 
alongside the stronger vulture. Eqs. 3 and 4 are used for mathematical modeling of this 
behavior.

where iter represents the valid number of iterations and maxiter the maximum num-
ber of iterations. The parameters rand1 , z and h take random values in the ranges 
[0, 1], [−1, 1]and[−2.2] , respectively. The parameter w is a fixed number, and increasing 
the value of w increases the probability of entering the exploration phase late in the opti-
mization process. If the value of |F| is greater than or equal to 1, the algorithm enters the 
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{
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exploration phase and the vultures search for food at random distances from one of the best 
solutions.

3.1.3 � Exploration

In order to benefit from different exploration strategies, the randP1 and P1 parameters, 
which take random values in the [0, 1] range, are compared. If P1 is greater than or equal to 
randP1 , Eqs. 5 and 6 are used.

If P1 is less than randP1 , Eq. 7 is used. P(i + 1) represents the position vector of the vulture 
in the next iteration, F represents the saturation rate of the vulture in the current iteration.

If the value of the variable |F| is less than 1 then, the exploitation stage is passed and the 
vultures search for food in the neighborhood of one of the best solutions. The lower and 
upper limits for the variable values are ub and lb. The parameters rand, rand2 and rand3 
take random values between 0 and 1.

3.1.4 � Exploitation

In order to benefit from different exploitation strategies, the parameters P2 , P3 , randp2 , 
randp3 which take random values in the range of [0,1], are compared.

• Exploitation stage 1: If the value of the variable |F| is between 0.5 and 1 then, and if P2

is equal to or greater than randp2 , Eqs. 8 and 9 are used.

 If P2 is less than randp2 , Eqs. 10 and 11 are used. Thus, vultures swirling flights and 
sieges over the food source are modeled. Parameters rand4 , rand5 and rand6 take ran-
dom values between 0 and 1. 

• Exploitation stage 2: |F| if its value is less than 0.5 and P3 is equal to or greater than
randp3 , Eqs. 12 and 13 are used.

(5)P(i + 1) = R(i) − D(i) × F

(6)D(i) = |2 × rand × R(i) − P(i)|

(7)P(i + 1) = R(i) − F + rand2 × ((ub − lb) × rand3 + lb)

(8)P(i + 1) = D(i) × (F + rand4) − d(t)

(9)d(t) = R(i) − P(i)

(10)P(i + 1) = R(i) − (S1 + S2)

(11)
S1 = R(i) ×

(
rand5×P(i)

2�

)
× cos(P(i))

S2 = R(i) ×
(

rand6×P(i)

2�

)
× sin(P(i))

(12)P(i + 1) =
A1 + A2

2



 If P3 is less than randp3 , Eqs. 14 and 15 are used. Thus, the accumulation and aggres-
sive bickering of vultures around the food source is modeled. 

 Levy(d) denotes the Lévy flight function used to increase the performance of the 
AVOA. The mathematical expression of Lévy flight is as follows: 

� is a constant number, d represents the dimensions of the problem, the parameters u
and v take random values in the range of 0 to 1.

The flowchart of AVOA metaheuristic is illustrated in Fig. 1.
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Fig. 1   Flowchart of AVOA



3.2 � Choquet integral

The additivity axiom of classical measure theory is effective in describing vari-
ous types of measurements in perfect, error-free situations, but it doesn’t fully cap-
ture measurements in real-life scenarios. Since the behavior of vultures in the wild is 
unpredictable, measurements in this context are inherently non-additive. To account 
for this, fuzzy measures use less stringent axioms of monotonicity with respect to set 
inclusion, rather than the additivity axiom used in classical measures.

Definition 1  (Fuzzy measure) A fuzzy measure or non-additive measure � on a set 
X = (x1, x2,… , xn) oh n criteria is a set function � ∶ 2X → [0, 1] satisfying the following 
three properties: 

(1) �(�) = 0

(2) �(X) = 1 (normality)

(3) ∀B,C ⊂ X, if B ⊆ C then 𝜇(B) ≤ 𝜇(C) (monotonicity)

Fuzzy measures are utilized to indicate the level of significance of subsets of cri-
teria, and their usefulness in decision-making is due to their capacity to handle the 
interrelationships between criteria (Grabisch 1997). Since the component-measures of 
a fuzzy measure do not allow for the direct calculation of the measure of the union of 
two distinct subsets, Sugeno (1974) proposed the �-fuzzy measure which has supple-
mentary characteristics.

Definition 2  (�-measure) For 𝜆 > −1 , the fuzzy measure �
�
 is a �-fuzzy measure if it 

satisfies:

for every pairs and disjoint subsets A and B of X

The value of the parameter � can be found from the equation �
�
(X) = 1 which is 

equivalent to solving:

Note that a normalized fuzzy measure has 2n − 2 parameters whereas a �-measures is one 
class of fuzzy measures with n − 1 parameters.

The �-measure is a parametric fuzzy measure that is usually used with a fuzzy inte-
gral such as the Choquet Integral defined such that:

Definition 3  (Choquet Integral) The Choquet Integral of G = (g1, g2, ..., gn) ∈ ℝ
n
+
 accord-

ing to the �-fuzzy measure �
�
 is defined by:
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In this regard, the Choquet Integral computes the score of each attribute with respect to 
a �-fuzzy measure �

�
.

3.3 � ci‑AVOA

The problem we raise in this study is how to exploit the best solutions already found. 
Therefore, we propose a dynamic aggregation function that takes into account the objective 
functions of each solution and aggregates the fitness measures of the existing solutions into 
a global measure based on the �-fuzzy measure and Choquet integral.

Referring to the AVOA algorithm, the transition between exploration and exploita-
tion depends on the hunger rate of vultures F. Therefore, four hunting strategies are used 
to achieve various position updating of vultures. This allows the algorithm to effectively 
exploit the solution information in the search space to reach the global optimum. Nonethe-
less, in the four hunting strategies, the aggregation approach models a static aggregation 
method that does not consider the uncertainty in communication between vultures. In fact, 
the movement of all vultures toward the food source relies on a simple arithmetic combina-
tion as modelled by Eqs. 5 and 7 in the exploration phase and Eqs. 10 and 12 in the exploi-
tation phase.

Given the above analysis, we incorporate the Choquet fuzzy integral in the exploitation 
and exploration phases of AVOA to pattern an effective communication between vultures/
solutions.

In order to utilize the Choquet fuzzy integral, it is necessary to determine the fuzzy 
measure values of each solution’s fitness. These values represent the strength of individual 
solutions and their combinations. Once all the fuzzy measure values and corresponding 
fitness values are identified, the Choquet fuzzy integral method can be applied to compute 
the overall solution.

Let Z() denote the fuzzy measure of a set of solutions S = {S1, S2, S3,… , Sn} and 
V = {v1, v2, v3,… , vn} represent the fitness values of individual solutions in S. For any sub-
set Ci = {S1, S2, S3,… , Si} of S where 1 ≤ i ≤ n , the aggregated value can be computed 
using the Choquet fuzzy integral with the help of the following equation, assuming that 
v1 ≥ v2 ≥ v3 ≥ ⋯ ≥ vn.

To compute the fuzzy membership values of solution combinations, the first step is to cal-
culate the value of � referring to Eq. 17 and based on the following equation:

After finding the roots of the characteristic equation, the value of � can be determined. 
With this value, the fuzzy membership value of any solution combination can be calculated 
using the following equation repeatedly.

where 1 ≤ p, q ≤ n.
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We develop seven variants of AVOA with Choquet fuzzy integral in order to cover all 
phases and determine the best aggregation. 

1. The first variant modifies the exploitation phase first stage (ci-AVOA-1). Hence, the Eq.
(10) could be written as follows:

2. The second variant modifies the exploitation phase second stage (ci-AVOA-2). Then,
the Eq. (12) is reformulated as follows:

3. The third we incorporate the modification on the two exploitation stages at the same
time (ci-AVOA-3)

4. The fourth variant we modify the exploration phase (ci-AVOA-4). Therefore, Eqs.  (5)
and (7) are mathematically reformulated as follows:

 where B1 and B2 are calculated as follows: 

5. The fifth we assemble the modification of the exploitation phase first stage with the
exploration phase (ci-AVOA-5).

6. The sixth variant models the exploitation phase second stage with the exploration phase
including Choquet Integral (ci-AVOA-6)

7. The seventh combines the third variant with the fourth variant (ci-AVOA-7).

The study’s principal motivation rests upon advancing the existing African Vultures 
Optimization Algorithm (AVOA), which, while effective in various optimization sce-
narios, exhibits certain limitations that this work strives to address.

One notable limitation of the AVOA is its inherent challenge in efficiently handling 
the optimization problems where criteria are interconnected. The AVOA, like many tra-
ditional optimization algorithms, is prone to treating each criterion in an optimization 
problem as isolated, thereby possibly overlooking their interdependencies. Such over-
look can lead to suboptimal solutions, particularly in complex multi-objective optimi-
zation problems where the criteria’s interplay significantly impacts the quality of the 
solutions.

To overcome these limitations, the proposed ci-AVOA leverages the Choquet Inte-
gral operator. The Choquet Integral is a potent mathematical tool, specifically designed 
to aggregate criteria, considering both their importance and mutual dependencies. It 
provides a sophisticated means of handling multiple interconnected criteria, thereby 
enhancing the problem-solving capacity of the optimization algorithm.

The integration of the Choquet Integral within the AVOA framework allows ci-
AVOA to manage the interconnected criteria more efficiently, significantly boosting its 
ability to tackle complex multi-criteria optimization problems. This integration is antic-
ipated to provide more accurate and robust solutions where the criteria are not entirely 
independent.

(22)P(i + 1) = Choquet Z (S1, S2).

(23)P(i + 1) = Choquet Z (A1,A2).

(24)P(i + 1) = Choquet Z (B1,B2),

(25)
B1 = R(i) − D(i) × F

B2 = R(i) − F + rand2 × ((ub − lb) × rand3 + lb)



Therefore, the primary justification for the integration of the Choquet Integral is its 
ability to account for the interdependencies among criteria, a feature that significantly 
enhances the capability of the algorithm to deal with real-world scenarios. As a result, 
the ci-AVOA algorithm offers a more comprehensive approach to complex optimization 
problems, making it a valuable tool in the field of global optimization.

4 � Experimental results and discussion

In this section, we present a performance and accuracy study of the proposed approach, ci-
AVOA. This study involves a benchmark of 10 functions from the CEC2020 test suite. The 
first series of experiments is conducted on the seven developed variants of AVOA. The sec-
ond series involves comparing the best version of the proposed approach, ci-AVOA, with 
state-of-the-art metaheuristics including: Genetic Algorithm (GA) (Mirjalili 2019), Par-
ticle Swarm Optimization (PSO) (Venter and Sobieszczanski-Sobieski 2003), Grey Wolf 
Optimizer (GWO) (Mirjalili et  al. 2014), Salp Swarm Algorithm (SSA) (Mirjalili et  al. 
2017), Atomic Orbital Search (AOS) (Azizi 2021), African Vultures Optimization (AVOA) 
(Abdollahzadeh et  al. 2021), Improved African vulture optimization algorithm (IAVOA) 
(Liu et  al. 2022), Improved hybrid Aquila Optimizer and African Vultures Optimization 
Algorithm (AOAVOA) (Xiao et  al. 2022), and enhanced African Vultures Optimization 
Algorithm with tent map and time varying mechanism (TAVOA) (Fan et al. 2021).

4.1 � Test functions

The proposed algorithm ci-AVOA has been assessed through a comprehensive perfor-
mance evaluation using 10 benchmark functions from the Congress On Evolutionary Com-
putation 2020 (CEC2020). These benchmark functions serve as challenging objective func-
tions that provide a robust test for optimization algorithms. They encompass a variety of 

Table 1   CEC2020 test functions

No. Functions F
∗

i
= F

i
(x

∗
)

Unimodal Function 1 Shifted and Rotated Bent Cigar Function (CEC2017 F1) 100
Basic Functions 2 Shifted and Rotated Schwefel’s Function (CEC2014 F11) 1100

3 Shifted and Rotated Lunacek bi-Rastrigin Function (CEC2017 
F7)

700

4 Expanded Rosenbrock’s plus Griewangk’s Function (CEC2017 
F19)

1900

Hybrid Functions 5 Hybrid Function 1 (N = 3) (CEC2014 F17) 1700
6 Hybrid Function 2 (N = 4) (CEC2017 F16) 1600
7 Hybrid Function 3 (N = 5) (CEC2014 F21) 2100

Composition Functions 8 Composition Function 1 (N = 3) (CEC2017 F22) 2200
9 Composition Function 2 (N = 4) (CEC2017 F24) 2400
10 Composition Function 3 (N = 5) (CEC2017 F25) 2500

Search range: [−100, 100]D



types: unimodal, basic, hybrid, and composition functions, which are denoted as f1 − f10 . 
Each function has a known global optimum symbolized as Fi ∗.

The evaluation of these benchmark functions occurs within a defined search space of 
[−100, 100]D , where D symbolizes the dimensions, which are either 10 or 20 in this study. 
To effectively solve these benchmark functions, a strategic balance between exploration 
(searching the entire problem space) and exploitation (refining the solutions already found) 
is mandatory. Further details concerning the benchmark functions are provided in Table 1.

As an initial step, we compare the performance of the seven proposed variants of ci-
AVOA with the original AVOA. This comparative analysis, presented in Table 4, employs 
a range of statistical fitness metrics including the best solution found (Best), the average of 
all solutions found (Mean), and the standard deviation (Std). The best solution reflects the 
optimal output the algorithm was able to achieve in its search, essentially providing a direct 
measure of the algorithm’s efficacy in pinpointing the most optimal solution to a given 
problem. The mean value, on the other hand, gives a general overview of the algorithm’s 
performance, taking into account all the solutions it finds during its search, thus serving as 
a measure of the algorithm’s consistent performance. The standard deviation, meanwhile, 
is an index of the variation in the solutions that the algorithm generates. A lower stand-
ard deviation indicates the algorithm’s capability to generate solutions that are consistently 
close to the mean, thereby testifying to the algorithm’s stability and reliable performance 
across different runs. These metrics are mathematically defined as follows:

where BS is the best score obtained for each iteration.
The second phase of experiments features a thorough review of qualitative and quanti-

tative measures, including the use of the Wilcoxon rank sum test. This test is a non-para-
metric statistical method employed to ascertain whether the outcomes of the proposed ci-
AVOA method differ significantly from those of other comparative algorithms (Neuhäuser 
2011). In essence, the Wilcoxon rank-sum test assigns ranks to all observed values as if 
they were members of a single group, subsequently aggregating the ranks of each separate 
group. Under the null hypothesis, the assumption is made that both samples originate from 
the same population, and any observed discrepancies between the two rank sums arise 
purely from sampling error. The p value produced by this statistical test serves as an indi-
cator of the degree of significance. Specifically, a p value of less than 0.05 signifies that 
there exists a significant difference at the 5% level.

In addition to the Wilcoxon rank test, the study also incorporates the Friedman rank test, 
the Friedman aligned rank test and the Quade test (Derrac et al. 2011). These methods are 
specifically designed to calculate the mean rank of three or more matched groups, provid-
ing a broader statistical perspective for assessing the performance of several algorithms. 
Combined, these rank-based tests provide a robust and comprehensive statistical frame-
work for performance comparison.
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Table 2   Six scenarios conducted to evaluate the sensitivity of the conventional AVOA to its parameters

Parameters p1 p2 p3 Alpha Gamma Beta

Scenario 1 [0.1,1] 0.4 0.6 0.8 0.2 2.5
Step = 0.1

Scenario 2 0.6 [0.1,1] 0.6 0.8 0.2 2.5
Step = 0.1

Scenario 3 0.6 0.4 [0.1,1] 0.8 0.2 2.5
Step = 0.1

Scenario 4 0.6 0.4 0.6 [0.1,1] 0.2 2.5
Step = 0.1

Scenario 5 0.6 0.4 0.6 0.8 [0.1,1] 2.5
Step = 0.1

Scenario 6 0.6 0.4 0.6 0.8 0.2 [0.5,5]
Step = 

0.5

Fig. 2   Tuning of parameter p1 according to the first scenario (Sen1)



An essential part of our experimental evaluation involves the use of convergence graphs. 
These plots provide a clear visualization of how the performance of the ci-AVOA method 
and its competitors evolves over the course of the optimization process. They offer insight 
into the speed and stability of the algorithms as they approach the optimal solution.

Additionally, history and trajectory charts provide a comprehensive understanding of 
the dynamic behavior of the search agents in the algorithm. The history charts demonstrate 
the areas of the search space visited by the vultures, while the trajectory charts capture the 
changes in the positions of the vultures during the optimization process. These graphical 
representations are crucial for assessing the exploration and exploitation behaviors of the 
search agents, and in turn, the effectiveness of the optimization strategy.

Furthermore, boxplots and radar plots are employed to articulate the comparative per-
formance of the algorithms. These graphical tools deliver an intuitive and comprehensi-
ble view of the distribution of the algorithm performances, as well as their convergence 
behaviors.

4.2 � Parameter settings

The tests were conducted using MATLAB 2020a on a Windows 10 operating system with 
an i7-1.80 GHz processor and 16 GB of RAM. The comparison between the algorithms 
was performed over 30 independent runs, where the population size was fixed at 30 for 

Fig. 3   Tuning of parameter p2 according to the second scenario (Sen2)



problems with dimensions 10 and 20, and the maximum number of iterations was set to 
1000.

Tuning parameters plays a vital role in the realm of metaheuristic algorithms, as it 
exerts a significant influence on their performance and effectiveness in tackling optimiza-
tion problems. The act of adjusting these parameters can yield substantial benefits, such as 
enhancing convergence rates, expediting the convergence process, and ultimately bolster-
ing the overall performance of the algorithms. As a result, we have decided to put the con-
ventional AVOA through a series of six distinct scenarios, as summarized in Table 2. By 
isolating and testing each parameter individually, we aim to gain a clearer understanding of 
its impact on the algorithm’s performance and behavior. This comprehensive approach will 
enable us to fine-tune the AVOA and optimize its performance for various optimization 
tasks.

Based on the analysis of Figs. 2, 3, 4, 5, 6, 7, we have reached the following conclusions 
regarding the best parameters for the AVOA algorithm:

• The optimal value for the parameter � is 0.8,
• The optimal value for the parameter � is 2.5,
• The optimal value for the parameter � is 0.2,
• The best value for the parameter p1 is 0.6,
• The best value for the parameter p2 is 0.4,
• and the best value for the parameter p3 is 0.6.

Fig. 4   Tuning of parameter p3 according to the third scenario (Sen3)



These findings provide valuable guidance for effectively configuring the AVOA algorithm 
to achieve superior performance in solving diverse optimization problems.

After this tuning part, Table 3 summarizes the parameters of all algorithms used in this 
experimental study. For the AVOA algorithm and its variants, its parameters were tuned 
as described earlier in this paper. However, for the other algorithms considered in the 
study, their parameters were adopted directly from their original publications. By using the 
parameters reported in the literature, we ensure a fair and consistent comparison with the 
previously established results.

4.3 � Results for 10 and 20‑dimensional problems for the 7 variants of ci‑AVOA

Tests were conducted on the seven proposed variants of the AVOA algorithm, using the 
CEC2020 benchmark test function with dimensions of 10 and 20, and 30 independent runs. 
These results are summarized in Tables  4 and 5. We evaluated the proposed approach’s 
performance using various significant statistical measures, including the best, mean, and 
standard deviation (STD) of the fitness values. In these tables, the best results have been 
emphasized in bold for clarity. The statistical outcomes indicate that the sixth version of 
the AVOA (ci-AVOA-6), in which we incorporated the Choquet fuzzy integral into the sec-
ond stage of the exploitation phase and the exploration phase of AVOA, yielded the most 
promising results for 9 out of the 10 functions assessed.

Fig. 5   Tuning of parameter � according to the fourth scenario (Sen4)



Fig. 6   Tuning of parameter � according to the fifth scenario (Sen5)

Table 3   Algorithms parameter 
settings

Algorithm Parameter Value

AOS � (depth weight)
� (multiplier weight)
Vmax (maximum velocity)

50
0.2
6

GWO a 2
GA Crossover rate

Mutation rate
0.9
0.1

PSO c1 (Cognitive factor)
c2 (Social factor)
Vmax (Maximum velocity)
Wmax (Maximum bound on inertia weight)
Wmin (Minimum bound on inertia weight)

2
2
6
0.9
0.4

SSA c1 (depth weight)
c2 (multiplier weight)
c3

50
Random
Random

AVOA L
1

L
2

k
P
1

P
2

P
3

0.8
0.2
2.5
0.6
0.4
0.6

All of them Search agents (particles, atoms, vultures...)
Maximum iterations

30
1000



Although these initial results are promising, further investigations are necessary to 
conclusively establish the effectiveness of this version. Accordingly, we have visualized 
the behaviors of the search agents of AVOA in Figs. 8, 9, 12, and those of ci-AVOA-6 in 
Figs. 10, 11, 13. The search agents’ behaviors were evaluated based on four criteria: search 
history, convergence behavior, the average fitness of the population, and the trajectory of 
the first vulture. We have analyzed these behaviors in 2D for the ten CEC2020 test suite 
functions in 20-dimensional space.

The search history chart displays the positions visited by the vultures, while the conver-
gence behavior graph illustrates the changes in the performance of the leading vulture over 
the course of the optimization process. The population fitness average graph reflects the 
variation in the population’s average fitness throughout the optimization, and the trajectory 
chart of the first vulture depicts how the vulture’s position changes over time.

Upon examining the search history outlined in the second column of Figs. 10, 11, 13, it 
is apparent that the ci-AVOA-6 algorithm tends to prioritize exploration over exploitation, 
a significant deviation from the behavior of the traditional AVOA algorithm. Additionally, 
the trajectory chart of the first vulture provides insights into the vultures’ search behavior. 
This chart, presented in the third column of Figs. 10, 11, 13, shows that the first vulture 
undergoes rapid changes in position early in the optimization process, followed by a grad-
ual slowing of movements as the optimization proceeds.

The fourth column of Figs. 10, 11, 13 depicts the best vulture’s average fitness level, 
which generally shows a rapid decline, indicating a shift from exploration to exploitation 

Fig. 7   Tuning of parameter � according to the sixth scenario (Sen6)



as the optimization process unfolds. Moreover, the ci-AVOA-6 method, evidenced by the 
average fitness of the population, suggests that the optimization process is slowed by the 
vultures’ fuzzy movements and by identifying increasingly accurate fitness value solutions. 
This behavior indicates that the ci-AVOA-6 algorithm focuses more on exploring promis-
ing areas during the optimization process. The evidence in these figures confirms the supe-
rior performance of the proposed ci-AVOA-6 version compared to the traditional AVOA.

Based on these results, we chose to use the ci-AVOA-6 variant for subsequent experi-
ments. It demonstrated superior performance across all tested functions, indicating its abil-
ity to efficiently solve unimodal functions (f1), basic functions (f2–f4), hybrid functions 
(f5–f7), and composition functions (f8–f10). The pseudocode for ci-AVOA-6 is provided in 
Algorithm 1.

4.4 � Results for 10‑dimensional CEC2020 problems in comparison to other 
metaheuristics

The results obtained from the proposed ci-AVOA algorithm, as displayed in Table 6, are 
evaluated against other algorithms, using significant statistical measures like the best, 
mean, and standard deviation (STD) of fitness values.



Table 4   Comparison of the fitness values over 30 experiments obtained by the proposed ci-AVOA variants 
and the original AVOA over CEC2020 test suite with Dimension 10

AVOA ci-
AVOA-1

ci-
AVOA-2

ci-
AVOA-3

ci-
AVOA-4

ci-
AVOA-5

ci-
AVOA-6

ci-AVOA-7

f-1
 Best 101.37 100.08 102.72 196.33 109.12 154.88 100.00 191.41
 Mean 3339.64 4529.76 3836.07 3276.87 3568.45 3389.46 100.01 3835.20
 Std 3687.91 3713.54 3209.76 2738.80 3755.94 2864.63 0.02 3140.41

f-2
 Best 1491.10 1351.95 1369.03 1403.06 1367.38 1416.17 1470.82 1239.67
 Mean 1925.31 2045.02 1950.82 1924.26 1979.30 1891.44 1971.03 1878.38
 Std 223.33 377.89 297.43 246.62 331.90 206.20 178.93 310.05

f-3
 Best 733.11 736.37 730.82 743.76 736.22 729.52 714.26 735.38
 Mean 769.12 774.05 764.14 776.39 775.62 772.51 725.51 773.21
 Std 17.55 20.01 19.14 16.75 21.41 17.16 8.56 18.41

f-4
 Best 1901.04 1901.36 1901.96 1901.21 1901.23 1900.84 1900.27 1901.00
 Mean 1903.74 1903.89 1904.70 1903.86 1904.38 1904.67 1901.16 1904.14
 Std 1.96 1.47 2.00 1.81 2.46 2.06 0.52 2.25

f-5
 Best 2250.68 2785.18 1868.56 2330.76 2852.70 2691.33 1833.59 2488.03
 Mean 11580.09 12384.69 14687.08 18223.82 15797.90 18110.84 2215.04 16098.44
 Std 12629.84 9298.45 14578.38 15700.37 12205.38 15240.04 311.13 22418.33

f-6
 Best 1601.42 1602.06 1615.00 1601.18 1601.70 1601.99 1600.91 1601.06
 Mean 1754.23 1809.07 1811.61 1773.83 1790.03 1749.81 1719.73 1764.85
 Std 99.23 110.10 91.67 113.41 104.51 84.61 96.75 99.26

f-7
 Best 2837.36 2773.64 2724.19 3247.13 2630.20 2620.27 2100.64 2373.20
 Mean 10778.52 7859.74 9944.47 10181.82 10654.17 10431.76 2257.35 8485.34
 Std 5917.40 7665.36 6962.98 7288.85 7709.92 8114.99 138.71 6322.37

f-8
 Best 2234.17 2251.17 2250.60 2230.99 2252.09 2251.33 2223.03 2253.84
 Mean 2304.66 2307.19 2305.27 2303.16 2306.41 2304.17 2295.99 2305.11
 Std 13.86 11.97 11.01 21.51 11.83 14.04 21.54 10.36

f-9
 Best 2500.00 2500.00 2500.00 2500.00 2500.00 2500.00 2733.02 2500.00
 Mean 2754.52 2763.58 2742.35 2734.98 2758.80 2734.69 2747.64 2741.37
 Std 79.75 73.96 111.78 108.84 74.09 109.20 8.29 112.18

f-10
 Best 2600.24 2897.93 2897.74 2600.16 2897.82 2600.25 2897.89 2897.94
 Mean 2931.38 2936.99 2926.73 2920.92 2931.28 2925.29 2935.20 2928.81
 Std 67.59 23.64 24.89 67.01 24.42 64.94 22.25 24.00



Notably, for the unimodal function f1, the proposed AVOA variant recorded the best 
values. It’s worth highlighting that unimodal functions consist of a single global optimum 
and lack local optima, thus serving as an effective platform for analyzing the exploitation 

Table 5   Comparison of the fitness values over 30 experiments obtained by the proposed ci-AVOA variants 
and the original AVOA over CEC2020 test suite with Dimension 20

AVOA ci-AVOA-1 ci-AVOA-2 ci-AVOA-3 ci-AVOA-4 ci-AVOA-5 ci-
AVOA-6

ci-AVOA-7

f-1
 Best 123.29 103.01 120.98 164.51 101.91 106.44 100.00 100.19
 Mean 3729.91 2529.18 3079.70 4270.83 2642.43 3038.87 100.00 2798.42
 Std 3857.38 3171.45 3186.58 4522.55 2679.89 3399.22 0.00 3799.22

f-2
 Best 1951.75 2051.87 1869.40 1812.73 1258.05 1838.46 1106.89 1810.82
 Mean 2782.98 2975.02 2652.92 2782.26 2663.04 2566.39 1910.04 2691.82
 Std 391.53 455.04 460.87 400.33 540.93 400.09 258.04 484.77

f-3
 Best 804.70 780.64 797.94 809.19 776.08 802.48 716.33 792.52
 Mean 859.32 848.10 846.82 861.94 839.47 853.71 723.57 850.75
 Std 34.94 33.76 39.70 29.94 37.16 29.94 6.62 33.00

f-4
 Best 1905.42 1902.89 1905.73 1903.77 1905.10 1904.75 1900.48 1904.12
 Mean 1913.03 1911.70 1916.50 1914.52 1914.57 1913.73 1901.22 1914.29
 Std 6.33 4.28 7.44 5.92 6.04 6.61 0.39 6.75

f-5
 Best 59270.18 39091.35 16802.46 33986.72 67100.26 8298.17 1986.36 20263.52
 Mean 533411.37 500811.56 453015.20 391568.00 474994.52 387068.65 2229.85 328137.22
 Std 439528.68 346301.15 369259.76 374417.93 446879.10 339240.86 147.19 290836.65

f-6
 Best 1636.59 1790.33 1628.29 1724.03 1622.68 1727.84 1600.48 1649.92
 Mean 1951.88 2004.08 2009.68 1991.20 1904.55 2022.28 1720.61 1962.00
 Std 197.14 162.73 233.84 186.94 198.51 180.29 111.06 162.75

f-7
 Best 4537.77 11151.97 38124.97 22898.15 31517.72 29189.27 2101.28 24853.42
 Mean 306315.33 159713.14 266807.73 154806.34 230030.46 280306.72 2352.70 204113.36
 Std 223578.92 162104.77 245438.69 100411.37 179384.81 279469.90 183.62 133272.96

f-8
 Best 2300.00 2300.00 2300.00 2300.00 2300.00 2300.00 2239.27 2300.00
 Mean 2737.23 2887.04 2874.07 2999.94 2572.31 3141.61 2299.09 3088.98
 Std 1136.68 1194.95 1324.56 1296.67 840.43 1435.05 14.18 1341.36

f-9
 Best 2865.15 2890.70 2888.51 2870.72 2550.00 2550.00 2500.00 2550.00
 Mean 2968.17 2960.73 2998.37 2975.22 2550.00 2550.00 2724.12 2550.00
 Std 57.01 49.87 69.60 58.81 0.00 0.00 77.13 0.00

f-10
 Best 2912.61 2914.11 2912.09 2913.94 2700.00 2700.00 2897.81 2700.00
 Mean 2985.46 2975.47 2981.26 2968.31 2700.00 2700.00 2928.58 2700.00
 Std 32.48 34.64 33.02 32.83 0.00 0.00 25.02 0.00



capabilities of the various algorithms. The data suggests that our proposed approach nota-
bly enhances the exploitation of the search space.

On the other hand, the basic functions f2 − f4 witnessed the superior performance of 
two algorithms, namely, PSO and GWO, while AOAVOA reported the smallest standard 
deviation. Contrasting with unimodal and basic functions, hybrid functions encompass 
numerous local optima, thereby presenting a challenge in evading these misleading optima. 
This aspect facilitates the exploration of an algorithm’s exploratory abilities. In function 
f5, the ci-AVOA didn’t attain the best performance, with the best fitness value achieved 
by IAVOA. For function f6, the PSO obtained the best fitness value, while the smallest 
mean was achieved by SSA, with the AOAVOA securing the smallest standard deviation. 
Function f7 saw ci-AVOA report the closest value to the best achieved by PSO and also 
secure the lowest mean. For function f8, GA achieved the best fitness value, but ci-AVOA 
obtained the smallest mean. The results indicate that ci-AVOA demonstrates superior 

Fig. 8   Qualitative results of AVOA for 10-dimensional f
1
− f

4
 CEC2020 test functions



potential in navigating past the local optima. For the composition functions, f9 − f10 , all 
comparative algorithms rendered competitive results.

Overall, the ci-AVOA algorithm proved to be highly effective in delivering satisfactory 
solution quality for low-dimensional problems.

Another critical aspect in evaluating an optimization algorithm is its rate of conver-
gence, that is, the speed of reaching the global optimum. In this context, the convergence 
curve can be instrumental in comparing different algorithms’ performance. This curve, 
characterized by two key features, the ability to attain the global solution and the speed 
at which it does so, essentially plots the evolution of fitness values against the number of 
iterations. Such graphical representations serve as valuable tools for understanding the 
algorithm’s rate of convergence and its stability, both of which are fundamental indicators 
of an optimization algorithm’s performance. Examining Figs. 14, 15, and 16, we can see 
that the ci-AVOA not only converges to an optimal solution but does so more quickly and 

Fig. 9   Qualitative results of AVOA for 10-dimensional f
5
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consistently across all tested functions. The speed at which ci-AVOA arrives at the optimal 
solution and reaching a stable point in fewer iterations is a significant achievement as it 
indicates high efficiency. It means that the ci-AVOA algorithm effectively navigates the 
search space and zeros in on the global optimum without unnecessary exploration. This 
efficiency is a desirable trait in real-world applications, where computational resources and 
time may be limited.

The fact that ci-AVOA reaches a stable point for all functions indicates its robustness. 
The algorithm isn’t easily trapped in local optima, and it can adapt and find the global opti-
mal solution regardless of the specific function’s characteristics.

Also, the use of a semi-log scale and the shift by a gap of 10−3 ensure that the nuances in 
convergence behavior aren’t lost due to the presence of zero values. This adjustment allows 
us to discern differences in performance among the various algorithms more clearly.

Fig. 10   Qualitative results of ci-AVOA-6 for 20-dimensional f
1
− f

4
 CEC2020 test functions



In summary, the convergence graphs indicate that the proposed ci-AVOA algorithm 
combines efficiency, rapid convergence, and robustness. It’s able to find high-quality solu-
tions quickly and consistently across a range of functions, making it a highly competitive 
optimization algorithm.

The study also employed non-parametric tests, specifically the Wilcoxon and Fried-
man tests. The results of the Wilcoxon test, as presented in Table  7, indicate signifi-
cant differences between the proposed ci-AVOA algorithm and the other algorithms in 
most functions, demonstrating its significant improvement over similar algorithms. The 
Table 7 presenting the results of the Wilcoxon rank-sum test, compares the performance 
of the proposed ci-AVOA algorithm with six other optimization algorithms (GA, PSO, 
GWO, SSA, AOS, AVOA, TAVOA, AOAVOA, and IAVOA) on the CEC2020 bench-
mark functions for dimension 10.

Fig. 11   Qualitative results of ci-AVOA-6 for 20-dimensional f
5
− f

8
 CEC2020 test functions



The test’s p value is shown, along with an indication of whether ci-AVOA won (per-
formed better), tied (performed equivalently), or lost (performed worse) on each func-
tion. The sum at the end of the table shows the total count of wins (+), ties (=), and 
losses (-) against each algorithm.

– Function F1: ci-AVOA performs significantly better than all other algorithms, with
extremely low p-values (below 0.05, indicating statistical significance).

Fig. 12   Qualitative results of AVOA for 10-dimensional f
9
− f

10
 CEC2020 test functions

Fig. 13   Qualitative results of ci-AVOA-6 for 20-dimensional f
9
− f

10
 CEC2020 test functions
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– Function F2: ci-AVOA performs significantly worse than GA, PSO, and GWO, as
indicated by the negative signs and low p-values. It ties with AOS and AVOA, as the
p-values are greater than 0.05, indicating no statistical difference in performance.

– Function F3: ci-AVOA performs significantly better than GWO, SSA, AOS, and
AVOA, but it ties with GA and PSO, as indicated by the p-values greater than 0.05.

– Functions F4, F5, and F7: ci-AVOA significantly outperforms all the other algo-
rithms.

Fig. 14   Convergence curves of algorithms on the f
1
− f

4
 10-dimensional functions with respect to iterations

Fig. 15   Convergence curves of algorithms on the f
5
− f

8
 10-dimensional functions with respect to iterations



– Function F6: ci-AVOA ties with most of the algorithms, except SSA, where it performs
better.

– Function F8: ci-AVOA outperforms GWO and AVOA but ties with the rest.
– Function F9: ci-AVOA ties with GA, AOS, performs worse than PSO, GWO, SSA, and

AVOA.
– Function F10: ci-AVOA performs better than GA, worse than PSO and AVOA, but ties

with the rest.

Fig. 16   Convergence curves of algorithms on the f
9
− f

10
 10-dimensional functions with respect to itera-

tions

Fig. 17   Average ranking of the algorithms by Friedman test (a), Friedman aligned test (b) and Quade test 
(c) for 10-dimensional problems



Overall, the ci-AVOA demonstrates superior performance, either outperforming or tying 
with the other algorithms on a majority of the functions. Notably, ci-AVOA’s exceptional 
performance against GA-where it records victories in 5 out of 10 functions, ties in 4, and 
loses only in one-highlights its effectiveness and robustness. Even in instances where ci-
AVOA does not take the lead, it often ties with the competing algorithms, suggesting com-
parable performance. Despite a few exceptions, such as its performance on Function F2, 
where it didn’t fare as well, the ci-AVOA algorithm generally provides strong competition 
and proves to be a reliable and efficient option for tackling diverse optimization tasks.

This analysis indicates that ci-AVOA generally demonstrates superior or equivalent per-
formance to the other algorithms on the tested functions, suggesting its effectiveness and 
robustness in handling optimization tasks of varying complexity.

The Friedman rank sum test is a non-parametric statistical test utilized for comparing 
more than two groups that are related. This test is applied to explore the mean rank dif-
ferences across the various algorithmic approaches to understand their relative perfor-
mances. In addition to the standard Friedman rank sum test, we employed two advanced 
variants of the test, specifically, the Friedman aligned ranks test and the Quade test. 
Both of these methods provide more robust, reliable statistical comparisons that account 
for specific data characteristics. Each test works by assigning rank values to each algo-
rithm based on its performance. The lower the rank value, the better the algorithm’s 
performance (Derrac et al. 2011).

The results depicted in Fig. 17a, b, and c show the PSO algorithm achieving the first 
rank, demonstrating its superior performance over the others. However, the ci-AVOA 
algorithm closely follows the PSO, obtaining the second rank and thus indicating its 
high effectiveness. While the PSO algorithm tops the rank, the relatively low rank of ci-
AVOA indicates its commendable performance. It is notable that the proposed ci-AVOA 
approach generates results that are competitive with the leading PSO algorithm, espe-
cially considering the various complexities of low-dimensional optimization problems. 
In conclusion, these comprehensive test results provide evidence of the acceptability 

Fig. 18   The boxplot curves of the proposed ci-AVOA and the competitor algorithms obtained over 
basic,hybrid and composition functions from CEC2020 benchmark with Dim = 10



Fig. 19   The radarplot curves of the proposed ci-AVOA and the competitor algorithms obtained over 
CEC2020 benchmark with Dim = 10



and robustness of the proposed ci-AVOA method in handling low-dimensional prob-
lems, making it a strong candidate for application in diverse optimization tasks.

The utilization of Box-plot charts facilitates a comprehensive comparison of algorith-
mic performance results. These charts are instrumental in differentiating the potential of 
metaheuristic algorithms through their visual depiction of data symmetry and dispersion. 
A box plot communicates six essential statistical parameters, namely: the maximum and 
minimum values, median (or second quartile), first quartile (lower quartile), third quartile 
(upper quartile), and potential outliers. These parameters serve to provide a succinct sum-
mary of the data distribution and spread, allowing us to make broad assessments about the 
performance characteristics of each algorithm.

The Box-plot representations in Fig. 18 detail the distribution of the best and mean fit-
ness values yielded by each algorithm for the basic, hybrid, and composition functions of 
the CEC2020 test suite. Observing these plots, it’s noticeable that the ci-AVOA algorithm 
box plots exhibit the lowest values in almost all the tested functions, when compared to the 
other algorithms under consideration.

The median value of the ci-AVOA’s results, which is the midpoint of the data set, along 
with its first and third quartiles, which respectively mark the midpoints of the lower and 
upper halves of the data, are distinctly lower than those of the other tested algorithms. This 
observation indicates that the Choquet fuzzy integral method, as incorporated in the pro-
posed ci-AVOA algorithm, considerably bolsters the diversity within the population and 
enhances the algorithm’s abilities in both exploration and exploitation.

Moreover, this finding is evidence of the robustness and stability of the proposed ci-
AVOA algorithm. It demonstrates its effectiveness in dealing with a variety of optimization 
functions, as the lower quartile, median, and upper quartile all fall in the lower range of the 
performance metrics. This condensed spread of results indicates a high degree of consist-
ency in the performance of the ci-AVOA algorithm across different optimization tasks.

On the other hand, the AOS and GA algorithms displayed less satisfactory performance. 
This is made evident through the larger spread of their box-plots, as indicated by the larger 

Fig. 20   Convergence curves of algorithms on the f
1
− f

4
 20-dimensional functions with respect to iterations



distance between their quartiles, denoting a larger variance in their performance results. 
This relatively wide distribution suggests inconsistency in their performance, making them 
less reliable when compared to ci-AVOA for handling diverse optimization problems.

The study utilizes an array of radar plots as an insightful means of visually compar-
ing the performance of various algorithms. A distinguishing characteristic of radar plots 
is their utilization of shadow area to represent performance. The optimal method is, 
hence, the one that generates the smallest shadow area, corresponding to better perfor-
mance across the multiple metrics represented on the radar plot axes.

The radar plots in this study use the average fitness distance from the known global 
optimum as a measure. This particular metric offers an insightful quantification of how 
close an algorithm’s results are to the best possible outcome. By monitoring the proxim-
ity of the algorithm’s fitness values to the global optimum, we gain a clear understand-
ing of the algorithm’s accuracy in converging towards the ideal solution.

The average fitness distance, the standard deviation (SD) of the average error is 
employed as an additional measure to assess the reliability of each algorithm. The standard 
deviation provides an estimate of the variability or dispersion of the average error values. 

Fig. 21   Convergence curves of algorithms on the f
5
− f

8
 20-dimensional functions with respect to iterations

Fig. 22   Convergence curves of algorithms on the f
9
− f

10
 20-dimensional functions with respect to itera-

tions



Lower standard deviation values indicate that the results are closely clustered around the 
mean, implying greater consistency and reliability in the performance of the algorithm.

Taking into account both the average fitness distance and standard deviation metrics, we 
can interpret the results depicted in Fig. 19. The radar plot allows for a multifaceted com-
parison of the algorithms’ performance, considering both their accuracy in approaching 
the global optimum and their reliability in producing consistent results. From these com-
bined assessments, it becomes evident that the proposed ci-AVOA outperforms the other 
algorithms. The ci-AVOA method yields a smaller shadow area in the radar plot, indicat-
ing closer proximity to the global optimum (lower average fitness distance) and a more 
concentrated cluster of results (lower standard deviation). This dual advantage highlights 
the superior accuracy and reliability of the ci-AVOA, making it a more trustworthy and 
effective choice for tackling optimization problems compared to the other algorithms under 
consideration.

4.5 � Results for 20‑dimensional CEC2020 problems in comparison to other 
metaheuristics

The performances of GA, PSO, GWO, SSA, AOS, AVOA, TAVOA, AOAVOA, IAVOA 
and ci-AVOA for 20-dimensional problems are given in Table  17. The obtained results 
from 30 independent runs on the different statistical measures of best, mean and stand-
ard deviation indicate that ci-AVOA succeeded in reaching the global optimum. For all 
the test functions unimodal, basic, hybrid and composition ci-AVOA outperformed the 
comparative algorithms. Unimodal and basic functions give insight into the exploitation 
of algorithms. Hybrid and composition functions present many local optimums where 

Fig. 23   Average ranking of the algorithms by Friedman test (a), Friedman aligned test (b) and Quade test 
(c) for 20-dimensional problems



the exploration of algorithms can be investigated. The obtained performance of ci-AVOA 
indicates that the proposed approach remarkably enhances the exploitation and explora-
tion capabilities of the AVOA algorithm. We can conclude that the Choquet fuzzy integral 
improves the diversification and exploitation of solutions by considering how the variables 
interact with each other. Therefore, the proposed approach achieved good results regarding 
solution quality for high-dimensional problems.

In evaluating the performance of metaheuristic algorithms, a vital aspect to consider 
is the balance between exploration and exploitation. The ci-AVOA algorithm presents 
an interesting case in this regard, as evidenced by the convergence curves illustrated in 
Figs.  20, 21, and 22. These curves represent the algorithm’s performance in 20-dimen-
sional space for all CEC2020 test functions.

When the ci-AVOA convergence curve is adjacent with those of other algorithms such 
as GA, PSO, GWO, SSA, AOS, and AVOA, its unique properties become more discern-
ible. One of the distinguishing features of the ci-AVOA curve is its relative smoothness. 
This indicates a gradual decrease in error over the optimization process. The smoother 
curve suggests that the ci-AVOA maintains a steady progression towards the global opti-
mum without sudden variation.

This smooth progression is indicative of a well-balanced interaction between the algo-
rithm’s exploration and exploitation operators. In the context of optimization algorithms, 
exploration refers to the ability to probe diverse regions of the search space, while exploita-
tion involves focusing the search around promising areas to refine solutions. A well-bal-
anced algorithm effectively combines these two aspects, enabling it to identify the most 
promising regions of the search space (exploration) and then thoroughly examine these 
regions for the optimal solution (exploitation).

The ci-AVOA, with its well-balanced exploration and exploitation, demonstrates supe-
rior performance across a range of test function categories, including unimodal, basic, 
and hybrid. The algorithm not only attains higher accuracy but also excels in locating the 
global optimum more effectively compared to its counterparts. This performance manifests 

Fig. 24   The boxplot curves of the proposed ci-AVOA and the competitor algorithms obtained over 
basic,hybrid and composition functions from CEC2020 benchmark with Dim = 20



Fig. 25   The radarplot curves of the proposed ci-AVOA and the competitor algorithms obtained over 
CEC2020 benchmark with Dim = 20



in various ways, from achieving faster convergence to minimizing error rates, further high-
lighting the effectiveness and efficiency of the ci-AVOA algorithm.

Table 18 presents the results of a Wilcoxon rank sum test comparing the proposed ci-
AVOA algorithm with other competing algorithms on the CEC2020 test suite functions, 
with a dimensionality of 20.

In this table, each function is tested against different algorithms (GA, PSO, GWO, SSA, 
AOS, AVOA, TAVOA, AOAVOA, and IAVOA), resulting in two primary outputs: p value 
(p) and win indication. The p value quantifies the probability that the difference observed
is due to random chance, with a lower value indicating a stronger statistical evidence of an
actual difference. In this table, smaller p values signify that the ci-AVOA algorithm per-
formed significantly better than the compared algorithm.

For example, in the F1 test, ci-AVOA consistently outperformed all other algorithms, as 
indicated by the "+" symbol and very low p-values. In F2, the ci-AVOA performed simi-
larly to GA (p = 0.20843, "="), but outperformed all other algorithms, as shown by the 
low p-values and "+" symbols. The test for function F8 presents a mixed outcome, with ci-
AVOA performing similarly to GA and PSO, but outperforming GWO and AOS. In sum-
mary, ci-AVOA outperforms or is equal to the competing algorithms in the majority of the 
tests. The "Sum" row shows a tally of the results: ci-AVOA outperforms GA and PSO in 8 
tests, draws in 2, and loses in none. It beats GWO and AOS in all 10 tests, and it wins over 
SSA and AVOA in 9 tests and draws in 1. This implies the ci-AVOA is a highly competi-
tive algorithm on the CEC2020 test suite with a dimension of 20.

The Friedman statistical test and its more sophisticated versions, the Friedman aligned 
rank test and the Quade test, are deployed to evaluate the performance of various algo-
rithms by considering the means of the objective function values. These non-parametric 
statistical procedures are particularly useful for comparing multiple paired groups to 
uncover significant differences. The strength of these tests lies in their ability to cope with 
non-normally distributed data, and they’re frequently employed in the analysis of algorith-
mic performance in computational studies.

In our study, we use these statistical methods to compare ci-AVOA with other optimi-
zation approaches. Figure  23a, b, and c illustrate the results of the Friedman, Friedman 
aligned rank, and Quade tests, respectively.

The positive outcomes of these tests, as depicted in the mentioned figures, provide 
substantial support for the superior global optimization capability and stability of the 
ci-AVOA algorithm. These tests yield rankings of the different algorithms based on 
their performance, with lower ranks indicating superior performance. In our case, the 
ci-AVOA algorithm consistently achieves lower ranks, demonstrating its superior per-
formance compared to the other algorithms tested. These tests, coupled with the other 
experimental results presented, confirms the case for the ci-AVOA’s efficacy. Compared 
to the traditional AVOA and other well-established optimization approaches, ci-AVOA 
demonstrates consistently strong performance across multiple test scenarios and under 
various performance measures. Consequently, these experiments reaffirm the robust-
ness, reliability, and superior performance of the proposed ci-AVOA algorithm in tack-
ling complex optimization problems.

Box plots for basic, hybrid, and composition benchmark functions are presented in 
Fig.  24. These box plots provide a visual representation of the spread of the perfor-
mance metrics of different optimization algorithms.

Upon careful examination, it becomes evident that the proposed ci-AVOA method 
consistently produces the smallest values in terms of overall minimum, maximum, and 
median metrics across almost all the test functions, with the sole exception being the 



Fig. 26   Diversity analysis of AVOA for f
1
(a) − f
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(d) CEC2020 test functions



Fig. 27   Diversity analysis of AVOA for f
5
(a) − f
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(d) CEC2020 test functions



function f − 10 . These metrics highlight the high efficacy of the ci-AVOA method in 
finding the optimal solution, even in high-dimensional search spaces.

In addition to these positional measures, the dispersion and variance, which are 
measures of the spread of data, are also examined for each algorithm. Notably, ci-AVOA 
demonstrates the least spread amongst the algorithms compared, indicating its robust-
ness and stability. A small spread suggests that the algorithm’s performance is relia-
ble, with little variation across different runs, making it an appealing choice for solving 
complex optimization problems.

Further reinforcing the superiority of the ci-AVOA method is the radar plot behavior 
analysis performed on the CEC2020 functions, as shown in Fig. 25. In a radar plot, each 
spoke represents a different measure of performance, and a smaller shadow area sug-
gests superior performance across all measures. Here, the ci-AVOA method stands out, 
producing the smallest shadow area compared to the other algorithms.

This clearly underscores the strength of the ci-AVOA method, demonstrating its 
superior performance across multiple measures in high-dimensional search spaces. As 
such, the combined analysis of box plots and radar plots provides compelling evidence 
supporting the robustness, stability, and effectiveness of the ci-AVOA approach in tack-
ling complex optimization problems.

4.6 � Diversity analysis

The concept of maintaining solution diversity is widely acknowledged as a crucial factor 
in developing new metaheuristics. Working with a diverse range of solutions can enhance 
our understanding of the computational process, resulting in a more granular and thorough 

Fig. 28   Diversity analysis of AVOA for f
9
− (a)f

10
(b) CEC2020 test functions



analysis of the problem at hand (Osuna-Enciso et al. 2022). It’s important to note, however, 
that relying purely on the study of convergence graphs and statistical measures, such as 
mean, best, worst, and standard deviation of solutions obtained across multiple iterations—
may not offer a complete view of the metaheuristic algorithm’s search behaviour. While 
these indicators provide valuable insights, they may not fully capture the effectiveness of 
these algorithms’ performance in certain contexts. This concern is particularly salient for 
swarm-based metaheuristic algorithms, where understanding the behaviours of individual 
swarm members, and the swarm as a whole, is crucial for accurate performance assessment 
(Morales-Castañeda et al. 2020). Motivated by this need for a more comprehensive evalu-
ation approach, our research employs a dimension-wise diversity measurement method, as 
recommended by previous studies (Hussain et al. 2019). This measurement strategy pro-
vides a more holistic and nuanced understanding of the algorithm’s performance by quanti-
fying the exploration and exploitation phases in a multi-dimensional context. The adopted 
technique allows us to monitor how the diversity of solutions evolves over time and helps 
us understand how effectively the algorithm explores the search space and exploits the 
promising regions. This analytical approach provides us with a more detailed and in-
depth insight into the performance of the algorithm, thereby facilitating a more reliable 
and comprehensive evaluation. By understanding the exploration and exploitation phases 
quantitatively, we can better gauge the algorithm’s effectiveness and its potential applica-
tions in tackling complex optimization problems. Consequently, the dimension-wise diver-
sity measurement technique serves as an invaluable tool in our study, enhancing our ability 
to assess the proposed ci-AVOA algorithm’s performance thoroughly and accurately. The 
specific formulas for quantifying these phases are presented in the following equations:

where median is the median of dimension j in the Prey matrix.

 When examining Figs. 26, 27, and 28, a notable feature of the African Vultures Optimiza-
tion Algorithm based on the Choquet Integral (ci-AVOA) becomes apparent—a distinc-
tive ability to oscillate between two distinct phases of diversity. In an impressive display, 
the ci-AVOA sustains high average diversity throughout the entire range of test functions 
included in the CEC2020 benchmark set

This propensity of ci-AVOA to maintain high levels of diversity is a critical strength 
of this metaheuristic algorithm. This characteristic avoids premature convergence to local 
optima and ensures an exhaustive exploration of the solution space, increasing the prob-
ability of locating the global optimum.

The alternation between the two phases signifies a dynamic balance maintained by ci-
AVOA between exploration and exploitation throughout the optimization process, a bal-
ance that is vital to the success of any metaheuristic algorithm. The exploration phase, 
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hallmarked by substantial diversity, empowers the ci-AVOA to scan a broad region of the 
solution space. Conversely, the exploitation phase concentrates the search towards promis-
ing areas within the solution space, directing efforts towards finding high-quality solutions.

The demonstrated capacity of ci-AVOA to preserve high diversity levels while effec-
tively oscillating between these phases suggests a degree of adaptability and flexibility. 
This adaptability enables ci-AVOA to adjust its search strategy based on the current stage 
of the optimization process and the characteristics of the solution space. For instance, it 
may lean towards exploration in the early stages or when the search seems to be trapped in 
a suboptimal region, shifting its focus to exploitation when promising solutions have been 
identified.

Thus, the ability of ci-AVOA to maintain diversity and balance between exploration and 
exploitation plays a significant role in its robust performance on the CEC2020 benchmark 
functions. This adaptability makes the ci-AVOA well-suited for tackling a wide array of 
optimization problems.

Subsequent analysis confirms that the ci-AVOA inherently supports diversity. This is 
elucidated as follows: initially, the algorithm deploys multiple agents (vultures) into dif-
ferent groups, spreading them across the solution space. This dispersion of starting points 
encourages a broad exploration of the solution space from the onset. As the algorithm 
progresses, the positions of the vultures are iteratively updated, influenced by the best-
performing vulture of their group and the collective average position, ensuring continu-
ous diversity. This approach allows the algorithm to balance exploration and exploitation 
effectively. Moreover, by continuously validating the vultures’ positions within the defined 
solution boundaries, the algorithm prevents convergence towards invalid solutions, encour-
aging exploration across all feasible regions within the problem domain. These inherent 
mechanisms within the ci-AVOA promote overall diversity, supporting thorough explora-
tion and avoiding premature convergence to inferior solutions.

4.7 � Computational complexity

The time complexity analysis using Big-O notation is covered in this subsection. Its goal is 
to clarify how the suggested method can improve performance. The population size (noted 
as N), the number of dimensions (indicated as D), and the maximum number of iterations 
(stated as T) all have a significant bearing on how well the proposed method performs.

Table 9   Algorithm complexity 
comparison

Algorithm Complexity

GA O(N × T) +O(N × T × D)

PSO O(N × T) +O(N × T × D)

GWO O(N × T) +O(N × T × D)

SSA O(N × T) +O(N × T × D)

AOS O(N × T) +O(N × T × D)

AVOA O(N × T) +O(N × T × D)

TAVOA –
AOAVOA –
IAVOA –
ci-AVOA O(N × T) +O(N × T × D × 22D)



In line with the original research paper (Abdollahzadeh et al. 2021), the computation 
complexity of the AVOA algorithm is contingent on three critical procedures: the initiali-
zation phase O(N) , the evaluation of fitness O(N × T) , and the vultures’ update process 
O(N × T × D)) . Therefore, authors claimed that the computational complexity is equal to 
O(N × T) +O(N × T × D).

Nonetheless, in the proposed approach, we revamp the update mechanism by incorpo-
rating a novel averaging technique known as the Choquet integral. Hence, the complexity 
of the vultures’ update process will be altered because the Choquet integral requires more 
computational resources compared to the original averaging technique. The most challeng-
ing task in this new averaging technique is the calculation of the �-measure, which requires 
a computational complexity of O(22D) . It is evident to note that this procedure is signifi-
cantly computationally demanding. Therefore, the computational of the proposed approach 
ci-AVOA equates to: O(N × T) +O(N × T × D × 22D).

Table 9 present a comprehensive comparison of various algorithms based on their time 
execution and complexity. The purpose of this comparison is to analyze the efficiency and 
performance of these algorithms in solving specific computational problems.

From a cursory look at the Table 8, it’s clear that the execution times of the ci-AVOA 
algorithm are generally higher compared to the other algorithms, especially in the D=20 
dimension. The execution times range from approximately 302.23 (for function f-2 with 
D=10) to a high of 1254.67 (for function f-6 with D=20). The data implies that ci-AVOA 
may be a more complex and computationally heavy algorithm compared to the others. 
However, a critical aspect to consider is the quality of the solutions obtained from these 
execution times. The ci-AVOA algorithm, while slower, provides more optimal and robust 
solutions to the optimization problems.

Table  9 provides a comparison of the computational complexity of the various algo-
rithms of this study. The complexity expression suggests that ci-AVOA has two main 
components: one that scales linearly with both the number of items and the number of 
iterations (i.e., O(N × T) ), and another that increases exponentially with the dimensionality 
(i.e., O(N × T × D × 22D)).

This suggests that ci-AVOA’s computational complexity can grow rapidly as the dimen-
sionality of the problem (D) increases, due to the 22D term. This could be one of the rea-
sons why ci-AVOA had longer execution times in the earlier Table 8, especially for larger 
values of D.

Fig. 29   The schematic presentation of the tension/compression design problem



In summary, although the computational complexity of ci-AVOA indicates it might 
struggle with high-dimensional optimization problems due to its exponential scaling, it 
remains a powerful algorithm capable of solving complex problems, as demonstrated by 
previous tests.

In terms of optimization metaheuristics, the quality of a solution depends on both the 
performance of the algorithm and the efficiency of the algorithm.

When you’re dealing with high-dimensional optimization problems, efficiency becomes 
particularly important. If an algorithm, such as ci-AVOA, has higher computational com-
plexity, but consistently provides better or more accurate solutions, it could still be consid-
ered powerful and useful for certain complex problems.

Therefore, the trade-off between computational complexity and the quality of solutions 
is a common theme in optimization. While the ci-AVOA algorithm may have higher com-
putational complexity, its ability to solve complex problems indicates it’s still a valuable 
tool in the optimization metaheuristics.

4.8 � Discussion and analysis

The superior performance of the proposed ci-AVOA algorithm can be primarily attrib-
uted to its innovative hybridization of the Choquet fuzzy integral and the AVOA. This 
merge exploits the strengths of both techniques, enabling dynamic potential movement 
search for each solution during the optimization process. In contrast, the traditional AVOA 

Table 10   Comparison of results for tension/compression design problem

Algorithm Best Mean Worst X1 X2 X3

GA 0.01270775 0.0142465 0.0178335 0.05323457 0.39505032 9.35085622
GWO 0.01266527 0.01330382 0.01454197 0.05164673 0.35570014 11.3488749
PSO 0.01268448 0.01274235 0.01277366 0.05192345 0.36205162 10.9949711
SSA 0.01268617 0.01272374 0.01279144 0.05099097 0.34013677 12.3446656
AOS 0.01266711 0.0130054 0.01562856 0.05158892 0.35431069 11.4332309
AVOA 0.01267314 0.01279046 0.01309318 0.05103479 0.34118068 12.2615592
ci-AVOA 0.01266523 0.01266523 0.01266523 0.05168906 0.35671775 11.2889653

Fig. 30   The schematic presentation of the pressure vessel design problem



relies solely on a random operator to update the population position throughout the search 
process.

The rationale behind this fusion is the belief that the concept of fuzzy aggregation, 
when used in tuning the AVOA control parameters, provides a more effective optimization 
strategy than using the traditional AVOA approach. The application of the Choquet fuzzy 
integral in both the exploration and exploitation phases of the AVOA ensures a balanced 
interplay between the two, enhancing the algorithm’s efficacy.

Early in the optimization process, this unique approach emphasizes the exploration abil-
ity, which promotes population diversity and broadens the search space. Later in the pro-
cess, it assists the algorithm in exploiting the favorable solutions that have been uncovered, 
thereby accelerating the speed of convergence.

Several notable advantages accompany the incorporation of the Choquet fuzzy inte-
gral in the AVOA. Firstly, it enhances population diversity and mitigates the issue of local 
optima, which can be a prevalent problem in optimization algorithms. Secondly, its imple-
mentation is straightforward, making it accessible to various users. Lastly, and most dis-
tinctively, it does not necessitate any parameter tuning, setting it apart from other methods 
that often require complex and time-consuming parameter adjustment.

The ci-AVOA algorithm’s robustness and improved accuracy make it a vital tool in 
fields where precision is of paramount importance. It has the potential to be applied in 
various domains, such as supply chain management, where it can optimize routing to save 

Table 11   Comparison of results for pressure vessel design problem

Algorithm Best Mean Worst X1 X2 X3 X4

GA 5990.34064 6536.90565 7320.83108 0.8352327 0.41284216 43.2748592 162.584925
GWO 5950.78927 6412.74126 7179.14848 0.8147187 0.40271588 42.2134043 175.217262
PSO 5909.38713 6057.11384 7374.93904 0.77923078 0.38999352 40.3251009 200
SSA 5925.1993 6394.75126 7224.71161 0.78989938 0.39036597 40.9160713 192.686672
AOS 5988.33285 6598.28914 7323.72698 0.81601984 0.41418318 42.2764263 174.449778
AVOA 5885.36694 6160.28651 7260.51134 0.77818863 0.38465904 40.3206543 199.985585
ci-AVOA 5885.33277 5885.33277 5885.33277 0.77816864 0.38464916 40.3196187 200

Fig. 31   The schematic presentation of the welded beam design problem



resources; energy systems for efficient grid management; healthcare, where it can aid in 
effective resource allocation; and machine learning, particularly for hyperparameter tuning.

Furthermore, the ci-AVOA algorithm’s unique approach advances our understanding 
of swarm intelligence. It highlights how the incorporation of fuzzy logic principles into 
swarm intelligence algorithms can significantly enhance their performance. This innova-
tive strategy sets a benchmark for future research in the field of global optimization and 
opens up new avenues for further exploration and development. This development could 
stimulate additional research and innovation, pushing the boundaries of what is currently 
achievable in the field of optimization.

5 � ci‑AVOA for engineering applications

Ensuring the robustness of optimization algorithms can be achieved by addressing engi-
neering design problems, as the outcomes of these problems serve as a crucial benchmark 
for optimizing other comparable problems. Thus, the behaviour of the proposed ci-AVOA 
is tested on four classical engineering design problems that are considered optimization 
problems with most of the metaheuristic algorithms. The four engineering problems pre-
sented in this section are (i) tension/compression spring, (ii) pressure vessel; (iii) welded 
beam and (iv) gear train. The optimization algorithms were executed for 30 independent 
with 500 iterations.

5.1 � Tension/compression spring design problem

The purpose of the tension/compression spring design (TCSD) problem is to find the ideal 
number of active coils (N), wire diameter (d), and mean coil diameter (D) of spring, as 
shown in Fig. 29, which will result in the least amount of spring weight. The mathematical 
formulation of the tension/compression design problem is given below.

Minimize f (X) =
(
x3 + 2

)
x2x

2
1

Subject to

Table 12   Comparison of results for welded beam design problem

Algorithm Best Mean Worst X1 X2 X3 X4

GA 1.78631579 2.51426605 3.60742656 0.17321513 4.34420024 9.02784068 0.20613015
GWO 1.72485231 1.78108601 2.1075185 0.20572964 3.47048867 9.03662391 0.20572964
PSO 1.73488278 1.75345314 1.76593505 0.20535434 3.49930325 9.01875188 0.20702005
SSA 1.72513587 1.72691836 1.73705089 0.20570272 3.47163804 9.03786915 0.20572361
AOS 1.72730524 1.81504944 2.00130025 0.20430742 3.50146843 9.03977477 0.20572221
AVOA 1.72485256 1.72502571 1.72687098 0.2057295 3.47049148 9.03662461 0.20572964
ci-AVOA 1.72485231 1.72485231 1.72485231 0.20572964 3.47048867 9.03662391 0.20572964



Variables range: 0.05 ≤ x1 ≤ 2.00, 0.25 ≤ x2 ≤ 1.30, 2.00 ≤ x3 ≤ 15.0

Table 10 displays a comparison of the design variables and results obtained for the ten-
sion/compression spring design problem using the ci-AVOA algorithm and other optimiza-
tion algorithms. The best, average, and worst optimal values are highlighted in bold font. 
Despite the close and competitive results, the ci-AVOA algorithm outperforms the other 
algorithms in solving the tension/compression spring design problem.

5.2 � Pressure vessel design problem

The goal of optimizing the pressure vessel design problem depicted in Fig. 30 is to mini-
mize the expenses related to material, welding, and shaping. The four variables to be opti-
mized in this problem are the thickness (Ts) , the inner radius (R), the head thickness (Th) , 
and the length of the cylindrical section of the vessel (L).

Minimize f (X) = 0.6224x1x3x4 + 1.7781x2x
2
3
+ 3.1661x2

1
x4 + 19.84x2

1
x3

g1(X) =
4x2

2
− x1x2

12566
(
x2x

3
1
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1

) +
1
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1
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2
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≤ 0
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x3
2
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1.5
− 1 ≤ 0

Fig. 32   The schematic presentation of the gear train design problem

Table 13   Comparison of results for gear train design problem

Algorithm Best Mean Worst X1 X2 X3 X4

GA 0 1.53E-15 4.56E-14 51.5944255 24.6223807 16.5452638 54.7263968
GWO 0 0 0 36.129187 18.0363861 15.7222344 54.4003257
PSO 6.99E-22 3.58E-13 2.67E-12 45.9088373 14.7172905 17.7753382 39.495293
SSA 7.63E-19 1.02E-15 6.30E-15 41.2387818 21.9110894 12 44.1911481
AOS 4.46E-18 1.90E-14 8.85E-14 41.3674391 14.1494424 12 28.4483997
AVOA 0 0 0 35.2164701 13.0446141 13.8588131 35.580115
ci-AVOA 0 0 0 47.6613282 21.7918623 15.5468775 49.2682662



Subject to

Variables range: 0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200

Table 11 presented in this study compares the performance of the proposed ci-AVOA 
algorithm with other optimization algorithms in solving the pressure vessel design prob-
lem. The results are shown in Table 11, with the best values highlighted in bold font. The 
comparison shows that the proposed ci-AVOA algorithm performs better than all the other 
algorithms in terms of all statistical indicators. Moreover, each data for the proposed ci-
AVOA algorithm is the best among all the other optimization algorithms for solving the 
pressure vessel design problem.

5.3 � Welded beam design problem

The objective of the welded beam design problem is to minimize fabrication costs, subject to 
certain constraints. The problem involves four design variables: weld thickness (h), length of 
the attached section of the bar (l), height of the bar (t), and thickness of the bar (b). The prob-
lem structure is illustrated in Fig. 31, and the mathematical model associated with the problem 
is defined as follows.

Minimize f (X) = 1.10471x2
1
x2 + 0.04811x3x4

(
14 + x2

)

Subject to

g1(X) = −x1 + 0.019x3 ≤ 0, g2(X) = −x2 + 0.00954x3 ≤ 0,

g3(X) = −�x2
3
x4 −

4

3
�x3

3
+ 1296000 ≤ 0, g4(X) = x4 − 240 ≤ 0,

Table 14   15 real-world constrained optimization problems (Kumar et al. 2020)

Prob Code Name D g h f*

RW1 RC15 Weight Minimization of a Speed Reducer 7 11 0 2.9944244658E+03
RW2 RC16 Optimal Design of Industrial refrigeration System 14 15 0 3.2213000814E-02
RW3 RC20 Three-bar truss design problem 2 3 0 2.6389584338E+02
RW4 RC21 Multiple disk clutch brake design problem 5 7 0 2.3524245790E-01
RW5 RC22 Planetary gear train design optimization problem 9 10 1 5.2576870748E-01
RW6 RC23 Step-cone pulley problem 5 8 3 1.6069868725E+01
RW7 RC24 Robot gripper problem 7 7 0 2.5287918415E+00
RW8 RC25 Hydro-static thrust bearing design problem 4 7 0 1.6161197651E+03
RW9 RC26 Four-stage gear box problem 22 86 0 3.5359231973E+01
RW10 RC27 10-bar truss design 10 3 0 5.2445076066E+02
RW11 RC28 Rolling element bearing 10 9 0 1.4614135715E+04
RW12 RC29 Gas Transmission Compressor Design (GTCD) 4 1 0 2.9648954173E+06
RW13 RC30 Tension/compression spring design (case 2) 3 8 0 2.6138840583E+00
RW14 RC32 Himmelblau’s Function 5 6 0 -3.0665538672E+04
RW15 RC33 Topology Optimization 30 30 0 2.6393464970E+00



Table 12 presents the statistical and comparison results of various optimization algo-
rithms and the proposed ci-AVOA approach for the welded beam design problem. The 
results show that the ci-AVOA approach performed better than the other algorithms, and its 
results were comparable to those of the GWO algorithm.

5.4 � Gear train design problem

The main objective of this engineering design challenge is to optimize the maximum 
errors in the gear ratio of the gear train that is commonly used in automobiles. The prob-
lem involves four integer design variables that depend on the number of teeth in the gears, 
and three discrete design variables, which are the first gear module (m1), the second gear 
module (m2), and the number of gear teeth (P). Furthermore, there are ten inequality con-
straints and one equality constraint in this problem. The structure of the problem is illus-
trated in Fig. 32, and its mathematical model is defined accordingly.
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Table 15   Statistical results of 15 real-world constrained optimization problems

Problem COLSHADE EnMODE sCMAgES SSAS AVOA ci-AVOA

RW1
 Best 2994.42447 2994.42447 2994.42447 2994.42447 2994.42447 2994.42447
 Avg 2994.42447 2994.42447 2994.42447 2994.42447 2994.42447 2994.42447
 Worst 2994.42447 2994.42447 2994.42447 2994.42447 2994.42447 2994.42447
 Std 9.82E-13 4.64E-13 5.17E-12 2.92E-09 1.12E-12 4.64E-13

RW2
 Best 0.032213 0.032213 0.03696494 0.03221359 0.03714448 0.032213
 Avg 0.032213 0.032213 0.03840363 0.03221395 4757.91991 0.03221307
 Worst 0.032213 0.032213 0.04150552 0.03221555 33826.8354 0.03221338
 Std 1.26E-16 2.02E-10 0.0011229 4.32E-07 10712.1372 1.09E-07

RW3
 Best 263.895843 263.895843 263.895843 263.895843 263.895843 263.895843
 Avg 263.895843 263.895843 263.895843 263.895843 263.895843 263.895843
 Worst 263.895843 263.895843 263.895843 263.895843 263.895843 263.895843
 Std 0 0 8.22E-11 1.66E-12 1.16E-14 0

RW4
 Best 0.23524246 0.23524246 0.23524246 0.23524246 0.23524246 0.23524246
 Avg 0.23524246 0.23524246 0.23524246 0.23524246 0.23524246 0.23524246
 Worst 0.23524246 0.23524246 0.23524246 0.23524246 0.23524246 0.23524246
 Std 0 1.13E-16 1.13E-16 4.89E-10 1.09E-16 1.13E-16

RW5
 Best 0.53705882 0.5268955 0.53 0.57292431 0.54984911 0.52576871
 Avg 0.64206488 0.5283951 0.53314762 1.10654775 0.56664177 0.53206514
 Worst 2.83117647 0.5308577 0.54384615 2.67909021 0.61201238 0.53705882
 Std 0.45694122 0.00129033 0.00398768 0.47461922 0.01543045 0.00405916

RW6
 Best 16.0698687 16.0698687 16.1990361 16.0698687 16.0698687 16.0698687
 Avg 16.0698687 16.0698687 16.3776146 16.0698687 16.1535559 16.0698687
 Worst 16.0698687 16.0698687 16.7039405 16.0698687 17.1159581 16.0698687
 Std 1.79E-14 3.33E-14 0.15520876 2.08E-09 0.28964902 1.13E-14

RW7
 Best 2.54378557 2.54378557 2.91492326 2.54378558 2.57474504 2.54378558
 Avg 2.58033738 2.54378557 3.09322711 2.54380069 2.67109132 2.54378922
 Worst 3.44229386 2.54378557 3.49041474 2.54416316 3.17768375 2.54380133
 Std 0.17960025 3.86E-12 0.1511585 7.55E-05 0.19044695 4.47E-06

RW8
 Best 1616.11977 1616.11977 3089.46436 1616.11983 1616.11977 1616.11977
 Avg 1634.73016 1616.11977 3323.92226 1616.1447 1616.11977 1616.11977
 Worst 1753.53866 1616.11978 3580.6948 1616.47613 1616.11977 1616.11977
 Std 34.815161 2.06E-06 137.822241 0.07302926 6.59E-09 1.20E-12

RW9
 Best 42.8049656 37.3488483 64.7161639 38.6528218 112.464526 7.27671526
 Avg 45.2694825 38.3322953 95.2787368 40.8252695 173.943721 25.3568829
 Worst 48.6693014 40.2824795 209.803404 45.5060439 384.001456 39.5752718



Variables range

Table 13 shows the comparison results of the gear train design problem solved using 
various optimization methods including the proposed ci-AVOA. The optimal values are 
highlighted in bold. The results demonstrate that all algorithms have comparable best, 
worst, and average fitness values, with similar performance to GA, GWO, and the original 
AVOA.

The proposed ci-AVOA algorithm achieves the best set of design parameters for the 
tension/compression, pressure vessel, welded beam, and gear train problems in a small 

12 ≤ x1, x2, x3, x4 ≤ 60

Table 15   (continued)

Problem COLSHADE EnMODE sCMAgES SSAS AVOA ci-AVOA

 Std 1.68312303 0.80578114 35.9972536 2.14956722 67.7992945 8.45449481
RW10
 Best 524.450761 524.450761 524.608739 524.468308 530.871439 524.459106
 Avg 524.450761 524.450761 524.801769 524.474592 531.949586 524.616274
 Worst 524.450761 524.450761 525.132758 524.490874 534.303135 524.764671
 Std 1.76E-10 3.97E-08 0.15763762 0.00676661 1.03843925 0.10481801

RW11
 Best 16958.2023 14614.1357 14614.1357 14614.1357 16958.2023 16958.2023
 Avg 16958.2023 14614.1357 14614.1357 14614.1357 16958.2023 16958.2023
 Worst 16958.2023 14614.1357 14614.1357 14614.1357 16958.2023 16958.2023
 Std 3.71E-12 9.28E-12 8.97E-12 1.56E-09 3.44E-11 3.71E-12

RW12
 Best 2964895.42 2964895.42 2964897.19 2964895.42 2964895.42 2964895.42
 Avg 2964895.42 2964895.42 2964929.69 2964895.42 2964895.42 2964895.42
 Worst 2964895.42 2964895.42 2965096.83 2964895.42 2964895.42 2964895.42
 Std 1.43E-09 1.43E-09 52.1944522 2.12E-09 8.68E-07 1.37E-09

RW13
 Best 2.65855917 2.65855917 4.12411617 2.65855917 2.90322382 2.65855917
 Avg 2.66183393 2.82498149 6.86230628 2.65855917 2.93373078 2.65855917
 Worst 2.69949371 3.63593367 26.2009589 2.65855917 3.20334904 2.65855917
 Std 0.01133426 0.36467252 5.90019502 2.09E-11 0.06854164 4.53E-16

RW14
 Best − 30665.539 − 30665.539 − 30665.539 − 30665.539 − 30665.539 − 30665.539
 Avg − 30665.539 − 30665.539 − 30665.539 − 30665.539 − 30665.539 − 30665.539
 Worst − 30665.539 − 30665.539 − 30665.539 − 30665.539 − 30665.539 − 30665.539
 Std 6.85E-12 3.71E-12 1.47E-10 1.64E-09 5.77E-11 3.71E-12

RW15
 Best 2.6393465 2.6393465 2.6393465 2.63934651 2.6393465 2.6393465
 Avg 2.6393465 2.6393465 2.6393465 2.63934652 2.6393465 2.6393465
 Worst 2.6393465 2.6393465 2.6393465 2.63934652 2.6393465 2.6393465
 Std 1.25E-15 7.80E-16 1.06E-14 1.85E-09 9.06E-16 9.06E-16



number of function evaluations and exhibits superior statistical performance. As a result, 
the proposed ci-AVOA is highly effective in optimizing related problems and offers a 
promising solution for engineering design problems.

5.5 � CEC2020 real‑world constrained optimization problems

This section of our research includes tests performed on 15 real-world optimization prob-
lems to further explore the performance of the ci-AVOA algorithm. We appose the ci-
AVOA’s efficiency with four of the top-performing algorithms from the "CEC2020 Com-
petition on Real-World Single Objective Constrained Optimization" (Kumar et al. 2020). 
These comprise of the SASS algorithm (Kumar et  al. 2020), sCMAgES (Kumar et  al. 
2020), EnMODE (Sallam et al. 2020), and COLSHADE (Gurrola-Ramos et al. 2020), with 
the SASS algorithm emerging as the competition’s winner.

Table 14 provides a concise overview of the key attributes of the problems and delin-
eates the maximum quota of function evaluations assigned to each problem. A com-
prehensive review of these problems can be found in Kumar et  al. (2020). Both ine-
quality and equality constraints are typical in real-world optimization problems, hence 
managing these constraints adeptly is vital for efficient optimization. Several constraint 
handling strategies have been proposed in literature, including Deb’s rule (Deb 2000), 
stochastic ranking (Runarsson and Yao 2000), global competitive ranking (Sarker et al. 
2002), adaptive penalty method (Barbosa and Lemonge 2002), multiple ranking (Ho 
and Shimizu 2007), and self-adaptive penalty strategy (Tessema and Yen 2006).

It is imperative to note that the selection of a constraint management approach is 
beyond the scope of this study. That being said, the ci-AVOA algorithm exclusively 

Table 16   Friedman ranks for the 15 real-world constrained optimization problems

COLSHADE EnMODE sCMAgES SSAS AVOA ci-AVOA

RW1 1 2 5 2 6 2
RW2 1 2 5 6 4 3
RW3 1 1 5 1 6 1
RW4 1 1 1 1 6 1
RW5 4 1 2 5 6 3
RW6 3 1 6 4 5 1
RW7 1 2 6 5 3 4
RW8 3 1 6 4 5 1
RW9 4 2 5 6 3 1
RW10 1 2 5 6 3 4
RW11 4 1 1 6 3 4
RW12 1 1 6 5 4 1
RW13 3 1 6 5 4 1
RW14 1 1 5 4 6 1
RW15 1 1 5 3 6 3
Average rank 2 1.333 4.6 4.2 4.667 2.067
Rank 2 1 5 4 6 3



employs the self-adaptive penalty mechanism to deal with constraints. This approach 
has effectively optimized the ci-AVOA algorithm by successfully managing the con-
straints. Additionally, the four comparison algorithms, namely SASS (Kumar et  al. 
2020), sCMAgES (Kumar et al. 2020), EnMODE (Sallam et al. 2020), and COLSHADE 
(Gurrola-Ramos et al. 2020), retain their parameters at the initial values as defined in 
their respective literature.

Table 15 presents the statistical results of 15 real-world constrained optimization prob-
lems. For each problem, the results obtained by six different algorithms: COLSHADE, 
EnMODE, sCMAgES, SSAS, AVOA, and ci-AVOA are compared.

For the first problem, RW1, all six algorithms performed identically in terms of the 
best, average, and worst results. The standard deviation was smallest for the EnMODE and 
ci-AVOA algorithms. In the second problem, RW2, the best results were achieved by the 
COLSHADE, EnMODE, and ci-AVOA algorithms, but the AVOA algorithm performed 
significantly worse in terms of average and worst results.

The third problem, RW3, saw all algorithms achieving identical results again, with zero 
standard deviation except for sCMAgES and SSAS. In RW4, all algorithms achieved iden-
tical best, average, and worst results. For problem RW5, ci-AVOA had the best result, but 
the EnMODE algorithm had the best average result.

In the sixth problem, RW6, the best, average, and worst results were identical for COL-
SHADE, EnMODE, SSAS, and ci-AVOA algorithms. In RW7, EnMODE and ci-AVOA 
performed better in terms of best results, with EnMODE also having the smallest standard 
deviation. For problem RW8, COLSHADE, EnMODE, AVOA, and ci-AVOA achieved the 
best results, with ci-AVOA also having the smallest standard deviation.

The ninth problem, RW9, saw the ci-AVOA algorithm outperform the others signifi-
cantly in terms of the best result. For RW10, COLSHADE and EnMODE had identical and 
best results, with COLSHADE also having the smallest standard deviation.

In problem RW11, COLSHADE had the best and smallest standard deviation results. 
RW12 saw the best result from the COLSHADE and AVOA algorithms. In RW13, the best 
result came from the ci-AVOA algorithm, with COLSHADE having the smallest standard 
deviation.

In problem RW14, the best result was achieved by the ci-AVOA algorithm, with the 
smallest standard deviation coming from COLSHADE. Finally, in RW15, the best results 
were achieved by the COLSHADE and ci-AVOA algorithms, with the smallest standard 
deviation again coming from COLSHADE.

The comprehensive analysis of the optimization problem solutions shows varied per-
formance across the six different algorithms-COLSHADE, EnMODE, sCMAgES, SSAS, 
AVOA, and ci-AVOA. All algorithms had their own strengths and weaknesses, with no 
single algorithm consistently outperforming the others across all 15 problems. This dem-
onstrates the complex nature of real-world constrained optimization problems, where the 
optimal algorithm may depend on the specific problem’s characteristics.

One particularly noteworthy observation is the performance of the ci-AVOA algorithm. 
Despite not being a dedicated constraint programming algorithm, ci-AVOA consistently 
produced competitive, and in some cases superior, results. This is a remarkable accom-
plishment as it suggests that the algorithm’s design and operation principles are robust 
and adaptive enough to handle complex, real-world constrained optimization problems 
effectively.

The performance of ci-AVOA was especially striking in problems RW5, RW9, RW13, 
and RW14, where it achieved the best results. Even in scenarios where ci-AVOA did not 



achieve the top spot, it was usually amongst the top performers, showing a consistently 
high level of performance across various problem types.

In addition, ci-AVOA was often amongst the algorithms with the smallest standard devi-
ation, indicating that its performance is not only strong on average, but also reliably con-
sistent. This consistency is crucial in real-world applications where predictability of results 
is often as important as the quality of the best solution.

In conclusion, despite not being a dedicated constraint programming algorithm, ci-
AVOA has demonstrated its effectiveness in solving a wide variety of constrained optimi-
zation problems. This highlights the potential of more generalized optimization algorithms 
to compete with, and sometimes even outperform, their specialized counterparts. This 
could pave the way for future research focusing on the development of similarly robust, 
adaptable algorithms that are capable of tackling a wide array of problem types (Table 16).

6 � Pros and Cons of the ci‑AVOA algorithm

In this section, the strengths and limitations of the novel ci-AVOA algorithm are dis-
cussed. The ci-AVOA algorithm is motivated by the unique foraging behaviors of Afri-
can vultures and is designed to find optimal solutions by harmoniously balancing explora-
tion and exploitation. The distinctive hierarchical structure, flight patterns, and foraging 
mechanisms of African vultures are translated into mathematical operations, which ensure 
an appropriate balance between exploration and exploitation. This balance fosters glob-
ally optimal solutions for most of the CEC benchmark functions in dimensions 10, and 20. 
In addition, ci-AVOA has proven to be effective in tackling a wide range of constrained 
optimization challenges despite not being a specialised constraint programming algorithm. 
This demonstrates the potential for more generalist optimization algorithms to compete 
with and occasionally even beat their more specialized equivalents. This may provide the 
possibility for further investigation into the development of robust and adaptable algo-
rithms that can handle a variety of problem categories.

Nevertheless, despite its merits, the ci-AVOA has some limitations. The algorithm may 
require a relatively longer time to yield efficient solutions, which presents an opportunity 
for further enhancements to increase its computational efficiency. The introduction of 
mechanisms to expedite the run time could be beneficial in future research. Some poten-
tial strategies include the implementation of chaotic maps and opposition-based learning 
mechanisms during the initial population generation.

Moreover, while the Choquet Integral enables ci-AVOA to effectively address problems 
with interdependent criteria, the task of determining the fuzzy measures might be challeng-
ing in practical applications. It could become computationally intensive, particularly when 
dealing with a high number of criteria. Therefore, developing efficient strategies for fuzzy 
measures estimation can be another area for future research.

Hence, while the ci-AVOA algorithm demonstrates notable strengths, especially in 
addressing the interdependence of optimization criteria, future work should consider the 
aforementioned potential improvements for enhancing its efficiency and usability in real-
world applications.



7 � Conclusion and future work

In this paper, we have introduced an enhanced variant of the African Vultures Optimization 
Algorithm (AVOA), named ci-AVOA, which strategically incorporates the Choquet fuzzy 
integral to significantly boost its search and exploitation capacities. Retaining the straight-
forward and implementable nature of the original AVOA, the ci-AVOA marks a significant 
stride in optimization algorithm research.

One of the pivotal results of this study lies in the exceptional performance of the ci-
AVOA when evaluated using ten diverse functions from the CEC2020 test suite and 
applied to four practical engineering design problems. Not only did the ci-AVOA demon-
strate notable superiority over the original AVOA across various benchmark functions, but 
it also showcased its capability to adeptly handle an extensive range of problem structures, 
thus offering more encompassing solutions.

Moreover, the comparative analysis carried out between the ci-AVOA and several 
renowned metaheuristics, including the Genetic Algorithm (GA), Particle Swarm Opti-
mization (PSO), Grey Wolf Optimizer (GWO), Salp Swarm Algorithm (SSA), Atomic 
Orbital Search (AOS), the original AVOA and the improved version of AVOA, Improved 
African vulture optimization algorithm (IAVOA), Improved hybrid Aquila Optimizer and 
African Vultures Optimization Algorithm (AOAVOA) and enhanced African Vultures 
Optimization Algorithm with tent map and time varying mechanism (TAVOA), under-
scored the competitive edge of the ci-AVOA. The algorithm, in many instances, matched or 
even exceeded the performance of these well-established competitors, particularly in terms 
of solution accuracy, convergence speed, and robustness across both low and high-dimen-
sional problem domains.

The non-parametric statistical tests further solidified these findings, confirming the 
superior performance of ci-AVOA. It showcased impressive flexibility, resilience, and 
optimization capabilities, establishing itself as a formidable contender in the field of 
metaheuristic optimization algorithms.

The primary contributions of this study are twofold. First, we presented the innovative 
ci-AVOA, marking a significant evolution of the original AVOA by successfully incor-
porating the Choquet fuzzy integral. This integration addresses the multi-criteria nature 
of many real-world optimization problems, thus enhancing the algorithm’s performance 
significantly.

Second, through a series of comprehensive evaluations and comparisons, we demon-
strated the remarkable competitiveness of the ci-AVOA in relation to a variety of well-
known metaheuristic algorithms. These findings reinforce the relevance and potential of 
ci-AVOA for a wide array of optimization challenges.

As we look ahead, we anticipate extending this research to develop a multi-objective 
version of ci-AVOA, which can address even more complex optimization problems, and to 
its potential application in other challenging real-world scenarios. Our study thus paves the 
way for future exploration into more refined and versatile optimization algorithms.

Appendix

See Tables 17, 18.
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