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ABSTRACT

This paper deals with the detection and characterization of surface damages (a dent, a crack, etc.) on mechanical
surfaces using 2D/3D vision (3D scanner and/or 2D RGB camera). The main innovative aspect lies in the
exploitation of the Computer Aided Design model, when it is available, with two possible scenarios: ”manual
control” via a hand-held 3D scanner carried by an operator, or ”automated control” via a 3D scanner carried by
a cobot. This research work has been carried out within the joint research laboratory ”Inspection 4.0” between
IMT Mines Albi/ICA and the DIOTA company, specialized in the development of numerical tools for Industry
4.0.
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1. INTRODUCTION

In the field of aeronautics and automotive industry, it is essential to perform periodic inspections, whether on
structural parts before the assembling phase, on assembled sections before delivery, or a pre-flight inspection of
an aircraft in service. We distinguish two types of control: (1) ”conformity control”: verifying that a part or
a mechanical assembly conforms to its Computer Aided Design (CAD) model (digital model) considered as a
reference. (2) ”damage detection and characterization”: detecting potential ”aesthetic” defects such as dents,
cracks, and characterizing them. In this work, we will focus on the second problem (damage detection and
characterization) that has been tackled by using a 3D scanner carried by an operator (manual control) or by
a cobot (automated control). See Figure 1. The damage detection is performed by a deep learning approach
on 2D images (provided by the scanner or by an additional 2D camera mounted on the robot) and the damage
characterization is performed by processing the 3D point cloud provided by the scanner.
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Figure 1: (a) Our inspection approach. (b) Control with robotic platform.



2. RELATED WORK

Machine-based approaches offer significant benefits in the area of industrial inspection, such as performance,
enhanced safety, and increased automation. Despite the importance of inspection and maintenance in the
aerospace domain, the applications of emerging fields of deep learning and computer vision in this area remain
quite limited. According to the literature, only a few researchers are focused on the automation of aircraft visual
inspection.

One such work is an automatic aircraft fuselage defect detection method1 based on DNN that was pre-trained
on ImageNet as a feature extractor and applied transfer learning with a binary mask for each image. The authors
proposed to boost the defect detection algorithm using the region of interest detected by using SURF, and this
has achieved a 6x speedup compared to a baseline approach that tests all patches. The authors have used data
balancing techniques to decrease the number of no-defect samples and to augment the class of rare defects. The
proposed algorithm achieves about 96.37% accuracy and it is able to detect almost all the defects.

In,2 a new visual method with object detection to perform airplane external screw inspection with UAV is
presented. A CNN approach is used to characterize zones of interest and extract screws from the images with
a prior model used for matching. Then, computer vision algorithms are employed to evaluate the status of
each screw and detect missing and loose ones. The authors have trained a 2D pattern generative model via
unsupervised learning using Generative Adversarial Network (GAN) architecture to create a pattern associated
with the screw through a bipartite graph approach.

3 presents an analysis of different machine-learning approaches that detect rare classes of defects due to
extremely imbalanced datasets. The problem with a model trained on this kind of dataset is that the model
learns to achieve high accuracy by consistently predicting the majority class, even if recognizing the minority
class is of equal or more importance when applying the model to a real-world scenario. To address this problem,
the authors compared several methods with different training dataset sizes with balanced classes. Then, a hybrid
approach combines classic deep learning models and few-shot learning approaches such as matching network and
Prototypical network which can learn from a few samples.

The visual inspection process by using a drone-based system and sensors in a smart hangar, or by using
mobile platforms4 can have a major impact on reducing inspection time and also the Aircraft on Ground time
(AOG: a plane can not fly for technical reasons), especially if the automated inspection system is able to assess
the criticality and severity of the damages according to the Aircraft Maintenance Manual and Structure Repair
Manual.

The automated drone inspection reduces the AOG and preparation time up to 905%, since the Remote
Automated Plane Inspection and Dissemination System (RAPID5) can quickly reach difficult areas such as the
empennage and both wings, without intensive labor or dedicated facilities and infrastructure. It greatly increases
workplace safety and cost savings, as there is no heavy or cumbersome equipment that may further damage the
aircraft or place engineers in potentially dangerous situations. For instance, the time to locate lightning damage
using aerial work platforms is between 8 and 12 hours. This time can be reduced by 75% if MainBlades6 system
inspection is used.

Our defect detection phase is based on a deep learning object detection approach. Improving the accuracy
of object detection in computer vision is an ongoing research area. When the error rate in object detection
decreases, it means that the machine is able to detect and classify objects more effectively. For instance, the
machine error went from 26% in 2011, to only 3% in 2016 which is less than human error claimed to be 57%.

3. DETECTION OF DAMAGES FROM 2D IMAGES

3.1 Methodology

The developed damage detection method processes 2D images. These images are acquired either by an additional
2D camera or directly by a 3D scanner and its SDK if it provides 2D textured images. It should be noted that
the 3D scanner is mounted on a robot effector arm. The proposed method for 2D defect detection, based on
supervised deep learning, consists of a pre-trained neural network model able to detect and localize one or several
damages. In this work, we refer to the ground truth which is a result of a human annotation process. As it can



be seen in Figure 2, we mainly use 3 mechanical parts to provide an annotated dataset of real damages. We
manually label the ”dent” defects as class 1 (red color), and ”crack” defects as class 2 (pink color) as shown in
Figure 2. In the following section, we explain our choice of CNN-based detector architecture. Afterwards, we
introduce a technique to improve the quality of the prediction.

(a)
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Figure 2: Annotating images of damaged parts, by a human: (a) composite vein panel 1, (b) composite vein
panel 3, (c) metal sheet, (d) ”dent” defects, (e) ”crack” defects.

3.2 Overview of YOLOv5 based on Transformer Prediction Head (TPH)

There are many CNN-based object detectors, whether one-stage or multi-stage detectors with high inference
speed, precise localization, and recognition accuracy, like SSD,8 R-CNN,9 Fast R-CNN10 and Faster R-CNN.11

We have chosen YOLOv5, a single-stage object detector model which is mainly composed of three components
(like all models of this type): backbone, neck, and a head to make dense predictions from the input information
as shown in Figure 3.

Input Backbone Neck Dense Prediction

Figure 3: Single-stage detector architecture.

First, YOLOv5 resizes the incoming images of different size to 640 x 640 resolution, combines 4 images
into a single to complete the tasks of mosaic and mixup12 data augmentation, anchor frame with image scaling
calculation, and then sends them to the backbone network. The specific architecture of the backbone in YOLOv5
is based on a variant of the EfficientNet model, which is known for its efficient use of resources while maintaining
high performance. This backbone is designed to strike a balance between accuracy and computational efficiency.

The backbone in YOLOv5 consists of a series of downsample blocks, which are composed of convolutional
layers, activation functions, and downsampling operations. These blocks progressively reduce the spatial dimen-
sions of the feature maps while increasing the number of channels, capturing both local and global context. By



reducing the spatial dimensions, the backbone enables the subsequent detection layers to have a larger receptive
field, allowing them to capture information from a wider region of the input image.

For the neck, it uses the dynamic anchor boxes method for generating the anchor boxes, with a clustering
algorithm to group the ground truth bounding boxes into clusters, then using the centroids of the clusters as the
anchor boxes. This allows the anchor boxes to be more closely aligned with the detected objects size and shape
by introducing Spatial Pyramid Pooling SPP layers to lower the spatial resolution of the feature maps.13

In order to make the prediction more stronger to better detect different damages at various scales, and
particularly tiny-scale, we add an additional prediction head and we replace CNN-based prediction heads with
Transformer Prediction Heads (TPH), constructing the TPH-YOLOv5 model. The transformer encoder block
was inspired by the vision transformer,14 and modified by replacing some convolutional blocks and CSP bottle
neck in the original version of YOLOv5 with these transformer encoder blocks. Each transformer encoder block
includes two sub-layers. The first sub-layer is a multi-head attention layer and is followed by the second sub-layer
MLP. The MLP sub-layer is a fully-connected layer. Each sub-layer implements the residual connection in order
to increase the ability to capture different local information. TPH gives a performance gain of about 7%.15

3.3 Results of training

As illustrated in Figure 4, the output is one bounding box - region of interest (ROI) around each detected defect.
We mainly use 3 mechanical parts to provide an annotated dataset of real damages (cracks and dents) with
manual annotation. We generated more than 3000 annotated and augmented images. Training and validation
data represent 81% and 19% of the dataset, respectively. After training, the model achieves an accuracy of
99% with 0.995 mAP (mean average precision). Real time tests have been made to evaluate the robustness of
our model. Currently, we are working on expanding our dataset to make our model more general and cover a
wider range of industrial parts. We are also considering the integration of a new additional layer with instance
segmentation capability. For new and external datasets, we apply transfer learning (reuse of the pre-trained
model) which offers a reduction in training time and improving neural network performance.

(a) (b) (c)

Figure 4: Detection of damages on 2D images: (a) composite panel 3, (b) metal sheet, (c) damage number 7 on
the metal sheet (scanner texture image).

4. CHARACTERIZATION OF DAMAGES FROM 3D POINT CLOUDS

4.1 Characterization using the CAD model if it is available

When the CAD model is available, the characterization algorithm works in two steps as shown in Figure 5:
the first step is to align the CAD model and the scanned point cloud by applying a global alignment based
on the 4PCS algorithm,16 then a local alignment based on Anderson acceleration approach17 and robust error
metric based on Welch’s function18 which is less sensitive to outliers and partial overlaps. The second step is the
measurement of the deviation between the aligned point cloud and the CAD model. The technique19 is based
on the calculation of the distance from a point to a triangle, i.e. from a point to the plane of the triangle if its
projection on it is inside the triangle, and from the point to the nearest edge otherwise.
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Figure 5: Characterization of damages using the CAD model: (a) reference part in blue and scanned point cloud
in green, (b) Point cloud registration and characterization of damages (depth, width, length).

4.2 Characterization without using the CAD model

When the CAD model of the part is not available (Figure 6), the characterization algorithm works in two steps:

• Step 1: Creation of a virtual model by surface approximation according to the prior information: The
chosen model is a plane when we are inspecting a simple surface, and it is a 2.5D quadratic model when
the inspected surface is slightly curved. In the case when the surface is simple, the model is adjusted by
the least squares method, whereas when the inspected surface is complex, a B-Spline is fitted to the point
cloud, using principal component analysis (PCA), followed by a refinement and triangulation of the fitted
B-Spline surface, to obtain a smooth and parametric surface representation.

(a) (b) (c) (d)

Figure 6: Surface approximation for virtual model creation: (a) simple planar surface, (b) simple curved surface,
(c) complex curved surface, (d) Complex free-form surface.

• Step 2: The measurement of the deviation between the scanned point cloud and the virtual model.

(a) (b) (c)
Figure 7: (a) Composite part panel 1 with damage (b) Scanned point cloud of damage (c) Characterization of
the damage.

5. INTERCOMPARISON WITH SEVERAL SYSTEMS FOR DAMAGE ANALYSIS

In order to evaluate the methods we have developed, in particular our DECADOM Smart Inspection software
dedicated to characterization, we opted to carry out an intercomparison matrix of damage analysis and post-
processing between the results of different inspection softwares and 3D numerisation systems used for quality
control and dimensional analysis.

When comparing these systems, several factors can be considered:

• Accuracy and precision: Evaluate the accuracy and precision of each system in capturing and measuring
3D data. This includes assessing their ability to capture fine details, handle different surface types, and
maintain measurement consistency.



• Compatibility and integration: Consider the compatibility of each system with different hardware de-
vices, file formats, and industry standards. Integration with other software tools or platforms used in the
production workflow is also important.

• Feature set: Compare the features and functionalities offered by each system: alignment, filtering, mesh
generation, surface deviation analysis, Geometric Dimensioning and Tolerancing GD&T analysis, and re-
porting capabilities.

• User interface and ease of use: Assess the user interface and ease of use of each system. A user-friendly
interface with intuitive workflows can enhance productivity and efficiency.

• Cost: Consider the cost of each system, including initial investment, licensing, and ongoing maintenance
fees. Evaluate the value for money based on the specific needs of the particular application.

• Support and training: Evaluate the technical support and training resources provided by each system’s
developer. Access to documentation and responsive customer support to maximize the benefits of the
software.

We compared several inspection and damage analysis systems, such as SmartDent3D, Polyworks inspector,
DentCheck, GelSight, GOM Inspect etc. Below is a comparison table for some of the damages present on
composite panel 1 (Figure 2). The table contains results obtained with our software DC Smart Inspection, and
GOM Inspect.

Part name Damage DC Smart Inspection GOM Inspect
Surface( w × I) Depth(mm) Surface (w × l) Depth (mm)

Composite part
panel 1

D1 8.10× 12.75 3.5 6.95× 11.43 3.75
D4 9.42× 13.19 3.13 12.29× 15.14 3.19
D5 15.78× 15.28 1.21 18.55× 16.54 1.26

Table 1: Damage inspection results of composite panel 1 with DC Smart inspection and GOM Inspect software.

It can be seen that our results are comparable to the results obtained with GOM inspect, notably in estimating
depth of the defect. It should be noted that the majority of the systems require manual detection and selection
by the user, in order to launch inspection process, while automatic detection and characterization algorithm is
implemented in our software. Hence, there is a slight difference in damaged surface area estimation.

6. CONCLUSION

In this article, we propose an approach for the detection and characterization of damage on mechanical parts,
more specifically in the aerospace field. The aim is to detect the presence of potential damage such as dents or
cracks, then characterize it by assessing its extent (surface, depth) and its degree of criticality. We address this
in two stages.
First, we propose defect detection based on 2D image analysis. 2D images are acquired by a camera or a scanner
carried by a robot. We have developed a neural network model based on the YOLOv5-TPH architecture able
to identify and localize (ROI) damages on aeronautical parts. In order to bring and enhance the variability of
the training data set, we set up a tool for data augmentation and transformation, as well as automatic labeling.
Experimental results show that the model is highly accurate in detecting defects.
Next, we treat the point clouds acquired by a 3D scanner to characterize the damage. Using CAD model as a
reference, we can carry out the registration between the scanned point cloud with potential damages and the
reference model, then compute the surface deviation. When a CAD model is not available, we make a surface
approximation based on a scanned point cloud to create a virtual CAD model. In order to evaluate and validate
our analysis and inspection results, we conducted an intercomparison campaign with several systems for damage
analysis.
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