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A model packing based on a tree of face-to-face regular tetrahedra for monodisperse spheres

The packing bed of monodisperse spheres is modelled by a tree of face-to-face regular tetrahedra which vertices are the loca-tion of the bead's centres. A packing fraction of 0.433 is obtained when this cluster of spheres occupies the maximum space available, without pores large enough to accommodate a new sphere. This value and other structure descriptorscoordination numbers and local packing fraction distributions-are compared with experimental or numerical simulations observations of beds of monodisperse spheres built with different protocols and with capillary or Van-der-Waals forces.

Introduction

Due to its interest for various applications in fluid or glass physics or for the understanding of the volume occupied by a packed bed of granular media, the random packing of monodisperse spheres has attracted numerous studies [START_REF] Bernal | Packing of spheres: co-ordination of randomly packed spheres[END_REF]. Scott has observed a random close packing (RCP) of 0.637 and a random loose packing (RLP) of 0.60 for non-cohesive particle packed by gravity extrapolating in the limit of large containers [START_REF] Scott | Packing of spheres: packing of equal spheres[END_REF]. These figures are lower than the face centred cubic or hexagonal compact regular lattice packing which has a packing fraction Φ = √ 2 6 ∼ 0.74 . Hales demonstrated that this packing fraction is the maximal one for any packing [START_REF] Hales | A proof of the kepler conjecture[END_REF][START_REF] Hales | A formal proof of the kepler conjecture[END_REF].

The value of 0.63-0.64 is an accepted value for random close packing [START_REF] Scott | The density of random close packing of spheres[END_REF]. Using a statistical geometrical approach where the packing is viewed as a collection of tetrahedral sets of spheres with the property that one sphere is in contact with the three other spheres, Gotoh and Finney obtained a value of 0.6357 [START_REF] Gotoh | Statistical geometrical approach to random packing density of equal spheres[END_REF]. More recently, Blumenfeld [START_REF] Blumenfeld | Disorder criterion and explicit solution for the disc random packing problem[END_REF] by statistics on the branched graph formed by the lines joining the centres of disks in contact and Zaccone [START_REF] Zaccone | Explicit analytical solution for random close packing in d = 2 and d = 3[END_REF] by computing a rigidity threshold, proposed explicit solutions for RCP in 2D or 3D situations.

The RLP is observed in a range of 0.55 [START_REF] Onoda | Random loose packings of uniform spheres and the dilatancy onset[END_REF][START_REF] Berryman | Random close packing of hard spheres and disks[END_REF] to 0.60 for monodisperse spheres. Song, Wang and Makse proposed an analytical estimate of RCP of 3∕(3 + √ 3) ∼ 0.634 and a phase diagram for jammed matter where the coordination number ranges from 6 to 4 when the packing fraction ranges from RCP to RLP with a lowest value of 2∕(2 + √ 3) ∼ 0.536 [START_REF] Song | A phase diagram for jammed matter[END_REF].

For cohesive particles, the packing fraction may be lower than these figures since the attractive inter-particle force may sustain the packed bed against gravity. They may have different origins: in the case of fine particles experiencing Van-der-Waals (VdW) attractive forces, Yang et al. compiled different experimental results and performed Discrete Element Method numerical simulations which indicates a decreasing packing fraction with the particle size till very low values (0.17 for a particle diameter d = 1 μ m) starting from a typical size of about 100 μ m, for which the interpar- ticle Van-der-Waals force becomes greater than the particle weight for most materials [START_REF] Yang | Computer simulation of the packing of fine particles[END_REF].

The cohesiveness may also be induced by the presence of a wetting liquid. It is observed a volume expansion when adding a liquid, which makes the packing fraction to decrease till around 0.45-0.46 for a few volume percent of liquid [START_REF] Yang | Numerical study of the packing of wet coarse uniform spheres[END_REF][START_REF] Louati | Apparent friction and cohesion of a partially wet granular material in steady-state shear[END_REF]. Nevertheless, the capillary behaviour is different from the dry Van-der-Walls cohesion. Discrete Element Method (DEM) simulations show that their packing fraction decreasing behaviour with the particle size saturates to a plateau value of 0.37 [START_REF] Chen | Random loose packing of small particles with liquid cohesion[END_REF]. This difference of behaviour may be explained by the difference on the nature of the force, the VdW force decreases with the inverse of the square interdistance while the capillary force remains mainly constant with the interdistance [START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF]. This force brutally drops to zero for a rupture distance given by the cubic root of the liquid bridge volume for a fully wetting liquid [START_REF] Lian | A theoretical study of the liquid bridge forces between two rigid spherical bodies[END_REF].

Adding the stickiness between particles expands the range of potential packing fraction. For dense packing a critical packing fraction may be defined by the onset rigidity transition when a rigid cluster percolates in the whole volume [START_REF] Koeze | Sticky matters: jamming and rigid cluster statistics with attractive particle interactions[END_REF] or by the onset of shear modulus [START_REF] Yoshii | Mechanical and geometrical properties of jammed wet granular materials[END_REF].

Here, we present a geometrical packing model for monodisperse spherical particles and examine its features to evaluate how it compares with experimental and numerical observations of granular packings. In this model packing, each monodisperse spherical particle is placed on three other particles which are also in mutual contact. They form a regular tetrahedron of size the particle diameter by the segments joining the four centres.

This static model is independent on forces acting in the packing (particle weight, interparticle and external forces). It is also independent on the dynamics of particle deposition. In particular, the accessibility of the chosen particle position is not evaluated in this model and the particles are not allowed to settle on a three non-contacting spheres leading to a unique cluster of spheres packed in a regular tetrahedral way. The unicity of this cluster and the absence of disorder in these tetrahedra is a crude approximation of real situations. But the mathematical simplicity of the model has computational advantages, and the model does not depend on external forces (gravity pluvation or compression) to build the packing, leading to a model packing for a benchmark against which observed or simulated packing may be compared.

The next section develops the model and explains the simulations situations explored. Section 3 comments the results obtained on packing fraction. Section 4 develops the analysis of the structure by computing the contacts and interdistances between particles. Finally, Sect. 5 provides a comparison with experimental and numerical observations from the literature.

In all the manuscript the lengths are scaled by the diameter of the spheres.

Tetrahedral packing of monodisperse spheres

Description of the model packing

The most compact packing of 4 spheres is to place the fourth one on top of the other three touching each-others. The 4 sphere centres form the vertexes of a regular tetrahedron with an edge length of 1.

Adding a sphere in the model consists of gluing a new tetrahedron sharing a common face with a present tetrahedron. Figure 1 displays such an arrangement with 7 spheres corresponding to the 4 black lined tetrahedra. This figure illustrates also that it is not feasible to pave all the space with tetrahedra since the fifth tetrahedron (dotted lined) makes a small angle with respect to the first one (see Lagarias and Zong [START_REF] Lagarias | Mysteries in packing regular tetrahedra[END_REF] for an historical and features on packing of regular tetrahedra).

Furthermore, the dotted lined tetrahedron cannot be built since the distance between the new vertex with one existing vertex is lower than 1, meaning the overlapping of the new sphere with another sphere. This point makes the sphere packing studied presently different from the packing of particles whose shape are regular tetrahedra studied [START_REF] Lagarias | Mysteries in packing regular tetrahedra[END_REF][START_REF] Babiker | Combinatorial representation of tetrahedral chains[END_REF][START_REF] Torquato | Dense packings of polyhedra: platonic and archimedean solids[END_REF] for which the configurations with two vertexes at a distance lower than one are allowed.

Nevertheless, some results obtained from the study of face-to-face regular tetrahedra are relevant for this model sphere packing. One important is that a chain of face-toface glued tetrahedra cannot form a ring [START_REF] Babiker | Combinatorial representation of tetrahedral chains[END_REF][START_REF] Mason | Can regular tetrahedra be glued together face to face to form a ring?[END_REF]. The Fig. 1 Chain of regular tetrahedra. Seven sphere centres (labelled A to G) are located at the apexes of the four black regular tetrahedra. The fifth dashed blue translucent tetrahedron cannot be put due to the collision between it and the first tetrahedron on this chain consequence is that two spheres in packed bed are linked by a unique chain of regular tetrahedra. The absence of loops in the interconnection chains leads to the fact that the sphere-sphere attractive force must sustain the weight of all the packed bed in this idealised model.

Finally, it may be reminded that the model discards the possibility to place a sphere on 3 spheres which are not into contact (like the spheres centred on A, B and G in Fig. 1) forming a non-regular tetrahedron.

Generation of a packing

First four spheres

A packing is generated from the fourth spheres glued together to form an initial set of 4 spheres forming a regular tetrahedron. The coordinates of their four centres A, B, C, D in a cartesian orthonormal frame may be given by a 4X3 matrix P o where each column gives the xyz coordi- nates of the 4 centres:

It is convenient to write the coordinates in the orthogonal affine x ′ y ′ z ′ frame where x ′ , y ′ and z ′ -axis are respectively

1 2 x , √ 3 
6 y and √ 2 3 z . The 4X3 matrix in the right member of Eq. (1) gives the coordinates of the 4 centres in this frame; there are all integers.

Adding a sphere

The computation of the coordinates of a new sphere centre T placed on the facet QRS of a regular tetrahedron PQRS is obtained by the fact that T is the mirror of P relatively to the QRS-plane inversion. This gives the following relationship:

This can be generalised to a sphere centre related to the first tetrahedron ABCD by a chain of n regular tetrahedra. To obtain its coordinates, we have to compute the matrix M = P 0 C n , with:

(1)

P 0 = ⎛ ⎜ ⎜ ⎜ ⎝ 0 1 1 2 1 2 0 0 √ 3 2 √ 3 6 0 0 0 � 2 3 ⎞ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎝ 1 2 0 0 0 √ 3 6 0 0 0 � 2 3 ⎞ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎝ 0 2 1 1 0 0 3 1 0 0 0 1 ⎞ ⎟ ⎟ ⎠ . (2) ⎛ ⎜ ⎜ ⎝ x T x Q x R x S y T y Q y R y S z T z Q z R z S ⎞ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎝ x P x Q x R x S y P y Q y R y S z P z Q z R z S ⎞ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ -1 0 0 0 2 3 1 0 0 2 3 0 1 0 2 3 0 0 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ . ( 3 
) C n = R 1 R 2 … R n ,
where i is a number from 1 to 4 and the R i the matrix defined by [START_REF] Mason | Can regular tetrahedra be glued together face to face to form a ring?[END_REF]:

Each R i matrix in Eq. ( 3) represents the addition on a chain of tetrahedra of a (4 + i) th sphere. This sphere is put on a facet composed by 3 spheres which coordinates are given by the columns j ≠ i of the matrix

P 0 R 1 R 2 … R i .
The i column of the latter matrix gives the coordinates of the (4 + i) th sphere on this chain of regular tetrahedra.

From that matrix representation, it may be concluded that the coordinates of a point P in the x ′ y ′ z ′ -frame are given by a 2/3-polynomial of integer coefficients of degree p with p ≤ n.

Collision between sphere particles

When an equilateral facet of a tetrahedron is free, a sphere may be placed on it to form a next regular tetrahedron if this new sphere does not collide with another sphere yet placed on the packing. (In Fig. 1, a new sphere cannot be placed on the BCG facet since its centre H is in fact inside the sphere of centre A.) The appendix 2 describes the method used to handle collisions when creating a packing.

Computer implementation

Basic algorithm

Using the considerations of the previous section, we have implemented the generation of sphere packing using a Python program, allowing the manipulation of integers of arbitrary length, then writing all the coordinates on the shape n 3 d , where n and d are integers. We also performed simulations using floats numbers to speed computations. For some identical experiments, we checked that the results obtained are the same. For the simulations using float numbers, the coordinates have been recalculated to obtain an exact representation of the coordinates before computing the interdistances between the sphere centres. The results obtained are discussed in Sect. 3.

The algorithm, after initiation of the 4 first sphere centres, consists of choosing an equilateral triangle facet free to have a new sphere placed on it; to compute the coordinates of the sphere centre that can be glued to form a new regular tetrahedron; then to check if there is a collision or not (see Appendix 2). If not, the sphere is generated, with three new

(4) R 1 , … , R 3 , … = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ -1 0 0 0 2 3 1 0 0 2 3 0 1 0 2 3 0 0 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ … , ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 1 0 2 3 0 0 1 2 3 0 0 0 -1 0 0 0 2 3 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ , … .
free facets. If it is not the case, the facet is no longer free for a new sphere to be placed on it.

Choice of the position to implement a new sphere in the packing

For this investigation, we have made the choice to randomly choose a facet in which the next sphere will be added if there is no collision with any sphere. Another way to construct the packing is to choose the closest facet from the origin; or within a radial distance from the origin to let the packing to grow from layer by layer.

Limited spatial extension the packing

Nevertheless, the spheres are constrained to remain inside a spherical shell of given radius extension R. The process stops when there is no more possibility to add a new sphere in the packing. This is not without consequences since the minimal interdistance between two spheres depends on the number N of tetrahedra on the unique chain linking them, with a minimal value of at least 1/3 (N-1)∕2 (from Eq. A3). The limiting extension R limits the possibility to obtain closecontacts of arbitrary small values (see Appendix 1 for a detailed calculation).

Figure 2 displays such a packing on a spherical shell R = 15 . The spheres are sketched only on the left part and the tetrahedra on the lower right quadrant. The pack these tetrahedra form is a special configuration of a packing of particles which have the same regular tetrahedron shape with the same size, like in Teich et al. [START_REF] Teich | Clusters of polyhedra in spherical confinement[END_REF]. In our model packing, the regular tetrahedra are forced to share a common equilateral triangular facet.

Visual representation of a packing

Figure 3a shows a visualisation of the spheres located in a portion of space of thickness 3 sphere diameters along the axis z. For the same portion of space, Fig. 3b shows the corresponding regular tetrahedra cluster tree, Fig. 3c is a plane cut. Figure 3d is the tree graph composed by the segments linking the centres of two adjacent tetrahedra. It is a branched graph with no loops and a connectivity of the nodes lower than 4.

Results on packing fraction

Mean packing fraction

The mean packing fraction may be approximated by counting the number of spheres N that fit inside a ball of radius R. It then writes: (R) = N∕8R 3 . This crude method is sen- sitive to the wall effect since there is a deficit of packing fraction due to the absence of spheres beyond R. It is therefore convenient to use the Scott method [START_REF] Scott | Packing of spheres: packing of equal spheres[END_REF] to extrapolate the packing fraction for non-limited packing beds when 1/R tends to 0. Figure 4 gives the observed versus 1/R (circles) where is the averaged value from 10 packing simulations (one of them with a sphere at the origin; the other simulations are with the first sphere randomly insert inside the sphere of radius R); the error bars represent the standard deviation observed. The plot observed is linear (dashed line) indicating that the deficit of packing fraction is proportional to the surface/volume ratio of the packed bed. Therefore, its limit when 1∕R → 0 gives the packing fraction for an infinitely large packed bed:

In the same Fig. 4, the solid fraction in a sphere of radius R -1 (triangle symbols) is also plotted. Contra- rily to the (R) , this packing fraction is greater than ∞ . Indeed, the packing fraction is denser at a distance around one of the boundary of the packing bed as shown by the profile of packing fraction in a ball of radius r for r ranging from 10 to 30 for a packing enclosed in a ball of radius R = 30 which is displayed in the same Fig. 4.

Finally, the packing bed formed by N spheres may be described in the form of two volumes, one composed of the N -3 regular tetrahedra and its complementary (5) ∞ ≈ 0.433. Fig. 2 Packing simulation in a spherical shell of radius R = 15 . On the left part, the sphere particles are drawn. On the SE quadrant, the cluster of face-to-face regular tetrahedra is shown space. Each regular tetrahedron, built from the centres of 4 spheres into contact, is a portion of space with a packing fraction given by max = arccos 23 27 √ 2 ∼ 0.7796 . We have:

where f T the volume fraction of the tetrahedra cluster and gap the mean packing fraction of its complementary space.

In the limit of R → ∞ , f T and gap write:

Local packing fraction distribution

The local packing fraction distribution may be quickly determined from simulations using the neighbour matrix

(6) max f T + gap (1 -f T ) = ∞ , (7) f T = ∞ √ 2 ∼ 0.0974, (8) gap = ∞ 1 -max √ 2 1 -∞ √ 2 ∼ 0.395.
(defined in Appendix 2) in order to compute the numbers n q of particles in a cuboid of size (q 1 2 , q

√ 3 6 , q √ 6 
3 ) centred for all positions

(x ′ 1 2 , y ′ √ 3 6 , z ′ √ 6 
3 ) where x ′ , y ′ and z ′ are integers that insures the cuboid remains fully inside the spherical bounding the packing bed. Figure 5 gives the counts for each n q observed, where n q is multiplied by the ratio of the sphere to cuboid volume to obtain a packing fraction estimation. The relative spread of these distributions of local packing fraction are given in Fig. 6left part; For a 5% accuracy on the packing fraction, it is needed to average on a cuboid box which size is at least a (11 1 2 , 11

√ 3 6 , 11 √ 6 
3 ).

Finally, the influence of the size R of the granular packing is illustrated by the distributions of the different values taken by n 3 (the numbers of sphere centres in a 3 1 2 , 3

√ 3 6 , 3 √ 6 3
sized box) which are displayed in Fig. 6right. n 3 may take values from 0 to 6, the distribution of n 3 having a principal mode of 3. As the granular packing size R is increased, the probability to have low values of 0, 1 or 2 for n 3 is increased. 

Voronoi tessellation volumes

The local variation of the packing fraction may also be observed by computing a Voronoi tessellation. The space is cut into a set of polyhedra with the following specification: each sphere is inside a polyhedron which is the set of space closer to the inside sphere centre than other sphere centres. Let V, V * and f be the volume, the volume scaled by the volume of one sphere, and the number of faces of a Voronoi polyhedron. For an infinite set of spheres, the mean volume of the Voronoi polyhedra scaled by the sphere volume is the inverse of the packing fraction:

< V * >= 1∕𝜙 ∞ .
For a finite set of spheres inside a spherical shell of radius R, Fig. 7 gives the inverse of scaled Voronoi volume 1∕V * averaged on a spherical layer of radius r and thick- ness adjusted for containing about 2500 particles (central line). The value displayed on the graph is an average on 10 realisations for R = 80 . It can be observed a good homogeneity till the boundary of the containing ball. For particle spheres which centres have a distance r bounded by R -3 < r < R -1∕2 , the Voronoi volume increases steeply. This behaviour is also the same for the maximum or minimum values of Voronoi volumes observed on these respective caps since the Voronoi cells includes portion of space outside the packed bed.

Finally, the distribution of the different scaled Voronoi volume which are not in the boundary layer of thickness 3 is displayed in Fig. 8 (thick line). The vertical dashed line gives the mean scaled volume < V > = 1∕𝜙.

Further exploitation of the Voronoi tessellation will be exposed on the next paragraph dealing on coordination number and neighbourhood.

Coordination number and interdistances

Coordination number

Mean coordination number

By construction, each particle i has a number of neighbours i in contact which ranges from 3 to a maximum of 12, the so-called kissing number. The mean coordination number < 𝜅 >=

∑ N i=1 𝜅 i N
may be obtained by the fact that each time a new sphere is added, ∑ i is increased by 6. As we start with 4 spheres particles of coordination 3, this gives: = 6 -12 N leading to ∞ = 6 . With this value, the model respects the Maxwell's isostatic condition. It shares this feature with the Gotoh and Finney's model for RCP [START_REF] Gotoh | Statistical geometrical approach to random packing density of equal spheres[END_REF] but in their case, all potential tetrahedra may be chosen when adding a sphere particle, not just the regular ones.

Distribution of coordination numbers

From the simulations, we can obtain the distribution of individual coordination numbers i . Table 1 gives the relative occurrence c in percentage for coordination numbers c from 3 to 12. These figures have been obtained by averaging the results obtained with 10 packing beds bounded by R = 100.

By construction, ∑ 12 c=3 c = 1 and ∑ 12 c=3 c c = 6 when R → ∞ . We observe that the spherical particles which have only 3 contacts represent slightly more than the fourth of the total number of particles. These particles have their centre at the end-point vertex of the chains of tetrahedra built and each one is associated with one end-point of the tree graph of Fig. 3d.

In Fig. 8, the Voronoi volume distribution is split for the different coordination numbers of the sphere particle inside them (thin lines; coordination number ranging from 12 to 3 left to right) showing how depends the Voronoi volume distribution for each coordination number. As qualitatively expected, the volume distribution is narrow centred in a small value for spheres surrounded by twelve spheres in contact and a spread distribution of volume with a mode higher than the mean value is observed for the spheres in contact with only three others.

Near contacts

The Voronoi tessellation allows us to obtain the near contacts of each particle. A near contact corresponds to particles which are not in contact, but for which their Voronoi polyhedra share the same face. If f is the number of faces of one polyhedron and the coordination number of the particle inside it, then the number of near contacts of this particle is f -. Figure 9 gives the distribution of the number of faces for the Voronoi polyhedra (thick line; we have excluded the cells which particle centre is in the layer R -3 < r < R ). The mean value for the number of faces is 14.13. In the same Fig. 9, the thin lines allows to visualise the respecting contributions for the different coordination numbers : from top to bottom, the space between two lines is the contribution for particles with a coordination number ranging from 3 to 12.

Interdistances

Distribution

The distribution of the distances between the centres of two spheres at contact or near contact and more generally between two particles are sketched respectively by a thick and thin lines in Fig. 10. They are scaled per particle. There are both non-continuous distribution since the interdistances are in the form given by Eq. (A3). The two peaks observed at 1.0887 and 1.153 come from the interdistance of the terminal vertexes of a chain of 4 and 6 tetrahedra (the 4-tetrahedra chain is the one sketched in Fig. 1 with thick lines).

The particles may have a small gap h = -1 between them (for example, the minimal gap observed in the simulation of Fig. 10 is h m = 1.67 10 -7 obtained with a chain of 167 tetrahedra). Some attractive forces between two particles have nonzero values for a non-zero gap between them. It is the case for capillary forces where, depending on the amount of liquid added, some of the near contacts may be filled by a capillary bridge. For such cases, it is convenient to define an effective mean coordination number , which is the mean number of particles at a distance lower than = 1 + h from one particle. is obtained by the summation of the near contact distances Fig. 9 Histogram of percentage occurrence of the number of faces f for the Voronoi tetrahedra at more than 3 from the boundary of a packed bed enclosed inside a spherical shell of radius R = 80 (thick lines). Thin lines: histograms separating the contributions for the different coordination numbers of the particle inside the Voronoi volume: from top to bottom, the distance between two lines gives the contribution for ranging from 3 to 12. Circles: Experiments by Xu et al. [START_REF] Xu | Analysis of the packing structure of wet spheres by voronoi-delaunay tesselation[END_REF] Fig. 10 Mean number of neighbours at a given interdistance for one particle (thick line) or mean number of particle at a given interdistance from one particle (light line). For clarity, the first peak at 1, which goes up to 6.0 ( < 𝜅 > ), is truncated Fig. 11 Line: Mean coordination number if the particles are reputed in contact till a critical interdistance . Circles and dashed lines: experimental observations for calibrated beads by Xu et al. [START_REF] Xu | Analysis of the packing structure of wet spheres by voronoi-delaunay tesselation[END_REF] and Than et al. [START_REF] Than | Experimental investigation on the grain-scale compression behavior of loose wet granular material[END_REF] respectively distribution of Fig. 10 (thick line) and displayed in Fig. 11 (continuous line).

Spatial repartition

Finally, the spatial repartition of these near contacts, where a capillary bridge or other attractive force applies, is of importance for the mechanical resistance of the packed bed. These bonds allow the chains of particles to make loops which typical size is linked to their specific density. Figure 12a-c gives the spatial repartition of the near contacts below a critical value of = 1.01, 1.05 and 1.1. (For the visibility, only the contacts on a slice of thickness 3 are displayed.)

We observe that these contacts spread on all the volume and therefore the mean distance e between them may be approxi- mated evaluating the total volume for a packed bed of N spheres by V total = N( -)e 3 since N( -) is the number of near contacts till . This total volume also writes V total = N ∕6 by definition of . Combining both leads to:

(9) e ∼ ( 3 
( -6) ) 1∕3 .
Figure 12d gives the variation of e with . It shows, for example, that the near contacts with a gap of one hundredth the particle diameter are at a mean distance of 5 particle diameters, allowing a greater mechanical stability since the regular tetrahedra chains are reticulated at this length scale.

Aboav-Weaire and related relationships

Apart from the near contacts, the neighbourhood of a sphere particle may be explored by computing the mean number of contacts m(f) of the f particles surrounding it, following the pioneering work of Aboav [START_REF] Aboav | The arrangement of grains in a polycrystal[END_REF]. The Aboav-Weaire relationship proposes the following linear behaviour:

where a is a constant. Figure 13a, obtained for the particles that are at least 3 from the boundary of a packed bed enclosed inside a spherical shell of radius R = 80 , shows that such a linear relationship is roughly respected. The dashed line fits the data points for f ranging from 11 to 20, which correspond to f-values for which the population size ( 10)

fm(f ) = (< f > -a)f + < f > a+ < f 2 > -< f > 2 ,
Fig. 12 a-c Visualisation of the location of close contacts in a slice of thickness 3 for a critical distance of 1.01, 1.05 and 1.1 respectively. d: Evolution of the mean distance between these close contacts with the critical gap is higher than 1 % of the total number of particles (see the histogram of Fig. 9). The fit gives a value a = -0.37.

It can also be observed that the data point for f = 12 is lower than the fit. This behaviour for this particular number of faces is also noticeable for the mean scaled volume per face number V * f or the mean scaled volume of surrounding particles m V (f ) displayed in Fig. 13c by stars and circles respectively. Such analysis may also be performed with respect to the coordination number instead of the number of faces f. The results are displayed on Fig. 13b andd.

Figure 13b gives the mean coordination number of the contacting neighbours vois averaged for the population of particle sharing the same coordination number. The most intense data circles use the set of particles which are at least at a distance 3 from the boundary of the packed bed. The other data points are for all the particles, allowing to evaluate the small impact of the boundary: the greatest difference is for the coordination number 3.

Finally, Fig. 13d gives the mean Voronoi volume around a particle of coordination (stars) and the averaged Voronoi volumes of their contacting particles (circles). all spheres; Heavy circles: spheres which are at a distance greater than 3 from the boundary of the packed bed. c Mean volume (stars) and mean volume of the surrounding cells (circles) for a cell of given f. Squares: experiments by Yang et al. [START_REF] Yang | Voronoi tessellation of the packing of fine uniform spheres[END_REF]. d Mean coordination number (stars) and mean coordination number of the contacting spheres (circles) for a sphere of given

Other descriptors

The sphere packing proposed in this present study may be also described by the graph linking the regular tetrahedra centres. When a sphere is glued on one tetrahedron facet, the new tetrahedron centre is linked to the other centre forming a branched tree without loops and with a connectivity from 1 to 4 for each node. Figure 3d gives the tree corresponding to the sphere packing displayed in Fig. 3. Another way to picture this graph is to liken it to the skeleton of a branched hydrocarbon molecule where all C-C bonds are in eclipsed conformation.

The mean connectivity for an infinite large packing is c ∞ = 2 . If i if the fraction of centres of connectivity i, then we have

∑ 4 i=1 i = 1 and ∑ 4 i=1 i i = 2 when R → ∞ .
It can be noticed that 1 = 3 , the fraction number of sphere of coordination 3.

This representation emphasises the spatial repartition of the spheres in tetrahedra packed columnar areas. The branches of the tree remain at a typical distance from each other's due to the non-interpenetration of the spheres. To evaluate this distance, the mean number of tetrahedra centres from one tetrahedron centre is calculated with respect to the distance between them and displayed in Fig. 14 (solid line). As it is averaged for all the tetrahedra centres, it starts close to c ∞ for a distance 1∕ √ 6 . At small distances, the curve is staircase-like, and the increase of neighbours is due to centres connected by a few links. This is clearly seen if we separate the contributions of centres closely connected, up to 10 consecutive links (middle dashed line, partly superposed to the thick line) from the others, with more than 10 consecutive links (low dashed line). Up to a distance of 1.2 -1.5, the contribution to the neighbourhood of one centre is mainly due to tetrahedra centres connected by at most 10 links.

Comparison with observations in cohesive packed bed

The purpose of this section is to examine how this model where the spheres are glued together to form a unique cluster of regular tetrahedra can simulate stacks of cohesive beads.

A first qualitative observation is to compare a cut of a pack as shown in Fig. 3c with an experimental cut. Figure 15 displays an X-ray tomography cut obtained with 70-110 μm glass beads wetted by 40% volume of non-volatile wetting liquid [START_REF] Louati | Experimental and numerical study of humid granular material : influence of liquid content in quasi-static regime[END_REF] where it can be seen qualitatively the arrangement of closely packed beads by the capillary forces. These dense areas are surrounded by sparsely filled areas both in the model and in the experimental observation of a wet packed bed of sieved spheres, but this needs to be quantified by looking at the mean packing fraction and finally the distribution of local packing fraction or coordination number.

Mean packing fraction

With Haithem Louati [START_REF] Louati | Apparent friction and cohesion of a partially wet granular material in steady-state shear[END_REF], we have observed the expansion of a loose packed bed of narrow size distribution of glass beads when a wetting liquid is introduced. The packing fraction decreases from a RLP value of 0.58 to a value of 0.46 when the volume of liquid becomes greater than 1% of the volume of particles. Feng and Yu [START_REF] Feng | Effect of liquid addition on the packing of mono-sized coarse spheres[END_REF] have observed the packing fraction of wet monosized beads to decrease with the Bond number Bo, the ratio of the capillary interparticle force to the weight of one particle. The packing fraction ranges from 0.6 to a value of 0.46 for Bo ∼ 25 . ∞ , obtained by our model pack- ing of tetrahedra chains, where there is only interparticle adhesion without gravity, is a plausible limit when extrapolating their results for greater Bond numbers.

Yang et al. [START_REF] Yang | Numerical study of the packing of wet coarse uniform spheres[END_REF] found similar results for the Bond dependence of the packing fraction by numerical experiments using a wet packed bed obtained by DEM simulations.

Xu et al. [START_REF] Xu | Analysis of the packing structure of wet spheres by voronoi-delaunay tesselation[END_REF] have analysed the packing structure of wet spheres. They observed a packing fraction of 0.435, very close to the ∞ = 0.433 coming from the present study.

Chen et al. [START_REF] Chen | Random loose packing of small particles with liquid cohesion[END_REF] numerically investigated the random packing of wet grains and found a limit packing fraction of 0.37 for large interparticles interactions, standing for two orders of magnitude of the Weber number We, ratio of the capillary force to inertial forces issued from the pouring velocity of the particles. This value is lower than ∞ , but this may be due to the wall effects since the numerical packing is made in a container of square area which edge length is 10 times the particle diameter. To check this, we performed tetrahedral chains packing on such containers (see Fig. 16) and obtained a packing fraction (averaged on 100 realisations) of 0.35.

Nevertheless, if the packing fraction around 0.43 is obtained by pouring or settling by gravity experiments in [START_REF] Yang | Numerical study of the packing of wet coarse uniform spheres[END_REF][START_REF] Louati | Apparent friction and cohesion of a partially wet granular material in steady-state shear[END_REF][START_REF] Chen | Random loose packing of small particles with liquid cohesion[END_REF][START_REF] Feng | Effect of liquid addition on the packing of mono-sized coarse spheres[END_REF], Than et al. [START_REF] Than | Experimental investigation on the grain-scale compression behavior of loose wet granular material[END_REF] built initial loose packing with = 0.30 , but their granular packed bed present particles with coordination numbers lower than 3 and large pore sizes which are stable by the arching phenomena for cohesive materials. Such features are not considered in the model we propose, which imposes at least 3 contacts and fill the cavities as long as a new sphere do not enter into collision with another sphere. In fact, for wet granular media, large cavities till a typical size ∼ dBo , where d is the particle size and Bo the Bond number, are stable. They are avoided for large Bond numbers in [START_REF] Yang | Numerical study of the packing of wet coarse uniform spheres[END_REF][START_REF] Louati | Apparent friction and cohesion of a partially wet granular material in steady-state shear[END_REF][START_REF] Chen | Random loose packing of small particles with liquid cohesion[END_REF][START_REF] Feng | Effect of liquid addition on the packing of mono-sized coarse spheres[END_REF] since the particles are poured all together, with an initial interdistance lower than .

To conclude, the value of ∞ = 0.433 qualitatively matches with the experimental and numerical realisations, where cavities of size larger than the particle size are avoided, despite the simplicity of the model proposed. The next section explores the same interrogation concerning the local features of the structure.

Mean coordination number

The results of our model, which has a mean coordination number of 6, may be compared to the Adhesive Close Packing (ACP) observed by Liu et al. [START_REF] Liu | Equation of state for random sphere packings with arbitrary adhesion and friction[END_REF] or by Yoshii and Otsuki [START_REF] Yoshii | Mechanical and geometrical properties of jammed wet granular materials[END_REF] using DEM experiments. They observed that the mean coordination reaches the value of 6 when the particles become frictionless. In this frictionless state, the mean packing fraction shifts from RCP to an ACP value around 0.51 when the Weber number (Adhesive coefficient in their article) increases from 0 to 100. The packing fraction they observed is higher but the deposition by gravity and a finite work of adhesion is not catch by our model with no preferential direction and unlimited adhesion. Further investigation is needed to compare the packing structure of our model with frictionless packings built when adhesion becomes arbitrary large.

Beyond that, < 𝜅 >= 6 is generally higher than the obser- vations in DEM or simulations for cohesive materials for a packing fraction of 0.43. These two figures do not match the < 𝜅 >= K(< 𝜙 >) relationship observed in a large number of realisations by An et al. [START_REF] An | On the relationships between structural properties and packing density of uniform spheres[END_REF] for which the mean coordination number of 6 occurs for the RCP around 0.64. In Chen experiments [START_REF] Chen | Random loose packing of small particles with liquid cohesion[END_REF], the relationship between < 𝜅 > and < 𝜙 > is different; < 𝜅 >= 6 occurring for a lower packing fraction than RCP but higher than 0.43.

Packing structure

From experimental observations [START_REF] Xu | Analysis of the packing structure of wet spheres by voronoi-delaunay tesselation[END_REF] or from DEM simulations [START_REF] Yang | Numerical study of the packing of wet coarse uniform spheres[END_REF][START_REF] Chen | Random loose packing of small particles with liquid cohesion[END_REF], the local structuration for a wet packed bed has been evaluated by Voronoi tessellation. It exists also some data from DEM simulations where the interparticle interaction if the VdW force [START_REF] Yang | Voronoi tessellation of the packing of fine uniform spheres[END_REF], from which we can extract some data concerning the structuration and compare it with the present model when the mean packing fraction is similar.

Figure 8 allows to compare the repartition of the Voronoi volumes scaled by the volume of one sphere for the model and for one experimental [START_REF] Xu | Analysis of the packing structure of wet spheres by voronoi-delaunay tesselation[END_REF] and one numerical [START_REF] Chen | Random loose packing of small particles with liquid cohesion[END_REF] observations (respectively circles and squares). Concerning the lowest Voronoi volumes, corresponding to Voronoi cells for which the sphere inside has a coordination number of 12 or 11, they are more numerous in the model than in the DEM or experimental situations. Looking at the rest of the probability density, the range of the scaled volumes, up to 4.5 -5.0, is similar for the model and the experiments. On the other hand, the modes of the different probability densities are not similar but the discrepancies between the model and experiments is of same magnitude that between the experiments itself. The differences between the experiments are an indication that the local configuration is not independent on the forces acting when the bed is in formation.

If we compare the coordination number distribution, we find that the present model has much more particles of low or high coordination numbers (3-4 or 11-12) than in the quoted experiments [START_REF] Yang | Numerical study of the packing of wet coarse uniform spheres[END_REF][START_REF] Chen | Random loose packing of small particles with liquid cohesion[END_REF][START_REF] Feng | Effect of liquid addition on the packing of mono-sized coarse spheres[END_REF]. In the case of [START_REF] Chen | Random loose packing of small particles with liquid cohesion[END_REF], there is particles of coordination 2, incompatible with the construction rule of the present model.

If we examine others features, which explore larger areas, our data may be compared with those obtained in DEM simulations of fine particles by Yang et al. [START_REF] Yang | Voronoi tessellation of the packing of fine uniform spheres[END_REF] for a similar packing fraction. They are in a qualitative agreement with the structure analysis of this model packing based on tetrahedra chains: On Fig. 11, we observe a similar trend for the mean coordination number at distance for the DEM simulation (circles) and the modelling (continuous line). Figure 13c displays the volume of a Voronoi cell averaged for a given number of faces f from [START_REF] Yang | Voronoi tessellation of the packing of fine uniform spheres[END_REF] (squares) which are close the mean values for the modelling (circles).

Finally, the experimental observations of close contacts by 3D X-ray tomography by Than et al. [START_REF] Than | Experimental investigation on the grain-scale compression behavior of loose wet granular material[END_REF] for a packing fraction close to 0.42 are similar than those of the present model (dashed line on Fig. 11). However, the range of observations is quite small compared to studies using Voronoi tessellation to explore near contacts at a longer distance.

From these preliminary results, it is found that this model packing overestimates the very close contacts by its strict construction of a unique cluster of spheres in regular tetrahedra configuration. But including the near contact neighbourhood, the features from the model at this scale becomes more similar to experimental and simulations observations. All this should be confirmed by new investigations since none of the research studies found in the literature has measured the whole set of data.

Concluding remarks

A packing model is proposed, which builds beds of cohesive spherical monodisperse particles with a coordination number of 6 allowing isostaticity, with simple purely geometric rules. Independent on initial settling procedure and on the force ratio between cohesive and gravitational or velocity dependent forces.

Compared to experimental or simulated packing of randomly deposited cohesive particles, the near contact distances are in a good agreement, which is not the case for the = 6 mean coordination number, higher than the ones observed. Concerning the mean packing fraction, a value of = 0.433 is obtained by the model, which is also observed for wet or cohesive assemblies but for the larger Bond numbers or in a range of Weber values. The static and geometrical model proposed does not consider the ratio of interparticle attractive forces to the other forces acting for the bed preparation (particle weight, inertial or applied external forces) and therefore it remains to investigate the range of values for this ratio where this simple model may be valid. A first investigation beyond the scope of this study is to compare it with the simulations with frictionless spheres and arbitrary large cohesive forces for which the coordination number is observed to be 6 and the packing fraction to decrease from RCP when cohesive forces increase respectively to the other forces.

Further features may be explored using this toy model:-By removing sphere particles (for example all the spheres with coordination number 3), a lower packing fraction is achievable with a mean coordination number remaining to be 6.-By relaxing the unicity of the cluster of regular tetrahedra and allowing several clusters at the expense of more computational complexity, more packing beds configurations may be explored and compared to experimental realisations.

Fig. 3

 3 Fig. 3 Portion of space of thickness 3 at the centre of a packing of 1.169.923 spheres bounded by a spherical shell of radius R = 70 . a Spheres in this portion of space. b Corresponding tetrahedra cluster tree. The tetrahedra are partially sketched if vertexes are outside the area. c Cut view of the sphere packing. d Graph of the segments linking two adjacent tetrahedra centres
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 4567 Fig. 4 Packing fraction observed inside the spherical volumes of radii R and R -1 for a packing bed bound by a spherical shell of radius R (respectively circles and triangles) for R ranging from 11 to 100. The error bars are the standard deviation for 10 realisations. The dashed lines are the linear fit of these data. Continuous line: packing fraction on a sphere of radius r for a packing bed bounded in a ball of radius R = 30 . The shadow around it represents the standard deviation for 100 realisations
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 8 Fig.[START_REF] Zaccone | Explicit analytical solution for random close packing in d = 2 and d = 3[END_REF] Thick line: scaled Voronoi volume distribution. Thin lines: scaled Voronoi volume distribution for the population of Voronoi cells with the same coordination number for the particle sphere inside it. ranges from 3 to 12 for the right to left light lines. Vertical dashed line: ⟨V * ⟩ . Circles: experiments by Xu et al.[START_REF] Xu | Analysis of the packing structure of wet spheres by voronoi-delaunay tesselation[END_REF]. Squares: experiments by[START_REF] Chen | Random loose packing of small particles with liquid cohesion[END_REF] 

Fig. 13 a

 13 Fig. 13 a Sum of faces numbers of the Voronoi cells surrounding one of a given number of faces f, averaged on all f-cells. Only the cells which sphere inside is at least at a distance 3 from the boundary of the packed bed are considered. Dashed line: linear fit for f values leading to at least 1 % of the cells. b Mean coordination number of the spheres into contact of a sphere of coordination . Light circles:
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 1415 Fig. 14 Solid line: Mean number of neighbour tetrahedra centres at a given distance from one centre versus this distance; Middle dashed line: same distribution restricted to centres at 10 links or less; Low dashed line: same distribution restricted to centres at 10 links at least

Fig. 16

 16 Fig.[START_REF] Lian | The capillary bridge between two spheres: new closed-form equations in a two century old problem[END_REF] Model packing of 1000 spheres on a container of square area 10X10

Table 1

 1 

	Percentage of occurrence of sphere particles	c	3	4	5	6	7	8	9	10	11	12
	of coordination	c (%)	26.06	11.18	10.42	10.85	11.27	9.82	8.61	6.16	4.18	1.45

Appendix A: Distance between two spheres

We discuss the distance between two sphere centres P and Q of the packing. They are linked by a unique chain of N + 1 tetrahedra. It is convenient to settle the referenced frame at the middle tetrahedron in such a way that the coordinates of P are obtained by the matrix P 0 C p , where C p is the product given by an Eq. ( 3) where 1 = 1 and the numbers of matri- ces is p. If N is even, p = N∕2 else p = (N -1)∕2.

Using the results of [START_REF] Mason | Can regular tetrahedra be glued together face to face to form a ring?[END_REF] and [START_REF] Elgersma | The quadrahelix: a nearly perfect loop of tetrahedra[END_REF], the (2, p ),(3, p ) and (4, p ) components are polynomials of a = 2∕3 of degree p, with a leading coefficient +1. Let us name them respectively P 2 ,P 3 and P 4 . The coordinates of P then write:

For the point Q, their coordinates are given by P 0 C q where q = Np and C q is given by an Eq. ( 3) where

.

loosing generality, we can choose 1 = 2 . Let us call Q 2 ,Q 3 and Q 4 the a-polynomials at position (2, q ),(3, q ) and (4, q ) in C q . Therefore, from the same references [START_REF] Mason | Can regular tetrahedra be glued together face to face to form a ring?[END_REF][START_REF] Elgersma | The quadrahelix: a nearly perfect loop of tetrahedra[END_REF], we con- clude that Q 3 and Q 4 are of degree q with a leading coeffi- cient of +1 and Q 2 has a degree less than q.

If we are interested in the distance d between P and Q, it is convenient to introduce the three a-polynomials Z i = P i -Q i . We have:

Even case If the number of inversion N joining P to Q is even then p = q, Z 2 is of degree N/2 with a leading coef- ficient of +1; Z 3 and Z 4 have a degree less. Consequently, the polynomial of eq. ( A2) is a polynomial of degree N with a leading coefficient of 1. Therefore using the rational-root theorem, there is no solution if d is an integer; we have: where m is an integer not divisible by 3. The smallest potential value for d 2 greater than 1 is 1 + 1∕3 N .

Odd case We can choose q such as 2q + 1 = N . The examination of the leading coefficient of Eq. (A2) needs to take into account the a q+1 terms in P 2 ,P 3 ,P 4 , and the a q terms in the P i and Q i terms. We obtain:

where k is an integer. Using these relation in Eq. (A2) leads to: when using the fact that a = 2 3 . Therefore, we find again that there is no solution if d is an integer and similarly to the odd case that d 2 has the form given by Eq.(A3).

Appendix B: Collision handling

For the algorithm searching potential collision, it is convenient to locate the spheres in the packing bed with a 3D matrix M paving the space by tiles of xyz-lengths of 1/2, √ 3 /6 and √ 2∕3 , which have a diagonal of 1. Doing that, we insure that two spheres cannot share the same tile and we insure that the floor part of the affine coordinates of the spheres is unique and corresponds to a unique tile.

The algorithm of collision search is the following:

After a potential centre location is chosen from a free facet to place the n ieth sphere, the floor part of its coordi- nates E(x n ), E(y n ), E(z n ) is computed; if M E(x n ),E(y n ),E(z n ) ≠ 0 , there is collision, the sphere cannot be placed on this facet; if M E(x n ),E(y n ),E(z n ) ≠ 0 , the distance of the sphere centres belonging to the tiles sufficiently close are checked. If theses distances are greater than one, the sphere is placed and the value M E(x n ),E(y n ),E(z n ) becomes n; if not, there is collision.
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