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Clinical decision support based on artificial intelligence (AI) methods has increasingly been employed in medical 
applications to support medical diagnosis. Developing efficient AI methods, however, depends necessarily on 
the availability of sufficiently large amount of data to provide reliable results. But, in medicine, it is not 
always possible to find sufficient amount of real data on all pathologies, particularly, for rare diseases. This 
paper proposes a methodological framework for generating synthetic data using data augmentation techniques 
combined with epidemiological profiles. It focuses on Uveitis, a rare disease in ophthalmology, which is difficult 
to diagnose because of the disparity in prevalence of its etiologies. The generated synthetic data have been 
qualitatively validated by specialist ophthalmologists and quantitatively tested using machine learning methods. 
Results show that, of a randomly selected sample of the generated data, more than 55% were assessed as good or 
excellent, which is very promising for generating synthetic, validated as near-real, medical data for rare diseases. 
They also show that the proposed framework is consistent in generating synthetic data, for Uveitis pathology, 
of different dataset sizes, achieving more than 80% diagnosis prediction accuracy for 2000 patient records or 
larger.

1. Introduction

Artificial Intelligence (AI) has undergone considerable development 
in recent years in the field of medicine and its promising applications 
in several areas of medical diagnosis. However, the development of AI 
approaches, to provide reliable results, require the availability of suffi-
ciently large amount of real data. Unfortunately in medicine, it is not 
always possible to provide so much data on all pathologies. This prob-
lem is particularly true for rare diseases. This paper focuses on Uveitis, 
a rare disease in ophthalmology. Uveitis corresponds to the inflamma-
tion of the intermediate tunic of the eye called uvea, as shown in Fig. 1, 
which is composed of the choroid extended anteriorly by the ciliary 
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body and by the iris. Inflammatory damage to the retina, secondary to 
primary inflammatory damage to the uvea, is considered to be a full 
fledged uveitis (Haute, 2020).

Uveitis is located at the crossroads of several medical specialties 
and represents a real diagnostic and therapeutic challenge. It may be-
long to the manifestations of a general disease or may affect only 
the eye. Causes of Uveitis can be a combination of multiple and di-
verse etiologies, including purely ophthalmological diseases, infectious 
diseases, systemic diseases, and even drug causes. Sève et al. (2018)
describe sixty possible etiologies and classify them into 5 groups, of 
unequal importance, which denotes the challenges of Uveitis represen-
tation.
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Fig. 1. Sagittal section of the human eye.

Uveitis mainly affects young adults, with 70 to 90% of patients 
between the ages of 20 and 60, and are responsible for 5% of legal blind-
ness, thus ranking third in the causes of blindness worldwide (Bonnet 
& Brézin, 2020). Affecting mainly professionally active people, Uveitis 
represents a major public health problem with medico-economic conse-
quences (Perez-Roustit, 2018). It is a relatively rare pathology, reported 
by studies, with an incidence of 7 to 52/100,000 people per year, and 
a prevalence of 38 to 284/100,000 people per year (Sève et al., 2018, 
Bertrand et al., 2019, Prete et al., 2016). The incidence of uveitis is esti-
mated in the countries of the northern hemisphere at just over 50 cases 
per 100,000 inhabitants per year and their prevalence is at just over 100 
cases per 100,000 inhabitants (Brézin, 2012). In France, although an old 
study, carried out in the department of “Savoie”, estimated the annual 
incidence of Uveitis at 17 per 100,000 people per year (Vadot, 1992). 
However, we believe disease prevalence is similar to recent studies that 
report prevalence of 54 (González et al., 2018) and 60.6 per 100,000 
persons (Zhang et al., 2020). Thus the need to found a dataset, for the 
scientific community, to improve the potential of its diagnosis.

Uveitis causal epidemiology varies according to genetic factors, en-
vironmental factors, disease definition, certain ophthalmological en-
tities, paraclinical investigations and so forth. These cause wide het-
erogeneity of the disease (Bonnet & Brézin, 2020), which complicates 
its data model representation and generation of realistic data. These 
challenges and the low number of cases of Uveitis as well as the multi-
disciplinary management of the disease have prompted doctors to look 
for tools to help diagnose these pathologies, in order to shorten the de-
lays in establishing etiological diagnosis. To improve clinical diagnosis, 
clinical decision-making is usually aided by Clinical Decision Support 
Systems (CDSS), which can utilize a knowledge-based or AI-based ap-
proach to derive its decisions. Knowledge-based (also referred to expert) 
systems provide decisions based on rules built using interventions of ex-
perts, while AI-based systems employ AI algorithms and techniques, e.g. 
machine learning, to provide their decisions using medical data.

Several CDSS have been developed to help diagnose Uveitis, since 
the 1990s, including the 3D shell expert system (Wiehler et al., 
2006), Bayesian network for the differential diagnosis of anterior 
uveitis (González-López et al., 2016), and Uvemaster (Gegundez-
Fernandez et al., 2017). In these systems, however, the larger the 
number of criteria in the rules, the more complicated it will be to im-
plement as a system. Although these systems show modest results, in 
terms of accuracy, but, for example, Bayesian networks drop in per-
formance as the number of criteria increases (Jamilloux et al., 2021), 
hence the increased recent interest in using AI-based or Machine Learn-
ing (ML) approaches. These approaches depend on algorithmic models, 
which require data to train. However, to achieve good performance, 
these models necessarily require large amount of medical data that rep-
resent patients, who have been diagnosed and followed for Uveitis, for 
example. Obtaining such data, however, can face extreme difficulties 

due to, on the one hand, medical data protection policies, but also, on 
the other hand, due to the unavailability or insufficiency of the data 
due to the rarity of the disease.

To address this issue, several potential solutions have been devel-
oped, such as distributed privacy preserving data mining (Scardapane 
et al., 2018, Ding & Sato, 2020), federated machine learning models 
(Yang et al., 2019), which use federated training as a means to avoid 
data sharing, and data anonymization techniques for privacy preserving 
data publishing (PPDP) (Majeed & Lee, 2020) that could allow for data 
pooling. Anonymization techniques aim to strike a balance in the final 
published data between disclosure risk and data utility, resulting in a 
modified version of the original data that no longer identify individual 
medical cases, yet the data remains vulnerable to disclosure (Hernan-
dez et al., 2022). A potential solution, to overcome these limitations, is 
the generation of fully synthetic data (SD) as an alternative to real data, 
which is commonly known as synthetic data generation (SDG). SD is 
generated from a model that fits to the characteristics of a real data set. 
This model contains no data from the original set, but it is able to gen-
erate data similar to the original data. Although several SDG methods 
have been proposed, with promising results, in various application do-
mains, such as healthcare, biometrics, and energy consumption, there 
is a need for more robust solutions (Hernandez et al., 2022).

The key contribution of this paper is the development of a syn-
thetic data generation framework for Uveitis. A data generation model 
has been developed, based on the medWGAN approach (Baowaly et 
al., 2019). It uses data augmentation techniques combined with the 
aggregated Uveitis epidemiological profile characteristics, taking into 
account the distribution and the imbalance in the rarity of some Uveitis 
etiologies. The developed framework has been evaluated, both quali-
tatively, by physicians, and quantitatively, by statistical analysis and 
machine learning methods. Evaluation shows very promising results, 
with more than 55% of the generated data assessed as good or excel-
lent, which is very satisfactory for synthetic data generation for rare 
diseases. It also shows the proposed approach is consistent in generating 
synthetic data, of different sizes, that meets Uveitis pathology and the 
distribution of its etiologies and profile characteristics, achieving more 
than 80% diagnosis prediction accuracy for datasets of 2000 records or 
larger. Although the developed framework is for Uveitis, however the 
followed approach is generic, and can be employed for other rare dis-
ease, and the number of generated synthetic samples can be increased 
according to the need of the employed AI algorithm.

The rest of paper is organized as follows: section 2 presents related 
work on synthetic data generation, section 3 describes epidemiological 
profile of Uveitis and the developed synthetic data generation method. 
In section 4 reports the evaluation of the developed method and dis-
cusses the results. Finally, section 5 concludes the work.

2. Related work

Synthetic Data (SD) are data created by a model that has been 
trained or built to replicate real data (RD) based on its distributions 
(i.e., shape and variance) and structure (i.e., correlations among at-
tributes) (Hoptroff & El Emam, 2019). It can be employed for various 
applications, for example, data augmentation, which is used to balance 
datasets or supplement existing data before training a machine learn-
ing model, or privacy preservation, which is used to allow secure and 
private sharing of sensitive data. SDG has been studied in healthcare 
for a variety of modalities, including biological signals (Hernandez-
Matamoros et al., 2020), medical pictures (Han et al., 2018), free-text 
content in electronic health records (EHR) (Guan et al., 2018), time se-
ries smart-home activity data (Dahmen & Cook, 2019), and EHR tabular 
data (Yale et al., 2020), which we focus on in this paper.

Synthetic tabular data generation approaches can be divided into 
three categories (Hernandez et al., 2022): (1) application-oriented ap-
proaches, (2) classical approaches, and (3) deep learning approaches. 
Application-oriented approaches include personalized methods, tech-
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Table 1

Comparative table of GAN based approaches tested on binary data (Hernandez et al., 2022).

Publication Data type Num. of records GAN based methods

Choi 2017 (Choi et al., 2017a) Binary 1071 medGAN
Baowaly 2019 (Baowaly et al., 2018) Binary 42214 medWGAN
Dash 2020 (Dash et al., 2020b) Binary - healthGAN
Rashidian 2020 (Rashidian et al., 2020) Binary 47412 SMOOTH-GAN
Yoon 2020 (Yoon et al., 2020) Binary 26854 DP-GAN

niques, or frameworks that are developed to generate synthetic data for 
specific applications. Content Modeling for Synthetic E-Health Records 
(CoMSER) (McLachlan et al., 2016), Aten Framework (McLachlan et 
al., 2019), SynSys (Dahmen & Cook, 2019), Synthea (Walonoski et 
al., 2017), and Prophet (Hyun et al., 2020), are examples of these 
approaches. Although, these approaches have generally shown good re-
sults for the application that were specifically developed for, however, 
they would require major changes to modify for other applications. Ad-
ditionally, to develop, these methods require significant effort and time 
including close collaboration of specialist physicians.

Classical approaches include baseline methods, statistical and prob-
abilistic models, and ML models. Baseline methods, which are often 
used for anonymization, include techniques that simply replace values, 
delete sensitive attributes and add noise to the data (Nguyen, 2014). 
Statistical and probabilistic models synthesize data, using statistical and 
probabilistic techniques, that attempt to simulate real data (Tucker et 
al., 2020). ML models, in particular supervised ML models, however, 
generate data based on learned data patterns. (Rankin et al., 2020). 
These approaches have shown weakness in generating high quality 
tabular data that guarantees the privacy of the original data, as they 
frequently attempt to memorize real data and the correlations between 
attributes. However, they have, commonly, served as a benchmark to 
evaluate more advanced technologies (Hernandez et al., 2022).

Deep Learning (DL) approaches, on the other hand, include auto-
encoders, GANs and Ensembles. Autoencoders are unsupervised neural 
network that learn how to reconstruct data given an encoded represen-
tation of the real data (Sewak et al., 2020). Whereas GANs consists of 
two antagonistic neural networks: generator and discriminator, which 
learn to generate high quality SD by an adversarial training process (Gui 
et al., 2020). Ensemble methods, however, employ two different types 
of DL models to generate synthetic data (Dash et al., 2020a). These 
approaches have shown better performance in learning real data pat-
terns and in generating more diverse data, thus were able to generate 
higher quality and better privacy preserving tabular data. This led to, 
a substantial rise in their popularity in, their use for synthetic tabular 
data generation and privacy preservation of real data, particularly GAN-
based approaches, after their inception in 2014 (Hernandez et al., 2022, 
Goodfellow et al., 2014). They are considered one of the most interest-
ing developments in AI in recent years, and have shown good results 
for creating synthetic data (Kavakli-Thorne et al., 2021), outperforming 
other approaches (Hernandez et al., 2022), particularly for binary data, 
thus the focus of this paper.

The GAN-based methods with the best performance are shown in 
Table 1, as reported by (Hernandez et al., 2022). Using a defined eval-
uation metric that measures resemblance between real and synthetic 
data, the authors report that healthGAN (Dash et al., 2020b) presented 
an excellent level of resemblance, med-WGAN (Baowaly et al., 2018) 
and SMOOTH-GAN (Rashidian et al., 2020) presented a good level of re-
semblance, while the resemblance for medGAN (Choi et al., 2017a) and 
DP-GAN (Yoon et al., 2020) was poor. However, once studied closely, 
healthGAN (Dash et al., 2020b) is in fact a WGAN model originally de-
veloped by (Arjovsky et al., 2017), which generally facilitates stable 
training but generates low quality samples or fails to converge in some 
settings due to the use of the weight-clipping technique (Baowaly et 
al., 2018). While SMOOTH-GAN, a novel model proposed by (Rashid-
ian et al., 2020), is a conditional GAN based on WGAN-GP, adapted for 
healthcare data. It used gradient penalty instead of weight clipping, that 

resulted into a better performance than the standard WGAN (Baowaly 
et al., 2018). medWGAN, proposed by (Baowaly et al., 2018), is based 
on the medGAN (Choi et al., 2017a), however it used the WGAN-GP 
architecture and added autoencoder to its architecture and used the 
minibatch averaging technique. Utilizing the advantages of two of the 
most relevant models, i.e., medGAN and WGAN-GP, resulted into a sig-
nificantly improved model performance. Hence, the use of medWGAN 
model in this work.

3. Materials and methods

3.1. Materials

It is essential to consider the epidemiology of Uveitis because the 
diagnostic approach will be oriented towards the search for the most 
frequent etiologies in the population studied, which will have impor-
tant consequences on the quality of the therapeutic management. The 
causal epidemiology varies according to genetic factors (e.g., HLA-
B27 antigen), environmental factors (e.g., outbreaks of tuberculosis), 
the definition of the disease (i.e. sarcoidosis), the inclusion of certain 
ophthalmological entities in the group of idiopathic uveitis or ophthal-
mological entities (i.e. pars planitis), paraclinical investigations carried 
out (i.e. nuclear imaging) and method of patient recruitment (i.e. ter-
tiary centers). These account for the great heterogeneity of the disease 
reported in the literature (Bonnet & Brézin, 2020).

It is interesting to note that epidemiology of Uveitis changes over 
time in the same geographical region. Thus, in Japan, Behcet’s dis-
ease, which was the first cause of Uveitis 30 years ago, now occupies 
sixth place, behind sarcoidosis and Vogt-Koyanagi-Harada (VKH) dis-
ease. The place of epigenetic factors is also better identified. Indeed, the 
risk of Uveitis associated with Behcet’s disease is very high in Turkey. 
Surprisingly, the incidence of the disease in patients of Turkish origin 
migrating to Germany quickly reaches that of the German population 
(Scardapane et al., 2018). Thus the proposed method aims to generate a 
realistic dataset that could represent French patients, both treated and 
followed up for Uveitis, and respect the epidemiological characteristics 
already mentioned. It needs to draw up an epidemiological profile of 
Uveitis extracted from the most recent French descriptive studies. To 
achieve, we identified three relevant retrospective studies, on French 
patients, that were followed with Uveitis:

1. The first study was conducted on 121 patients treated for Uveitis 
in the ophthalmology department of the Croix-Rousse hospital 
in Lyon (Nguyen et al., 2011), from January 2002 to December 
2006. Uveitis associated with the virus human immunodeficiency 
and post-traumatic or post-surgical endophthalmitis were excluded 
from the cohort. Those lost to follow-up during the 4-year of the 
assessment were also excluded.

2. The second study is a retrospective epidemiological study of 690 
patients with a diagnosis of Uveitis, examined for the first time 
at the ophthalmology consultation at the Nancy regional univer-
sity hospital center (Neiter et al., 2019) between January 2005 and 
December 2016. The patient were referred to the Regional Com-
petence Center dedicated to systemic and autoimmune diseases for 
diagnostic and/or therapeutic management. The non-inclusion cri-
teria were as follows: patients aged fewer than 18, patients with 
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Table 2

Extract from the resulting epidemiological 
profile of Uveitis.

Etiology Percentage

idiopathic 42.521%
HLA-B27 / AS 18.181%
sarcoidosis 6.657%
Multifocal choroiditis 5.962%
Toxoplasmosis 4.888%
HSV 4.28%

a first episode of acute anterior uveitis responding well to topi-
cal treatment, patients for whom the etiological diagnosis could 
be made by the ophthalmologist after clinical examination without 
the need for initiation of systemic treatment.

3. The third study included 960 patients aged at least 18 years treated 
at the specialized Uveitis consultation of the Montpellier University 
Hospital (Perez-Roustit, 2018) between January 2003 and August 
2018.

After discussion with the specialist physicians in ophthalmology, the 
following points were considered to generate profiles that will be used 
for synthetic data generation:

• Our reference profile is constructed based on the three studies de-
scribed above. For each etiology, we calculated an average preva-
lence weighted by the size of each of the three populations follow-
ing equation (1).

• All AS-type Uveitis are included in HLA-B27 uveitis, then all AS 
(Ankylosing spondylitis) and HLA-B27 patients are compiled under 
the same etiology, which we called HLA-B27/AS.

• To represent the clinical examination results for each of the iden-
tified etiologies, we based their representation, as features or 
columns, on the recent work by “The Standardization of Uveitis 
Nomenclature (SUN) Working Group”, published in 2021 (The 
Standardization of Uveitis Nomenclature , SUN). We used the 
clinical description of 15 etiologies as defined by the SUN work-
ing group: HLA-B27/AS, Sarcoidosis, Multifocal choroiditis, ser-
piginous choroiditis, Toxoplasmosis, Herpes simplex virus (HSV), 
Fuchs, Birdshot, Behcet, Syphilis, Varicella zoster virus (VZV), 
VKH, Tuberculosis, Tubulointerstitial Nephritis and Uveitis Syn-
drome (TINU), and Multiple sclerosis (MS). All remaining etiologies 
were included in the group of the idiopathic uveitis.

𝑃𝑒𝑟𝑐𝐸𝑡𝑖𝑋𝑔𝑙𝑜𝑏𝑎𝑙 = (𝑃𝑒𝑟𝑐𝐸𝑡𝑖𝑋𝐿𝑦𝑜𝑛 ∗ 121 + 𝑃𝑒𝑟𝑐𝐸𝑡𝑖𝑋𝑁𝑎𝑛𝑐𝑦 ∗ 690

+ 𝑃𝑒𝑟𝑐𝐸𝑡𝑖𝑋𝑀𝑜𝑛𝑡 ∗ 960)∕(121 + 690 + 960)
(1)

This resulted into the profile detailed in Table B.1 (appendix), con-
taining all the considered etiologies, those mentioned by these three 
studies and taking into account the recommendations of our specialist 
physicians. Table 2 shows the first six etiologies from the total of 43 
etiologies.

3.2. Method

In this section, we describe our methodology to generate a Synthetic 
Dataset for Uveitis pathology. To achieve, specialist physicians, in oph-
thalmology, were involved in profiling and characterizing Uveitis, based 
on the medical data collected from the above studies, and in validat-
ing the generated dataset. The generated and validated dataset is made 
available on this link.1

The dataset is made available for the scientific community to ac-
celerate research and innovation on the diagnosis of Uveitis using ad-

1 https://github .com /heithemsliman /uveitis _dataset _generation .git.

Table 3

Values distribution in original and generated datasets.

Original dataset Generated dataset

Age Age < 30 25% 25.50%
30 ≤Age < 60 62% 60.9%
Age > 60 12% 12.75%

Gender Female 52.5% 54.2%
Male 47.5% 45.8%

Uveitis class granulomatous 28% 29.35%
non-granulomatous 72% 70.65%

Duration chronic 40.5% 47.55%
acute 33.5% 33.95%
recurrent 21% 16.1%
undetermined 5% 2.4%

Laterality unilateral 54% 54.35%
bilateral 36.5% 37.9%
Alternating 9.5% 7.75%

Fig. 2. Synthetic data generation methodology.

vanced AI techniques. This dataset contains synthetic data for patients 
treated for Uveitis, based on the epidemiological profile, as described 
in Table 3.

3.2.1. Data generation protocol

To generate new synthetic dataset, we undertook the following 
steps:

1. Original or base dataset creation: Since there is no real dataset 
of Uveitis patients available, we opted to generate an initial or base 
(or original) realistic dataset, which will serve as a training base for 
the data augmentation model (Fig. 2). To generate this dataset, we 
used two elements: (1) the epidemiological profile of Uveitis, partly 
described in Table 2, is used to determine the number of patients 
by etiology, and (2) the description provided by the SUN Work-
ing Group (The Standardization of Uveitis Nomenclature , SUN), to 
describe the results of the clinical examination within each uveitis 
etiology. Our generated dataset includes 200 lines, each line de-
scribes the result of the clinical examination of a patient followed 
for uveitis, presenting with the associated etiology.

2. First expert validation: The three ophthalmologists participating 
in this work have validated the base dataset of 200 patients, which 
was generated, using Python script, taking into account the clinical 
characteristics of each etiology. 200 patient records were deemed 
sufficient by medical experts for manual thorough examination as 
a realistic representation. Each expert has examined the document, 
line by line, including the values generated for each clinical obser-
vation, as described in Fig. A.1 (Appendix A). At the end of this 
step, we obtained a dataset of 200 synthetic patients whose etio-
logical diagnosis is labeled by experienced doctors.

3. Data augmentation: In this step, we used the medWGAN model 
to generate a new dataset of 2000 patients, based on the learned 
rules from the base dataset, already validated by ophthalmologists. 
This enables to generate the desired number of records.

https://github.com/heithemsliman/uveitis_dataset_generation.git
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4. Second expert validation: The specialist physicians selected ran-
domly 200 synthetic patients from the 2000 generated dataset. This 
represents 10% of the dataset, deemed to be representative, for 
manual validation. The objective is to assess whether a random 
sample of synthetic data is realistic.

5. Data generation model validation: To validate consistency and 
scalability of the model data generation, medWGAN was used to 
generate datasets with different sizes, ranging from 1000 to 10000 
records, based on the same Uveitis etiology profiling. The gener-
ated datasets were used to assess the accuracy of diagnosis pre-
diction of Uveitis etiologies using six different ML models. This 
assesses the consistency of data generation across different dataset 
sizes.

3.2.2. Base dataset creation algorithm

To generate our base or original realistic dataset, we initially cre-
ated a new dataframe with one column for etiologies and 27 columns 
for examination results and other disease features. We developed an 
algorithm that automate the synthetic data generation. The developed 
algorithm is detailed in Algorithm 1, described below.

First, it defines the size of the dataset, which was 200 rows (line 2); 
this size allowed us to distribute the different etiologies on the etiol-
ogy column, each according to its corresponding frequency as per the 
epidemiological profile already defined (lines 3 to 5) of Algorithm 1. 
Secondly, it processes etiologies; for all rows of each etiology, it goes 
through the columns, and fills each column with the corresponding val-
ues according to their frequencies, as described in the knowledge base 
(lines 6 to 9), while taking into account the conditions and relation-
ships between some features or columns, as defined by the specialist 
physicians.

The above created the base or original dataset, which was examined 
and validated by the ophthalmologists for correctness.

Algorithm 1: Base dataset generation algorithm.
VARIABLES : df : DATAFRAME

len_df : INTEGER
Etiology : COLUMN
etiology : STRING
etiology_records : LIST
etiology_frequency : FLOAT
unique_value : STRING
value_list : LIST
value_frequency : FLOAT

INPUT : empty dataframe with named columns

OUTPUT : generated dataframe

1 begin

2 len_df ← 200
3 Foreach etiology do

4 etiology_records ← etiology × etiology_frequency ×len_df
5 Etiology ← etiology_records
6 Foreach etiology do

7 Foreach column ≠Etiology do

8 Foreach unique_value do

9 value_list ←unique_value ×value_frequency ×etiology_records

10 Return df

11 end

3.2.3. Data augmentation algorithm

medWGAN, a GAN-based model, is used to generate the synthetic 
data. The original GAN is made up of two parts: a generator (G) that 
tries to generate realistic, but fake data, and a discriminator (D) that 
tries to discern the difference between the generated fake data and 
the real data. The generator can learn the distribution of real sam-
ples by playing an adversarial game against the discriminator if both 
the generator and the discriminator are sufficiently expressive (Choi et 
al., 2017b). The data augmentation model medWGAN is an improved 
version of medGAN, proposed by Choi et al. (2017a). MedGAN uses a 

Fig. 3. The architecture of the medGAN Algorithm (Choi et al., 2017a).

combination of an autoencoder (Enc + Dec) and an adversarial frame-
work to learn the distribution of discrete features, such as diagnosis. 
The autoencoder aids the original GAN in learning the distribution of 
multi-label discrete variables, in this Case 3.

Architecture of medGAN: the discrete x comes from the source 
data (original dataset), z is the random prior for the generator G; G 
is a feed-forward network with shortcut connections, as shown in the 
right hand side of Fig. 3; An auto-encoder (Enc and Dec) is learned from 
x; The same decoder Dec is used after the generator G to construct the 
discrete output. The discriminator D tries to differentiate real input x 
and discrete synthetic output Dec(G(z)).

As a contribution, medWGAN have used an improved generative 
network called WGAN-GP (Wasserstein GAN with gradient penalty) in-
stead of the general GAN. It uses the same structure as that of medGAN 
shown in 3 (Baowaly et al., 2018). However, in medWGAN the loss 
function of the original GAN, which measures JS (Jensen–Shannon: a 
measure of similarity between two probabilities) divergence between 
the distributions of real and generated data, is replaced by Wasserstein 
Distance (Weng, 2019). Using Wasserstein Distance, which is a measure 
of the distance between two probability distributions, produced a much 
smoother value space, thus improved generated data (Weng, 2019).

4. Evaluation and results

The proposed method is evaluated in two different ways. In the first, 
a sample of 2000 synthetic data generated by the proposed method was 
evaluated and examined manually by medical experts on their correct-
ness and validity. In the second, datasets with different sizes, generated 
by the proposed model, were tested using various machine learning 
methods on their diagnosis prediction accuracy to assess its consistency 
and scalability. In both ways, the aim is to evaluate the distribution of 
etiologies and features in the base or original dataset compared to those 
in the generated datasets, and their scalability consistency of generating 
synthetic data with different dataset sizes.

4.1. Expert evaluation of model generation

For the first generated 2000 synthetic records by the proposed 
model, we noticed that the error rate is higher within the class of gran-
ulomatous uveitis. This is due to the unbalanced nature of our base 
or original dataset, given that granulomatous uveitis accounted for a 
quarter of the dataset compared to non-granulomatous uveitis, which 
represents the remaining three quarters. To address, to balance the data, 
new records of granulomatous uveitis were added to the base or origi-
nal dataset before training the model. These records were generated by 
the medWGAN network and validated by the specialist physicians, and 
concatenated to the base or original dataset. This created a balanced 
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Fig. 4. Comparison of etiologies distribution between original and generated dataset.

dataset of 290 patients that we used as the base or original dataset for 
the initial training of our model, using 1000 epochs. To assess it correct-
ness, a second training using the original dataset, using 500 epochs, was 
used to generate a new synthetic dataset. The generated dataset was as-
sessed to have the same distribution of etiologies as that of the original 
dataset, and respects the defined epidemiological profile of Uveitis. The 
resulting distribution of etiologies is shown in Fig. 4.

Similarly, the distribution of generated values of features or 
columns, e.g. medical tests, was assessed. As shown in Table 3, results 
show that the model kept almost the same distribution in the generated 
dataset.

4.2. Qualitative evaluation

To assess the correctness and validity of the generated data, three 
ophthalmologists examined a sample of 10% randomly selected from 
the 2000 generated records, generated as a representative dataset for 
manual expert evaluation. The 2000 dataset size was deemed a suit-
able representative dataset, by medical experts, for the possible tedious 
manual expert evaluation, larger sizes may not provide additional sig-
nificant evaluation gains, as shown by quantitative evaluation (see 4.3).

To ensure a representative qualitative evaluation of the proposed 
GAN-based work, 200 samples were randomly selected from the gener-
ated dataset, randomly shuffled the order, before manual expert evalu-
ation by the ophthalmologists. Our specialist physicians were asked to 
determine how realistic those records are, using three classes of descrip-
tion: “Poor”, “good”, or “excellent” (excellent being most realistic). Due 
to time constraint, 170 records were eventually evaluated, the Results 
show 78 (45%) records were labeled as “poor”, 68 (40%) records were 
labeled as “good”, and the remaining 24 (15%) records were labeled as 
“excellent”, as depicted in Fig. 5.

These results are not surprising, in fact we used 27 relevant at-
tributes that were available in the SUN article (The Standardization of 
Uveitis Nomenclature , SUN) to describe examination results for each 

Fig. 5. Assessment results for the generated dataset’s sample.

etiology. However, our specialist physicians have noticed the absence 
of some important attributes that can help the algorithm to properly 
differentiate the etiologies, but it was difficult to include additional de-
scription, consistent with our data, from the literature. Thus the “poor” 
qualification is rather interpreted as a lack of information that would be 
necessary to integrate by additional features or columns. Additionally, 
40% of records, which got a “poor” label, belonged to rare etiologies 
with low prevalence of less than 4%, from amongst all other rare eti-
ologies, of which 78% were labeled as “poor” and 22% as “good”. The 
remaining 55%, of evaluations, were classed between “good” and excel-
lent”. Therefore, these results are very satisfactory for, a first version of, 
a dataset on Uveitis, as a rare disease. As more medical information and 
descriptions become known and available about the disease, the quality 
of the generated data can, accordingly, be improved.

4.3. Quantitative evaluation

The aim for the quantitative evaluation is three folds: to test the 
balanced distribution of etiologies and Uveitis features in accordance 
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Fig. 6. Consistency and scalability evaluation of synthetic data generation method.

with its profile characteristics, to assess validity of the consistency and 
scalability of the proposed method and to determine the suitable dataset 
size that generates reasonable prediction accuracy.

For the first, on several generated datasets, statistical distribution 
was conducted to ensure the proposed data generation model obeys 
Uveitis profile characteristics as defined by the base or original dataset. 
Results show that our generated dataset were of good quality and draw 
very similar distributions, as depicted in Fig. 4 and Table 3. The pro-
posed model kept a similar distribution of etiologies and disease fea-
tures in the generated data as that in the original dataset. For Uveitis 
as a rare diseases, which require a specific distribution, maintaining 
similarity of distributions between real data and generated data is im-
portant. Results confirm that our generated data meets the requirements 
of a realistic dataset.

For the second, i.e. to assess the consistency and scalable data va-
lidity of the proposed synthetic data generation model, several datasets 
were generated with different sizes. Several machine learning methods, 
to draw a spectrum of behavior, were, then, applied to measure the 
diagnosis prediction accuracy of Uveitis etiologies. These assess how 
ML methods, in terms of accuracy, behave as data generation scales 
up or dataset size increases. For valid synthetic data generation consis-
tency and scalability, of the proposed method, for separately generated 
datasets, ML methods should achieve improving prediction accuracy 
with increasing data sizes, until a datasize threshold. If there is incon-
sistency in the generated data for different sizes, diagnosis prediction 
accuracy for the ML methods would show random behavior. Six ML 
methods were selected from across a set of popular and commonly used 
ones for prediction to cover different types of models. The selected ML 
methods are Random Forest, Support Vector Machine (SVM), Neural 
Network (NN), Naive Bayes (NB), K-nearest neighbor (KNN) and Deci-
sion Tree (DT). To conduct the experiments, 10 datasets were generated 
separately, with sizes ranging from 1000 to 10000 records. Sets of these 
10 datasets were generated separately, using separate runs with 500 
epochs each. The six selected ML methods were then applied on each 
set, and the accuracy results of each for each run were averaged.

As depicted in Fig. 6, results show that, for the majority of the six 
tested ML methods, diagnosis prediction accuracy increases with data 
sizes and levels out for datasets larger than 2000 patient records (thus 
the selected dataset size for expert evaluation, see section 4.2), with ac-
curacy values ranging between 70%, for smaller datasets, to more than 
80%, for larger ones. Some ML methods achieve, relatively, marginal 

accuracy gains for larger datasets, one achieves lower accuracy with 
larger data sizes. The aim, in this evaluation, is not to improve predic-
tion accuracy of ML methods, but to evaluate the consistency of the 
generated data validity and to assess the scalability behavior of the 
proposed method for different generated dataset sizes. As shown, the 
proposed model is consistent in generating data for synthetic electronic 
health records for Uveitis pathology. It achieves consistent validity 
across separately generated datasets, and scales well to different gen-
eration sizes.

5. Conclusion

This paper presents a methodological framework for synthetic data 
generation, for rare diseases, to enable accelerating the use of AI ap-
proaches to supporting their diagnosis. Our methodological framework 
was developed in collaboration with expert ophthalmologists on Uveitis 
drawing on the medical and scientific expertise of the profiles of disease. 
The proposed framework generates synthetic data based on the epi-
demiological profile representative of France population through three 
steps: in the first, the generation of a base or original (realistic) dataset 
validated by doctors, in the second, the development of Uveitis char-
acteristic profile model, and in the third, an automatic generation of 
synthetic dataset by MedWGAN. The generated dataset has been eval-
uated by specialist physicians, making it the first publically available 
dataset on Uveitis. Both qualitative and quantitative evaluations show 
very promising results, with more than 55% of the dataset assessed by 
medical experts as “good” or “excellent” and achieving consistent gen-
eration of data of larger dataset sizes, with ML methods consistently 
obtaining more than 80% of diagnosis prediction accuracy, of Uveitis 
etiologies, for dataset of 2000 records or larger.

In perspectives of this work, next is to enrich medical and scien-
tific characteristics of Uveitis, increase the size of base or original data 
validated by doctors to create a richer model to generate more accu-
rate representative dataset of the rare disease. The objective is to make 
our work available to form a community of ophthalmologists in order 
to generate more accurate and reliable dataset. A second objective is 
to compare our sample with real dataset samples extracted from hospi-
tals, this process is long since the prior agreement of the patient in the 
RGPD framework must be obtained. The third objective is to encour-
age the creation of a computer science community that would develop 
this work further using other data augmentation approaches, such as 
SMOTE, and develop novel AI classification uveitis approaches.
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Appendix A. An extract of the dataset

Fig. A.1. Screenshot of the generated dataset.

Appendix B. Table of etiologies

Table B.1

Resulting epidemiological profile of uveitis.

Etiology Percentage

idiopathic 42.521% CMV 0.318%

HLA-B27 / AS 18.181% Toxocariasis 0.271%

sarcoidosis 6.657% Posner Schlossman 0.216%

Multifocal choroiditis 5.962% APMPPE 0.216%

Toxoplasmosis 4.888% Wegener 0.155%

HSV 4.28% Bartonellosis 0.155%

Fuchs 3.773% Atrophic polychondritis 0.155%

Birdshot 3.744% Scleroderma 0.1168%

Behcet 3.421% Drug origin 0.1168%

Syphilis 1.792% Dental origin 0.1161%

VZV 1.584% Juvenile chronic arthritis 0.054%

VKH 1.497% Gougerot Sjögren 0.054%

Tuberculosis 1.246% Sinusitis 0.054%

Oculocerebral lymphoma 0.95% Leptospirosis 0.054%

multiple sclerosis 0.838% Intermediate punctate choroiditis 0.054%

Lyme disease 0.779% Trauma 0.054%

Crohn disease 0.522% Systemic lupus erythematosus 0.038%

TINU 0.505% Susac’s syndrome 0.038%

Serpiginous choroiditis 0.488% Fiessinger Leroy Reiter syndrome 0.038%

Inflammatory Bowel Disease (IBD) 0.48% Eales disease 0.038%

Psoriasis 0.472% HIV 0.038%

Paraneoplastic syndrome 0.467%
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