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As instability becomes the norm, supply chain management is becoming increasingly complex and
critical. As a result, supply chain managers must adapt to complex situations. Managing instability is
a key expectation for these managers. One way to help them to manage this instability is to study
resilience. Resilience is related to in the literature as the ability of a system to resist, adapt and recover
from disruptions. Measuring and controlling supply chain resilience has therefore become a key issue
for managers, especially in a context of instability. In 2013, the World Economic Forum [2013. Global
Risks 2013. Davos, Switzerland: World Economic Forum] highlighted in its study, this priority for the
surveyed companies to master this concept of resilience. To address this need, this paper presents an
innovative approach to disruption and resilience management based on physics principles. It consid-
ers disruptions as forces that impact supply chain performance. These forces are created as a result
of changes in the internal or external attributes of the supply chain. In this approach, supply chain
performance is represented and visualised as a physical trajectory modelled in the framework of its
performance indicators. Thus, disturbances are considered as forces that displace and deviate the

supply chain’s performance trajectory in its performance framework.

1. Introduction

In today’s increasingly dynamic, uncertain and turbulent
global environments, instability is becoming the norm
(Benaben et al. 2021). From the Cambridge Dictionary,
instability is defined as ‘uncertainty caused by the possi-
bility of a sudden change in the present situation’. Due to
its complex networked nature which brings together var-
ious interdependent actors interconnected by their flow
of money, goods and information, supply chains (SCs)
are not immune to this instability (corresponding to the
uncertainty of the environment in which they operate, as
well as the uncertainty governing their processes) and are
confronted with numerous events that threaten to dis-
rupt their activities and jeopardise their performances.

According to Knemeyer, Zinn, and Eroglu (2009), all

actors in an SC network are susceptible to disruptive
events and risks. SC risks can be categorised into two fun-
damentally different types: delays and disruptions (Sodhi
and Tang 2012). Delays risks correspond to ‘normal’ and
ordinary disturbances generated by the four categories
of variability of an SC: supply, demand, production and
management (Ptak and Smith 2019). SC disruptions are

unplanned and unanticipated events, with low frequency
and high impacts on SC activities (Hosseini, Ivanov, and
Dolgui 2019), by interrupting the flow of products and
materials exchanged between its various actors (Craig-
head et al. 2007). These risks, which vary unpredictably in
type, scale and nature, are difficult to identify, predict and
estimate due to their intermittent and irregular nature
(Hosseini, Ivanov, and Dolgui 2019). The severity of their
impacts on SC activities and performance will depend on
the duration and propagation speed of the risk (El Baz
and Ruel 2021). In recent decades, the number of natural
disasters and man-made threats has increased dramat-
ically (Cheng, Elsayed, and Huang 2022), showing an
increasing tendency towards uncertainty and therefore
instability. This fact, coupled with the increasing com-
plexity and uncertainty associated with modern global
SCs, is driving researchers and practitioners to try to
minimise the potentially harmful effects of disruption by
increasing SC resilience (Miinch and Hartmann 2022).
Tan, Cai, and Zhang (2020) define SC resilience as ‘the
ability of a supply chain to both resist disruptions and
recover its operational capability after disruptions’. Due
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to the increase in disruptions impacting SCs, dealing
with instability and managing these events has become a
necessity for SC managers, making the study of resilience
an extremely important topic (Chowdhury and Quaddus
2017). Despite this growing body of research since the
early 2000s, when the concept of SC resilience was first
defined, there is still a lack of consensus on how to con-
ceptualise and measure SC resilience (Chowdhury and
Quaddus 2017). Its development requires: (1) methods
to define and measure it, (2) metrics to assess it, (3) new
modelling and simulation techniques, (4) development
of resilience engineering and (5) approaches for commu-
nication with stakeholders (Linkov et al. 2014). Empiri-
cal research on resilience assessment has been impacted
by the lack of a valid (Chowdhury and Quaddus 2017)
and replicable measurement model. Despite considerable
efforts to characterise resilience, there is no generic met-
ric to assess it for different systems impacted by different
hazards (Cheng, Elsayed, and Huang 2022). According
to Ponomarov and Holcomb (2009), the search for mea-
sures of SC resilience is an important stream of research
that can provide essential knowledge for its management.
Indeed, as mentioned in Dalziell and McManus (2004),
‘that which isn’t measured isn’t managed’. The manage-
ment of any system requires to process and know in
real time the state of the system (Neely, Gregory, and
Platts 1995). This state evolves as a function of the differ-
ent efforts made to achieve objectives and other external
and suffered variables. These objectives can be associ-
ated with performances to be achieved, and basically,
there is a set of key performance indicators (KPIs) that
represent the state of this system with respect to time
and the identified objectives (Neely, Gregory, and Platts
1995). Risks can be viewed as events that, if they occur,
will have an impact on the overall performance of the
observed system. Essentially, they can change the values
of its KPIs. When a risk is observed in the system’s per-
formance space in terms of KPIs and time, it will move
the system away from its intended performance goals.
Assessing the system performance in the face of disrup-
tions is becoming a major concern for researchers and
practitioners (Cheng, Elsayed, and Huang 2022), particu-
larly for its ability to represent the ‘real bottom line’ of any
organisation (Munoz and Dunbar 2015). In recent years,
‘the notion of resilience has been proposed and pop-
ularised to characterise system performance deteriora-
tion and restoration due to different hazards and threats’
(Cheng, Elsayed, and Huang 2022). However, resilience
is a multi-dimensional performance concept, which can-
not be measured by a single indicator and characterised
with precision (Munoz and Dunbar 2015). In order to
propose a measure of SC resilience that can capture its
multidimensional aspect, this paper relies on the Physics

of Decision (PoD) approach, introduced in Benaben et al.
(2021). This original physics-based approach considers
the effect of events (e.g. occurred risks or decisions taken
by managers) as forces that push or pull the system (an
SC in the context of this article), thus influencing its
trajectory in its performance space (a framework which
aims to position the SC with respect to the dimensions
of its KPIs). Indeed, the system is continuously moving
in its performance space and these movements are due
to the succession of events caused by risks or decisions
taken by managers to limit their impacts. The benefits
or damages of these events are considered as concrete
deviations of the system’s performance trajectory. The
main objectives of this research work are first to define
resilience, especially in the context of SCs according to
the state of art about this concept; second, to analyse the
proposed metrics to assess SC resilience; and third, to
study the contributions of the PoD approach to evaluate
SC resilience, in particular by modelling performance as
a multi-dimensional trajectory. These objectives aim to

answer the following research question: how to evaluate
the resilience of an SC with a physics-based approach?

Accordingly, the remainder of this paper is organised
as follows: Section 2 defines from the literature the con-
cepts of resilience and resilience assessment. Section 3
describes PoD physics-based approach and its applica-
tion to resilience management. Section 4 presents an
application of PoD concepts to a fictitious SC use case.
Finally, Section 5 concludes with the main takeaways of
the article, limitations and next steps for the proposed
resilience indicator.

2. Background about the concept of resilience
and associated metrics

2.1. Definitions of resilience

Resilience is a multidisciplinary concept studied across
different d omains such as s ociology, e ngineering, ecol-
ogy and economy (Hosseini et al. 2019). It has its ori-
gins in the developmental theory of social psychology,
in order to address questions related to ecological and
social vulnerability, the politics and psychology of disas-
ter recovery, and risk management in a context of increas-
ing threats (Ponomarov and Holcomb 2009). Holling
(1973) was the first to identify and define the concepts
of resilience as the ability of a system to adapt and cope
with change while still maintaining its original function
and structure. Based on this definition, r esilience has
emerged as an important tool for managing SC risk and
vulnerability (Ponomarov and Holcomb 2009; Adobor
and McMullen 2018). In the SC domain, the concept of
SC resilience emerged in the early 2000s, with the work



of Rice and Caniato (2003). Since, considerable effort
has been devoted to quantifying and describing resilience
from different perspectives (Cheng, Elsayed, and Huang
2022). Based on their review of the literature (113 papers
analysed from 1975 to 2018), Clement et al. (2021) iden-
tify three types of resilience, as illustrated in Figure 1
and from definitions on the concept of SC resilience in
Table 1. These three views of resilience (called respec-
tively a, B and y) differ mainly in the notion of zones
of absorption and response, but also to the manner of
returning to a stable state. Type « resilience, defines a
system as resilient if it is able to absorb the disruption,
i.e. despite a deterioration (not dramatic for the system)
in its performance, the system then has the ability to
return to its initial level of performance (the one before
the disruption). This vision of resilience corresponds to
that defined by Rice and Caniato (2003), as the ability ‘to
respond to an unexpected disturbance and then restore
operations to normal’. Response implies the ability to
react quickly to critical situations (Han, Chong, and Li
2020), which is an important variable that determines SC
resilience. This resilience’s property is found in the def-
initions of Brandon-Jones et al. (2014) and Hohenstein
et al. (2015), who see resilience as the ability of an SC
to recover quickly to a normal status, a normal state of
performance. This ability to respond highlights a funda-
mental dimension of resilience: time. Type B resilience
is close to type « resilience. The only difference is in

the expected performance after absorption of the dis-
ruption. For this type of resilience, the authors do not
look for the system to return to its initial level of per-
formance. They define a resilience zone, i.e. a zone of
acceptable performance. The resilience of the system is
then defined as the capacity of the system to return to
this performance zone after having undergone a distur-
bance. This definition is close to the vision developed by
Ivanov and Sokolov (2013), who define resilience as ‘the
ability to maintain and recover (adapt) planned execu-
tion, as well as to achieve planned (or adapted, yet still
acceptable) performance’, through this vision of main-
taining the performance in a zone of acceptability corre-
sponding to the resilience zone in Figure 1. For the last
type of resilience, type y resilience, the notion mainly
is adaptation. A system is type y resilient if, following a
disturbance, it adapts and reaches a new level of stabil-
ity, thus generating a transition from the initial state to
a new stable state. According to Ambulkar, Blackhurst,
and Grawe (2015), a resilient system is one that is able to
adapt to disruption, especially by developing its capacity
to reconfigure its resources, i.e. its ability to reconfig-
ure, realign and reorganise its resources in response to
changes in the external environment of the system. For
Christopher and Peck (2004), through one of the most
commonly cited definitions of SC resilience, the tran-
sition from the initial stable state to a new one after a
disruption can only take place towards a state equivalent

Performance Performance
Disruption Disruption
1 Resilience zone
er— Y —rrar—— — —_— — —
_________ m-——————=————f——-——————
Absorption ! Response i Absorption | Response |
i time i i ' time
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Figure 1. The three types of resilience &, 8 and y, adapted from Clement et al. (2021).



Table 1.5C resilience definitions, according to their type.

Type of resilience

Authors Definitions o B y
Rice and The ability to respond to an
Caniato unexpected disturbance and
(2003) then restore operations to
normal.’
Christopher The ability of a system to return v
and Peck to its original state or move to a
(2004) new, more desirable state after
being disturbed.’
Sheffi and Rice The firm’s ability to absorb v

(2005) disruptions or enable the SC
network to return to state
conditions faster and thus
has a positive impact on firm
performance.’
Carvalho et al. ‘Supply chain resilience is v
(2012) concerned with the system
ability to return to its original
state or to a new, more desirable
state.”
Ivanov and The ability to maintain and recover v
Sokolov (adapt) planned execution, as
(2013) well as to achieve planned (or

adapted, yet still acceptable)

performance.’
Brandon-Jones The ability of a supply chain to v
etal. (2014) return to normal operating
performance, within an
acceptable period, after being
disrupted.’
Ambulkar, ‘Firm's resilience to supply chain v
Blackhurst, disruptions is defined as the
and Grawe capability of the firm to be alert
(2015) to, adapt to, and quickly respond
to changes brought by a supply
chain disruption.”
Hohenstein The ability of the supply chain v
etal. (2015) networked to withstand
disruptions and return to a
normal status quickly.’
Tan, Cai, and The ability of a supply chain to v
Zhang both resist disruptions and
(2020) recover its operational capability

after disruptions.’

to the initial one or towards a more desirable state. A cou-
ple of years later, Carvalho et al. (2012) in their definition
share this vision and thus add the notion of improve-
ment and growth (also called antifragility, Taleb 2007 and
2012) to the definition of resilience. Growth goes beyond
the recovery and return of the system to its original state,
it aims to benefit from the system’s response to the event
to reach a new, more advantageous and desirable state
(Hohenstein et al. 2015). Sheffi and Rice (2005), with
their definition of resilience, see this notion of growth
as a positive impact on the performance of the SC. More
generally, resilience can be seen as the ability of an SC to
adapt and reach a new level of stability after a disruption.
This new state can be unfavourable for the performance
of the SC, in this case, it is the concept of fragility.

In order to achieve the objectives defined by the pre-
vious definition, SCs have to consider several forms of

resilience (Adobor and McMullen 2018). Holling (1996)
distinguishes two types of resilience: engineering and
ecological, each with very distinct design and manage-
ment objectives. Indeed, although they agree on the fact
that following a disturbance, the system is pushed out
of its state of equilibrium. They differ on the notion
of stability, which Holling (1973) defines as the capac-
ity of a system to return to a state of equilibrium after
a temporary disturbance. Engineering resilience aims
to focus on maintaining the efficiency of the system,
focusing on ‘stability near a stable steady state, where
resistance to disturbance and speed of return to equilib-
rium are used to measure the property’ (Holling 1996).
Thus, with this view of resilience, the more resilient a
system is, the faster it rebounds to a state of equilib-
rium. Ecological resilience, on the other hand, focuses
on the continued existence of the system and ‘empha-
sizes conditions far from any equilibrium steady-state,
where instabilities can flip a system into another regime
of behaviour, that is, to another stability domain’ (Holling
1996). In other words, ecological resilience is measured
as the amount of disturbance a system can withstand
before changes in system structure and controls occur
(Holling 1996). Thus, unlike engineering resilience, eco-
logical resilience is not measured by the time a system
needs to recover from a disturbance but by the intensity
of the disturbance it is able to withstand (Adobor and
McMullen 2018). Carpenter et al. (2001) define resilience
as ‘the magnitude of disturbance that can be tolerated
before a socioecological system moves to a different
region of state space controlled by a different set of pro-
cesses’, a definition very close to that of Holling (1996).
Based on these definitions and concepts of resilience,
Carpenter et al. (2001) highlight three other properties
of resilience: (1) the amount of change the system can
undergo (i.e. the amount of extrinsic force the system
can withstand) while maintaining the same controls over
structure and function, (2) the ability of the system to
self-organise and (3) the ability to adapt and learn from
perturbations.

Despite a lack of consensus on the definition of
resilience, the set of definitions presented share com-
mon properties to the concept of resilience: (1) the term
resilience assumes the realisation of a disruption, (2) it
refers to the state of the system before, during and after,
which in some definitions is seen as its performance
level and (3) it aims at comparing and following the gap
between these different states in order to evaluate the sys-
ten’s ability to absorb the disturbance. Thus, resilience
is assessed by comparing the state of the system accord-
ing to a specific performance parameter before and after
a disturbance (Hosseini, Barker, and Ramirez-Marquez
2016).



2.2. Resilience assessment

Despite a wide range of definitions of SC resilience, few
articles address the issue of measuring SC resilience and
the need to create a quantitative framework to assess it
(Spiegler, Naim, and Wikner 2012). Indeed, it is impor-
tant for organisations to conduct an SC resilience assess-
ment to understand the risk exposure of their SCs and
evaluate resilience and risk mitigation strategies (Soni,
Jain, and Kumar 2014). Without understanding and
assessing the level of resilience of a system, it is difficult
for managers to evaluate and manage the response and
reaction of the SC following disruptions (Han, Chong,
and Li2020). As the management adage goes, ‘you cannot
manage what you cannot measure (Munoz and Dun-
bar 2015). SC resilience management is not exempt from
this rule. Managing SC resilience involves identifying SC
states as an essential part of resilience analysis (Carvalho
et al. 2012). One method of tracking the evolution of
these states is to define and measure the various efforts
undertaken to achieve the objectives of an SC. One of
the most critical aspects of operations management is to
make these objectives representable (Franceschini et al.
2006). This is usually done by translating the organ-
isation’s objectives into performance measures. Thus,
these objectives can be associated with performances to
be achieved, and basically, there is a set of KPIs that
represent the state of this system with respect to time
and the identified objectives represented as target val-
ues for these KPIs (Neely, Gregory, and Platts 1995).
Due to its complexity, measuring the performance of an
SC is not an easy task (Estampe et al. 2013). Perfor-
mance measurement is the process of quantifying the
efficiency and effectiveness of an operation (Neely, Gre-
gory, and Platts 1995). In particular, it allows the iden-
tification and measurement of the gap between the cur-
rent performance and the desired level of performance,
the objectives (Mani et al. 2014). Performance measure-
ment is therefore a fundamental managerial mechanism
for informing decision-makers (Gunasekaran and Kobu
2007), both on the evolution of the gap and on the
progress made in closing it. Over the past two decades,
many studies have proposed conceptual or quantitative
models to address SC performance evaluation (Lima-
Junior and Cesar Ribeiro Carpinetti 2019). The devel-

oped conceptual models suggest a set of performance

measures (Gunasekaran, Patel, and McGaughey 2004)
that include financial and non-financial measures asso-
ciated with different levels of decision-making: strategic,
tactical and operational (Shepherd and Giinter 2006).
Shepherd and Giinter (2006), through their analysis of
the literature, have listed more than 130 performance
indicators dedicated to SC performance assessment.

Despite all the indicators proposed in the literature,
studies on resilience metrics remain scarce (Han, Chong,
and Li 2020). However, appropriate performance metrics
are needed to evaluate resilience (Sillanpia 2015), espe-
cially to understand and measure the level of resilience
of an SC. Some studies measured the SC resilience by
evaluating the impact of disturbances on stock level, ser-
vice level, lead time and costs (Cabral, Grilo, and Cruz-
Machado 2012). The studies are mainly focused on the
classic performance triptych: quality, delay and cost. Han,
Chong, and Li (2020) divide the performance metrics
required to assess the resilience of an SC into eleven cate-
gories: performance of maintaining customer satisfaction,
efficiency of completing SC processes, efficiency of recover-
ing to normality, performance of production and inven-
tory, performance of relationship management, financial
performance, performance of overseeing the SC situation,
performance of discerning possible disruptions, damage of
disruptions, efficiency of responding the disruptions and
reconstruction of the SC. Rajesh (2016) proposes to mea-
sure resilience according to five major indicators: flexi-
bility (ability to manage changes quickly without undue
effort and loss), responsiveness (speed of delivery of prod-
ucts), quality, productivity (related to customer satisfac-
tion) and accessibility (network visibility and connections
between network actors). Each of these major indicators
is associated with several metrics to evaluate it (refer to
Rajesh 2016 for more details about the proposed KPIs).
These five major indicators are close to the performance
attributes defined by the SCOR (Supply Chain Opera-
tions Reference) model. SCOR model is a process ref-
erence model that provides methodology, standard pro-
cess definitions, metrics, diagnostic and benchmarking
tools in order to improve SC performance and pro-
cesses (Council 2017). SCOR defines five performance
attributes (Council 2017): reliability (ability to achieve
tasks as expected and focuses on predicting the result
of a process), responsiveness (speed of completion of a
task), agility (ability to respond to external disturbances),
costs (SC running costs) and assets (ability to use assets
efficiently). Performance attributes represent the strategic
performance characteristics on which to align SC per-
formance to meet the company’s strategy. SCOR defines
two types of performance attributes: customer (reliabil-
ity, responsiveness and agility) and internal (assets and
costs) focused attributes (Council 2017). According to
their definitions, Rajesh’s major indicators are very cus-
tomer oriented, so they can be included in the attributes
defined by SCOR: flexibility in agility, responsiveness in
responsiveness, and quality, productivity and accessibility
in reliability. Among SCOR attributes, agility describes
the ability of an SC to respond to external disruptions, its
capacity and speed of change (Council 2017). Because of



its description, it could represent a good way to evaluate
SC resilience. For each performance attribute (reliability,
responsiveness, agility, costs and assets), SCOR associates
several KPIs. Rajaratnam and Sunmola (2021) propose a
hierarchical performance measure framework based on
55 metrics proposed by SCOR in order to evaluate SC
resilience.

From an engineering perspective, quantifying
resilience involves measuring system performance over
time, focusing on system performance during and after
the disruption (Bruneau et al. 2003; Zobel et al. 2021).
Most of the measures proposed in the literature are
functions of one or more KPIs measured during these
different phases (Cheng, Elsayed, and Huang 2022).
Many approaches have been developed to measure the
resilience of SCs as a time-dependent measure (with-
out its consideration, the concept of resilience cannot
be fully addressed). Generally, SC resilience is measured
according to two main aspects: the time of SC recov-
ery and the performance loss due to a disruption (Fat-
tahi, Govindan, and Maihami 2020). Lost performance
is mostly defined as the difference between performance
after a disruption and expected or baseline performance,
i.e. optimal performance in the absence of disruption
(Behzadi, O’Sullivan, and Olsen 2020). Both measures
of resilience can be calculated from ratios of restored
to lost performance, or from modelling several possible
performance trajectories (Zobel et al. 2021), consider-
ing the effects of uncertainty related to recovery, which
is a stochastic process, due to uncertainty about avail-
able resources and the severity of disruptions (Cheng,
Elsayed, and Huang 2022). For example, Carvalho et al.
(2012) propose to measure the recovery time (i.e. the time
needed for the SC to return to a normal state after a dis-
ruption) by a ratio: the lead time ratio, a ratio between
actual and promised lead time. This performance mea-
sure assesses the SC’s capability to fulfil the lead time
agreed with their first-tier customers (Carvalho et al
2012). In the case of resilience measurement through
performance trajectory modelling, resilience triangle is
the most recognised way of measuring system’s resilience
(Tukamuhabwa et al. 2015). The measure provided by
the resilience triangle is based on the fact that it is pos-
sible to measure the actual or potential performance of a
system at any given time, and to represent it as a point
or trajectory in the multidimensional space of its KPIs
(Bruneau et al. 2003). It considers major concepts around
resilience: performance level, loss estimation and recov-
ery (Tukamuhabwa et al. 2015). Considering a time series
response curve that represents the performance of the
SC, Figure 2 illustrates the resilience triangle that models
both the immediate effect of a sudden impact disaster and
the response behaviour of the system. A possible static

Performance
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Normal Performance
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1
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i Recovery
H time
Disruption Recovery
Time Time

Figure 2. Resilience triangle.

measure of SC resilience is to calculate the area of this tri-
angle (Adenso-Diaz, Mar-Ortiz, and Lozano 2018). Low

values of the area of this triangle imply no signifi cant
consequences or rapid recovery. This tool can also be

seen as a dynamic measure of resilience by comparing

the evolution of the surface of this triangle following

different events (Tukamuhabwa et al. 2015). Measuring

the area under the curve to measure and compare the

resilience of systems to disruptions is an approach which

has been adopted by many disciplines (Macdonald et al.

2018). Since its inception by Bruneau et al. (2003), the

resilience triangle concept has been applied and extended

in many approaches. Its simplicity makes it a sound basis

for developing new quantitative methods for assessing

resilience (Zobel 2011).

No common agreement on a measurement model
seems to have been reached in the literature, the assess-
ment of SC resilience performance has been investi-
gated structurally using the dimensions or phases of SC
resilience. Most studies in the literature have focused
more on the development of their own measurement
models (Han, Chong, and Li 2020). The studies presented
in this section focus mainly on an assessment of resilience
with an engineering perspective. However, some authors
such as Wieland (2021), propose to reinterpret the SC,
by studying it as an organic system. This vision implies
studying resilience according to its ecological vision and
definition. Holling (1996) was the fi rst one to outline the
difference between engineering resilience and ecological
resilience. Engineering resilience is focused on constancy,
predictability and efficiency, while ec ological resilience
is focused on change, unpredictability and persistence
(Wieland 2021). In other words, instead of measuring
resilience as ‘resistance to disturbance’ or ‘speed of return’
to a stable performance state, as engineers would, ecolo-
gists measure resilience as the ‘magnitude of disturbance’
that the ecosystem can absorb (Wieland 2021). In his
definition of resilience, Holling (1973) acknowledges the



importance of classical physics, from which he adapts
terms (such as force, equilibrium, etc.) and draws on
key intellectual antecedents to define the concepts asso-
ciated with his vision of resilience. Work on defining
the concepts of ecological resilience has drawn heav-
ily on notions from physics (Ponomarov and Holcomb
2009), thus offering s tudy p erspectives f or a physics-
based approach as PoD.

3. Proposal: PoD approach
3.1. PoD: general ideas

Identifying the need for SC resilience requires defin-
ing the system (Linkov et al. 2014) and identifying the
different s ystem s tates, w hichi sa n e ssential p art of

resilience analysis (Carvalho et al. 2012). System states
describe the system’s changing behaviours and situa-
tions across time (Ferreira and Otley 2009), instability
being the main source of these changes. Identifying these
state changes implies being able to characterise the sys-
tem, in particular by being able to evaluate the different
interactions between its parameters. This is at the heart
of system diagnostics (Westphalen, Roth, and Brodrick
2003). Studying such links and their influence on sys-
tem performance is required to control a system effec-
tively and to be able to visualise and predict these state
changes. The PoD approach uses an analogy with phys-
ical motion laws to study and predict the different states
of a system. These state changes can be generated by
different e nvironmental o r i nternal s ituations t hat an

SC is confronted with. These environmental or inter-
nal situations are named potentials in the context of the
PoD vision. The susceptibility of the system to these
potentials generates potentialities (i.e. risks or opportu-
nities with regard to the system). In the PoD approach,
these potentialities, once activated by one or more trig-
gering conditions, become actuality which can be seen
and modelled as forces impacting SC performance (Ben-
aben et al. 2019). Thus, performance is seen as a tra-
jectory modelled in a multidimensional space charac-
terised by KPIs (each KPI defining one dimension), risks
and opportunities are seen as forces which, once trig-
gered, craft the shape and dynamics of this performance
trajectory.

As mentioned in Ponomarov and Holcomb (2009),
SC resilience addresses several types of risks at several
stages of the risk management process. Resilience is one
of the critical elements in SC risk management, so it
needs to be examined to determine how to incorporate it
into a conceptual framework. To meet this need, the PoD
approach proposes and is based on two modelling spaces:
the description space (illustrated in Figure 3) and the
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performance space (illustrated in Figure 4). The descrip-

tion space is a multidimensional space: each dimension
is an attribute of the SC under study, or a parameter of

its environment. In Figure 3, the SC is located within this
description space as a blue sphere. Thus, it represents at
each point in time the location of the SC with regards
to dimensions describing its own attribute and its envi-
ronment characteristics (e.g. customer demand, available
capacity, raw material prices, production capacity, etc.).
The degrees of freedom of each attribute defines the con-
trol space (colour parallelepipeds). This is a subspace in
which the SC can move freely. This subspace allows us to
consider the stochastic factors that can be associated with
some attributes of the system (for example the forecast)
but also the variations induced by the daily management



of the SCs. The context characteristics represent ‘risky’
areas in the description space (orange shape), where the
SC is more sensitive to certain potentials and dangers
that can impact it. The position of the SC in its descrip-
tion space evolves over time, following the realisation of
potentialities modifying the attributes and parameters of
the SC (red sphere), but also following the decisions taken
by the managers (yellow sphere). Its position in this space
models the different states of the SC.

The performance space is dedicated to the visuali-
sation and management of the performance of an SC.
It is a multidimensional space as well: each dimension
is a KPI to be considered to assess overall SC perfor-
mance. In the case of the study of SC resilience, its
dimensions could be obtained from the KPIs identi-
fied in Section 2. The performance is visualised as a
performance trajectory (colour trajectories of Figure 4)
representing the changes of KPIs over time and the
impacts of potentialities. These potentialities, by their
nature, deviate positively (closer) or negatively (further)
the performance trajectory of the system from its objec-
tives. The objectives could take several forms (point of
space to reach, hyper volume in which the SC should
stay, hyper-surface representing a satisfaction trade-off
between KPIs, etc.) and evolve in time (moving target).
The performance objectives are modelled by a hyper-tube
(green in Figure 4), which represents the supposed safe
space for the performance trajectory to reach the objec-
tive (it could also represent the resilience zone of the
system in which to maintain SC performance in the case
of type B resilience). With this physics-based approach,
potentialities are modelled by forces (colour vectors in
Figure 4) that move the SC performance like an ‘object’
in its multidimensional KPI space (Cerabona et al. 2020).
Each force reflects the intensity of the deviation from the
performance trajectory, i.e. the potential impact of each
potentiality.

This space is dedicated to support the manager in
decision-making, including studying the best combina-
tions of forces to select, to keep the system in the target
hyper-tube. The first trajectory modelled in the perfor-
mance space to apply the PoD approach is the inertia tra-
jectory (blue trajectory). The inertia trajectory is seen as
the trajectory if the system follows its ‘normal’ behaviour
and is not disturbed (or at least undergoes the expected
forces). Implicitly, it models the managers’ expectations
in terms of performance, if everything goes as planned.
Most of the time, the inertia trajectory can be seen as the
target to be reached. It is used as a reference in the study
of the scenarios presented in the potentialities study. Each
deviation from this trajectory is seen as resulting from a
force. The red trajectory (Figure 4) illustrates the notion
of a passive trajectory. It is defined in the PoD approach as

the performance trajectory of a system following the real-
isation of an initially unexpected potentiality and that no
corrective action has been implemented to minimise the
impact of this potentiality on the system’s performance
(Cerabona et al. 2021). This trajectory is obtained by
varying the state of the system from t; to t; (the displace-
ment between the blue and red spheres in the description
space, in Figure 3). The yellow trajectory (Figure 4) illus-
trates the notion of an active trajectory. It is defi ned in
the POD approach as the performance trajectory of a sys-
tem following the realisation of a corrective action that
has been implemented to minimise the impact of this
potentiality on the system’s performance. This trajectory
is obtained by varying the state of the system from t; to t;
(the displacement between the red and yellow spheres in
the description space). The relationships between these
two spaces are built by functions linking attributes to
KPIs. However, depending on the type of system stud-
ied and its complexity, these functions can be more or
less difficult to determine (Moradkhani et al 2020). In the
case where these relationships are too complex to deter-
mine (as for an SC for example), simulation models can
be built and simulation experiments carried out, in order
to model and estimate the dynamics existing between
the attributes and the KPIs. Obviously, inertia, passive
and active trajectories are all similar in nature (they rep-
resent the performance of a system facing actualities),
but they diff er from the sense given to these actuali-
ties (expected for inertia, expected and unexpected for
passive, expected, unexpected and corrective for active).

3.2. PoD and resilience

The main contribution of this paper is to study how
an approach like PoD can contribute to an SC, more

resilient. As mentioned in the previous section, an essen-

tial part of the resilience analysis is the identification of
system states. PoD, thanks to the two developed spaces,

allows us to follow both the evolution of the system
states over time with the description space and the impact
of these state changes on the system performance with
the performance space. The objective is to benefi t from
this performance framework to assess SC resilience and
thus study the resilience from a kinetic point of view. Its

geometrical definition remains to be d efined. Christo-

pher and Peck (2004) propose fi ve key
increase SC resilience: (1) select strategies that leave as
many options as possible, (2) re-examine the ‘efficiency
vs. redundancy’ trade off, (3) develop collaborative work-
ing, (4) develop visibility and (5) improve SC velocity
and acceleration. The last two capabilities are very inter-
esting in the perspective of using the PoD approach
to manage resilience in a kinetic manner. Adobor and

capabilities to



McMullen (2018) define visibility as the ability of man-
agers to access an overview of the SC, and know its envi-
ronment and key assets. All this information is included
in the description space, which therefore aims to support
the visibility. Improving the speed and acceleration of an
SC requires defining and visualising the objectives to be
reached, in particular by visualising, for example, the per-
formance trajectory of an SC in a reference framework
whose dimensions are its performance indicators. From
a kinetics perspective, the following explains how to link
the concept of performance management to kinetic and
physics notations such as displacement, velocity and accel-
eration. Displacement (AKPI) measures changes in the
value of a KPI. Velocity (v) is the derivative of this dis-
placement over an interval §t: % It thus represents the
positive or negative growth of the KPL. Acceleration is the
derivative of the velocity over an interval §t: % = %ﬂ.
The acceleration value reflects the strength or weakness
of the fluctuation of a KPI in a positive or negative direc-
tion. Its direction is always the same as the net force
acting on the system produced by the variation of its
attributes (the changes in state due to a disturbance). In
the proposed study, the calculated velocities and acceler-
ations will be local velocities and accelerations, calculated
as

Velocity = [W] = vx(t) (1)
Acceleration = [vx(t) — ;:(t — &)] =ax(t) (2

These notions of displacement, velocity and acceleration
offer new perspectives in the study of the resilience of
a system. The following points aim to explain how to
interpret these concepts in the context of studying the
resilience of a system.

e The displacement is equivalent to variations in the val-
ues of a KPI. It measures the gap between the initial
performance of the system without any disturbance
and the performance following a disturbance, in a type
« or y resilience view. For type B resilience, the dis-
placement measures the gap between the objective
performance area and the performance following a
disturbance. The displacement thus makes it possible
to measure the performance lost following a disrup-
tion. The notion of displacement is very close to the
engineering vision of resilience which mainly refers
to the area calculation method found in the litera-
ture (e.g. the resilience triangle presented in Section
2). The displacement provides a dynamic measure of
resilience at each instant, whereas the area provides a
measure of resilience over a range of time. Low values

of the displacement imply no significant consequences
or rapid recovery.

e The velocity represents the growth of the system. The
evolution of its sign (i.e. positive or negative growth)
will make it possible to better apprehend and under-
stand the internal dynamics of the system, in partic-
ular how the system organises itself to best absorb a
disturbance (all the phases of alternating sign of the
velocity).

e The acceleration, especially its norm, allows us to
quantify the magnitude of disturbance a system can
tolerate. From an ecological resilience perspective,
Carpenter et al. (2001) define resilience as the magni-
tude of disturbance that can be tolerated by a system,
i.e. the amount of extrinsic force the system can with-
stand. This definition, studied from a physical and
kinetic point of view, allows us to define resilience as
the intensity of the force (generated by a disturbance)
that the system can absorb before moving. This resis-
tance to movement is characterised by the mass of the
system. By definition, physical mass is the resistance
that a body of matter offers to a change in its velocity
or position when a force is applied (the Encyclopaedia
Britannica). Moreover, according to Newton’s second
law of motion, the intensity of a force is proportional
to the mass of the system and the acceleration of the
system produced by this net of force. The mass of a
system as complex as an SC is difficult to evaluate. It is
therefore necessary to quantify the ability of a system
to resist a disturbance by measuring its acceleration
after a disruption.

Thanks to its vision of system management by perfor-
mance trajectory analysis and its analogies with physics
(force, displacement, velocity and acceleration), the PoD
approach makes it possible to link the two main visions
of resilience existing in the literature: engineering and
ecological. With this approach, it is possible to evaluate
resilience according to these two visions. One important
measure for engineering resilience is the performance
loss due to a disruption, which can be measured by the
concept of displacement and distance. Indeed, as illus-
trated in Figure 5, by analogy with the resilience triangle
(illustrated in Figure 2), the idea is to approximate the
resilience by the sum of the yellow distances, providing
the means to estimate the area between the trajectories,
in the case where the time intervals between each dis-
tance measurement are small enough according to the
studied system and the considered KPIs (a one-time step
in Figure 5). Three surfaces can be calculated: (1) the area
between the inertia trajectory (for type « or y resilience,
respectively the closest border of the target zone for type
B resilience) and the passive trajectory, measuring the
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Figure 5. Distance at each time point between the inertia and
passive trajectories.

degradation (used to measure the natural resilience), (2)
the distance between the inertia trajectory (for type «
or y resilience, respectively the closest border of the
target zone for type B resilience) and the active trajec-
tory, measuring the actual degradation (used to measure
the corrected resilience) and (3) the distance between
the active and passive trajectories, measuring the actual
compensation (used to measure the gain in resilience).
However, not being in dimension two, the measure-
ment of the distances (2) and (3) is not quite accurate.
These measurements imply to check point by point the
value of the angle TAP between inertia (I), active (A) and
passive (P) position at time t; (illustrated in Figure 6). The
closer the angle TAP is to 180° (the three points are on the
same line) or strictly equal to 0° (the three points are com-
bined), the more valid the measures are. It is then possible
to say that the actual degradation (orange distance in
Figure 6) is equal to the measured degradation (turquoise
distance in Figure 6), the active position and the pro-
jected active position are thus merged. If this angle is too
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Figure 6. lllustration of distance concepts.

far from 180°, additional calculations will have to be car-
ried out and a new distance will have to be considered, the
edge effect (pink dotted line in Figure 6), which will have
to be analysed in relation to the performance objectives
of the system in order to know if its effects are positive
or negative. The same reasoning can be applied to the
actual compensation (green distance in Figure 6) and the
measured compensation (brown distance in Figure 6). The
ecological resilience, i.e. the magnitude of disturbance
that a system can absorb, can be calculated thanks to
the analogies with physics on which the PoD approach
is based, as explained with the notions of acceleration
and forces. This part will be discussed in the discussion
section (Section 5).

4. Experiments and results
4.1. Studied supply chain:rich kids

To illustrate the contribution of the PoD approach to
the development of SC resilience capabilities, the selected
use-case concerns a worldwide SC network for electri-
cal skateboards. This use-case has been created in 2019,
the researchers who created this fictitious and illustrative
use-case, decided to name it ‘rich kids’ because only rich
kids could afford or rent this kind of “vehicle’. Its network
is composed of eight actual partners and three potential
new partners (a new customer and two new suppliers).
Figure 7 illustrates the studied network. Table 2 briefly
describes the function of each actor in the network and
their location.

In order to collect the material necessary to apply
the PoD approach (for this case study, the management
and measurement of the resilience of company A), a
simulation model was built and developed on the Any-
Logic© simulation software, combining discrete event
and agent-based simulation. Besides its contribution to
theory development (Davis, Eisenhardt, and Bingham
2007), simulation also provides a virtual laboratory in
which it is possible to visualise the eff ects of potential-
ities and corrective actions on the behaviour of the SC
(Falasca, Zobel, and Cook 2008), thanks to its ability to
provide instantaneous information on the state of the sys-
tem (Carvalho et al. 2012), including the evolution of
its performance. These analyses are carried out from the
study of sufficiently detailed scenarios, most often based
in their construction on previous disturbance data, in
order to identify and understand their causes and effects
on the system (IAA 2013). This case study, although rel-
atively simple, offers a large p otential of e volution and
complexification, especially for the study of a wide range
of possible events and disturbances. In the proposed
study, simulation is used to identify the performance gaps



Figure 7. Rich kids — SC network.

Table 2. Description of the Rich Kids network actors.

Location

Ga. USA

Company Description

A builds electric
skateboard that can
be driven with an
App.

B buys the electrics part
(engine and battery)
from E and develop
the App to sell both
to A.

C builds synthetic wheels
to sell to A.

D builds the board from
synthetic and wood
(bought from F) to
sellto A.

E builds engine and China
battery to sell to B.

F provides woods to D.

G skateboard seller from
a ski domain.

H skateboard seller from
a surf domain.

I skateboard seller Italy
from a ski domain
(potential).

J synthetic wheels Brazil
supplier (potential).

K wood board supplier
(potential).

FI. USA

Mexico

France

Sweden
Canada

Ca. USA

Canada

between the actual and the desired state of the SC (Car-
valho et al. 2012), when carrying out different scenarios
(potentialities and corrective solutions). The collection
of data related to these tests (the evolution of SC perfor-
mance) was collected at regular time intervals during the
simulation, following a standard procedure, which con-
sists of running the simulation over a fixed period of time
(in this study 365 days), in order to obtain time series of
results to analyse (Macdonald et al. 2018). In this study,
the time series of results obtained from so-called com-
pare run simulations, in which AnylLogic© generates the
random factors from identical seeds. These simulations

collect only the effects attributed to the experimental fac-
tors, thus removing the effects related to the stochastic
factors, their cleaning is essential to obtain consistent and
comparable results (Macdonald et al. 2018).

4.2. PoD: application to rich kids resilience
management

In the perspective of the PoD approach, deviations from
the SC inertia trajectory (SC’s initial performance trajec-
tory) are considered as potentialities (risks, opportunities
resulting from inflicted e vents or m anager’s decisions)
and so as forces. According to passive and active trajec-
tories defined in Section 3, deviations are generated by
variations in system attributes. These variations can be
generated by two types of forces: inflicted forces that are
imposed on the SC and modify attributes out of control
of the managers (or hard to change), and managed forces
that correspond to actions taken by decision-makers, i.e.
variations on attributes over which the company’s man-
agers have decision-making power. Potentialities also
have their own attributes called characteristics. For this
case study, the characteristics retained are (1) the date of
appearance of the potentiality, (2) its duration and (3) its
impacts on the SC attributes.

Two potentialities will be studied in this illustrative
example of the contributions of the PoD approach in
managing SC resilience. The first p otentiality (passive)
will aim to stress the model with a strike at the board sup-
plier D. This potentiality will be activated two months
after the beginning of the simulation (the beginning of
the year and the experiment lasting 365 days), will have a
duration of four months and will reduce the production
capacity of supplier D by 70%. The second potentiality
will be a corrective action (active) implemented by the
managers to reduce the impact of this strike on the per-
formance of company A: The managers will activate the



opportunity to double source the supply of boards. A con-
tract with supplier K will be concluded one month after
the beginning of the previous potentiality and will last
the whole simulation. The supplier will cover 30% of the
board requirement. In order to be able to visualise the
performance trajectories, three KPIs have been selected
in this study: the profit (in hundreds of thousands of
euros), the inventory of finished product and the delay
(equivalent to the lead time ratio introduced by Carvalho
et al. 2012). The delay indicator is calculated as the ratio
between the sum of the waiting time to have the prod-
ucts in stock and the delivery time, all divided by the
expected lead time agreed upon between company A and
its customers.

As explained in Section 3, analysing and measuring
SC resilience according to a kinetic vision is done in
three steps: (1) displacement (the gap between the initial
performance of the company A and the studied poten-
tialities), (2) velocity and (3) acceleration. Figure 8 illus-
trates these three steps for the finished goods inventory
KPL In these figures, the orange area corresponds to the
activation period of the disruption. The green line indi-
cates the start date of the corrective potentiality. Accord-
ing to Figure 8, the effect of the disruption on finished
goods inventory is not immediately felt. The first impacts
appear 70 days after the start of the strike. At the onset
of the disruption, company A had sufficient raw mate-
rial inventories to continue operating properly. However,

once this stock was consumed, the impact of the dis-
ruption was brutal, as shown by the magnitude of the
acceleration for this indicator. This disruption has a side
effect and leads to a bullwhip effect (mainly due to the
internal dynamics of the network and the accumulation
of pending production orders) just after the recovery. The
corrective potentiality delays the impact of the disruption
on the finished product inventory by 43 days. However, it
will not prevent the bullwhip effect, whose effects on sup-
ply performance appear more quickly, following a faster
recovery.

Consistent with Section 3, the proposed resilience
measure aims to extend the concept of resilience trian-
gle with a multi-dimensional measure based on system
performance trajectories. Figure 9 provides an overview
of the three different trajectories modelled in its perfor-
mance framework, in which dimensions are the three
selected KPIs (profit, delay and finished good inventory).
A first analysis (purely graphical) shows that following
the strike (red passive trajectory), the performance of the
SC is very degraded, particularly from a financial point
of view. The action (black active trajectory) of double
sourcing the raw material concerned allows to mitigate
the financial impact and to return more quickly to normal
at the level of delays and finished good inventory.

From these trajectories, a first measure of resilience
is the sum of the degradation distances (purple hor-
izontal line in Figure 6) at each time point (in this
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365
example, Y ,/(inertia(t) — passive(t))%), which corre-
=0

sponds to the natural resilience of the system. For the
strike disruption, the natural resilience of rich kids SC
is equal to 236." The second measure of resilience is
the sum of the measured actual degradation distances

(turquoise distance in Figure 6) at each time point
365
(3" /(inertia(t) — active(t))%), which corresponds to
=0
the corrected resilience of the system. As mentioned in

Section 3.2, not being in dimension two, the measure-
ment of this distance is not quite accurate and implies to
check point by point the value of the angle IAP between
inertia (I), active (A) and passive (P) position at time t;.
For this illustrative example, 28% of the angles IAP are
strictly equal to 0°, 59% are greater than 90° and 44%
are greater than 130° (so only 13% are lower than 90°,
while not being strictly equal to 0°). Thus, in this case, it
is considered valid to approximate the actual degradation
by the measured degradation. The corrected resilience of
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rich kids SC is equal to 166, which is a 30% gain, showing
that the selected counter measure has been significantly
efficient.

If the majority of the angles TAP measured had been
less than 90° the edge effect would no longer have
been negligible, the projection calculations would have
become mandatory. For instance, this situation can be
illustrated by the firefighter who, in order to increase
his resilience to fire, wears a fireproof suit (active poten-
tiality). However, this suit is heavy and cumbersome,
which slows down his movements and his speed of move-
ment (edge effect). In that case, the resilience can be
calculated as the sum of the actual degradation dis-

tances (orange distance in Figure 6) at each time point
365

(Y /(inertia(t) — projected active(f))2) where the pro-
=0

jected active trajectory is composed by the projections of
all points of the active trajectory on the segments joining
all inertia positions and passive positions at each moment
of time. However, this absolutely implies simultaneously



measuring the edge effect asthe sum ofthe distances
between all points of the active trajectory and their corre-
sponding projections on the segments joining all inertia
positions and passive positions at each moment of time
(pink dash line in Figure 6).

5. Conclusion, limitations and future works
5.1. Conclusion and limitations

This article illustrates some preliminary applications of
the physics-based approach to supply chain resilience
management, through first r esults, e ssentially concep-

tual, on a kinetic vision of resilience management. In
this paper, by associating a simulation model to the pre-
sented decision framework, PoD, it is possible to predict
the consequences of a disruption, an event, or a deci-
sion on a supply chain. This prediction is visually rep-
resented as a performance trajectory within the system’s
KPIs framework. Risks, opportunities and decisions are

modelled from a ‘what if approach and their impacts

on the supply chain are seen as deviations from the per-
formance trajectory. Following that principle, this article

shows how it is possible to benefit from this innovative

approach to evaluate the resilience of a supply chain to

disruptions. This resilience evaluation has been calcu-

lated as the surface between the expected trajectory (so-

called ‘inertid or ‘target’ trajectory) and the perturbed
trajectory (with or without corrective decisions and

actions).

However, this vision is clearly strongly dependent on
time and the duration on which the measure should be
performed is hard to establish. This question of dura-
tion is also the main drawback and limitation of the
resilience triangle from which this proposal is inspired.
Theoretically, this duration should be defined according
to the moment when the perturbed performance tra-
jectory (passive or active trajectories) joins the reference
performance trajectory (inertia trajectory). In the previ-
ous illustrative example of Section 4, the magnitude of
the disruption (and/or the duration of the experiment,
and/or the inefficiency of th e co untermeasure fo r the
active trajectory) does not allow the active trajectory to
actually join the inertia trajectory, which fundamentally
shows no resilience. Nevertheless, the example still shows
how the theoretical and abstract vision of the ‘resilience
triangle’ can be extended and formally calculated thanks
to the kinetic nature of the PoD paradigm. This ques-
tion of duration is also the main drawback and limitation
of the resilience triangle. With this view, this duration is
therefore variable according to the system studied and
the potentialities that impact it. However, according to Li
et al. (2017), the lack of a bound for the measurement of

time, especially the recovery time (variable for each sys-
tem and potentiality), means that the resilience triangle
cannot be used to compare resilience between different
systems. To overcome this problem and make the pro-
posed measure comparable for any system, in the same
way as the resilience measure proposed by Zobel (2011),
a strict upper limit on recovery time should be defi ned,
allowing a sufficiently long-time interval to be considered
over which the loss of functionality can be determined.
This value assumes of course that any system will return
to its original state before this time limit (Li et al. 2017).
This strict upper limit on recovery time offers the possi-
bility of a standard measure for the time interval between
each distance measurement (e.g. one thousandth of this
time), thus allowing the surface between the different tra-
jectories (expected and perturbed) to be approximated
and compared for any system.

In addition to the temporal aspect of measuring
resilience, its multidimensional nature also makes it dif-
ficult to assess (by multidimensional, we mean its mea-
surement based on the evaluation over time of the impact
of a potentiality on several KPIs). In order to facilitate
the visualisation of performance trajectories, the perfor-
mance space has been limited to three dimensions. Of
course, for such a complex system, it is unlikely that
decision-makers will limit themselves to observing three
performance indicators. Actually, there might be dozens,
hundreds or thousands of them. Although, ‘some studies
have addressed the multidimensional nature of resilience
by aggregating the magnitude of deviation from equilib-
rium and the time to recovery of the performance profile
to capture resilience’ (Munoz and Dunbar 2015), notably
through the use of the resilience triangle. Thus, the mul-
tidimensional nature of resilience tends to favour the use
of an aggregate index over other forms of performance
measurement (Munoz and Dunbar 2015). However, the
use of an aggregation index does not allow for an accurate
characterisation of resilience. It is in this case that the per-
formance space will take all its importance, notably by its
ability to be composed with as many dimensions as the
number of KPIs. This capability allows us to assess dis-
tance between the expected trajectory and the perturbed
trajectories, whatever the number of KPIs (even if it is not
possible to visualise them beyond three dimensions).

5.2. Future works

However, being able to theoretically compute the over-
all performance of the observed system as a trajectory
impacted by any event (positively or negatively) is clearly
one great contribution of the PoD approach, it is manda-
tory to find a way to make these results handleable by
decision-makers. Some first research works are currently



Figure 10. Immersive environment for PoD visualisation and interaction.

being conducted on the use of virtual and augmented
realities (VR and AR) to immerse decision-makers in an
abstract decision vision where they could visualise and
feel the performance trajectories and interact efficiently
with them (as shown in Figure 10).

In Figure 10, the ideal performance trajectory is rep-
resented by a perfectly straight white line (even though
it has a more complicated trajectory in its original multi-
dimensional space), while the actual performance trajec-
tory is represented, relative to this white reference line,
by a green line (which tends to be a cone to represent
uncertainty). The coloured streams (blue, orange, etc.)
represent events (risks or opportunities) that may occur
and the grey vortex represents the target hyper tube.
The world globe on the right presents the structure of
the SC under consideration (so that the coloured events
can be contextualised and better understood). This VR
view could open the door to a new generation of immer-
sive analytics exploiting theoretical contributions such as
PoD and providing visualisation and interaction tools for
decision-makers.

Besides, in addition to this immersive environment
and the proposed resilience measure, the kinetics features
of the PoD vision also allow us to consider a measure
directly inspired by the notion of ecological resilience:
resilience can be seen as the disruption that a system can
face without becoming ineffective. More precisely, in the
context of PoD, resilience can thus be seen as the pertur-
bation force that an SC can take without becoming unable

to reach its expected target. As presented in Figure 4, the
target hyper-tube can be considered as the sub-part of the
space in which the performance trajectory should remain
to be able to reach its performance objective. Consider-
ing these definitions, one can say that resilience could
be defined as the set of forces that an SC can take with-
out leaving the target hyper-tube (especially by activating
counter forces). However, this hyper-tube is time depen-
dent: the less effective the SC is, the more this hyper-tube
will shrink and eventually disappear if the target cannot
be reached anymore. To illustrate this idea, let us take the
example of the writing of a 20-page document in 10 days,
with a writing capacity of 5 pages per day. Initially, the tar-
get hyper-tube is quite wide: the writer can write 0, 1, 2, 3,
4 or 5 pages on the first day, the same on the second day,
etc. and he may even decide to not write any page during
the 16 first days. But obviously, when he reaches the 16th
day, he only can write 5 pages per days on the 17th, 18th,
19th and 20th days. The hyper-tube did shrink to a line.
And if the writer does not write 5 pages on each of these
last days, there is no more solution and no more hyper-
tube. This vision is on the one hand close to the notion of
critical path, but on the other hand also close to the prop-
erties of some materials that are able to absorb shocks and
impacts, to accumulate them to a certain level of accu-
mulation at the end of which they break at the slightest
shock.

With regards to the previous considerations and the
PoD framework, SC resilience (by analogy with the



ecological resilience vision) can then be defined as the
set of forces for which the SC is able to activate counter-
force(s) which will allow its performance trajectory to
remain within a doable target hyper-tube. The volume of
the red hyper-cone presented in Figure 11 could thus be
another measure of SC resilience: it corresponds to the
space in which each force vector, representing one (or
several) disruption(s) applied to the SC could be coun-
tered by managed forces (i.e. counter measures and deci-
sions) maintaining the performance trajectory within
a doable target hyper-tube. The SC cannot absorb an
impact which force is outside of this volume. This new
vision of resilience measurement implies: (1) being able
to identify all the managed forces at each moment, (2)
being able to measure their intensity and (3) being able
to measure the global volume resultant of these forces.
These points raise the question of the independence of
the forces (which is at the heart of that approach) and
therefore on the basis of which criteria is it possible to
sum the forces?

The question of obtaining or estimating the forces is
primordial for this approach. In this article, the forces
are estimated by simulation. Simulation has been used
to consider all the stochastic factors that can be asso-
ciated with a disturbance: its date of appearance, its
duration and its impacts on the system attributes. For
instance, identifying the micro-impacts of natural dis-
ruptions such as hurricanes is not an easy task. Currently,
there is no scientific method to accurately quantify and
predict the long-term evolution and spatial distribution
of hurricanes, nor their impacts on society’s infrastruc-
ture (Linkov et al. 2014), such as an SC for example.
Simulation allows to model the internal dynamics of a
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Managed forces

System at time t
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KPI,

Figure 11. Resilience hyper-cone.

system (as a black box) at a granularity level which per-
mits to observe the impact of a disruption while con-
sidering all micro-consequences. For example, it can be
used to model the micro-consequences of the hurricane
by picking randomly among the warehouses and roads of
the impacted region according to a quasi-constant per-
centage and making them inoperative. This is why, simu-
lation has also been used to link the description space and
the performance space: Transforming micro-impacts to
macro-impacts. The use of simulation as a link between
these two spaces opens the door to a wider generalisation:
studying the space of possibilities and the ‘density’ of the
description and performance spaces in order to formalise
the forces. In this context, density refers to the degree of
ease or difficulty in reaching a point in the performance
space. In a way, the study of the density of the perfor-
mance space could show that some areas of the space are
more or less accessible (depending on time of course) via
the inflicted and managed forces. Conversely, some parts
of this space could be inaccessible by any combination
of the identified forces available (i.e. by any combina-
tion of the attributes of the system, any variation of the
parameters of the associated digital model). This vision
can be understood by analogy with the electronic density
of the air which determines the course of a lightning bolt
which travels the most advantageous path to strike the
ground. The study of the density of the space, combined
with the ‘cone’ vision of resilience introduced in the pre-
viously, could also allow us to determine the areas where
the system is more or less resilient and ultimately the
best combinations of forces to make the system resilient.
To do this, it is necessary to make the simulation model
sufficiently exhaustive and covering to extract, following
sensitivity analyses, a generic formulation of the impact
of an event on a type of system in the form of a force dis-
turbing the performance trajectory. Of course, it would
be possible to use other more formal tools (mathemati-
cal modelling, machine learning, etc.) to create the link
between these two spaces and model the dynamics of
a system. The use of neural networks could be another
solution. However, this solution requires a large amount
of training data, which means that the sensitivity analy-
sis campaigns mentioned above must first be carried out.
The big advantage over simulation is that once trained
correctly, the neural network could (1) avoid having to
formalise the force and (2) increase the range of possible
scenarios covered.

Physics in addition to contributing to the question of
forces, trajectory and movement, could also contribute to
providing other measures of the resistance and absorp-
tion capacity of a system, in particular by the mechanics
of the solid by studying the deformations of the solid fol-
lowing a disturbance, but also the ability of a system to



change its own attributes (i.e. its shape from the point
of view of physics) to optimise (maximise or minimise)
its susceptibility to a potentiality. Work on energy can
also be carried out to determine the cost of maintaining
a system in its resilience cone.

Note

1. It is important to notice that this value is for a duration of
10 months (the strike occurring 2 months after the begin-
ning of the year and the experiment lasting 365 days). The
time duration must be defined and discussed; else it is
meaningless.
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