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ABSTRACT. The classical transport model of radiative transfer uses the specific intensity as the
descriptor. By differentiating the transport model of intensity with respect to a geometric parameter,
a model of geometric sensitivity can be built. In this work, a classical model of intensity and models of
geometric sensitivity are built with specular flat mirrors as the boundary conditions and are applied
in a concentrated solar power plant. The sensitivities of the impacting power on the receiver with
respect to the geometric parameters of each mirror are estimated by the Monte Carlo Method (MCM).
Furthermore, by analyzing the sources in the models of geometric sensitivity, the contributions of the
typical optical effects: spillage, blocking, and shadowing, to the sensitivity can also be estimated and
analyzed, which is essential information to optimize the system.

1. INTRODUCTION

MCM is preferred for radiative transfer simulations involving complex geometries [1]. Motivated
by the optimization processes, calculating the sensitivities (partial derivatives of an observable with
respect to some parameters) has always been an open research problem in radiative transfer [2–6].
Recently, Lapeyre et al. [7] proposes to build a model of transport for the sensitivity of the intensity.
The similitude of the transport of intensity and the sensitivity is studied.

Generally, the intensity I ≡ I(~x, ~ω,π) is the descriptor of a radiative transfer system, which is a
function of three independent variables: ~x the position vector, ~ω the propagation direction, and π̈
a geometric parameter. In the medium, the transport of the intensity is described by the Radiative
Transfer Equation (RTE) [8]. The RTE in an inhomogeneous cold medium has the following form,
with κa the absorption coefficient, κs the scattering coefficient, and Φ the phase function:

~ω·∂I(~x, ~ω, π̈)

∂~x
= −κa(~x)I(~x, ~ω, π̈)−κs(~x)I(~x, ~ω, π̈)+

1

4π

∫
Ω′=4π

κs(~x)I(~x, ~ω′, π̈)Φ(~ω′, ~ω)d~ω′

(1)

In the medium, the RTE of the sensitivity s ≡ ∂π̈I can be built by differentiating the RTE of intensity
with respect to π̈. Since π̈ corresponds to the geometric parameters of mirrors, the radiative properties



of the medium do not depend on it. Therefore, the corresponding development is straightforward:

~ω · ∂s(~x, ~ω, π̈)

∂~x
= −κa(~x)s(~x, ~ω, π̈)− κs(~x)s(~x, ~ω, π̈) +

1

4π

∫
Ω′=4π

κs(~x)s(~x, ~ω′, π̈)Φ(~ω′, ~ω)d~ω′

(2)

The sensitivity is regarded as a physical quantity emitted, absorbed, scattered, and reflected in the
system. We can then benefit from years of research in solving the transport problem of intensity (the
radiative transfer equation) to solve the transport problem of sensitivity.

The radiative modeling involving specular flat mirrors is widely required in the research field of
Concentrated Solar Power (CSP) [9][1], images synthesis [10][11] and optics [11]. The sensitivity of
the observable with respect to the geometric parameters of the mirrors is important information but
is hard to calculate. In this work, based on the study of Lapeyre et al. [12][7], we build the transport
models of intensity and its sensitivities for a typical radiative system involving specular flat mirrors
to determine the impacting power on the receiver and its sensitivities to the geometric parameters of
each mirror. Furthermore, by identifying the sources in the model of sensitivity, the contributions of
typical optical effects: spillage, blocking, and shadowing, to the sensitivities can also be calculated,
and then a detailed sensitivity analysis can be performed for optimization purposes.

2. GENERAL MODELS

A typical radiative transfer system with specular flat mirrors and black-body surfaces is shown in
Figure.1. We study a system that consists of specular flat mirrors Hi, ∀i ∈ {1, 2, . . . , nH } and nH is
the total number of mirrors in the system, a receiver R, the cold boundary Ol and the hot boundary
Os. r, s, l, p, b indices refer to the receiver, the hot boundary, the cold boundary, the reflecting surface
of mirrors, and the rearward surface of mirrors. ~x is the position vector, ~ω the propagation direction,
and π̈ ≡ [π̈i,j ] the matrix of geometric parameters (Figure 1). j indexes the six geometric parameters
of a mirror Hi: π̈i,1, π̈i,2 and π̈i,3 characterize the translations following the three axes in the global
coordinate system ~e1, ~e2 and ~e3; π̈i,4 and π̈i,5 characterize the altazimuth mount according to the
two vectors of rotation ~ai,θ and ~ai,φ; π̈i,6 characterizes the length of the square mirror. ~x, ~ω, π̈ are
independent variables and matrix s ≡ [si,j(~x, ~ω, π̈)] = ∂π̈I(~x, ~ω, π̈) is defined as the matrix of
sensitivity of the intensity [7].
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Figure 1. The radiative system (the left figure) and the studied parameters (the right figure). This
figure is extracted from [13].



In this article, we study the sensitivity of the impacting power (Equation.5), with respect to the geo-
metric parameters (Equation.6), in the context of solar power plants. Attenuation by absorption and
scattering is often negligible. The first observation of P. Lapeyre (the intensity and the sensitivity
propagations are identical in the medium, which can be seen by comparing Equation.1 and Equa-
tion.2) reduces to the following statement: As the intensity propagates along a straight line, the sensi-
tivity also propagates along a straight line. The RTE for intensity and the sensitivity to a transparent
medium leads to the following:

∂I(~x, ~ω, π̈)

∂~x
= 0 ;

∂si,j(~x, ~ω, π̈)

∂~x
= 0 (3)

However, the main question is modeling sensitivity on the boundaries and identifying the sensitiv-
ity sources. The PhD. thesis of P. Lapeyre focused on the formal mathematical development of the
boundary conditions of the sensitivities, which is the tricky part of the model [14]. All the details of
the model are available in [7].

2.1 Boundary conditions of the intensity

Before modeling the sensitivity on the boundaries, we must first model the intensity. The cold bound-
ary, the receiver, and the rearward surfaces of the mirrors are considered cold black bodies. The
reflecting surface of mirrors is considered cold and specular with the reflectivity ρ, and the source of
intensity locates on the hot boundary within the solar cone.

{
I(~xr, ~ωr) = 0; I(~xl, ~ωl) = 0; I(~xb, ~ωb) = 0 ; I(~xp, ~ωp, π̈) = ρI(~x, ~ωs, π̈)

I(~xs, ~ωs) ≡ I̊(~ωs) = I0H(~ωs · ~ωc − cos (θdisk))
(4)

where I̊ indicates the source of intensity. Herein, we model a source of intensity within a limited solid
angle. It is a common assumption when considering the sun as the source of intensity in the system
[15]. ~ωc is the vector that characterizes the solar position, I0 the constant intensity from the sun, H
the Heaviside function and 2× θdisck = 0,0093 rad the apparent diameter of the sun. In other words,
the intensity coming from the solar cone around ~ωc is a constant. Otherwise, it is null.

2.2 Definitions of the observable and its sensitivities

The observable is the physical measure of the descriptor (the intensity) in the radiative system. It is
usually the spatial or angular integral of the intensity. Herein, we take the impacting power of the
receiver as an example. The impacting power is the sum of arriving intensities on the receiver:

P (π̈) =

∫
R

d~xr

∫
2π

|~ωr · ~nr|d~ωrI(~xr, ~ωr, π̈). (5)

The sensitivities of the observable S are its derivatives with respect to the parameters π̈, which can
be regarded as the sum of arriving sensitivities on the receiver:

S(π̈) ≡ ∂π̈P (π̈) ≡ [Si,j(π̈)] =

∫
R

d~xr

∫
2π

|~ωr · ~nr|d~ωrs(~xr, ~ωr, π̈). (6)

A transport model of I is already built. One can benefit from the work of [1] to build an efficient
Monte Carlo algorithm to estimate P (π̈). In order to estimate the matrix of sensitivities of the ob-
servable S, transport models of the sensitivities s are needed.



2.3 Boundary conditions of the sensitivity and identification of sensitivity sources

Since the parameters π̈ characterize only the mirrors, the boundary conditions of the cold boundary,
the hot boundary, and the receiver do not depend on it:

si,j(~xr, ~ωr) = 0; si,j(~xl, ~ωl) = 0; si,j(~xs, ~ωs) = 0. (7)

However, the development of the boundary conditions of si,j for the mirror Hi is not that straightfor-
ward. Models of geometric sensitivity on reflecting surfaces and an opaque surface are proposed by
[7]. Based on these two models, the boundary conditions of the reflecting surface and the rearward
surface of the mirror are described. The reflecting surface consists of emission terms, as known as
the sources of the sensitivity, and a reflection term (Equation 8). The rearward surface consists of
emission terms (Equation 9).

si,j(~xp, ~ωp, π̈) = s̊i,j(~xp, ~ωp, π̈) + ρsi,j(~xp, ~ωs, π̈) (8)

si,j(~xb, ~ωb, π̈) = s̊i,j(~xb, ~ωb, π̈) (9)

s̊i,j is noted as the source of si,j (as we noted I̊ as the source of I). The source s̊i,j can be physically
regarded as the local perturbations of I with respect to π̈i,j . For example, in the left figure of the
Figure. 2, the intensity (in blue color) arrives on the mirror. The perturbation of the parameter π̈i,1
causes the perturbations of reflected intensity. These perturbations are regarded as the sources of
sensitivities and are drawn in red color. The other term on the right side of Equation 8 represents the
reflection of such perturbation. Moreover, different types of perturbation (sources) are distinguished
in this work, related to different optical effects.

On the reflecting surface of Hi:

s̊i,j(~xp, ~ωp, π̈) = s̊tari,j (~xp, ~ωp, π̈) + s̊bloi,j (~xp, ~ωp, π̈) + s̊shad−bi,j (~xp, ~ωp, π̈) (10)

and on the rearward surface of Hi:

s̊i,j(~xb, ~ωb, π̈) = s̊shad−fi,j (~xb, ~ωb, π̈). (11)

s̊tari,j , s̊bloi,j , s̊shad−bi,j and s̊shad−fi,j are called the source of targeting, backward-blocking, backward-
shadowing, and forward-shadowing respectively. Their physical illustration will be done by two spe-
cific configurations, and their explicit mathematical expression can be found in [7,13].

Configuration with only one mirror When we focus on only one mirror, the perturbation of π̈ is re-
lated to the “targeting effect” (Figure 2). It consists of two kinds of perturbation: spatial perturbation
and angular perturbation. For example, the perturbation of π̈i,1 causes the change of mirror position,
leading to the perturbation of intensity on its border (figure on the left). This perturbation of inten-
sity is noted as the corresponding source of sensitivity s̊tar,spatiali,1 . The perturbation of π̈i,4 causes
the change of position and also the change of normal, leading to the perturbation of intensity on
the solar cone border (figure on the right). This perturbation is noted as s̊tar,angulari,4 . Therefore, the
corresponding source of sensitivity has two parts:

s̊tari,j = s̊tar,spatiali,j + s̊tar,angulari,j . (12)
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Figure 2. The perturbation of π̈i,1 leads to two targeting perturbations of the intensity: the spatial one
and the angular one. This figure is extracted from [13].

Configuration with four mirrors A perturbation on the geometric parameters π̈ also interacts with
the neighboring mirrors. For example, in Figure 3, besides the targeting effect, the perturbation of π̈
is also related to the backward-blocking effect, backward-shadowing effect, and forward-shadowing
effect. Two examples are shown here. The perturbation of π̈i,1 blocks or unblocks the optical path
passing through the border of Hi, coming from the reflection on Hi′ . The source of sensitivity s̊bloi,1

is then located on the border of Hi. Also, the perturbation impacts the shadow on Hi′′′ , created
by Hi itself. s̊shad−f is then located on the border of Hi. Finally, the perturbation also impacts the
shadow on Hi itself. The source s̊shad−b,spatiali,1 characterises the change of position and s̊shad−b,angular

characterises the change of normal. Similar to the targeting effect, the source of backward-shadowing
has two parts:

s̊shad−bi,j = s̊shad−b,spatiali,j + s̊shad−b,angulari,j . (13)
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Figure 3. The perturbation of π̈i,1 leads to the perturbations of shadowing and blocking. This figure
is extracted from [13].



2.4 Calculating the sensitivity of the observable and its contributions

The model of si,j is built at this stage. We note Star
i,j , Sblo

i,j , Sshad−b
i,j and Sshad−f

i,j as the sum of cor-
responding sources impacting the receiver. Physically, they are different kinds of perturbation of the
intensity captured by the receiver:


Star
i,j (π̈)

Sblo
i,j (π̈)

Sshad−b
i,j (π̈)

Sshad−f
i,j (π̈)

 =

∫
R

d~xr

∫
2π

|~ωr · ~nr|d~ωr


s̊tari,j (~xr, ~ωr, π̈)
s̊bloi,j (~xr, ~ωr, π̈)

s̊shad−bi,j (~xr, ~ωr, π̈)

s̊shad−fi,j (~xr, ~ωr, π̈)

 . (14)

The sensitivity of the observable Si,j is the sum of all contributions. Physically, it is the sum of all
kinds of perturbation captured by the receiver:

Si,j = Star
i,j + Sblo

i,j + Sshad−b
i,j + Sshad−f

i,j (15)

3. RESULTS

The developed method is then applied to a functioning solar power station: Sierra SunTower [16].
We addressed our calculation to a quarter of the mirror field for symmetry considerations. For each
mirror in the field, the sensitivities of impacting power with respect to the six parameters (shown in
Figure 1) are calculated. Only the results of [Si,1] and [Si,6] are shown here (Figure 4) because of the
given space constraint. Each point represents a mirror, and the receiver is located at (0,0) at 50 meters
high. The sun is at the position of local solar noon at the summer solstice, and the y-axis points to the
south. The corresponding color indicates its sensitivity. It is observed that some mirrors at different
locations are more sensitive than others. For example, the sensitivities of the left column on the left
figure of Figure.4 are negative because the perturbation due to the translation following the positive
x-axis direction makes them hidden behind the neighboring mirrors.
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Figure 4. Sensitivities of the impacting power with respect to the translation following the x-axis (left
figure) and the length of mirrors (right figure). This figure is extracted from [13].

Moreover, a comparison of results obtained by our method and the finite difference method is per-
formed (see Table.1). Following the finite difference method, the sensitivity of the size of the 5297th

mirror is approximated by the two Monte Carlo estimations of the power: S̃ = P (π̈+∆π̈)−P (π̈−∆π̈)
2∆π̈ .

The corresponding standard deviation is also approximated [17]:σ(S̃) ≈ σ(P (π̈+∆π̈))+σ(P (π̈−∆π̈))
2∆π̈ . The

result of the finite difference which takes a long calculation time, is still not reliable because of the
heigh standard deviation compared to the approximated value. However, our method (MCM) con-
verges almost instantaneously. According to the correlation between the Monte Carlo computation



time and the precision [17], the finite difference method will take 2× 1011 more time of computation
time to have the same accuracy of our method. Also, it is noted that the calculations are run on an
ordinary laptop (4 CPUs of i5 Intel™, 8th generation).

Table 1: Estimated result of the sensitivity of the size (indexed as 6) of the 5297th mirror by our
method (MCM), compared and validated by the approximation of the finite difference method.

Finite difference method Value standard deviation calculation time
P (π̈5297,6 −∆π̈5297,6) 3231.62[w] 0.0389[w] 272.5[s]
P (π̈5297,6 + ∆π̈5297,6) 3231.85[w] 0.0389[w] 272.5[s]

S̃5297,6(π̈5297,6) 1.15[w/m] 0.389[w/m] 545[s]
Our method (MCM) Value standard deviation calculation time
S5297,6(π̈5297,6) 1.14974[w/m] 0.000041[w/m] 0.188[s]

Last but not least, not only the sensitivities but also the contributions of sensitivities are estimated.
Table 2 shows the sensitivity of the translation following the positive x-axis direction of the 676th

mirror. A perturbation of this translation will make the mirror less blocked by the one in front of it (the
contribution Star

676,1 is positive). However, the mirror behind will be blocked more (the contribution
Sblo

676,1 is negative) and see Figure 5. The total sensitivity is then the sum of these two contributions.
Similarly, each sensitivity estimated by our method is the sum of its contributions so that a detailed
physical analysis of sensitivity is possible.

Table 2: Sensitivity and its contributions (estimated values and their standard deviations) for the
translation X of the 676th mirror.

unit W m−1

Star
676,1 70.63 ± 0.94

Sblo
676,1 -30.69 ± 0.58

S676,1 39.93 ± 1.51

H676H676

R

π̈676,1

s̊blo676,1

H676H676

R

π̈i,1

s̊tar676,1

Figure 5. Two contributions of S674,1: a positive contribution from the targeting effect and a negative
contribution from the backward-blocking effect. This figure is extracted from [13].

4. CONCLUSION

A radiative transfer model is built for solar power plants using the intensity I as the descriptor. By
differentiating the model of intensity, models of the sensitivity of the intensity with respect to different
parameters si,j are built. The observable, impacting power on the receiver and its sensitivities with



respect to the geometric parameters of the mirrors can be estimated by the MCM [1]. Moreover,
this method allows us to distinguish sensitivity sources related to the targeting, backward-blocking,
backward-shadowing, and forward-shadowing effects, which allows us to estimate contribution by
contribution for each sensitivity and perform a detailed optimization process. Finally, the geometric
sensitivities and their physical contributions can be estimated and analyzed in detail in a solar power
plant. From the results of this work, engineers and researchers can couple our method with a gradient-
based optimization algorithm to optimize a CSP system and perform a detailed sensitivity analysis.
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[8] J. R. Howell, M. P. Mengüç, K. Daun, and R. Siegel, Thermal radiation heat transfer, CRC press, 2020.

[9] C. K. Ho, “Advances in central receivers for concentrating solar applications,” Solar energy, vol. 152, pp. 38–56,
2017.

[10] M. Kurt and D. Edwards, “A Survey of BRDF Models for Computer Graphics,” SIGGRAPH Comput. Graph.,
vol. 43, may, 2009.

[11] R. Montes and C. Ureña, “An overview of BRDF models,” University of Grenada, Technical Report LSI-2012-001,
2012.

[12] P. Lapeyre, S. Blanco, C. Caliot, J. Dauchet, M. El Hafi, R. Fournier, O. Farges, J. Gautrais, and M. Roger, “Monte-
Carlo and sensitivity transport models for domain deformation,” Journal of Quantitative Spectroscopy and Radia-
tive Transfer, vol. 251, p. 107022, 2020.

[13] Z. He, P. Lapeyre, S. Blanco, S. Eibner, M. El Hafi, and R. Fournier, “Monte-Carlo estimation of geometric sensi-
tivities in Solar Power Tower systems of flat mirrors,” Solar Energy, vol. 253, pp. 9–29, 2023.

[14] P. Lapeyre, “Un modèle de transfert radiatif pour la sensibilité géométrique: lecture physique des algorithmiques
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