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Home Health Care Routing and Scheduling Problem (HHCRSP) has been widely investigated in 
operations research. In this paper, a model based on the Constraint Satisfaction Problem (CSP) is 
proposed, which is able to deal with daily HHCRSPs. Human factors are considered in our formula-
tion of the problem and we seek a balance between the different stakeholders’ satisfaction criteria. 
The considered temporal constraints are soft and controlled by the stakeholders’ personalised 
tolerance and satisfaction rates. We will explain how this new Satisfaction-Oriented HHCRSP 
(SOH2CRSP) model is built and solved by using an open-source solver: the OptaPlanner. In order 
to examine the impact of human factors, a study will estimate the added value provided when 
satisfaction is considered in the problem formulation. The comparison is based on a use case derived 
from the dataset of an existing HHC organisation. The numerical results will show the benefits of our 
approach.

1. Scope of the study

In recent years, ageing populations and increasing life 
expectancies have led to growth in the number of 
elderly people suffering from frailty or a loss of auton-
omy. In parallel with this demographic change, an 
increase in chronic diseases such as diabetes or heart 
failure requires longer-term monitoring and care 
management. Faced with this challenge, hospitals 
have shown their limits in covering this care demand. 
In order to relieve the frequent saturation in their 
resource capacities, new strategic directions are 
appearing. One of these is related to a faster transfer 
of patients from hospitals to their homes, as well as 
a wider acceptance of home care as a mainstream 
segment of the healthcare system. This change is also 
justified by the desire of patients to be at home in 
a familiar environment with the people they like.

This is why we are currently witnessing the rapid 
growth of Home Health Care (HHC) organisations. 
They will be described in the following chapters as 
HHC systems, which are sub-components of general 
health systems. To clarify, HHC systems are locally 
implemented care units which are able to deliver services 
to patients at home. Most of the time, such organisations 
are legally independent and have their own structures 
and staffing. They are financially supported in many 
national healthcare systems and frequently have contracts 
with social insurance providers.

Despite this clear and global recognition, the tasks of 
HHC organisations at an operational level in the field are 
extremely complex. In short, an HHC system has to run 
collaborative processes that will guide caregivers through 
a network of operating environments which together give 
rise to a distributed system; i.e., a system where managing 
time and space are critical issues. These collaborative 
processes can be identified as a relevant modelling of 
part of the patient’s pathway, but in this case, the patient 
does not have to travel to access resources. Each caregiver 
will go from one patient’s home to the next according to 
their qualifications, the required care plan for each 
patient and the level of the patient’s confidence for each 
caregiver regarding the expected care services. As the 
latter refers to human aspects, we will consider it with 
special attention.

Given the complexity of operational organisation in 
HHC systems, there are three primary aims of this 
research work: 1) To investigate the main concepts fea-
turing the satisfaction of all stakeholders, starting from 
the relevant content in the literature, then establishing 
a knowledge bank to facilitate the mathematical formula-
tion of planning problems in HHC systems considering 
this satisfaction of stakeholders. 2) To prepare Constraint 
Satisfaction Problem (CSP)-oriented optimisation in the 
search for solutions by the open-source OptaPlanner 
solver, which embeds modelling of the stakeholders’ 
satisfaction requirements, and then to solve this CSP- 
based model by an efficient metaheuristic method. As 
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far as we know, no studies have used an OptaPlanner- 
oriented model to address such a variant of the 
HHCRSP. 3) Finally, in an experimental part, we will 
show the computing performance of our approach by 
comparing the results obtained with those generated by 
an earlier Mixed Integer Linear Programming (MILP)- 
based exact method presented in (Zhang et al., 2021). We 
then perform an in-depth analysis of a large use case 
through a detailed comparison of the results with and 
without the satisfaction constraint, and analyse the 
impact of these satisfaction considerations.

The remainder of this paper is structured as follows: in 
Section 2, we will explain our systemic view of the HHC, 
regarding a service-based, business-oriented model. 
Then, we will present a literature review to assess the 
current status of satisfaction considerations in HHC sys-
tem coordination. Section 3 is devoted to operations 
research and addresses a new formulation of an HHC 
operational coordination problem, called the 
Satisfaction-Oriented HHCRSP (SOH2CRSP), which is 
described as a variation of an HHCRSP formulation. 
Section 4 will explain how the implementation in the 
OptaPlanner solver (De Smet, 2006) was done. In 
Section 5, we deliver and comment on some computa-
tional results obtained through the performed experi-
ments. These were conducted using an adequate case 
study showing the advantages and drawbacks of our 
approach when the satisfaction of stakeholders was mod-
elled. Finally, prospective research paths are suggested in 
Section 6.

2. A health system perspective

2.1. HHC systems

The HHC system is a distributed socio-technical sys-
tem in which human aspects play a vital role, as in 
other components of health systems. However, the 
spatio-temporal features are distinguished by their 
dominance in the HHC system.

Over the years, many HHC systems have searched 
for a kind of agility in trying to face the challenges of 
complexity by acting on these human factors. They 
have experimented with soft organisational rules. For 
example, the pool of caregivers will not be entirely 
made up of full-time employees. Some caregivers 
may have another part-time job in parallel, and they 
have to negotiate an individual contract to allow them 
to be actively involved in the HHC system. This situa-
tion allows HHC organisations to have a larger HHC 
team, although the availability of some caregivers can 
be limited.

In a holistic approach to our subject, we argue that 
care coordination is of prime interest in dealing with 
HHC systems. The principles of the coordination theory 
of (Malone & Crowston, 1994) state that “if there are no 
dependencies between activities, there is no 

coordination”. An HHC system strives to manage care 
deliveries over a territory with the best of medical and 
paramedical practices. To do so, all the dependencies 
between activities (care services) for the same patient 
and among the set of resources (caregivers) must be 
carefully organised. At an operational level, and fre-
quently on a daily basis, the HHC organisation must 
consistently choose the team of caregivers that will oper-
ate to fulfill the required care expectations. Basically, 
coordination relies on the intensive exchange of informa-
tion among the different stakeholders involved in the 
HHC processes. Assuming there is a centralised vision 
of this coordination function, the requirement is to create 
and maintain a consistent set of daily scheduling and 
routing plans for caregivers, and daily care plans for the 
patients. Consequently, stakeholders refer to the follow-
ing two classes of actors: (1) the set of patients and the 
people who support them; and (2) the set of caregivers 
who are service providers, along with the coordinator 
who manages the HHC organisation. It is presumed 
that the prerequisite for consistency in operational coor-
dination outcomes is to have a collective awareness of the 
level of satisfaction of each class of stakeholders. This 
overall satisfaction (at the level of the whole HHC system) 
is the prime subject we will be concerned with. Therefore, 
the issue of care coordination in HHC systems is 
a concern, not only in designing plans and monitoring 
them, but also in reaching a high level of satisfaction for 
these two classes of stakeholders. It should be an impor-
tant criterion for the quality of any HHC system.

2.2. HHC activity as a service

HHC services will represent the building blocks of the 
collaborative process introduced above. We have 
deliberately chosen to use this concept of service for 
the following reasons:

(1) There is a wide range of HHC services that can
be performed, depending on the pathology and
the condition of a patient. Therefore, it quickly
becomes obvious for us to qualify demand at
a generic level, while making an abstraction of
unnecessary medical, social or individual
details for coordination purposes. This choice
is essential for solving the problem of
coordination.

(2) The right level of granularity for each service helps 
to easily specify the allocation of resources, know-
ing the absolute necessity for assigning qualified 
caregivers. A service will act as a cornerstone
between the two classes of stakeholders.
A service is a set of care acts to be performed by 
a qualified provider (i.e., a caregiver in an HHC 
system) during a visit to a beneficiary (i.e.,



a patient in an HHC system). The duration of 
a service is presumed to be known.

(3) Planning will be described as sets of scheduled
services whose feasibility is strongly affected by
the observance of resource allocation rules.

(4) Finally, an HHC system will be defined as
a two-part architecture, with one part being
the service offer (the HHC organisation) and
the other being the service demand (the patient
in the HHC panel1). Therefore, the issue of
coordination may be addressed as the challenge
in matching these two parts, which can be
a complex undertaking.

The goals associated with (4) are related to the systemic 
representation in Figure 1 at the coordination level. For 
(1), the purpose is to achieve the short-term (daily or 
weekly) assignment of caregivers for performing HHC 
services. For (2), the objective is to fulfill orders from 
patients on the service demand side. For (3), it is to 
generate caregiver work rounds to provide the services 
in the operational field. In this context, the usability of 
a Decision Support System (DSS) (Eom & Kim, 2006) for 
the purpose of HHC basic planning design is a primary 
concern. A DSS must be helpful for its main user, who has 
the HHC coordinator role, but due to the inherent com-
plexity of the HHC system, the DSS must also deliver 
results that meet the expectations of all those engaged in 
care service offers and demands. Uncertainties (e.g., an 
uncertain duration in performing a care service by 

a different caregiver) and disturbances (e.g., a caregiver 
suddenly changes his/her available time slot) which natu-
rally impact HHC organisations will not be included in 
this part of our research. We will focus only on 
a deterministic HHC coordination model.

2.3. Previous research on stakeholder satisfaction 
in HHC

The coordination problem we are addressing has been 
widely studied in the literature on Operations 
Research. The well-known Home Health Care 
Routing and Scheduling Problem (HHCRSP) (Cissé 
et al., 2017; Fikar & Hirsch, 2017) remains an active 
subject. Previous research has underscored 
a multiplicity of formulations relevant to the entire 
span of this complex HHC system. Several constraints 
that have to be considered for our two classes of 
stakeholders, and the specific features of the corre-
sponding service ecosystem, have naturally paved the 
way for such extensive work.

For a broad overview of this subject, readers are 
invited to consider the most recent state-of-the-art 
review (DiMascolo et al., 2021). Over time, the 
HHCRSP has progressively evolved from a view that 
focused on the caregiver routing problem to a multi- 
stakeholder view. This progress is reflected in two 
main changes: (1) the necessary competence for pro-
viding high-quality care to the patient while consider-
ing his/her social environment, and (2) the level of 
stakeholder satisfaction (Lanzarone & Matta, 2014). In 

Figure 1. Schematic representation of an HHC system.



the following literature analysis, we will focus on stu-
dies where the second point has specifically been 
investigated.

2.3.1. Previous research related to the service 
demand side
Depending on the initial characteristics of care 
recipients, such as pathology, age, domestic con-
text, and clinical/psychological/social details 
(Fathollahi-Fard et al., 2020), the delivery of care 
services can differ greatly from one person to the 
next. Some care services may be more demanding 
than others, and a portion of the panel may be 
categorised by patients with a high level of com-
plexity in their care needs. Many medical scales are 
used to gauge a patient’s level of complexity. For 
example, there are indexes that help to measure the 
level of autonomy of elderly people (Gayraud et al.,  
2013). We will assume that the HHC organisation 
is able to evaluate the level of difficulty in taking 
care of each patient in its panel.

Some patients may have preferences, and respect 
for these is a pledge of confidence. Among them, we 
will assume the existence of a list of preferred care-
givers, due to acquaintanceship and the trust built up 
during previous positive experiences (Braekers et al.,  
2016). In (Méndez-Fernández et al., 2020), the authors 
highlight the importance of considering the opinions 
of patients when assigning caregivers. A list of affinity 
levels is used to express the level of satisfaction when 
assigning a specific caregiver to a specific patient. 
Normally, the duration of a care service is known, 
but the start time of a care service can be adjusted 
within a time window based on a patient’s wish to 
receive care at a specific time during a day (Yuan & 
Fügenschuh, 2015). Each time window has a minimal 
and a maximal limit that will be interpreted as the 
earliest and latest arrival times of the required care-
giver for the expected care delivery at the right loca-
tion (Du et al., 2017).

2.3.2. Previous research related to the service offer 
side
The rapid development of HHC organisations has been 
aided by health demographics, but it has also been 
assisted by a greater integration of patient demand 
into the service offer. This includes a broad service 
offer with an effective diversity in terms of competen-
cies. For example, some organisations tend to propose 
a wide range of potential aid for people, from medical to 
wellness purposes. The aim is to reduce as much as 
possible the burden on families, through an integration 
of services which requires a team of caregivers to per-
form. HHC organisations must thus engage qualified 
professionals in the field: nurses, therapists, social work-
ers, doctors, housekeepers, etc. (Mankowska et al., 2014; 

Yuan & Fügenschuh, 2015). These caregivers are fre-
quently employed on a contractual basis. In general, 
two types of work contracts are offered to them: “full- 
time” or “part-time” (Wirnitzer et al., 2016). Depending 
on specific availabilities, a wide variety of task capacities 
in terms of time can be respected. Additionally, HHC 
organisations can also adapt this flexibility to manage 
new requirements.

If the maximum daily workload is not limited, 
caregivers may be allowed to carry out a certain 
amount of overtime. However, such flexibility could 
be limited through the collective social agreements of 
the pool of professionals and/or by labour laws 
(Méndez-Fernández et al., 2020). A caregiver’s max-
imum workload must conform not only to the work 
contract but also to regulations relating to the HHC 
system (C. -C. Lin et al., 2018). Furthermore, care-
givers want to be compensated for the administrative 
work required to organise and document the care 
services they have provided (Shao et al., 2012), as 
well as for weekly meetings (Hiermann et al., 2015).

There is no doubt that respect for working time 
preferences, availabilities and a fair evaluation of 
expected incomes will all belong to the satisfaction 
criteria expressed by each professional.

2.3.3. Previous research related to mapping routes 
between the offer and demand sides
Organizing an HHC service is difficult because each 
service is associated with a geographical location and 
one or more time windows (patient availabilities) dur-
ing which the service should be performed. The goal is 
to map out efficient routes along which all services will 
be delivered. These constraints can be divided into 
“hard constraints” and “soft constraints”. The “hard 
constraints” refer to an obligation to be fulfilled (if not, 
the schedule will be rejected), whereas the “soft con-
straints” are attached to a preference which will not 
lead to an invalidation of the schedule if the con-
straints are not fully respected (Hiermann et al.,  
2015). Respect for temporal constraints (e.g., respect 
for the start time window of a care service) is impor-
tant in the HHC system. Thus, two types of time 
windows are primarily discussed in the literature 
(Bazirha et al., 2019; Dekhici et al., 2019): the hard 
(or fixed) time window or the soft (or flexible) time 
window. A time slot can also be applied to indicate the 
earliest start and latest end time of the caregiver’s work 
round (DiGaspero & Urli, 2014).

In regards to the quantity of required services, 
patients who have complex conditions may request 
several care services during the same day and will 
expect more than one visit and/or more than one 
caregiver per day (M. Lin et al., 2016; Marcon et al.,  
2017). According to (Mankowska et al., 2014), the 
temporal interdependence of care services can include 
two types: (1) simultaneous relationships that are 



considered in the literature to be “synchronisation 
constraints” (Bredström & Rönnqvist, 2008), and (2) 
precedence relationships that are frequently consid-
ered to be “precedence constraints” (Manavizadeh 
et al., 2020). In our study, we will consider “prece-
dence constraints”. In this case of multiple visits, 
avoiding any temporal overlap between a pair of suc-
cessive service deliveries is recommended (M. Lin 
et al., 2016). In order to obtain the desired quality of 
service from a patient’s perspective, we will insert an 
“inter-service time”, a kind of relaxation time to be 
respected during service flows (Mankowska et al.,  
2014). “Synchronisation constraints” are mainly 
applied in the HHC system to handle specific cases 
such as bathing services, which require at least 2 care-
givers to work in collaboration for overweight 
patients. (Parragh & Doerner, 2018) has performed 
an in-depth study on the application of this constraint 
in scheduling and routing problems.

A coordinator in the HHC organisation is a special 
stakeholder who assumes a decision-making role at 
a collective level and takes responsibility for the plan-
ning design. We could draw the hypothesis that this 
coordination function is in charge of managing the 
satisfaction criteria. These criteria are potentially con-
flicting, so creating a balance among the levels of indi-
vidual satisfaction is a complicated task for the 
coordinator. In this case, the coordination effort will 
aim for consensus and in some sense, must mediate 
a solution that will be acceptable to a maximum of 
stakeholders. The least possible reduction in each per-
sonal satisfaction level is the goal. One possible way to 
carry out such mediation is to provide meaningful 
guidance for the management of care services in an 
HHC organisation. This guidance will be translated 
into Objective Functions (OFs) by operations research 
for processing by a decision support system. Globally 
speaking, satisfaction is frequently treated as minimis-
ing (1) time (e.g., total travel time), (2) costs (e.g., 
caregiver overtime costs), or (3) balance of round diffi-
culties. For directive 1 in (Méndez-Fernández et al.,  
2020), the work schedule should minimise the wasted 
time between two consecutive services, including travel 
time. According to (Yalçındağ et al., 2016), the mini-
misation of total travel time also has an implication on 
travel costs. For directive 2, the cost of transportation is 
therefore one of the main economic levers for HHC 
organisations (Fathollahi-Fard et al., 2020). Thus, they 
seek to minimise this key criterion (En-Nahli et al.,  
2015). However, to ensure that all demands are satis-
fied, the cost of operations is another economic factor. 
This is a question of requesting the optimal number of 
caregivers for covering the required care services 
(Manavizadeh et al., 2020). In (Carello & Lanzarone,  
2014), the goal is to reduce the costs associated with the 
daily overtime of caregivers. In addition, total caregiver 
overtime costs and travel costs are both minimised in 

(C. -C. Lin et al., 2018). For directive 3 in (Yalçındağ 
et al., 2016), the utilisation rates of each caregiver are 
used to perform personal workload balancing. These 
rates are defined as the ratio of the caregiver’s actual 
workload to their theoretical maximum workload. In 
(Quintanilla et al., 2020), the authors seek to balance the 
number of visits performed by each caregiver. In 
(Gayraud et al., 2013), the objective is to distribute 
highly dependent (low autonomy) elderly patients 
among the different caregivers’ rounds. In addition to 
these 3 main directives, we observe that in some works, 
the authors have chosen a multi-criteria objective func-
tion, such as in (Fathollahi-Fard et al., 2018, 2019; Liu 
et al., 2018). But the idea of working on the HHCRSP by 
balancing many satisfaction criteria (even though they 
may be contradictory) for all the stakeholders has not 
yet been intensively studied.

2.3.4. Lessons learned from previous research 
Despite the fact that stakeholder satisfaction in HHC 
systems has been broadly considered, as discussed in 
our literature survey, this subject still remains an open 
challenge today with a huge margin for improvement. 
Since human aspects predominate in such socio- 
technical systems, we want to make a proposal captur-
ing many facets of the related aspects in HHC systems. 
Many authors have included criteria on satisfaction, 
but to the best of our knowledge, there is no research 
work considering a model with a large collection of 
these human-centric needs, expressing many “custo-
mised” satisfaction criteria depending on the type of 
stakeholder involved in the HHC system.

Consequently, our work is an attempt to develop 
a planning system in accordance with this sensitivity, 
delimited by these five primary features:

(1) Patients will declare which caregivers they
would like to be visited by, and symmetri-
cally, caregivers will declare which patients
they would not like to visit. Caregivers are
divided into healthcare practitioners who
have a direct contract with the HHC structure
and those who are liberals. The declared
“patient-caregiver” matching creates a link
between the caregiver and the patient.
Incompatibilities will be compiled to restrict
the possible allocation of resources to ser-
vices. The causes of incompatibility could be
numerous, and we will not go into these
details in this work. Notice that dealing with
such preferences is difficult, so we will con-
sider this relation to be a pure disjunction.
We do not extend our proposal to a multi- 
scale evaluation of such compatibilities.

(2) We consider multiple time windows for the satis-
faction of patients who want (a) to receive care 



(3) An “inter-service time” is introduced in our
model. Only (Mankowska et al., 2014) &
(Rasmussen et al., 2012) consider relaxation
times in their scheduling models, but this
constraint is only applied between two ser-
vices requested by a patient. However, in
our approach, this constraint will apply to
each successive pair of services on the
schedule.

(4) The schedule of each caregiver must be care-
fully planned. One of their prime requirements
is planning which fulfils their maximal work-
load and working hours.

(5) We quantify a per care service index which
represents the difficulty the caregiver will have
in delivering it. This indicator allows us to eval-
uate the total round difficulty for each caregiver,
such as in (Gayraud et al., 2013), who consider
the degree of dependence of each patient and
minimise the dependence level of each care-
giver’s round. In our approach, we want to go
beyond a simple performance index and try to
balance round difficulties over the set of all active
caregivers. The purpose is to make an equitable
distribution of complex patients inside the team.

Having in mind a participatory approach, the concepts 
at the foundation of satisfaction will be defined softly 
and be measured on an individual scale, using perso-
nal parameters to set up a profile for each stakeholder 
regarding each criterion. A generic representation will 
be defined in Section 4.3.2.

3. SOH2CRSP formulation

3.1. Description of coordination artefacts

We classify the daily HHCRSP in the category of the 
Vehicle Routing Problem (VRP) with Multiple Time 
Windows (VRPMTW). The multiple time windows 
specify the needs of patients depending on their avail-
abilities. The expected care services will be distributed 
to patients at home via the rounds that caregivers are 
expected to perform. Our method is an extension of 
this HHCRSP model, which will be designated as 
Satisfaction-Oriented HHCRSP (SOH2CRSP).

Let us introduce here a set of assumptions for gener-
ating such consistent daily scheduling and routing inside 
a given HHC organisation. The following could be 
viewed as a set of business rules and good practices to 
apply:

● All care services must be performed. It is not
allowed to have a requested care service which
is not provided within a day.

● A care service must be carried out with exactly
one caregiver, duly qualified. The same caregiver
cannot be allocated to two different patients at
the same time. The synchronisation constraints
are not considered in our planning model.

● A caregiver should perform only feasible care
services (for reasons of both qualification and
compatibility), with respect to feature 1 of our
planning system.

● A round is the series of trips stemming from an
ordered set of care services that a caregiver
should deliver. All rounds start from and end at
the HHC organisation. For each round, we do
not consider breaks or holidays, nor unexpected
events like illness, travel accidents or any other
form of uncertainty.

● If the caregiver arrives before the start of the time
window at the expected location of the patient,
the patient is presumed to be unavailable. This
becomes idle time for this caregiver.

● No new caregiver can be included in the list of
caregivers and no new care service can be added
to the list of requests during the working day.

3.2. Tolerances in SOH2CRSP

Our SOH2CRSP formulation must be finalised in 
order to consider the satisfaction needs for the two 
main profiles of stakeholders (caregivers and patients). 
Firstly, considering the satisfaction of a patient:

● Regarding feature 2, the beginning of a service
has to be scheduled as closely as possible within
the time windows with respect to the preferences
of the relevant patient. Each requested care ser-
vice should normally be performed on time.
Otherwise, if the patient has to wait, the waiting
time must be within a range of tolerance that will
be described formally in Section 4.3.2.

● Regarding feature 3, the time interval between
two successive services for the same patient
should be greater than his/her given inter- 
service time. We should respect these inter- 
service times as much as possible. In the case of
violation of this constraint, a tolerance will be
used to find an agreement between the
stakeholders.

Symmetrically, considering caregivers, two sets of con-
straints are also added to the model:

● Regarding feature 4, the duration of a round for
one caregiver should be respectful of his/her con-
tractually committed maximum working hours.
In the case of an overtime workload for this
caregiver, the excess time worked should be as

services at predefined times during a day, and (b) 
to maintain control of their personal schedule.



closely as possible within a tolerance that is 
acceptable to him/her.

● Regarding feature 5, the full set of planned
rounds should provide a fair distribution. By
this, we mean adjusting the level of difficulty of
each round by smoothing to an average value
over the whole set of active caregivers.

For cases of small-sized problems, an MILP-based 
formulation of our SOH2CRSP was presented in 
(Zhang et al., 2021). This approach successfully 
resolved basic use cases by exact method and helped 
us validate our model. However, due to the known 
NP-hard complexity of HHCRSP, the performance in 
terms of computation time was significantly reduced 
as the size of the problem increased. In an attempt to 
overcome these limits, we will present an alternative, 
which is a CSP-based approach. The advantages for 
tackling SOH2CRSP with such an alternative will be 
discussed. The application of problem-solving techni-
ques based on metaheuristic methodologies will be the 
next step. This will provide insights for discussing the 
impacts of stakeholder satisfaction on HHC planning 
capabilities.

4. OptaPlanner-oriented model for solving 
SOH2CRSP

For many problems of a realistic size (e.g., more than 
80 care services to schedule per day), an exact optimi-
sation method may require very lengthy computation 
time to find an optimal solution. This may go far 
beyond what an HHC coordinator can tolerate (Bard 
et al., 2014). In facing this challenge of computation 
time, we propose investigating a new path. Our main 
idea is to upgrade our SOH2CRSP model by investing 
in a CSP formulation.

4.1. Constraint Satisfaction Problem-oriented 
modelling

The Constraint Satisfaction Problem (CSP) (Floudas 
& Pardalos, 1990) is a widely used approach in artifi-
cial intelligence for solving real-world problems 
expressed in terms of constraints (Floudas & 
Pardalos, 1990). According to (Russell & Norvig,  
2002), a CSP is defined by the following triplet (X, D, 
C) where:

● X ¼ X1;X2; . . . ;XN is the set of variables of the
problem.

● D is a function that associates with each variable
Xi and its domain DðXiÞ (possible values of Xi).

● C ¼ C1;C2; . . . ;CM is the set of constraints of the
problem. Each constraint is defined by a pair

ðt;RÞ where t is the set of variables related to 
the constraint and t 2 X, R defines 
a relationship between these variables that will 
reduce solution space during a search.

Constraint programming is based on a relevant lan-
guage that encodes and solves such problems for deter-
mining X values, using rules to take control over the 
search space D. The idea of constraint programming is 
to solve problems by stating constraints C on the 
domain of the problem, and consequently to find 
a solution that satisfies all of them (Barták, 1999). The 
ever-growing speed of processors makes them very 
powerful for solving combinatorial optimisation pro-
blems, not necessarily for ultimately obtaining an opti-
mal solution, but in reaching a near-optimal level for 
the best solution (Rossi et al., 2006). Numerous well- 
known combinatorial problems have been solved effi-
ciently using CSP-oriented approaches. We can refer to 
the graph colouring problem (Jensen & Toft, 2011) or 
the N-queens problem (Gutiérrez Naranjo et al., 2009).

Frequently, the operations research community 
suggests applying local search algorithms to compute 
an optimum when the problem complexity is NP-hard 
(Rossi et al., 2006). Considering real-world HHC coor-
dination needs, we have to face the same problems of 
considerable size (exceeding hundreds of care services 
per day), along with the set of specific constraints 
mentioned above in SOH2CRSP. Our challenge is to 
meet this requirement for expected performance dri-
ven by minimal computation time.

Heuristics are the rules used to control the search 
for a solution in CSP solvers. Basic techniques such as 
constraints propagation, backtracking, or local 
searches are widely used for solving CSP in finite 
domains. They are effective for a wide range of con-
straints, including non-linear constraints. However, 
basic heuristics are too restricted for planning pro-
blems where the diversity of constraints is factual. To 
overcome this weakness, metaheuristics have been 
a candidate in conjunction with basic heuristics for 
gaining efficiency.

Many software libraries are available online for 
implementing CSP. Among them, we chose to select 
the OptaPlanner solver. A main reason for justifying 
this choice is the high level of expertise that Geoffrey 
De Smet (De Smet, 2006) (lead and founder of 
OptaPlanner) has on the Vehicle Routing Problem 
(VRP). In (Kosecka-Żurek, 2019), OptaPlanner solved 
a VRP involving what is known as the VRP waste 
collection mechanism in (Lozano Murciego et al.,  
2015), as well as a task assignment problem in 
(Macik, 2016). In (Rios de Souza & Martins, 2020), 
the work aims to explore different solutions for deal-
ing with a garbage packaging problem, where the 
results obtained by different metaheuristics of a local 
search are compared using a benchmark module.



Consequently, through the use of OptaPlanner, we 
will primarily focus on a battery of metaheuristics 
which have shown their effectiveness for such NP-hard 
problems. Five metaheuristics are implemented in the 
resolution package of OptaPlanner: Hill Climbing (HC) 
(Goldfeld et al., 1966), Tabu Search (TS) (Glover & 
Laguna, 1998), the Great Deluge algorithm (GD) 
(Dueck, 1993), Variable Neighbor Descent (VND) (Gao 
et al., 2008) and Late Acceptance (LA) (Burke & Bykov,  
2017). These should be used in combination with “con-
struction” heuristics to compute a good initial value for 
the CSP variables, in a short computing time. First Fit, 
with its variation Weakest Fit and Strongest Fit (Bays,  
1977), Allocate Entity From Queue (Semeria, 2001), 
Cheapest Insertion (Hassin & Keinan, 2008) and Regret 
Insertion (Diana & Dessouky, 2004), Allocate From Pool 
(Ke & Fang, 2004), and Scaling Construction Heuristics 
(Katayama et al., 2009) are construction heuristics sup-
ported in OptaPlanner. Starting from this initial state, the 
metaheuristics will perform the local search more effi-
ciently and explore the search space while satisfying all 
constraints.

4.2. Overview of OptaPlanner architecture

OptaPlanner, released under the Apache Software 
licence, may also be seen as a lightweight and open 
planning engine, as it contains a specific approach for 
this kind of application. It allows Java programmers to 
process domain specific models by reusing existing mod-
els embedded in the software library. Thus, many varia-
tions of the VRP and the Traveling Salesman Problem 
(TSP) were made available to us that are close to the 
subject we are dealing with. The construction process of 
our optimisation model with OptaPlanner was per-
formed in 3 steps: CSP modelling, constraint declara-
tion and resolution. We will describe later how we 
implemented our SOH2CRSP by the reutilisation of 
OptaPlanner facilities.

4.2.1. OptaPlanner problem declaration 
OptaPlanner follows an object-oriented approach 
using design patterns. An implementation needs 
to build a class diagram model of the planning 
problem under consideration. The semantics of 
each class is very expressive and is related to the 
real-world decision-making support system. This 
helps the modeller in thinking about the CSP for-
mulation and in defining a well-structured formu-
lation. Each class in the model must belong to only 
one of the following three categories (De Smet,  
2006):

(1) Problem Fact: this category establishes the arte-
facts involved in the problem context whose
data will not be altered by the solver during
the solution search. But problem facts are also

necessary for giving consistency during formal 
expression of the constraints.

(2) Planning Entity: this category explains what
artefacts are to be planned. With a one-to- 
many association link between a given planning
entity and a decision variable of the problem to
be computed, the role of the “many” side is
named as a planning variable and is annotated
by the label @PlanningVariable. Therefore, an
instantiation of a planning entity may be mod-
ified during the solution search process.
A Planning Entity is annotated with the label
@PlanningEntity.

(3) Planning Solution: this category refers to the pro-
blem assembly which is annotated by the label 
@PlanningSolution. It contains all the objects
(annotated by @ProblemFactCollectionProperty)
instantiated from the previous classes Problem
Fact and Planning Entity and it will help specify 
the problem constraints that have to be satisfied.

For a type of planning problem such as a VRP or our 
SOH2CRSP, it is recommended to link the objects of 
a Planning Entity class in the OptaPlanner model in 
a chain. This chain concept is helpful for assigning time 
to planning variables. Time will be considered through 
events that will be computed by following the planning 
entities in a chain, whereas a chain specifies the order in 
which the planning entities will be chained. The size of 
the problem is decreased with this approach when 
compared to a predefined discretisation of the time 
axis that is frequently used in planning problem for-
mulations. Consequently, the corresponding planning 
variables will also be chained in the solver. Notice that 
the order of the objects in a given chain could be 
modified by the solver during calculations. Each chain 
has an anchor that qualifies a common attribute of the 
chained objects. In a VRP problem, the anchor is the 
vehicle, whereas in our SOH2CRSP, it is the caregiver. 
Both are qualified by the route, which consists of 
chained planning entities that they will have to perform.

Three categories of secondary (non-genuine) decision 
variables are introduced in order to manage the depen-
dencies between the elements in a chain in a very fluent 
manner. This dependency is always a specific relation-
ship, systematically and continuously binding the calcu-
lation of secondary decision variables to the value of the 
primary (referred to as “genuine” in OptaPlanner) deci-
sion variables (refer to planning variable 
@PlanningVariable) (De Smet, 2006):

(1) Custom Shadow Variable: the value of this vari-
able is deduced from the state of the decision
variables (@PlanningVariable). It is annotated
by @CustomShadowVariable. Typically, the
start time and end time of a care service belong
to this category.



(2) Inverse Relation Shadow Variable: this vari-
able plays the role of an index that will inter-
pret the result of a decision made. It is
annotated by
@InverseRelationShadowVariable. Typically,
if a planning variable indicates the previous
care service in a chain, then an inverse sha-
dow variable can deliver the next care service
of the same planning variable.

(3) Anchor Shadow Variable: a chain of planning
entity classes has an anchor, which indicates the
beginning of the chain. This anchor is anno-
tated by @AnchorShadowVariable.

4.2.2. OptaPlanner constraint declaration
This phase consists in writing the rules representing 
the constraints of the problem to be respected. 
OptaPlanner provides four methods for achieving 
this purpose (De Smet, 2006):

(1) Coding in Java: all constraints are implemented
in a Java method. This declaration method is
not scalable.

(2) Coding in incremental Java: implementation of
several low-level methods in Java to declare
constraints. This declaration method is scal-
able, but very difficult to implement and
maintain.

(3) Constraint streams declaration: each constraint
is implemented as a separate stream in Java,
which is easy to read, write and debug. This
declaration method is scalable.

(4) Drools-based declaration: implementation of
each constraint as a separate score rule using
Drools.2 This type of declaration is scalable.
This is the choice we have made as it provides
a high degree of freedom in specifying our
problem.

4.2.3. OptaPlanner resolution parameters 
OptaPlanner operates in two steps for solution genera-
tion: (1) the resolution of a problem by the solver, and (2) 
the evaluation of a solution by the score calculator.

The resolution of a problem by the solver is split into 
two parts. Firstly, to solve the problem, an initial solution 
is generated using construction heuristics, with limited 
processing time and the best possible quality. Secondly, 
the optimisation process consists in continuously search-
ing by iteration for a better solution than the initial 
solution, through the use of one of the metaheuristic 
algorithms. In OptaPlanner, the configuration allows 
these optimisation algorithms to be chosen and their 
intrinsic parameters to be defined. The optimisation pro-
cess ends when the stopping criteria have been reached. 
A stopping criterion is often defined as reaching either 
a maximum computation time limit or a certain number 
of iterations.

The evaluation of a solution is based on the “Score 
Director”, which is an index of the penalties assigned by 
the modeller with regard to the satisfaction of constraints. 
The score of a given solution characterises the quality of 
this solution, and thus allows many solutions to be com-
pared. OptaPlanner provides its own scoring system for 
each formulated constraint (De Smet, 2006). We use the 
scoring system composed of 2 levels (hard and soft). 
A hard score means that the “hard constraint” is 
respected. Conversely, if the hard score of a solution is 
less than 0 (the penalty value regarding the constraint 
violation is often a negative value), this solution is there-
fore considered an “infeasible” solution. A soft score is 
related to the respect of a “soft constraint”. The higher 
a soft score is, the better a solution will be.

4.3. OptaPlanner-oriented SOH2CR SP model

The following subsections reuse the model construc-
tion tips introduced previously. We explain how to 
build the decision-making model of a daily 
SOH2CRSP in OptaPlanner.

4.3.1. CS P modeling
We firstly have to specify the model of our 
SOH2CRSP. Figure 2 shows the ten classes we 
have chosen to represent this HHC system and 
their relationships. We can easily observe the 
demand and offer archetypes. They are connected 
by the care services that act as a keystone class 
between them. The respective stakeholders are pro-
filed by their own tolerances relative to the satisfac-
tion criteria explained earlier.

OptaPlanner annotations are also included in 
Figure 2. We give further details about them in 
Tables 1 and 2. Table 1 is for the classes of the 
“problem fact” type (6 classes) which are consid-
ered to be data containers (cf.(1) in Section 4.2.1), 
while Table 2 is for those of the “planning entity” 
type (3 classes) with decision variables, whose 
values determine the optimised routing and sche-
duling solution (cf.(2) in Section 4.2.1). Finally, 
Table 3 defines the domains associated with deci-
sion variables.

Special attention must be paid to the “standstill” class 
in Table 2. We have the decision variable previ, which is 
the source of all the other secondary variables: starti (start 
time of the service), nexti (next service in time), nextk 
(next service of caregiver), and assi (assigned caregiver).

4.3.2. Constraint declaration
We have chosen the Drools Rule Language (DRL) to 
encode constraints. It facilitates the writing of constraints 
using a traditional formalisation of rules that is indepen-
dent of the OptaPlanner model. Therefore, constraints 
can easily be added, modified or even deleted. DRL also 
provides primitives to compute the scores of constraints 



for assessing the quality of a solution. A constraint state-
ment in Drools consists of two parts based on first-order 
logic: the condition When and the consequence Then. 
For the When part, we specify the condition triggering 
the constraint and the parameters are identified by the “$  
+ name” syntax. In the Then part, we declare a formula 

for the score calculation. We have developed 7 con-
straints in the SOH2CRSP model, where 3 are hard con-
straints and 4 are soft constraints. OptaPlanner 
maximises the score in the “scoreHolder” class and 
makes a distinction between hard and soft penalties. 
Therefore, a negative value score is attached to each 
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Figure 2. OptaPlanner-oriented SOH2CRSP model.

Table 1. Problem facts of the SOH2CRSP model.

Class name

Attribute

Name Type Notation Description

HHC structure (H) ID String idh -
Patient (P) ID String idp -

incompatible caregivers List< > incp These caregivers cannot perform the care services requested by the patient p
Patient tolerance (PT) inter-service time Long δp Minimum time between 2 care services requested by the same patient p.

waiting time tolerance Long αp Maximum tolerance time of patient p once the upper limit of the requested 
care service starting time window is exceeded.

satisfaction rate for 
waiting time tolerance

Long α�p Satisfaction rate of patient p with respect to αp where α�p 2 ½0; 100�.

inter-service tolerance Long βp Maximum tolerance time of patient p when the δp is not respected.
satisfaction rate for inter- 

service tolerance
Long β�p Satisfaction rate of patient p with respect to βp where β�p 2 ½0; 100�

Caregiver tolerance 
(KT)

overtime workload 
tolerance

Long γk Tolerance of caregiver k when the maximum workload is exceeded.

satisfaction rate for 
overtime workload 
tolerance

Long γ�k Satisfaction rate of caregiver k with respect to γk where γ�k 2 ½0; 100�

Localization (L) latitude Double ali� ,alj� The geographical information of two different locations
longitude Double loi� ,loj�

Itinerary (I) travel time Long traveli� j� The travel time between two locations i� , j� .travelij is calculated as 
a bird’s-eye view based on the 2 terrestrial coordinates, the calculation of 
travel time is based on Euclidean distance between two points i and j 

Danielsson (1980): traveli� j� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðali� � alj� Þ

2
þðloi� � loj� Þ

2
p

sp

speed Long sp 20 km/h as the estimated average downtown speed to calculate traveli� j� .



unsatisfied constraint using the implementation of the 
following two methods:

● scoreHolder.addHardConstraint Match(kcontext,
-1) for hard constraints; the penalty value is
equal to −1 in the case of a hard constraint
violation.

● scoreHolder.addSoftConstraintMatch(kcontext, -
scoreValue) for soft constraints; the penalty
value is representative of the relative weight of
each soft constraint. It is a setting in which we
have latitude for defining, which allows us to set
a hierarchy in the spectrum of soft constraints.
The harder the soft constraints are, the higher the
scoreValue.

It is rational to specify constraints 1, 2, and 3 as hard 
constraints.

If a caregiver k arrives too early where a patient p is 
living, a waiting time is necessary before the expected 
availability of the patient begins (the earliest start time 

window of one requested care service), and a penalty is 
delivered in such a context. For each penalty, the hard 
global score of a solution will be subtracted by 1, which 
refers to (−1hard/0soft). Constraint 1 defines this time 
limitation.

Constraint 2 prevents the temporal overlap for two 
successive care services requested by the same patient 
p, while constraint 3 ensures that there is no incom-
patibility between patient p and caregiver k. If these 
constraints are not respected, the temporal overlap per 
occurrence or for each incompatible assignment will 
result in subtracting 1 from the global hard score.

Constraints 4, 5, 6, and 7 are soft constraints. They 
deal with the satisfaction of stakeholders in our 
SOH2CRSP.

Firstly, constraint 4 aims to create a fair distribution of 
care services with respect to the intrinsic difficulties 
regarding each round of any caregiver. To do so, we 
apply a scoring strategy which minimises the gap (i.e., 
maximises the negative gap) between the difficulty of 
each round ($Round_difficulty) and the average difficulty 

Table 2. Planning entity of the SOH2CRSP model.

Class name Attribute

Name Type Notation Description

Standstill - - - Interface with the getNextCareService() method. This method is annotated by 
@InverseRelationShadowVariable. The “Care service” and “Caregiver” classes implement 
this interface for synchronization purposes. The specification of the method allows the 
“next care service” attribute to be shared by the two classes. This interface is the basis 
for the creation of a round for each caregiver, since each round is composed of 
a caregiver and the care services that she/he performs.

Caregiver (K) ID String idk -
maximum 

workload
Long �k Parameter. Maximum workload of caregiver k per day.

incompatible 
patients

List< > inck Parameter. Impossibility in assigning care services of incompatible patients to caregiver k.

next care 
service

Object nextk Inverse Relation Shadow Variable based on the specification of the getNextCareService 
() method in Standstill interface.

Care service (C) earliest start 
time

Long ei Parameter. ½ei; li�defines the time windows requested by the patient p for the beginning 
of care service

latest start time Long li
duration Long durationi Parameter. Processing time of care service i.
difficulty Long difi Parameter. Level of difficulty in performing care service i. The higher the value of this 

parameter, the more difficult it is for the care service to be executed.
patient Object benefi Parameter. Beneficiary of a care service, a care service is requested by a patient p.
previous 

standstill
Object previ Planning Variable.

start time Object starti Custom Shadow Variable representing the start time of each care service.
next care 

service
Object nexti Inverse Relation Shadow Variable based on the specification of the getNextCareService 

() method in Standstill interface.
assigned 

caregiver
Object assi Anchor Shadow Variable representing the assigned caregiver to care service i.

Table 3. Domains of the decision variables in the SOH2CRSP model.
Class name Variable name Variable type Domain

Caregiver (K) next care service Inverse Relation Shadow 
Variable

nextk ¼ fC1; C2; . . . ; Crg"k 2 K , where r denotes the number of care services 
requested by patients.

Care service (C) previous  
standstill

Planning Variable previ ¼ fC1; C2; . . . ; Crg [ fK1; K2; . . . ; Kng"i 2 C, where n denotes the number of 
registered caregivers per day.

start time Custom Shadow Variable starti ¼ ½0; 1440�"i 2 C.
next care service Inverse Relation Shadow 

Variable
nexti ¼ fC1; C2; . . . Crg"i 2 C

assigned caregiver Anchor Shadow Variable assi ¼ fK1; K2; . . . ; Kng"i 2 C



of all rounds ($Total_difficulty/$Number_Caregiver). 
This strategy is very similar to a Standard Deviation 
(SD) variable. This example shows how to calculate the 
soft score of a caregiver : servicesa, servicesb, servicesc with, 
respectively, the performing difficulty 6,4 and 7 which are 
assigned to caregiverβ, while the average difficulty of all 
rounds is 15. Thus, the global soft score will be subtracted 
by jð6þ 4þ 7Þ � 15j for caregiverβ, which refers to 
(0hard/-2soft).

Next, constraints 5, 6, and 7 give consistency to the 
satisfaction of temporal constraints with tolerances 
related to the individual profiles of stakeholders (care-
givers or patients). A generic translation of the satis-
faction tolerance in a mathematical formulation has 
been defined. As shown in Figure 3, the proposal is 
a piecewise linear function of the score relative to the 
intensity of a temporal non-respect, according to the 
personalised tolerance exhibited by stakeholders. Note 
that if the violation value (overrun time) of these 3 
constraints is less than the relevant tolerance (e.g., αp 
in constraint 5), the slope of the linear function will be 
decreased from 100% (equals 100 � α�p in the same 
example): the more sensitive the stakeholder is to the 
excess of the upper tolerance time, the steeper the 
slope of the function. Considering a stakeholder’s dis-
satisfaction at a high level of importance, the slope of 
the second part of this linear function has been chosen 
arbitrarily to be 10 times larger than the first part. The 
penalty becomes very harsh beyond this limit of 
confidence.

Therefore, constraints 5, 6, and 7 apply this model 
pattern to their scores with respect to the starting time 

window of a requested care service (constraint 5), to 
the inter-service time requested by a patient (con-
straint 6) and to the maximum daily workload of 
a caregiver (constraint 7). The example in Figure 4 
demonstrates how to calculate the global soft score of 
a solution when constraints 5, 6, 7 are triggered.

5. A study of the added value of stakeholder 
satisfaction

5.1. OptaPlanner solving strategy

As explained earlier, the implementation of 
OptaPlanner implies a first choice of a construction 
algorithm among a set of many given heuristics for the 
definition of the initial solution. Then, it is necessary 
to select an optimisation algorithm from the set of 
proposed metaheuristics to search for the best solution 
within the decision variable space. In order to find the 
best choice of methods for a given problem, an 
embedded configuration tool called “benchmark” 
helps to make a comparative study. By this means, 
a particular problem can be submitted concurrently 
to many different pairs of available algorithms (one for 
the construction, one for the search of a solution), and 
the solutions are compared automatically through 
a report dashboard. The corresponding process is dis-
cussed extensively in (Macik, 2016). For these authors, 
who have primarily performed such a test on the task 
assignment problem, the result highlighted the fact 
that the most efficient construction heuristic was 
First Fit (Rios de Souza & Martins, 2020).

�
p

�
p

Figure 3. A linear function to model the relationship between the score and the exceeded time in a temporal constraint applied to 
constraints 5 to 7. The symbol αp _ βp _ γk depicts with an aggregated formulation the tolerance time for, respectively, the three 
different types of constraints (5,6, and 7) to be considered in the SOH2CRSP. The notation α  _ β  _ γ�k has the same meaning: it 
represents the satisfaction rate for the three types as a percentage unit.



Concerning the performance of the five available 
metaheuristics in OptaPlanner, the predefined default 
parameters for each metaheuristic algorithm were used 
without any change. The reason why lies in our wish to 
compare the obtained results starting from the same 
basic settings. Two criteria were used to check the end 
of calculation depending on whether: (1) the global 
score reached the upper bound of value 0 (the max-
imum score for both soft and hard parts), or (2) the 
computation time exceeded a delay of 8 minutes with-
out making any new gain relative to the best current 
solution of the problem. Consequently, the benchmark 
test for the SOH2CRSP described in the next section 
demonstrated that the TS algorithm was the best 
method. All algorithms were able to find a feasible 
solution (the score for the “hard constraint” part = 0), 
but this was not the case for the “soft constraint” part. 
As illustrated in Figure 5, the soft score generated by 
a TS is the highest (−360) among all other results for the 
large-size problem “L_s130_p90_mp24_k16” (the 
description of this use case will be in Section 5.2.1). 
Thus, we decided to keep TS as the solving algorithm 
to perform our experimentation.

5.2. General experiment

In Zhang et al. (2021), a mathematical model based on 
MILP for the HHCRSP is proposed, with consideration 

of the same business constraints addressed in this paper. 
Furthermore, the considered objective is also identical 
for achieving a maximisation of total satisfaction 
regarding all stakeholders in the HHC system. This 
MILP-based model is able to address the problem in 
a medium-large dimension within a short computing 
time.

By investigating the field of comparisons between 
the OptaPlanner-based approximate method and the 
exact method, the main purpose of this comparative 
study is to examine the quality of solutions generated 
by our OptaPlanner-based approximate method.

To ensure this comparison, we firstly draw atten-
tion to the Objective Function formulated in Zhang 
et al. (2021): 

maximize
P

p2P W p þ
P

q2Υ R qþ
P

k2K O kþ
P

k2K G k

mþ lþ n � 2
(1) 

The result of the objective function is in the range of 
[0,1] where:

● P: set of patients, with the index p 2 ½0;m� and m
denotes the number of patients.

● Υ : set of patients who request more than one care
service, with the index q 2 ½0; l� where l denotes
the number of patients with multiple requests
and Υ � P.

Figure 4. Soft score calculations for solutions when constraints 5, 6 and 7 are triggered.



● K: set of caregivers, with the index k 2 ½1; n� and
n denotes the number of caregivers who are avail-
able to perform the daily care services.

● W p: satisfaction rate with respect to the set of
waiting times for care services requested by
patient p.

● R q: satisfaction rate with respect to the set of
lacking inter-service times between the care ser-
vices requested by patient q.

● O k: satisfaction rate with respect to the overtime
workload of caregiver k.

● G k: round difficulty coefficient of caregiver k.

Then, we translate the representation of the results of 
the OptaPlanner-based approximate method in score 
format (e.g., 0hard/156soft), in such a way that the 
solution of the approximate method is represented by 
the objective function format illustrated in Equation 1. 
This translation process is realised by a feature of our 
test environment, as in Zhang et al. (2020).

5.2.1. S tate-of-the-art dataset presentation
Our experiment is based on the dataset presented in 
Zhang et al. (2021). The dataset is extracted from the 

database of an operational product belonging to 
a customer of the Berger-Levrault company. This custo-
mer is an HHC organisation providing services in 
a medium-sized town located in the west of France. 
Three instances of larger size are generated to bring our 
experiment closer to reality. The whole dataset is cate-
gorised into 4 groups: S (small size, with 10–30 care 
services), M (medium size, with 35–50 care services), 
ML (medium-large size, with 55–70 care services) and 
L (large size, with 110 and 130 care services). For each use 
case, a label is defined with the following structure: 
“Group_sXX_pYY_mpZZ_kVV”, where the subscript s 
indicates the number of requested care services, the sub-
script p indicates the number of patients, the subscript mp 
indicates the number of patients who request more than 2 
care services, and the subscript k represents the number 
of registered caregivers who are ready to perform their 
daily rounds.

As stakeholder satisfaction was not initially defined 
in the source of the data, we have randomly generated 
these parameters related to satisfaction within a given 
range. Table 4 illustrates the results for the caregivers 
and the patients, using the notations proposed in 
Table 1.

Table 4. Random generation of the bounds of stakeholder satisfaction and care service difficulty.
Viewpoint Parameter Upper bound Lower bound Comment

Caregiver γk 50 100 In minutes
γk� 30 50 In %
�k 600 600 In minutes

Patient αp 30 60 In minutes
αp� 30 50 In %
βp 1 20 In minutes
βp� 30 50 In %
difi 1 6 -

Figure 5. Benchmark results for “L_s130_p90_mp24_k16”: a “soft constraint” score.



5.2.2. Numerical results
The experimental test was performed on a computer 
with Intel(R) Core (TM) i7-7500 U CPU 2.90 GHz and 
16.0 GB RAM under the Windows 10 operating system. 
The results of our experiments are presented in Table 5. 
First, we show the overall performance in terms of 
computing time in seconds (CPU) for the OptaPlanner- 
oriented resolution approach. Secondly, to show the 
optimality of the solution generated by our solution 
approach, we show the gap between the Upper Bound 
(UB-CPLEX) and the Objective Function (OF) of the 
OptaPlanner-oriented solution with the consideration 
of satisfaction criteria (Gap 1). The UB-CPLEX is the 
bound given by the best node which is extracted from 
CPLEX when calculating the optimal solution for each 
use case by exact method. Finally, to evaluate the 
impacts that the satisfaction of stakeholders can have 
on HHC planning, for each instance, the second gap 
study (Gap 2) is carried out, which is based on 
a comparison of SOH2CRSP solutions with and with-
out the satisfaction consideration (soft constraints).

As shown in Table 5, the results demonstrate the 
performance of our OptaPlanner-based SOH2CRSP 
model in reaching the approximate optimum solution 
(Gap1 � 0, except Gap1S s13 p6 mp6 k3 ¼ 5:17%). The 
computing time is satisfactory even with a problem 
dimension up to the large size. Gap 2, however, shows 
the impact of considering satisfaction-related con-
straints on the optimisation result: if we do not con-
sider these constraints in our model, the scheduling 
result becomes extremely unsatisfactory, with Gap2 ¼ 
51:14% for all experimental instances.

5.3. Experiment on L_s130_p90_mp24_k16

L_s130_p90_mp24_k16 is the biggest instance we 
tested; therefore, we would like to provide a more 

specific analysis of it and its corresponding scheduling 
results as generated by OptaPlanner. We will first 
explain some key features of this use case. To do so, 
we sought to create a form of identity card for instance 
L_s130_p90_mp24_k16 in which the input data for-
mat, starting with caregivers, then patients, and finally 
care services, is presented.

The coordination here concerns 16 caregivers. Table 6 
summarises the acquaintanceships between caregivers 
and patients. On average, 3 patients are removed from 
the portfolio of a caregiver, and the standard deviation is 
about 3 patients. Such figures have to be considered 
relative to the total number of patients. As 90 patients 
have to be cared for, 3% of patients are declared to be 
non-compatible per caregiver.

The working time of caregivers is featured by the 
shift dates and the accepted workload. In our use case, 
all caregivers start at 8:00 a.m. and end at 9:40 p.m. For 
each caregiver in a working day, a workload of 10  
hours is allowed between these two bounds. The mean 
overtime work tolerance is about 90 minutes with 
a Standard Deviation (SD) of � 14 minutes.

All caregivers have to share a total of 130 care 
services to be delivered during their shifts. Table 7 
gives the statistical distribution of 33 time windows 
over the 130 entities and the intensity of their use 
(count). For example, the first time window has been 
assigned 15 care services.

The waiting time accepted by patients in reference to 
the time windows has a mean of 44 minutes with a SD 
of 9 minutes. The minimal bound is 30 minutes and the 
maximal bound is 60. The pool of 90 patients leads to 
a wide travel matrix that was generated using geo- 
localisation facilities with a bird’s-eye view, and the 
travel time between all the 2-tuples of patients was 
estimated by using Google Maps. To summarise this 
geographical distribution of service needs, we first 

Table 5. Overall experimental results.

Use case UB-CPLEX

OptaPlanner

OF-without satisfaction OF-with satisfaction CPU-without satisfaction CPU-with satisfaction Gap 1 Gap 2

S_s13_p6_mp6_k3 0.9694 0.5828 0.9193 0.1 73.5 5.17% 36.60%
M_s37_p21_mp11_k6 0.9991 0.4968 0.9974 0.2 11.6 0.17% 50.19%
M_s40_p25_mp10_k6 0.9992 0.5285 0.9984 0.2 10.8 0.08% 47.07%
M_s43_p23_mp12_k6 0.9989 0.4899 0.9978 0.2 13.9 0.11% 50.90%
M_s47_p26_mp13_k7 0.9988 0.5058 0.9976 0.2 12.8 0.12% 49.30%
M_s50_p26_mp13_k7 0.9993 0.4952 0.9990 0.3 12.3 0.03% 50.43%
ML_s55_p28_mp14_k8 1.0000 0.4832 1.0000 0.4 33.2 0.00% 51.68%
ML_s60_p31_mp18_k9 0.9994 0.6035 0.9971 0.4 11.8 0.23% 39.47%
ML_s61_p32_mp17_k8 1.0000 0.5805 1.0000 0.4 13.6 0.00% 41.95%
L_s81_p56_mp13_k11 0.9989 0.4631 0.9907 0.3 677.7 0.82% 53.26%
L_s110_p74_mp22_k15 0.9986 0.6045 0.9964 5.1 627.7 0.22% 39.33%
L_s130_p90_mp24_k16 0.9999 0.4761 0.9990 1.1 676.3 0.09% 52.34%

Table 6. Number of patients removed from the list of caregivers (CG).
CG#1 CG#2 CG#3 CG#4 CG#5 CG#6 CG#7 CG#8 CG#9 CG#10 CG#11 CG#12 CG#13 CG#14 CG#15 CG#16

4 2 0 1 2 5 8 0 10 4 6 5 2 0 0 0



patients asked for 3 services and 33.3% (4 patients) of 
the 12 patients asked for 4 services during the same 
shift.

Considering multiple service demands, the mini-
mal inter-service time between two successive services 
(annotated by δp in Table 1) should be defined. The 
data are given for each patient and we have done 
a specific statistical analysis for them. The �δp = 43.6  
minutes with an SD = 9.2 minutes, in a spectrum ran-
ging from 30 minutes to 58 minutes.

The difficulty of rounds performed by caregivers is 
included in the perimeter of our problem formulation. 
The input data used for this care service’s dimension 
are delivered by an index providing a level of difficulty 
using a scale ranging from 0 to 6. The pool of patients 
is distributed around the level of 3.4 with an SD = 1.7, 
which means that the difficulty is sufficiently high so 
that this factor cannot be neglected with respect to the 
satisfaction of caregivers.

5.3.1. Methodological approach and results
Our purpose is to evaluate the impacts that the satis-
faction of stakeholders can have on HHC planning. As 
shown in Gap 2 of Table 5, we have drawn an experi-
mental strategy based on a comparison of SOH2CRSP 
with and without soft constraints (this refers to con-
straints 4, 5, 6, and 7, which represents the 4 satisfac-
tion criteria considered for all stakeholders in our 
model). Planning without soft constraints is a basic 
and rough problem formulation. It tends to produce 
a baseline that is feasible planning. It will respect, as far 
as possible, acquaintanceships, time windows and 
inter-service time. We have not limited the working 
time of caregivers to 10 hours.

A total of 536 variables and 34,572 constraints has to 
be considered to solve this particular large-sized problem 
with the distributions described in Tables 8 and 9.

Two examples of planning regarding two 
SOH2CRSP models have been carefully studied, and 
the main characteristics of the solutions produced by 
the OptaPlanner have been summarised in Table 10. 
The upper part (down to the “Total” line) is relative to 
a caregiver analysis with output data, and the lower 
part is a statistical analysis of the data in each column.

For the first step in our analysis regarding the 
two solutions, the total number of care services (cf. 
line “Total” of the 2nd and 3rd columns in Table 10) 
are identical, which proves that all the services to 

Table 7. Summary of care service starting time windows (½ei; li�, 
in minutes).

Earliest start time (ei) Latest start time (li) Count

450 510 15
465 525 3
480 540 5
495 555 2
510 570 9
525 585 4
540 600 5
555 615 1
570 630 6
585 645 2
600 660 7
630 690 7
645 705 2
660 720 4
675 735 1
690 750 7
705 765 2
810 870 10
870 930 3
900 960 4
930 990 2
960 1020 2
990 1050 2
1005 1065 1
1020 1080 1
1035 1095 2
1050 1110 1
1065 1125 3
1080 1140 3
1095 1155 4
1110 1170 4
1125 1185 3
1140 1200 3

compute the statistical distribution for each service with 
respect to the others, and then we apply a new statistical 
abstract over the set of achieved distributions. The 
statistical analysis is detailed using mean, SD, maximal 
and minimal variables. For example, the mean average 
time for all the locations is about 10 minutes (9.96  
minutes) and its SD = 0.69 minutes, while the mean of 
SDs = 4.90 minutes with an SD of SDs = 0.89 minutes. 
The minimum of shortest time is 0 and the maximum 
of longest time is 34 minutes. This is an expected result 
because the use case is drawn from a coordinating HHC 
system covering a territory that corresponds to 
a medium-sized town, which requires a reasonable tra-
vel time from one point to another in order for care-
givers to perform the assigned care services.

Among 90 patients, 24 of them requested more 
than one care service. The range of demand went 
from one service to a maximum of four during 
a shift. 50% of the 24 patients asked for a second care 
service, while 66.7% (8 patients) of the remaining 12 

Table 8. Enumeration of decision variables.
Variable name Notation Related class Variable type Variable count

previous standstill previ Care service @PlanningVariable 130
start time starti Care service @CustomShadowVariable 130
next care service nexti Care service @InverseRelationShadowVariable 130
assigned caregiver assi Care service @AnchorShadowVariable 130
next care service nextk Caregiver @InverseRelationShadowVariable 16



be planned have been allocated to a caregiver. On 
average, 8 services are performed by each of the 
caregivers. However, the distribution of services is 
not the same when the 2nd and 3rd columns are 
compared. This is illustrated by an SD that is 
drastically reduced when satisfaction criteria are 
considered. In the 2nd column, each caregiver has 
a round that includes from 4 to 16 care services to 
perform, while the range is from 7 to 10 for the 
solution shown in the 3rd column of Table 10. 
Secondly, the difficulty distribution is perfectly 
equitable with the satisfaction criteria since each 
caregiver has a total difficulty index of 28 (cf. the 
5th column in Table 10). This is not true for the 
solution without satisfaction criteria, shown in the 
4th column of Table 10, where the lowest limit is 10 
and the upper limit is 58. The working time is split 
into two components, with, respectively, the time 
spent for performing the assigned care services and 
the necessary travel time from one patient to 
another. The comparison of SD for service time 
shows a reduction from 222.89 to 51.95 minutes: 
the workload seems to be more equitably distribu-
ted over the resources when considering the satis-
faction criteria. While the mean travel time is 
logically the same in each solution, the travel 

times are different depending on the definition of 
the routes. The mean travel time is slightly higher 
for the solution with the satisfaction criteria 
(Travelsatis ¼ 79:44>Travel:satis ¼ 74:69). The SD 
and the range of values are quite similar.

From this first examination of the results, it 
appears that the consideration of satisfaction 
leads to planning that is very different. The soft 
constraints clearly play a role by reducing the 
differences among the rounds (round difficulties) 
and the routes of caregivers (distribution of 
workloads).

The analysis continues with the points of view that 
patients can have on the quality of the two examples of 
planning. We have developed our analysis in two 
parts:

● Columns 2 to 5 of Table 11 contain the statistics
relative to the waiting time and the temporal
value for non-respect of inter-service time.

● Columns 6 to 9 of Table 11 show the statistics for
exceeding the time of caregivers’ time windows
and their idle times.

In Table 11, the effects of soft constraints are manifest. 
Both the total waiting time of patients and the excess 

Table 10. SOH2CRSP solution without and with satisfaction criteria.

Caregiver #

Care service count Total difficulty Total service time Total travel time

without 
satisfaction

with 
satisfaction

without 
satisfaction

with 
satisfaction

without 
satisfaction

with 
satisfaction

without 
satisfaction

with 
satisfaction

1 16 8 58 28 735 480 124 72
2 14 9 41 28 660 435 156 63
3 12 10 40 28 690 495 104 78
4 10 9 41 28 690 450 91 57
5 9 9 28 28 630 495 95 40
6 8 7 34 28 615 405 80 110
7 14 7 45 28 525 465 92 57
8 7 8 24 28 450 330 61 81
9 9 9 35 28 480 390 43 171
10 5 8 13 28 285 465 60 116
11 4 8 16 28 360 450 54 80
12 4 8 10 28 390 390 30 77
13 5 9 15 28 210 405 72 99
14 5 7 23 28 180 465 45 61
15 4 7 14 28 90 540 22 55
16 4 7 11 28 75 405 66 54
Total 130 130 448 448 7065 7065 1195 1271
Mean 8.13 8.13 28.00 28.00 441.56 441.56 74.69 79.44
SD 4.08 0.96 14.48 0.00 222.89 51.95 35.10 32.17
Min 4 7 10 28 75 330 22 40
Max 16 10 58 28 735 540 156 171

Table 9. Enumeration of constraints.

Constraint name Related variable Constraint count
previ starti nexti assi nextk

Constraint 1 (hard) X 130
Constraint 2 (hard) X 16900
Constraint 3 (hard) X 16
Constraint 4 (Soft) X X 16
Constraint 5 (Soft) X 130
Constraint 6 (Soft) X 16900
Constraint 7 (Soft) X X X 480



of time windows for caregivers are reduced. The 
reduction in non-respect of inter-service time is sub-
stantial, since the 13 minutes on average in the solu-
tion without considering satisfaction criteria becomes 
only 0.25 minutes on average in the solution consider-
ing satisfaction criteria.

The only comparative indicator that is worthwhile 
when considering satisfaction criteria is the total idle 
time of caregivers. The mean value of caregiver idle 
times is much higher in the solution considering satis-
faction criteria, while the SD, as well as the range of 
values, are better. This is probably the price of having 
better planning with respect to other indicators. 
Notice that the upper bound of working time (10  
hours) is respected for all caregivers in the solution 
with soft constraints (real working time/caregiver =  
total service times + total travel and idle times).

To conclude our experiments and offer some 
insight into the special features of our solution 
approach, after considering the constraints on satisfac-
tion for all stakeholders, our SOH2CRSP model com-
pletely eliminates patient waiting times and the non- 
respect of inter-service times, while caregiver overtime 
work and caregiver round difficulties are balanced. We 
know that the patients’ long waiting times for receiv-
ing care and the non-compliance with the interval 
between multiple services can lead to a significant 
decrease in patient satisfaction with respect to the 
delivered services and similarly, caregivers’ overtime 
and unbalanced distribution of tasks in the medical 
team can result in a sharp decline in the quality of 
services. In addition, the considered temporal con-
straints are soft and controlled by the tolerance given 
by the stakeholder. This personalised tolerance 
explains the diversity of the stakeholders’ personal 
characteristics; for example, some patients who are 
extremely sensitive to time will have 0 tolerance for 
waiting times. Knowing that the coordinator in an 
HHC organisation is especially concerned with the 
speed of problem solving, in terms of the computing 
performance of our model, the final two solutions 
were obtained within a reasonable computational 
time of approximately 10 minutes (676 seconds). The 
instance L_s130_p90_mp24_k16 and the two 

solutions (One that considers satisfaction criteria and 
the other that does not) can be found at https://www. 
researchgate.net/publication/365361723_Use_case_L_ 
s130_p90_mp24_k16 and https://www.researchgate. 
net/publication/365361494_Two_solutions_L_s130_ 
p90_mp24_k16.

6. Conclusions and perspectives

This research work addresses a model with 
a comparative study for solving the Home Health 
Care Routing and Scheduling Problem (HHCRSP) 
for a daily planning horizon. The originality of our 
work relates to the consideration of satisfaction for 
stakeholders, so the traditional HHCRSP is therefore 
transformed into a new Satisfaction-Oriented 
HHCRSP (SOH2CRSP). The satisfaction criteria was 
developed using specific constraints expressing the 
preferences of caregivers and patients on the one 
hand, and on the other hand, using tolerances for 
some of these preferences to an admissible extent in 
order to relax the problem-solving difficulty, if neces-
sary. The tolerances are modelled according to the 
parameters that define the profile of a given stake-
holder and his/her degree of tolerance for the criteria 
of satisfaction. A linear regression function is used as 
a pattern model to express each stakeholder’s level of 
requirements. This kind of customisation is a way to 
truly consider the diversity of stakeholders related to 
the offer and demand of HHC services.

The search for a solution is operated by 
OptaPlanner. Our OptaPlanner-oriented SOH2CRSP 
model is explained extensively in this paper. By using 
an embedded benchmark module, we identified that 
the Tabu Search (TS) metaheuristic was the most 
efficient for SO2HCRSP solution generation.

To examine the quality of the solutions generated by 
OptaPlanner, we first performed an extensive experiment 
based on 12 real-life use cases, together with a critical 
analysis of the generated solutions between our method 
and a state-of-the-art exact method. Then, we focused on 
a comparative analysis using the largest-sized use case 
coming from the field of operations. The use case is 
introduced with a data structure that resembles an 

Table 11. Impact of satisfaction consideration.
Waiting times V. inter-service time* Exceeding times** Idle times

without 
satisfaction

with 
satisfaction

without 
satisfaction

with 
satisfaction

without 
satisfaction

with 
satisfaction

without 
satisfaction

with 
satisfaction

Patient’s 
viewpoint

X X X X

Caregiver’s 
viewpoint

X X X X

Mean 321 0 13 0.25 1864 0 61 160
SD 302 0 19 1.22 1735 0 104 60
Min 0 0 0 0 15 0 0 40
Max 1279 0 71 6 5739 0 308 251
Range 1279 0 71 6 5724 0 308 211

* Temporal value of non-respect of inter-service time. ** Exceeding times regarding their time windows.

https://www.researchgate.net/publication/365361723_Use_case_L_s130_p90_mp24_k16
https://www.researchgate.net/publication/365361723_Use_case_L_s130_p90_mp24_k16
https://www.researchgate.net/publication/365361723_Use_case_L_s130_p90_mp24_k16
https://www.researchgate.net/publication/365361494_Two_solutions_L_s130_p90_mp24_k16
https://www.researchgate.net/publication/365361494_Two_solutions_L_s130_p90_mp24_k16
https://www.researchgate.net/publication/365361494_Two_solutions_L_s130_p90_mp24_k16


identity card, aiming to understand the main features of 
the HHC’s underlying coordination. The planning 
obtained with and without considering four soft con-
straints has been synthetised. Many comparative indica-
tors have been proposed. The advantages resulting from 
the SOH2CRSP model when considering satisfaction 
criteria are significantly demonstrated. At the end of 
this test, we gained confidence that the quality of the 
results of the solution generated when considering soft 
constraints are far better.

In future works, the results of our research will be 
disseminated by the Berger-Levrault company. We 
will improve our approach in two ways:

● Firstly, we want to capture the large amount of
data in an easy way. To do this, we have begun to
investigate the use of decision-making business
models as a starting point for a model-driven
engineering environment. The first steps have
been successful and we are now trying to launch
a specific project for completing this work.

● Secondly, to check that the generated schedules are 
consistent with the expectations of all stakeholders 
involved in coordination and operations manage-
ment, we want to collaborate with a set of managers 
in an HHC organisation and obtain the benefit of 
their feedback as users of the planning tool. This will 
be a new area of investigation since the generated 
planning will be assessed by the end users, and in 
doing so, the overall utility of the satisfaction criteria 
will also be qualified. Finally, we will have to face 
a lot of the uncertainties that have been neglected up 
until now and manage these uncertain events
through real-time data collected by mobile schedul-
ing software during the delivery of care services by 
caregivers, which will help in the generation of
dynamic solutions for SOH2CRSP.

Notes

1. A list of patients assigned to each care team in the
practice.

2. Drools: https://www.drools.org/.
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