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An exact two-phase approach to re-optimize tours in 
home care planning

Clea Martinez1, Marie-Laure Espinouse2, Maria Di Mascolo2

Abstract

With the increase in demand, home care agencies must find efficient ways to

schedule and route their staff. Unfortunately, the home care sector is never

completely stable, the pool of patients constantly evolves, and the staff is subject

to a high turnover. Therefore, home care agencies need to regularly update the

schedules and to re-plan the visits of careworkers to patients. In this article, we

present a method to re-assign the careworkers and re-design their tours whenever

a schedule becomes obsolete due to the variations within the pool of patients or

the staff. The originality of this work lies in the fact that we study the problem

at the strategic level, with close-to-reality constraints. We analyze the impact

of three different optimization criteria on the composition of the tours. We

tested our algorithm on adapted instances from the literature and on instances

extracted from real data provided by a home care agency in France, with up to

15 careworkers, 92 patients, and 337 visits over a week.

Keywords: OR in health services, home care, re-assignment, decomposition

algorithm

1. Introduction

Home Care (HC) enables fragile people to stay at home even if they are sick

or need assistance in their daily life. It may include medical care, skilled services,
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or social services. HC agencies are often preferred to traditional nursing facili-

ties because they are less expensive and often more convenient for the patients 
(Heath, 2017). Consequently, as western populations age, demand has recently 
skyrocketed and is expected to keep increasing in the years to come (Rogers, 
2018). The sector’s growth makes the scheduling task even more complex and 
time-consuming. As a consequence, it has become necessary to automatize the 
planning process, which was formerly entrusted to experimented workers of the 
HC agencies.

Once a schedule is built, numerous contingencies inherent to the health sec-

tor disturb the decisions taken at a strategic level. Most common perturbations 
come from the variations within the pool of patients and careworkers. They 
have a significant impact on the execution of the schedules, so HC agencies 
must regularly adapt them at the operational level and work at the strategic 
level to ensure good performance in the long term. In this article, we focus 
on the strategic re-optimization of the schedules. Medical and legal constraints 
must be observed, as well as other constraints emerging from the human dimen-

sion of HC, such as continuity of care. We distinguish two types of continuity: 
human continuity, which consists of assigning the same group of careworkers to 
the same patients when the planning lasts for several periods (long-term horizon 
planning); and temporal continuity, which consists of providing periodic services 
always at the same time. To our knowledge, temporal continuity is treated very 
little, in the literature.

Most of the time, economic stakes and patients’ preferences are brought 
forward at the expense of the careworkers’ well-being. It is to be noted that 
the HC field is particularly stressful, with difficult working conditions and low 
recognition. It creates an anxiety-provoking environment that leads to many 
burn-outs and resignations. The resulting turnover exacerbates the instabil-

ity of the schedules and significantly impacts service quality. O

ering better working conditions is not only a way of limiting turnover but also a 
convincing



argument to hire skilled employees in a highly competitive field.

In this article, we tackle the problem of re-designing careworkers’ tours under

legal and continuity constraints when an ongoing schedule becomes out-of-date

because of variations within the pool of patients and/or careworkers. We take

advantage of the particular features of our use case to propose an innovative

exact approach based on a modelization of the problem with graphs. The re-

maining of this article is organized as follows: section 2 offers an overview of the

literature related to our problem, and section 3 describes the scheduling and

routing problem that we study. In section 4, the method is presented, along

with the experimental results in section 5. Finally, we propose conclusions and

perspectives for future work in section 6.

2. Literature review

Preamble: Even if HC scheduling problems and HHC (home health care) 
scheduling problems present some differences, particularly in terms of data (ser-

vice durations, features of patients, etc.), the distinction between these two 
fields is not always clear, and the methods developed in the literature to tackle 
the related problems are very similar. Therefore, we present a state of the art 
including both HC and HHC studies.

2.1. Home care routing and scheduling problem

The scheduling task, known in the literature as the Home Health Care Rout-

ing and Scheduling Problem (HHCRSP), was first studied in (Begur et al., 1997) 
where the authors consider the weekly problem with a spatial decision support 
system, which enables them to create and visualize careworkers’ tours.

To our knowledge, the first mathematical formulation of the problem was given 
in (Cheng & Rich, 1998), where it is modeled as a multi-depot vehicle routing 
problem with time windows and on a single period. Some practical constraints 
are taken into account, such as part-time and full-time workers, and the objec-



tive is the overtime working hours minimization.

HHCRSP problems are classically formulated as vehicle routing problems, 
and many variants of VRP problems can be adapted to suit the HC field. For 
example, in HC agencies, most patients require numerous regular visits, thus the 
schedule is often built on multiple periods. It can lead to the implementation 
of patterns or frequency constraints, which are typical of the Periodic Vehicle 
Routing Problem (PVRP) (Mor & Speranza, 2020).

The incompatibilities between patients and careworkers can be interpreted in a 
Site-Dependent VRP where not all vehicles can provide all clients (Cordeau & 
Laporte, 2001). The Consistent Vehicle Routing Problem (Con-VRP) requires 
that a client is always delivered by a unique vehicle over a horizon of multi-

ple periods. Kovacs et al. (2014) propose a generalization of the problem by 
noticing that the cost can be largely minimized if more than a single vehicle 
is allowed per client. They consider the case where every client is delivered by 
a limited number of vehicles since it enables them to find solutions even when 
a specific vehicle i s not a vailable. This approach seems more realistic notably 
for HC problems, and it concurs with our definition o f h uman c ontinuity of 
care. Regarding temporal continuity, it is not a typical constraint in HHCRSP 
problems. However, time consistency is tackled in other multi-period routing 
problems applied to health, as in (Tellez et al., 2020) where the authors solve a 
transportation problem for disabled people. Kovacs et al. (2015) study a trade-

off between time consistency and driver consistency.

In this paper, since we work on a schedule re-optimization, we can model tem-

poral continuity by keeping the planned starting times, i.e by considering fixed 
starting times. This modeling choice comes from an actual case of an HC or-

ganization, for which the day and the starting time of each service are defined 
contractually when a patient requires a service for the first t ime. Since every 
change in the starting times must then be subject to new bargaining with the 
patient, it should be avoided when the tours are redesigned on a strategic level.



The literature is extremely rich on HHCRSP problems, and even more for 
VRP problems, so we chose to focus on studies in the HC/HHC area. Many 
studies have tackled the HHCRSP problem, as it represents a topical issue not 
only for HC stakeholders but also for researchers with new scientific and techni-

cal obstacles. Most of these works are listed in the recent literature reviews of 
the field: (Cissé et al., 2017; Fikar & Hirsch, 2017; Grieco et al., 2020; Di Mas-

colo et al., 2021). In the remainder of this section, we do not intend to be 
exhaustive, but only to give the reader an overview of the existing work.

As a variant of the vehicle routing problem, the classic HHCRSP is NP-hard, 
thus a lot of heuristics and meta-heuristics are developed. Some researchers 
choose to approach the problems through several steps. In (Fikar & Hirsch, 
2015) the problem is decomposed into two stages: the identification of poten-

tial tours, and then the optimization of the transportation system in its en-

tirety. Grenouilleau et al. (2019) also suggest a two-phase algorithm to tackle 
the weekly planning problem with overtime costs, non-covered services, and 
skill requirements. First, feasible routes are created with a large neighborhood 
search, then a set partitioning model and a constructive heuristic select a set of 
routes to make a weekly schedule. The experiments are conducted on instances 
of up to 430 visits. Lahrichi et al. (2022) propose a First-Route-Second-Assign 
decomposition: a giant tour is obtained during the first phase, and is then split 
into subtours in a second phase.

Most often, the considered objectives are the classic objectives of VRP prob-

lems: minimization of travel times, costs, or distance. We can refer to (Bard 
et al., 2014), where both travel times and overtime costs are minimized. They 
propose a MILP formulation and a GRASP algorithm for the weekly problem 
with legal constraints, time windows, and skills requirements, and apply their 
method to instances of up to 45 patients.

It is to be noted that particular interest is also being paid to patients’ satis-

faction. In (Mosquera et al., 2019), patients have preferences over the frequen-



cies, durations, and starting times of the services they request. The services 
have di

erent levels of priority and are hierarchically considered in the objec-tive 
function, which minimizes the deviation from the preferences expressed by the 
patients. A greedy algorithm generates an initial solution, which is then 
improved by a local neighborhood search. Borsani et al. (2006) maximize conti-

nuity of care in the weekly HHCRSP, solved with various MILP. Their method 
was tested on real instances provided by an Italian home care agency with 25 
careworkers.

More recently, some articles also consider the satisfaction of the careworkers. 
In (Decerle et al., 2019), several criteria are studied: the minimization of travel 
times and the workload balance between sta

 members. Trautsamwieser & Hirsch (2011) use an aggregation of travel and 
waiting times of the sta

, over-time hours, and penalties caused by overqualified work. Computations 
were performed on instances of 9 sta

 members and 203 visits over the week. There are three stakeholders in the home 
care scheduling problem - the manager of the HC agency, the sta

 members, and the patients - whose interests do not always go hand in hand. 
That is why Carello et al. (2018) study the trade-o

 be-tween all three stakeholders with a MILP formulation and a threshold 
method. Overtime costs are minimized, the maximal utilization rate of 
careworkers is minimized, and the continuity of care is maximized.

2.2. Uncertainties, contingencies, and perturbations

In most articles, all parameters are assumed to be known in advance, and the 
schedule is built from scratch. However, the HC field brings many uncertainties 
and/or variability in the data. The turnover of the sta

 is to be taken into ac-count since it has a big impact on the practical application 
of a schedule, as well as the high variability of the pool of patients. If a schedule 
becomes irrelevant because of these perturbations, there is the need to re-

schedule the initial plan. Recent articles tend to take into account those 
contingencies and disruptions which represent a real hindrance for HC agencies 
and can be handled either at a strategic (long-term decisions such as hiring new 
sta

 or re-assignment of the



tasks), tactical (weekly planning management and adjustments), or operational 
level (on-line problems, real-time decisions).

In (Heching et al., 2019), a Benders decomposition is used to solve the re-

planning problem whenever there is a change in the pool of patients. In the 
first step, the assignment problem is solved with a linear program then the 
tours are built in the second step with constraint programming. The objective 
is to maximize the number of visits over the week under human continuity con-

straints. Nickel et al. (2012) also tackle the inclusion of new patients in the 
system, using an insertion heuristic and an LNS algorithm. They establish an 
indicator of loyalty between nurses and patients to ensure continuity. Experi-

ments are conducted over real data from a Danish home care provider, with 12 
careworkers and 361 patients. Even though continuity of care seems essential 
in the re-planning process, Gomes & Ramos (2019) consider non-loyalty con-

straints, inspired by a real case in Portugal, where the careworkers must not be 
reassigned to the same patients. Travel times are minimized, as is the impact 
of the perturbations on the initial planning caused by the arrival or departure 
of patients.

Robust approaches enable decision-makers to forecast perturbations. With 
cardinality-constrained models, for example, they can keep control over the 
degree of conservatism in the solutions. In (Cappanera et al., 2014), some pa-

tients may cancel their demands, and new patients may enter the system. The 
cardinality-constrained model limits the number of uncertain demands per tour. 
Skills requirements, continuity of care, and workload balancing are taken into 
account under operating cost minimization.

In all these articles, the sta
 remains the same.

Some articles also add new decisions to the initial routing and scheduling 
problem. The possibilities of hiring new careworkers, adding patients to waiting 
lists, and admitting (or refusing) new patients are considered in (Nasir & Dang, 
2018). The main objective is to minimize the costs, notably those related to the



recruitment of new sta

 members, the penalties caused by putting patients on the waiting list, etc.

In articles tackling the problem at the operational level, several dynamic ap-

proaches were implemented. Du et al. (2019) handle emergencies and online 
cancellations with a memetic algorithm to give a real-time solution that min-

imizes response time to new demands. Yuan & Jiang (2017) also tackle the 
real-time problem, but their goal is to minimize the deviation from the initial 
planning. They minimize the changes in starting times of the services, the 
changes in the composition of the tours, and then the additional costs implied 
by late penalties, overtime work, etc. Stability and continuity appear as impor-

tant factors in the re-planning process, for obvious organizational reasons, but 
also the convenience of both patients and careworkers.

2.3. Contributions

In this article, we present a method to re-assign and re-route careworkers to 
face the perturbations caused by the sta

 and patient turnover of an HC agency. The objective is to re-design a schedule 
that has become obsolete due to con-secutive perturbations and fixes over the 
weeks. It is not about finding a quick repair or re-scheduling at every change in 
the pool of patients and careworkers, but rather about re-optimizing the 
schedules whenever the successive repairs have become unmanageable and 
inefficient. Even though the rescheduling is performed on a tactical horizon, 
we consider that this is a strategic problem since its pivotal constraints 
(continuity of care) originate from the fact that patients usually stay in HC 
organizations for a long time, and the goal is to produce a schedule that can 
be repeated over a long period of time. This angle seems relatively new to tackle 
the HHCRSP.

Continuity of care is essential to ensure the quality of service and patient satis-

faction, so we take human continuity into account. As HC is intended for fragile 
people, patients greatly appreciate consistent service times. To the extent of our 
knowledge, very little research considers this last feature in HHC literature. We 
also take several practical constraints into account, such as lunch breaks



and qualifications constraints to stay close to reality, and propose a method 
that could o

er operational and relevant solutions in the field.

Unlike most studies, we chose careworker-friendly optimization criteria, and we 
were able to take advantage of the specific features of the problem to develop 
an exact method giving solutions in fast computation times for real-life-sized 
instances.

3. Re-routing and scheduling problem

3.1. Problem statement

Let us consider a set of patients requiring a set of services over a horizon of 
several days. Each service has a specific duration as well as a fixed starting time. 
The range of services that can be requested is very broad: it can be medical 
care, housecleaning, meal preparation, etc. As a consequence, each service is 
characterized by a level of qualification.

Patients may require multiple services per day. To ensure continuity of care, we 
define a set of known careworkers (from historical schedules of the HC agency) 
and a tolerance specific to each patient representing the maximum number of 
di

erent careworkers who can visit them during the time horizon. In practice, this 
tolerance is related directly to the personality or pathology of the patient. The 
careworkers have di

erent levels of skills hierarchically sorted. Overskilled work is allowed: a 
careworker may be assigned to any service whose required qualification is 
equal to or smaller than their skill level. Careworkers also have contracts 
specifying the maximum number of working hours over the consid-ered 
horizon and di

erent availabilities, i.e. time intervals within which they can visit patients.

Whenever HC agencies build a schedule and enforce it for several weeks, 
numerous variations in the pool of careworkers and/or patients happen and 
induce changes in this initial schedule. We consider the following perturbations:



• Departure of a patient: many patients leave home care agencies because

their condition worsens, they need to go to the hospital, they die, or more

luckily, they get better and do not need assistance anymore. Whenever

a patient leaves, the careworkers whom they were assigned to might have

new gaps in their schedules increasing their idle time, or work much less

than their colleagues.

• New patient: whenever new patients enter the structure, they need to

be integrated into the existing schedule, in such a way that it does not

critically affect the other patients, but also without notably degrading the

quality of the schedules for the workers.

• Departure of a careworker: due to difficult working conditions, the turnover

is extremely high in the home care field. Whenever careworkers quit, we

need to make sure that all of their former patients are re-assigned because

the HC agency may not be able to recruit a new careworker right away,

let alone with the same characteristics.

• New careworker: the departure of a careworker is frequent, so to avoid

being understaffed, home care facilities often bring in new staff members.

Due to human continuity constraints, it is sometimes hard to include them

in the schedules.

These perturbations most often happen one at a time, and the decision-

makers find a quick fix by hand. After several weeks, the perturbations and 
fixes have accumulated, so the resulting schedule is not only far from the initial 
one but also far from efficient. At this point, HC agencies need to re-optimize 
the schedule, while taking into account all these arrivals and departures, but 
also all the historical data.

3.2. Definitions

The following definitions are extracted from the French Collective Agree-

ments (FCA) (Legifrance, 2012).



• The amplitude of a tour is the difference between the starting time of the

first service of the day and the ending time of the last service of the day.

Note that it does not include the first and last travels of a working day

(from the house of the careworker to the first patient’s place, and from

the last patient’s place to the house of the careworker) since they are not

considered as working time in the FCA.

• The idle time is the time between two consecutive services, travel times

excluded.

• The waiting time of a tour is the sum of all idle times smaller than 15

minutes. In the FCA, all idle times above 15 minutes are considered as

breaks, and thus, not counted as working time.

• The effective working time of a tour is the sum of the total time spent

alongside the patients during the day, travel times (excluding first and

last travel of the day), and waiting times (i.e. idle times smaller than 15

minutes).

3.3. Constraints

We want to fix the initial planning so that all requested services are deliv-

ered. We suppose that all the perturbations are known at the time when the 
re-optimization is done. As we operate at the strategic level, the goal is to 
build a new schedule that will be used in the long run, whereas an operational 
strategy would o

er a quick fix for a short-term perturbation (punctual absence of a careworker for 
example). Re-planning for the long term is relevant because it gives careworkers 
some visibility on their workload, and it also enables HC agencies to spot the 
need for recruitment or additional training.

Even though they cannot control the departure of patients whose health is de-

teriorating, HC agencies can keep other patients in the system by o

ering a good quality of service and a feeling of stability. Moreover, the 
departure of too many patients creates gaps in the tours. Since those periods 
not worked are not welcomed by the careworkers, the resulting dissatisfaction 
may lead to



even more departures. The turnover of the staff can be reduced by offering good

working conditions.

General constraints

• A tour must start and end at the careworker’s home.

• All services must be performed.

• The careworker’s skill level must be equal to or superior to the required

level of qualifications of the services he or she is assigned to.

Continuity constraints: continuity of care seems to be a key feature for the

satisfaction of the patients. As noted above, we consider two types of continuity:

• Temporal continuity: as patients do not like to change their habits, the

expected time of the visit (fixed in the initial plan) must not be changed.

Consequently, we don’t use time windows but fixed starting times.

• Human continuity: patient tolerance τp regarding the maximal number

of assigned careworkers must not be exceeded. In addition, except for

new arrivals, patients already know some careworkers from the previous

schedules. Known careworkers should be assigned first. However, since

there are variations in the pool of careworkers, such a strict continuity is

not always possible. Thus, for each patient p, we calculate their continu-

ity ratio:
number of remaining careworkers known by p

tolerance of p
. The decision-

maker will define a continuity threshold such that if a patient’s continu-

ity ratio is higher than the continuity threshold, they can only be assigned

known careworkers (strict continuity). Otherwise, other careworkers can

be assigned, still within the tolerance limits.

Legal constraints: the following constraints are extracted from the French

collective agreements (Legifrance, 2012):

• The amplitude of a tour must not exceed the legal value of Amax.

• The effective working time of a tour must not exceed the legal value of

Emax.



• The total effective working time of a careworker k during a week must not

exceed his/her contractually defined value hk.

• A lunch break of at least 45 minutes must be observed during a specific

time interval L.

• Each careworker must be granted (at least) a day off during the week.

3.4. Objectives

The turnover of staff can be limited by offering good working conditions. The

main criterion of dissatisfaction seems to come from idle times. Indeed, these

times, mostly spent in their car between two visits, is extremely badly perceived

since it is lost time. The minimization of this lost time can be interpreted as :

1. Minimization of the amplitude of a day: since the services’ duration and

travel times are incompressible, it is also the minimization of idle times.

2. Minimization of perceived waiting times: the waiting times defined in the

FCA are not representative of the time lost during the day because idle

times greater than 15 minutes are not counted as waiting times. More-

over, the collective convention considers that when careworkers have a

90-minute break (or longer), they can return home and make the most of

this free time. This assumption lies in the fact that, in practice, carework-

ers are assigned to a limited geographic area around their home. These

kinds of breaks, which often happen to be during lunch, are not nega-

tively perceived by the workers, except if there are too many during the

day. Thus, the perceived waiting time is computed as the sum of all idle

times minus the longest idle time greater than 90 minutes if it exists.

Observing these two criteria will show how the interpretation of lost time 
can impact the schedules. For comparison purposes and to measure the impact 
of these two criteria focused on the careworkers, we also study the minimization 
of travel times, which is the most common objective function in the literature.



4. Solving approach

We decompose this re-optimization problem into two sub-problems. First,

we generate all the admissible daily tours that abide by legal and continuity

constraints. Then, we select the best subset of tours to build a schedule for all

the careworkers over the whole time horizon.

As we work with graphs, the very first phase of our method consists in modeling

our problem with a set of graphs such that a path in a graph represents a tour

for a careworker. In this section, we detail the algorithm whose global layout is

presented in Figure 1. Figure 2 synthesizes the enforcement of the constraints

during the different steps. All the notations defined in this section are summed

up in Table 1.

Figure 1: Global layout of the algorithm

Figure 2: Constraints enforcement

4.1. Example

Let’s introduce a simple example to illustrate the solving method through-

out the following sections.

Figure 3 illustrates a working day where 11 services are required by di

erent



patients. Fixed starting and ending times of services can be read on the hori-

zontal axis. Dotted services (4, 6, 11) require a higher level of qualification than

services drawn with a solid line.

7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3

4 5 6 7

8 9 10 11

time of the day (h)

Figure 3: Requested services for a single day

4.2. Graph generation

We generate a set of graphs, one per day and careworker, and we denote by

Gkd the graph linked to careworker k on day d. Let Vkd be the set of vertices

containing a source and a sink, and Ekd be the set of arcs of this graph. We

build the graphs in such a way that a path from the source to the sink in Gkd

represents an admissible tour for careworker k on day d.

Vertices: The vertices of Gkd are the services that will potentially be part of

the tour of careworker k on day d. More precisely, for every service s required

by patient p on day d, we add a corresponding vertex vs in Vkd if the following

conditions are met:

i) Availability: careworker k is available to perform the service s.

ii) Qualification: careworker k has the required skills for service s.

iii) Human continuity of care: one of the following sub-condition is met:

• the patient is new in the system or the patient’s continuity ratio is

smaller than the continuity threshold.

• careworker k belongs to the set of known careworkers of patient p

(condition not valid if the careworker is new).



For every graph Gkd, we also add two vertices, a source αkd and a sink βkd,

virtually representing the house of the careworker, from which their daily tours

must start and end.

Return to the example introduced in Fig. 3. Let’s consider a careworker who is

available from 8:00 to 17:00, who has the lowest level of qualification and such

that human continuity constraints forbid them to perform services 8 and 10.

All services are included in the corresponding graph except the following: 7

(availability); 4, 6 and 11(qualification); 8 and 10 (continuity).

Let us now focus on a graph Gkd where k and d are chosen arbitrarily. We

will momentarily forget the indexes k and d and note the graph G to simplify

the notations in this section.

Arcs: We add the following arcs to E :

• αvi: arcs coming from the source and going to any vertex vi of the graph

• viβ: arcs coming from any vertex vi of the graph and going to the sink

• vivj : where service i and service j are compatible, meaning that the same

careworker can perform both services at the expected times, also consid-

ering the travel time between the services.

Example: Let all travel times be 15 minutes. Figure 4 represents the correspond-

ing generated graph for the example introduced in Fig. 3.

Weights:

Let vi, vj be two vertices of Vkd. Let us assign weights to the arcs vivj based

on the definitions of section 3.2:

• aij = δi+tij+wij : the amplitude induced by the concatenation of services

i and j, where δi is the duration of service i and tij (resp. wij) is the travel

time (resp. idle time) between services i and j.

• eij = δi + tij +wFCAij : the effective working time induced by the concate-

nation of services i and j; where wFCAij is the waiting time as defined in



α β

1 2 3

9

5

Figure 4: Generated graph for the example in Fig. 3

section 3.2 (= 0 if wij ≥ 15 minutes, and wij otherwise).

Example : Suppose t1.2 = 15min. Since δ 1 = 120min, we have w1.2 = 45min ; 
w1
F
.2
CA = 0min ; e1.2 = 135min.

4.3. Tour construction

A path from the source to the sink in such a graph represents a sequence of 
compatible services throughout the day. However, the composition of working 
days is limited by legal regulations. To be an admissible tour, that is to say, a 
tour that abides by all daily regulations, such a path must have limited weights, 
in terms of amplitude (Amax) and e

ective working time (Emax). Also, a lunch break must be awarded.

The algorithm pathGeneration(G, k, d) (Algorithm 1) lists all admissible 
paths for a careworker k on a day d. To that end, we compute a lower bound 
on the e

ective working time, the weights of shortest and longest paths on the graph, 
before calling a recursive algorithm to explore the graph. All these steps are 
detailed in further subsections.

4.3.1. Lower bounds for the e
ective working time: minBound

Legal constraints give us upper bounds on the lengths of the paths, but it
is also possible to compute lower bounds on the minimal duration (in terms of



Algorithm 1 pathGeneration(k, d)

Emin ← minBound(k, d,Sd) . lower bounds (4.3.1)

for all v ∈ V do:

xvA+
shortAmplitude(v,G) . shortest/longest paths (4.4)

xvE+
shortEffWT(v,G)

xvE− longEffWT(v,G)

return recPathGeneration(α, β,Amax, Emax, Emin, false, {α}) . see

Algorithm 2

effective working time) of a tour. This lower bound, denoted by Emin, is specific

to every careworker every day and must consequently be computed for every

graph.

• We compute the total duration of services required during the day and

the maximal theoretical duration of work that can be handled by other

workers (based on their availability and their contractual working time).

It gives us a lower bound for the service time that must be delivered by

the studied careworker.

• When the number of services simultaneously requiring a specific skill

matches the number of available careworkers with that skill, we know

that every qualified careworker will have to perform one and only one of

those services. In consequence, in the set of such overlapping services, the

shortest duration gives a lower bound for the service time of the studied

careworker. We assume that there are enough skilled workers available

to perform such simultaneous services otherwise, the problem would be

infeasible.

These di

erent conditions can be combined to find a better lower bound on the e
ective working time of a tour.

Example. Suppose only 3 careworkers are available to perform the services re-



quested in Fig. 3, and only two of them are skilled enough to deliver the dotted

services. Services 1, 5, and 9 are overlapping so every careworker will perform

exactly one of them. For every careworker, Emin ≥ min{δ1, δ5, δ9} = 30min.

In addition, services 6 and 11 are overlapping. For both skilled careworkers :

Emin ≥ min{δ6, δ11} = 2h. Since both sets of overlapping services do not inter-

sect, Emin ≥ 2.5h for skilled workers.

In addition, suppose that both skilled careworkers are contractually limited to

6.5 hours a day. Given that the sum of services duration is 17.5 hours, we can

compute for the other careworker that Emin ≥ 17.5− 2× 6.5 = 4.5h.

4.4. Shortest/Longest paths: shortAmplitude, shortEffWT, longEffWT

For every vertex v, we compute in polynomial time (Bellman (1958)):

• the shortest path from v to β in terms of amplitude (xvA+
)

• the shortest path from v to β in terms of effective working time (xvE+
)

• the longest path from v to β in terms of effective working time (xvE−)

4.5. Construction of admissible paths: recPathGeneration

The general algorithm (1) that we designed calls a recursive algorithm (2)

inspired by the method given in (Rizzi et al., 2015), which lists all A+, E+, E− 

length-bounded paths in a graph, where A+ is an upper bound for the ampli-

tude weight, E+ is an upper bound for the e
ective working time weight, and

E− is a lower bound for the e

ective working time weight. For the first call of the function, A+ and E+ are set 
at the legal values defined in the FCA (Amax
and Emax), and E− is set at Emin computed as explained in subsection 4.3.1. 

Then, they are updated at each recursive call.

We start from a path containing only the source. Then, we check if the 
addition of a neighbor u can lead to an admissible tour. To that end, we com-

pute the shortest path from u to 
 in terms of amplitude; and we check that

the concatenation of this shortest path and the current path (
 − u) has an



amplitude shorter than Amax. If not, it means that no admissible tour starts

by α − u and we can eliminate this sub-path. Similarly, we check the upper

and lower bounds on the effective working time. If all bounds are respected, we

validate the addition of u to the current path (now α− u), and recursively try

to add a neighbor of u to the path with the same steps. For that recursive call,

we subtract the values induced by the addition of u in the path from the lower

and upper bounds.

Finally, the function isLunchEligible (constant complexity) returns true if a

lunch break can be taken before the start of service u and IsLunchPossibleAfter

(constant complexity) returns false if no lunch break is possible after service u.

This is a simple verification of time constraints regarding the lunch break.



Algorithm 2 recPathGeneration(u, t, A+, E+, E−, b, xαu)

Require:

xvA+
: the shortest path in terms of amplitude from v to β

xvE+
: the shortest path in terms of effective working time from v to β

xvE− : the longest path in terms of effective working time from v to β

u, t: vertices

A+: upper bound for the amplitude

E+: upper bound for the effective working time

E−: lower bound for the effective working time

b: boolean variable to guarantee lunch break

xαu: path from α to u in the graphs

Ensure: all tours xut (A+, E+, E−)-bounded such that xαu.xut have a lunch

break

if u = t then

return xαu

for all v ∈ V such that (uv) ∈ E do

A
′
+ A+ − auv

E
′
+ E+ − euv

E
′
− E− − euv

b
′

b || isLunchEligible(uv)

if (Axv
A+

< A
′
+) & (Exv

E+
< E

′
+) & (Exv

E−
> E

′
−) &

(b
′ || isLunchPossibleAfter(v)) then

recPathGeneration(v, t, A
′
+, E

′
+, E

′
−, b

′
, xαu.(uv))



orizon

d, 0 otherwise

ise
4.6. Set partitioning

We now have a set Tkd of admissible tours for every careworker every day.

We need to pick one tour per day and per careworker such that all the requested

services are covered and the constraints are respected. Some constraints were

included in the previous steps, such as the daily working time limitations, the

skills requirements, or the availabilities. However, we still need to enforce the

constraints related to the weekly regulations and some continuity constraints.

Let us add to all sets Tkd an empty tour, which represents a day off for the

careworker k on day d. This tour will be denoted by the index j = 0.

4.6.1. Mathematical formulation of the set partitioning problem

We solve this second problem with a MILP based on a set partitioning model.

All the notations are listed in Table 1.

Data and notations

D ∈ N time horizon

Sd/Sd ∈ N set/number of requested services during day d

Tkd/ Tkd ∈ N set/number of generated tours for careworker k on day d

hk ∈ N contractual maximal working time for careworker k over the time h

τp ∈ N tolerance of patient p

wOBJkdj ∈ N perceived waiting time of tour j of careworker k on day d

ekdj ∈ N effective working time of tour j of careworker k on day d

akdj ∈ N amplitude of tour j of careworker k on day d

tkdj ∈ N total travel time of tour j of careworker k on day d

bskdj ∈ {0, 1} is equal to 1 if service s is covered by tour j of careworker k on day

ysdp ∈ {0, 1} is equal to 1 if service s of day d is requested by patient p, 0 otherw

Decision variables

xkdj =





1 if careworker k performs tour j on day d

0 otherwise

zkp =





1 if careworker k visits patient p during the horizon D
0 otherwise



Objective function

min
∑

d∈D

∑

k∈K

∑

j∈Tkd

Okdj × xkdj (1)

where Okdj =





wOBJkdj to minimize perceived waiting times

akdj to minimize amplitudes

tkdj to minimize travel times

Constraints

∑

j∈Tkd

xkdj = 1 ∀k ∈ K, ∀d ∈ D (2)

∑

k∈K

∑

j∈Tkd

bskdj × xkdj = 1 ∀d ∈ D, ∀s ∈ Sd (3)

∑

d∈D
xkd0 ≥ 1 ∀k ∈ K (4)

∑

d∈D

∑

j∈Tkd

ekdj × xkdj ≤ hk ∀k ∈ K (5)

zkp ≥ ysdp ×
∑

j∈Tkd

xkdj × bskdj ∀k ∈ K, ∀d ∈ D, ∀s ∈ Sd (6)

∑

k∈K
zkp ≤ τp ∀p ∈ P (7)

xkdj ∈ {0, 1} ∀d ∈ D, ∀k ∈ K, ∀j ∈ Tkd (8)

zkp ∈ {0, 1} ∀k ∈ K, ∀p ∈ P (9)

Our objective is to minimize the perceived waiting times (or the amplitude, 
or the travel times) for careworkers (1).

We make sure that one and only one tour is assigned to every careworker every



day (2), and that all the services requested by the patients are performed during

the horizon (3). Constraint (4) ensures that any careworker gets at least one

day off during the week. The effective working time of careworker k over the

time horizon is limited by constraint (5). The number of different careworkers

delivering services to each patient is bounded by its tolerance in the constraints

(6) and (7) (see continuity constraint defined in section 3.2). Constraints (8)

and (9) state the domains of definition of the variables.

5. Experimentations

We tested our method both on real data sets and on adapted instances from 
the literature (Bredstr¨om & Rönnqvist, 2008). The algorithm was implemented in 
Java, and the MILP was solved with Cplex. All computations were performed on 
a machine with the following characteristics: Intel ®Core™i7-9850H CPU 
2.60GHz and 32 GO of RAM.

5.1. Test instances

5.1.1. Real data: sets 1 to 3

We obtained real data sets from a French Home Care agency. We retrieved 
initial schedules and information about the variations in the pool of patients 
and careworkers between the time the schedules were built, and several weeks 
later. The instances’ characteristics are summed up in Table 2 (set 1 to 3). We 
indicate the number of careworkers (K), the number of patients (P ), and the 
number of services (S) that need to be scheduled. ∆K , ∆P , and ∆ S represent 
the variations in the number of careworkers, patients, and services compared to

the initial schedule. For example, ∆K = +3/ − 5 means that 3 new careworkers

entered the agency since the initial schedule was built, and 5 former careworkers 
left it. For all instances, we work on a weekly horizon : hk indicates the average 
contractual maximal working time of careworkers. We also indicate the range of 
patient tolerance (column τp) and the continuity threshold, of which the values 
were determined with the supervisors of the HC organization.



5.1.2. Instances from the literature: cases 1 to 6

We adapted the instances from (Bredstr¨om & Rönnqvist, 2008) to test our 
algorithm. Since we use schedules with fixed service times, we restricted our 
tests to the instances of the benchmark with fixed time windows. We duplicated 
the data to obtain weekly demands, and we built a naive schedule to use as the 
initial schedule. Then we artificially removed some randomly chosen careworkers 
and brought in new careworkers whose characteristics are similar to those of the 
pool. We also generated new demands incoming from new patients. We kept 
the same number of careworkers, patients, and services, to maintain the same 
workload. The total service duration is much higher than in the real data, so 
the tours are busier. Preliminary experiments have shown that the instances 
are unfeasible if we keep the lunch break constraint and the weekly day o

. For that reason, both constraints had to be released for the experiments on 
instances from the benchmark. Still thanks to these preliminary experiments, 
we adjusted the contractual working times, the continuity threshold, and the 
tolerances. The reader should also note that because of the way they were 
created, these instances contain a lot of symmetry that we did not exploit to 
our advantage in the algorithm since it is generally not the case in practice, at 
least not on a weekly time horizon. Indeed, the real instances do not present 
these symmetrical features.

The instances’ characteristics are summed up in Table 2 (cases 1 to 6).

5.2. Computational results

For each instance, we ran the algorithm on each mono-objective problem. As a 
reminder, we alternately consider the minimization of amplitude A, perceived 
waiting times W, and travel times T, expressed in hours in the results. As 
we have an interest in the impact of the chosen objective on the satisfaction of 
the worker, for each studied criterion, we also observe the values of the other 
two criteria. However, since we did not conduct a multi-objective study, the 
presented solutions could be weakly efficient. For each instance, the best values



of each objective are highlighted in grey, and we observe the evolution rate of

the non-optimized criteria compared to their best value for the same instance

(results in percentage). For example, the evolution rate of A is computed as

follows:

∆A =
best value of A−A

best value of A

The column Previous plan shows the values of the amplitude, travel times, 
and idle times of the initial plan, before the departure and arrival of carework-

ers and patients. These numbers must be interpreted carefully, as the tours are 
not performed by the same careworkers, and do not contain the same services. 
Therefore, we cannot directly compare the di

erent values, but since the HC organization tries to maintain the same level of 
workload, we can compare the orders of magnitude. We can observe that the 
values are closer to the values we obtain when minimizing the amplitude.

Since we developed an exact approach, we can compare the performance of 
our algorithm with those obtained with a MILP solved with Cplex, using the 
formulation in (Martinez, 2020) (see Appendix A). The computation times (in 
seconds) of our algorithm and Cplex on the MILP formulation are expressed in 
the columns CP U and CP UMILP . The last two colums show the number of 
variables and constraints of the set partitioning problem of our algorithm.

On the first line of Table 3, we can read the results for set 1 when we min-

imize the amplitude. It reaches 129.2 hours, and we observe the values of the 
other criteria: 25.9 hours of perceived waiting time and 11.5 hours of travel time. 
The second (respectively third) line of the table displays the values of the opti-

mal solution when we minimize the perceived waiting times (resp. travel times).

For all instances, our algorithm manages to reach the optimal solution in less 
than 5 minutes. The computation times needed to reach the optimal solutions



are much faster than the MILP (up to 15 minutes for case 6).

For real instances (sets 1 to 3), we can note that the amplitude and per-

ceived waiting time increase drastically and reach their highest values when the 
optimized criterion is the total travel time. Travel times are at their maximum 
when the optimized criterion is the amplitude. On large instances built from the 
benchmark (cases 5 and 6), we notice the same behavior concerning perceived 
waiting times. However, travel times and amplitude reach their highest value 
when the perceived waiting time is minimized.

The variations in travel times are less noticeable in small cases (1 to 4) because 
the symmetry and the small size of these instances do not leave as many possi-

bilities for re-scheduling.

As a reminder, the amplitude is the sum of service times, travel times, and all 
idle times. As the total duration of care cannot be shortened, minimizing the 
amplitude is equivalent to minimizing idle times and travel times. It should 
be noted that in the calculation of the amplitude, all idle times are taken into 
account, whereas in the calculation of the perceived waiting time, we deduct the 
longest gap greater than 90 minutes (if it exists). We can note that in case 4, 
the amplitude stays the same whatever criterion is minimized, and so does the 
sum of travel times and perceived waiting times because no gaps greater than 
90 minutes were created in the tours.

Overall, we observe that perceived waiting times and travel times are far 
more impacted by the choice of the objective than the amplitude, even though 
its variation may be significant, particularly for real instances. The worst vari-

ations occur on perceived waiting times when we minimize travel times. 
Eventually, we also notice that the worst variations on all three criteria occur 
for real instances. The time range within which the services are requested is 
broader in real-life cases. Therefore, in those instances, working days may start 
earlier and end later, so the amplitude is more likely to vary, and so are idle 
times. Also, services are shorter and workers have lower weekly working times



in real instances. Thus, the tours are less compact and the variability is higher.

We show that the minimization of travel times (one of the most studied cri-

teria in the literature) is predominant for the satisfaction criteria. We modeled

the satisfaction through the minimization of amplitude and perceived waiting

times. Since the satisfaction of careworkers has a substantial impact on the

proper execution of the schedules, minimizing travel times may not be the best

option for the employer when the goal is to preserve stability in the staff.

5.3. Discussions

Even though we only study mono-objective problems, we can see that for

case 4, the best solution for criteria A is weakly efficient. Using a lexicographic

approach would enable us to discard potentially weakly efficient solutions.

Regarding continuity of care, both the temporal and the human aspects are

guaranteed in the constraints. Since we modeled it as strict constraints, we

do not have any flexibility on the starting time or the patient tolerance. This

work could be extended to study a tradeoff between continuity of care, a crucial

element of patients’ satisfaction, and careworkers’ satisfaction.

6. Conclusions and perspectives

In this paper, we tackled the problem of re-assigning careworkers and re-

scheduling the tours when the turnover of the staff and the patients made plan-

nings infeasible or inecient. Not only we considered legal constraints based 
on the French collective agreements, but we also took into account the social 
aspects of Home Care planning with an emphasis on the continuity of care. Two 
aspects of continuity were preserved: human continuity and temporal continu-

ity, which is rarely studied, to the best of our knowledge.

When most studies present approached solutions or exact solutions to smaller 
instances, we could design an exact algorithm with fast computation times, able 
to solve real-life-sized instances.



Our method was designed to optimize different criteria, whether it is a classic

criterion such as travel times or more specific objectives related to the satis-

faction of careworkers and workplace wellness. The particular features of the

real-life case make it easier to get exact solutions. However, with more services,

or fewer restrictions on continuity of care, the complete exploration of the graph

would be impossible. To solve even larger instances or to schedule over a longer

horizon, it could be interesting to work on a heuristic version of the algorithm.

It implies the computation of new lower bounds on the paths and a partial

exploration of the graph to reduce the number of generated tours. Once the

tours are generated, a heuristic can also be used to solve larger set partitioning

problems.
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Appendix A. MILP for the routing problem

This MILP is from the work of Martinez (2020)

We introduce two dummy services, α and β, to model the start and end of a

route. Pσ is the set of patients under the continuity threshold and Sp is the set

of services required by patient p. All the other notations are introduced in the

article.

Decision variables

xijk =





1 if careworker k consecutively performs services i and j

0 otherwise

bijk =





1 if the longest break greater than 90 minutes of careworker k

is between services i and j

0 otherwise

lijk =





1 if the lunchbreak of careworker k is between services i and j

0 otherwise

zkp =





1 if careworker k performs at least one service to patient p

0 otherwise

Objective functions

min
∑

k∈K

∑

d∈D

∑

i∈Sd

gi × xiβk − fi × xαik (A.1)

min
∑

k∈K

∑

i∈S

∑

j∈S
tij × xijk (A.2)

min
∑

k∈K

∑

i∈S

∑

j∈S
wij × (xijk − bijk) (A.3)



Constraints

∑

i∈Sd
xαik ≤ 1 ∀k ∈ K, ∀d ∈ D (A.4)

∑

i∈Sd
xiβk ≤ 1 ∀k ∈ K, ∀d ∈ D (A.5)

∑

j∈S∗
xijk =

∑

j∈S∗
xjik ∀k ∈ K, ∀i ∈ S (A.6)

∑

k∈K

∑

j∈S∗
xijk = 1 ∀i ∈ S (A.7)

∑

i∈S∗
xijk × (qk − ρj) ≥ 0 ∀j ∈ S, ∀k ∈ K (A.8)

∑

j∈S∗
xijk = 0 ∀i ∈ S such that [fi, gi] 6⊂ Ik ∀k ∈ K (A.9)

∑

i∈Sp∗

∑

j∈Sp

∑

k∈K̂p

xijk = 0 ∀p ∈ P (A.10)

xijk × (fj − gi − tij) ≥ 0 ∀k ∈ K, ∀i, j ∈ S (A.11)

∑

i∈Sd

∑

j∈Sd
bijk ≤ 1 ∀k ∈ K, ∀d ∈ D (A.12)

bijk ≤ xijk ×max(0; 91− fj + gi + tij)) ∀k ∈ K, ∀i, j ∈ S (A.13)

∑

i∈S∗

∑

j∈S∗
xijk × eij ≤ hk ∀k ∈ K (A.14)

∑

i∈Sd∗

∑

j∈Sd∗
xijk × eij ≤ Emax ∀k ∈ K, ∀d ∈ D (A.15)



∑

i∈Sd
(gi × xiβk − fi × xαik) ≤ Amax ∀k ∈ K, ∀d ∈ D (A.16)

∑

i∈S
xαik < D ∀k ∈ K (A.17)

∑

(i,j)∈Sd∗2∩Lij

lijk = 1 ∀k ∈ K, ∀d ∈ D (A.18)

lijk ≤ xijk ∀k ∈ K, ∀i, j ∈ S∗ (A.19)

zkp ≥
∑

i∈S∗
xijk ∀p ∈ P ∀k ∈ K ∀j ∈ Sp (A.20)

∑

k∈K
zkp ≤ τp ∀p ∈ P (A.21)

∑

i∈S∗

∑

k∈K\Kp

xijk = 0 ∀j ∈ Sp ∀p /∈ Pσ (A.22)

xijk ∈ {0, 1} ∀i ∈ S, ∀j ∈ S, ∀k ∈ K (A.23)

bijk ∈ {0, 1} ∀i ∈ S, ∀j ∈ S, ∀k ∈ K (A.24)

lijk ∈ {0, 1} ∀i ∈ S, ∀j ∈ S, ∀k ∈ K (A.25)

zkp ∈ {0, 1} ∀k ∈ K, ∀p ∈ P (A.26)

The objective function A.1 minimizes the sum of all amplitudes. The second 
objective A.2 minimizes travel times, and the third objective (A.3) minimizes



idle times (except for the longest break greater than 90 minutes for every care-

worker) (see equations A.12, A.13).

Routes start and end at careworkers’ homes A.4 et A.5. Constraint A.6 guar-

antees flow conservation.

All services must be performed A.7, and compatibility is checked between con-

secutive services (A.11). The availability(A.9)and qualification of selected per-

former is required (A.8), as well as incompatibilities (A.10).

Legal constraints are modeled by equationsA.14 to A.17: limited effective work-

ing time during the horizon, limited effective working time per day, limited

amplitude of a working day, rest day. Every worker must be granted a lunch

break during time interval L (A.18, A.19). Human continuity is guaranteed by

A.20, A.21 et A.22.

Finally, equations A.23 to A.26 state the domains of definition of the variables.



Table 1: Notations of the problem

Notation Definition

Graph Generation

Gkd(Vkd, Ekd) graph generated for careworker k and day d

αkd/ βkd source/sink of Gkd

δi duration of service i

tij travel time between patients requiring service i and service j

wij idle time between service i and service j

wFCAij waiting time between service i and service j

eij effective working time implied by the successive execution of service i and j

Path generation in Gkd

A+ upper bound for the amplitude weight

E+ / E− upper/lower bound for the effective working time weight

xvA+
the shortest path in terms of amplitude from v ∈ Vkd to βkd

xvE+
/ xvE− the shortest/longest path in terms of effective working time from v ∈ Vkd to βkd

Amax/Emax maximum daily amplitude/effective working time

Ax /Ex amplitude/effective working time of path x

Path selection - MILP

D set of days in the time horizon

K set of careworkers

P set of patients

Sd number/set of services on day d

Tkd set of admissible tours for careworker k on day d

hk contractual maximal working time for careworker k over the time horizon

wOBJkdj perceived waiting time of tour j of Tkd
tkdj total travel time of tour j of Tkd
ekdj total effective working time of tour j of Tkd
akdj amplitude of tour j of Tkd
bskdj equals 1 if service s is covered by tour j of careworker k on day d, 0 otherwise

ysdp equals 1 if service s of day d is requested by patient p, 0 otherwise

xkdj equals 1 if careworker k performs tour j on day d, 0 otherwise

zkp equals 1 if careworker k visits patient p during D, 0 otherwise



Table 2: Instances characteristics

Instance Real data ∆K K ∆P P ∆S S τp continuity threshold hk

set 1
√

+2/-3 5 +0/-1 11 +0/-22 85 [3; 6] 0,5 21,1

set 2
√

+2/-3 8 +2/-7 26 +10/-52 156 [3; 6] 0,5 29,1

set 3
√

+3/-5 15 +7/-10 92 +33/-16 337 [3; 6] 0,3 26,6

case 1 +1/-1 4 +2/-2 20 +14/-14 140 [2; 4] 0,5 70

case 2 +1/-1 4 +2/-2 20 +14/-14 140 [2; 4] 0,5 70

case 3 +1/-1 4 +2/-2 20 +14/-14 140 [2; 4] 0,5 70

case 4 +1/-1 4 +2/-2 20 +14/-14 140 [2; 4] 0,5 70

case 5 +2/-2 10 +5/-5 50 +35/-35 350 [2; 4] 0,7 90

case 6 +2/-2 10 +5/-5 50 +35/-35 350 [2; 4] 0,7 90

Table 3: Computational results

Instance Objective Previous

plan

A W T ∆A ∆W ∆T CPU CPUMILP #var #constr

(h) (h) (h) (%) (%) (%) (s) (s)

set 1

A 120,4 129,2 25,9 11,5 - 254,8 219,4 3,59

18,3 30429 521W 23,2 188,7 7,3 8,5 46,1 - 136,1 3,42

T 8,3 215,7 47,1 3,6 67,0 545,2 - 3,53

set 2

A 290,7 239,7 43,4 18,8 - 329,7 121,2 44,6

122 902068 2428W 39,3 366,8 10,1 19,5 53,0 - 129,4 58,9

T 13 402,5 65,6 8,5 67,9 549,5 - 45,2

set 3

A 662,5 490,4 91,9 22,6 - 151,8 133,0 88

1084 865283 10527W 90,4 747,5 36,5 21 52,4 - 116,5 100

T 20,4 793,4 152 9,7 61,8 316,4 - 63

case 1

A - 251,6 21,6 37,5 - 0,6 15,0 2,9

34,1 45420 752W - 251,6 21,5 37,6 0,0 - 15,3 2,6

T - 260,3 29,9 32,6 3,5 39,3 - 2,3

case 2

A - 264,8 14,9 43 - 88,6 27,2 8,9

44,3 121892 752W - 279,8 7,9 42,5 5,7 - 25,7 6,5

T - 273,8 32,3 33,8 3,4 308,9 - 5,8

case 3

A - 238,0 7,1 37,3 - 20,3 5,4 1,4

19,4 27906 752W - 268,0 5,9 38,7 12,6 - 9,3 1,4

T - 265,9 6,6 35,4 11,7 11,9 - 1,4

case 4

A - 216,4 11,5 35,8 - 57,5 7,2 1,5

24 28425 752W - 216,4 7,3 40 0,0 - 19,8 1,7

T - 216,4 13,9 33,4 0,0 90,4 - 1,8

case 5

A - 567,9 41,5 100,7 - 42,1 21,2 162

798 589267 3980W - 578,8 29,2 112,8 1,9 - 35,7 61,5

T - 574,0 65,8 83,1 1,1 125,3 41,8

case 6

A - 536,8 20,6 111,4 - 50,4 21,5 252

873 1678735 3980W - 626,5 13,7 115,7 16,7 - 26,2 218

T - 612,7 76,6 91,7 14,1 459,1 - 133



Highlights

 Contnuity of care  is ar k y  le e nt in e sch dulein  reolle es foe CC oe arniaartons

 Minieiain  tearv le te s   n earleley le ards to unarcc rtarlle  toues foe care woek es

 R arle-leif  f artue s are  us d to  fci ntley eod le CC sch dulein  reolle es with  earrhs
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