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INTRODUCTION

Automatic control by artificial vision is a way to relieve operators of repetitive visual inspection tasks and to ensure a faster and better quality control, by also providing traceability of control operations. Providing such control tools is one of the objectives of the company Diota, which is an industrial partner in this work. Specialized in the development of digital tools for Industry 4.0, Diota offers innovative solutions that exploit PLM (product lifecycle management) data, augmented reality technology and non-contact inspection technics. This work is part of the development of "Digital-based Robotics" tools. The Computer-Aided Design (CAD) model is used as a reference for this inspection process. It is also used as a guide for the inspection and it allows us to know a priori which mechanical part is being inspected.

The task is to establish the conformity of the inspected part based on the CAD. A conformity is defined by the actual presence of the expected mechanical part within the assembly. A proposed inspection module must be able to differentiate a compliant case from any other possible situation that may arise : [START_REF] Boughrara | Inspection of mechanical assemblies based on 3D Deep Learning approaches[END_REF] The expected part is absent; [START_REF] Max | Human error in maintenance[END_REF] Another part than the expected one is mounted (mounting error). Examples of three possible scenarios for the parts of type "support", are shown in figure 1.

The control end effector offers great flexibility and inspection capability. It is composed of several sensors offering different fields of view, which allows several functionalities (see figure 2).

In the work presented at QCAV'2021 [START_REF] Boughrara | Inspection of mechanical assemblies based on 3D Deep Learning approaches[END_REF], we addressed the problem with a pure classification approach. However, this approach showed weaknesses for missing support detection. Therefore, we have explored the semantic segmentation approach, more precisely the part segmentation approach, which will be presented in this paper. 
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PREVIOUS WORKS

The rise of artificial intelligence (AI) has benefited many fields. This is the case, for example, for autonomous cars, but more recently for the aerospace sector as well. Among major tasks which could involve AI, Airbus, and more generally the various aerospace manufacturing players, focus on anomaly detection and decision making.

In production or aeronautical maintenance, the vast majority of visual inspection tasks are aimed at finding defects or anomalies. These are typically long tasks requiring a great concentration of the operator. Furthermore, these detections are subject to human errors. With ever-increasing air traffic and high demands on maintenance personnel to meet commercial schedules, the pressure on inspection operations is becoming higher, which increases the risk of errors [START_REF] Max | Human error in maintenance[END_REF][START_REF] Drury | Human reliability in civil aircraft inspection[END_REF].

In aeronautics, the first robotic solutions focused on fuselage inspection, the external surface of the aircraft, with a robot crawling on the aircraft. For example [START_REF] Davis | Automated nondestructive inspector of aging aircraft[END_REF] is based on ANDI (Automated NonDestructive Inspector) and CIMP (Crown Inspection Mobile Platform). The goal was to detect cracks and corrosion on the aircraft fuselage. These works were the pioneers of remote 3D stereoscopic visual inspection. NASA's work [START_REF] Bar-Cohen | Autonomous rapid inspection of aerospace structures[END_REF], with the MACS robot, also belongs to the family of crawling robots. The 2010s were marked by the launch of a collaborative mobile robot with wheels named Air-Cobot, implemented for aeronautical inspection. Air-Cobot is capable of moving safely around an aircraft in an environment that contains obstacles to avoid. This application has led to many works [START_REF] Futterlieb | A navigational framework combining visual servoing and spiral obstacle avoidance techniques[END_REF][START_REF] Frejaville | Localisation à partir de données laser d'un robot naviguant autour d'un avion[END_REF][START_REF] Bauda | Real-time ground marking analysis for safe trajectories of autonomous mobile robots[END_REF]. This robot is equipped with a Pan-Tilt-Zoom (PTZ) camera and a 3D scanner, both used for inspection. There are several works on inspection based on the analysis of 2D images from PTZ camera acquisitions [START_REF] Jovančević | Automated exterior inspection of an aircraft with a pan-tilt-zoom camera mounted on a mobile robot[END_REF][START_REF] Jovančević | 3d point cloud analysis for detection and characterization of defects on airplane exterior surface[END_REF][START_REF] Leiva | Automatic visual detection and verification of exterior aircraft elements[END_REF]. Other works have focused on the exploitation of 3D data, also for visual inspection [START_REF] Jovančević | Exterior inspection of an aircraft using a Pan-Tilt-Zoom camera and a 3D scanner moved by a mobile robot: 2D image processing and 3D point cloud analysis[END_REF][START_REF] Bauda | 3d scanner positioning for aircraft surface inspection[END_REF].

In many industries, inspection of complex products with variable configurations by conventional manual methods can be cumbersome and limited. Time consuming and costly, these controls can be incomplete, prone to errors and often lack traceability. In this context, our partner Diota, has launched a project on the inspection of complex aeronautical assemblies in the production phase, based on exploiting 2D images or 3D point clouds [START_REF] Ben Abdallah | Inspection d'assemblages aéronautiques par vision 2D/3D en exploitant la maquette numérique et la pose estimée en temps-réel[END_REF][START_REF] Ben Abdallah | 3d point cloud analysis for automatic inspection of aeronautical mechanical assemblies[END_REF][START_REF] Mikhailov | Classification using a 3D sensor in a structured industrial environment[END_REF]. This work is a continuation of these endeavours, focusing on the exploitation of deep learning techniques to analyze 3D point clouds. In preliminary experiment [START_REF] Boughrara | Inspection of mechanical assemblies based on 3D Deep Learning approaches[END_REF], we have chosen PointCNN [START_REF] Li | Pointcnn[END_REF], the network which has proven to be the best in our classification tasks. We decide to use this network for a part-based segmentation approach.

DATASETS PROCESSING

For our inspection problem, we strive to obtain 3D deep learning models able to infer on real data without having seen any during the training. For this, we choose to perform our training only on synthetic data. Here our synthetic data are synthetic 3D point clouds generated from a CAD model.

Available data

CAD provides different levels of information: (1) support-fusion (cf. figure 3a): support (in red), with the elements of its close context like screws or clamps (in green); (2) support-fusion with its large context (in blue): corresponds to the wider context in which the support-fusion is integrated, for example the pipes and cables surrounding the support-fusion (cf. figure 3b). Further, figure 4 shows synthetic rendering for each real acquisition. 

Datasets generation

This process is essentially based on the combination of a Fibonacci sphere centered in the CAD of the inspected part (typically support) and a Z-buffer method for surface rendering. This approach takes into account occlusion and self-occlusion, while ensuring a realistic rendering very similar to the one obtained with the scanner. In order to simulate real data acquisition conditions, the virtual scanner is positionned at 60 cm from the centroid of the support. The number of viewpoints around the support is a parameter named N . N determines the discretization of the Fibonacci sphere, and it was defined by preliminary experiments. Different forms of 3D data-augmentation can be integrated to the generation of synthetic data. We apply the Farthest Point Sampling (FPS) [START_REF] Kamousi | Analysis of Farthest Point Sampling for Approximating Geodesics in a Graph[END_REF], a dowsampling method, in order to keep a fixed number of uniformly distributed points per synthetic acquisition. A summary diagram of the synthetic data generation pipeline is presented in figure 5.

Data augmentation should allow the deep learning model to become invariant to the variabilities to which it may be exposed in the inference phase. Indeed, industrial CAD data can be qualified as "perfect" data, without any noise or occultation by some external artefacts such as cables or protective plastic not present in CAD. Therefore, we implemented data augmentation methods specific to our problem, adding, during the generation of synthetic clouds:

• Gaussian noise to the point positions: simulating the acquisition noise of the scanner • Artefacts: simulating a partial occultation, like the one caused by a cable. During the synthetic data generation we add the large context. After the generation of our synthetic cloud, we will provide two labels (two segmentation classes) to segmentation models: (1) support-fusion (cf. figure 3a), 2) large context (cf. figure 3b).
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Automatic annotation

For the evaluation of our segmentation models we need the point-level labels of our real point cloud acquisitions. So we exploit the digital model to segment the support-fusion in the scanner point cloud acquisition. For this purpose, we developed a module that aligns the digital CAD model to the 3D point cloud acquisition. Thus allowing to separate the support-fusion from the background (context) in the point cloud. An example shows the result of automatic annotation on a real cloud in figure 6. It is important to note that we used the alignment module only to generate labels on already almost alligned examples. It should be stressed that this method, which is very sensitive to pose shifts and variations, could not replace our segmentation module for the detection of missing supports. 

EXPERIMENTS

Our previous experiments [START_REF] Boughrara | Inspection of mechanical assemblies based on 3D Deep Learning approaches[END_REF] allowed us to choose PointCNN as the best network on our data for a classification task. The knowledge extraction part of the network being common for classification and segmentation, we chose to use the same network for our part segmentation task.

Our model

For training, we generated 3D point clouds database using 3D CAD models from 61 different supports. To generate synthetic 3D point clouds from many different points of view, we have developed a z-buffer based method. Same as the scanner, this method takes into account self-occlusion. For each support with its surrounding (cf. figure 3b), we generate 40 different synthetic clouds and ignore the views where the background represents more than 80% of the points. We have two distinct labels: 0 for background and 1 for support. The distribution of the clouds is Train-set: 945; Validation-set: 117; Test-set: 150. After the training, PointCNN achieves 97.2% accuracy and 94% MIoU on the synthetic Testing-set. We have tested this model on 623 real acquisitions: 590 presence cases and 33 absence cases. The threshold (minimum) for missing case detection has been set to 80% of points segmented as background. Table 1 presents the results and the confusion matrix is given in table 2.

These results are very encouraging and confirm a good ability of a segmentation-by-parts approach, trained on synthetic data, to obtain good results on real data. However the false negative (FN) rate (absence recognized as a presence) greater than 0 is not acceptable. After a close look into the acquisitions that caused errors, we could see that these acquisitions contain reflective areas that confused the scanner which resulted either in a lack of points, or in an extremely noisy acquisitions.

Evaluation

Several segmentation results on real acquisitions are presented in figure 7. On all of these visualizations, we see almost the same segmentation results provided by our PointCNN model, compared to those provided by our annotation module. As for support 21, despite an almost perfect segmentation, we find context points scattered in the middle of the support area. As for the support 52, we find a robustness to separate the support despite a dense context with many cables/pipes. This robustness to occlusion is interesting to note, despite some difficulties in discerning cable clamps in some places. We can confirm that synthetic learning allows, a relatively good robustness against cables and occultations on the real domain. For supports 49 and 14, the proposed segmentation is very close to that of the automatic annotation, with some regions wrongly segmented as context and vice versa.

Real domain segmentation

Another problem on which we wanted to focus our attention is that of density variation. Indeed, real acquisitions are imperfect by definition, compared to purely synthetic acquisitions. It is therefore not uncommon to see density variations in the real acquisitions. It is important that, when faced with this type of example, our network is still able to identify the presence of the support. It is the case for the acquisition of the support 14, (cf. figure 8), where, in spite of great variations in density, the segmentation proposed by PointCNN manages to draw the contours of the support. 3D point cloud segmentation with 2 classes can be described as a point-wise classification problem. In our study, to obtain an evaluation by support, we calculate Mean Intersection over Union (MIoU) for each support. For each support, MIoU is expressed as shown in equation ( 1), with type i corresponding to the support i. IoU j represents the ratio of the number of correctly classified points and the total number of classified points, for the j th cloud of the support i ∈ {1...M }. n i represents the number of clouds corresponding to support i.

M IoU (type

i ) = 1 n i ni j=1 IoU j (1) 
This metric allows to obtain an overall view by class. This overview considers all the present labels (two labels in our case) without giving importance to any label. Only the proportion of correctly classified points counts, regardless of their label. Here, M = 61 since there are 61 different supports that we consider in our assembly. For our evaluation we use as reference the automatic annotation presented in section 3.3. The average MIoU reaches 75% on the Presence set and 92% on the Absence set. These are good results. The less good performance on the Presence set is due to some small wrongly classified regions. An example is the support 21 in figure 7 where many context points are found in the middle of those associated with the support.

To improve these results we propose a post processing method based on radius neighbors to eliminate wrongly classified regions. This method can be described as weighted neighborhood average smoothing. This method was able to increase the average MIoU on the Presence set by 2%, reaching 77%. On the Absence set the performance did not change. It should be noted that even if smoothing presents better visual results, unfortunately it did not allow to decrease the FP or FN previously presented in table2.

CONCLUSION

In this article, we sought to define a protocol to automatically recognize the absence/presence of a mechanical assembly support. In order to detect the presence of support, we employed the known PointCNN segmentation network, which we trained with purely synthetic 3D point clouds. We trained the part-based segmentation network only on the clouds with present support. We trained the network to extract only the support from the cloud, i.e. to separate the support from its surrounding (context). From the segmentations provided by PointCNN, we further propose an inspection protocol to recognize the presence/absence of support. Thus, we set a threshold for absence detection based on the proportion of context points in the cloud. We chose the threshold of 80% which allows us to reach an Accuracy of 98.7% on our real data set. In terms of absolute values, we obtain 1 FN and 7 FP. Expectedly, we found that the network has proven to be less accurate with reflective areas. This is an objective of our further work. This article was the basis for our complete inspection module, which also contains support type recognition.
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 12 Figure 1: Examples of the different possible scenarios
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 3 Figure 3: Visualization of the synthetic scene from the same point of view. (a) support-fusion only, (b) supportfusion and its large context (in blue).
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 4 Figure 4: The first row represents the 2D images taken by the camera with a wide field of view. The second row represents the synthetic renderings corresponding respectively to the image acquisitions from the first row.
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 5 Figure 5: Complete description of our synthetic data generation process
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 6 Figure 6: Automatic annotation : (a) 2D image corresponding to the acquisition, with the bounding box around the support 21 in green; (b) the 3D point cloud provided by the scanner, with the bounding box around the support 21 in green; (c) completed labeling of the real acquisition by our automatic annotation module based on the synthetic model. In red the support and in blue the context (background).
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 7 Figure 7: Results on real scanner acquisitions
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 8 Figure 8: Density variation : acquisition with large density variations for the support 14.

Table 1 :

 1 Results on real point clouds with threshold 80%

	Set	Accuracy Precision Recall F1-score Nb acq
	Presence set	98.8%	100%	98.8%	99.4%	590
	Absence set	96.9%	100%	96.9%	98.4%	33
	Total	98.7%	98.8%	98.7%	98.7%	623
	label/pred Missing Presence	Nb acq.	
	Missing	32 (TP)	1 (FN)	33	
	Presence	7 (FP) 583 (TN)	590	

Table 2 :

 2 Confusion matrix after application of the 80% threshold for missing case detection.
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