
HAL Id: hal-04001932
https://imt-mines-albi.hal.science/hal-04001932v1

Submitted on 14 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parametrization of a demand-driven operating model
using reinforcement learning

Louis Duhem, Maha Benali, Guillaume Martin

To cite this version:
Louis Duhem, Maha Benali, Guillaume Martin. Parametrization of a demand-driven op-
erating model using reinforcement learning. Computers in Industry, 2023, 147, pp.103874.
�10.1016/j.compind.2023.103874�. �hal-04001932�

https://imt-mines-albi.hal.science/hal-04001932v1
https://hal.archives-ouvertes.fr

Parametrization of a demand-driven operating model using
reinforcement learning☆

Louis Duhem a,*, Maha Benali a, Guillaume Martin b

a Département de mathématiques et génie industriel, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal H3T 1J4, Québec, Canada
b Département de génie industriel, Ecole des mines d′Albi-Carmaux, All. des sciences, Albi, 81000, France

A B S T R A C T

Nowadays, production and supply planning are more complex than ever before with low customer tolerance,
complicated bill-of-materials, and high product variety. Most of the time, conventional approaches such as MRP
and Lean approaches are not efficient. To overcome these issues, Ptak and Smith (2019) introduced Demand
Driven Material Requirements Planning (DDMRP). This methodology relies on a Demand-Driven Operating
Model (DDOM) which uses actual demand in a combination of strategic buffers to protect critical parts. For the
past decade, research around DDMRP has been focused on proving and advancing the methodology in different
industrial environments, while neglecting its parametrization. Indeed, the authors suggested general rules to set
the DDOM’s key parameters, yet no learning approach has been developed to set them. This present paper is the
first that proposes to use machine learning to parametrize a DDOM facing unknown demand, and particularly to
adjust dynamically the order spike threshold and the order spike horizon. A reinforcement learning algorithm
with three different reward functions is coupled to a DDMRP flowshop simulation model facing an atypical
demand including spikes. Besides studying the learning ability of the algorithm, we evaluate the performance of
the model which is compared to a DDOM without parameter adjustment. The analysis shows that it is possible to
drive the order spike thresholds to increase the performance of the production system, regarding customer
satisfaction and stock level optimization. The findings of this paper point out the possibility to drive DDOM
parameters with an automatic method using reinforcement learning.

1. Introduction

The context of production management in the early twenty-first
century has been marked by a new way of consuming, which has
induced ambiguity and volatility. Moreover, the supply base changed,
by becoming more competitive and by creating some uncertainty around
lead times, prices and demands. Consequently, the number of
complexity sources has greatly increased. This congregation of phe
nomena in the industrial field is referred to as VUCA: Volatility, Un
certainty, Complexity, and Ambiguity (Ptak and Smith, 2019). Atypical
events, such as demand spikes, are increasing, thus threatening the
smooth execution of day-to-day operations. Conventional production
methods, which rely on demand forecasts, fail to deal with this new
complex environment.

In this context, Ptak and Smith (2019) developed a new method
called Demand Driven Materials Requirements Planning (DDMRP),

which aims to reduce stock levels and delivery time. The method em
phasizes the information and material flow and focuses on "actual de
mand" to "forecast better" (Ptak and Smith, 2019). DDMRP relies on
good aspects and principles of different production methods and heu
ristics, such as MRP (Material Requirements Planning) and Distribution
Requirements Planning (DRP). It also uses the "pull and visibility
emphasis" of Lean and Theory of Constraints and the "variability
reduction" of Six Sigma. It brings all these production principles together
into a new method and sets new production rules to reduce stock levels
and increase customer service. This is made possible by putting decou
pling points called buffers along the supply chain, which induces inde
pendence in the system and prevents variability effects from occurring.
Early research works have started to prove that DDMRP is more efficient
than traditional methods in specific industrial contexts (Azzamouri
et al., 2021; Miclo et al., 2019).

DDMRP follows the principle of "position, protect and pull"

☆ This document is the result of the research project funded by Polytechnique Montréal, Canada.

* Corresponding author.
E-mail address: louis.duhem@polymtl.ca (L. Duhem).

mailto:louis.duhem@polymtl.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2023.103874&domain=pdf

1. Strategic inventory positioning (position): this component defines
where buffers are placed;

2. Buffer profiles and levels (protect): this component sets how much
the decoupling points will be protected;

3. Dynamic adjustments (protect): this component allows to adjust the
amount of protection following parameters and external factors;

4. Demand-driven planning (pull): this component enables to generate
supply orders;

5. Visible and collaborative execution (pull): this component deals with
the management of open supply orders.

The buffer parametrization is part of the DDMRP dynamic adjust
ment component: the production parameters need to be adjusted to
adapt itself to the actual demand. For instance, a buffer must be able to
detect an order spike that could threaten its integrity. An order spike is
defined by two parameters: an order spike threshold (OST) and an order
spike horizon (OSH). (Ptak and Smith, 2019) recommend general rules
to calculate them, such as using a proportion of buffer levels or the
average daily usage. Nevertheless, these rules do not rely on consistent
and objective algorithms (Bahu et al., 2019). Only Damand et al. (2022)
recently proposed using an automatic method to adjust 8 parameters
(including OST and OSH) of a DDOM with a genetic algorithm. How
ever, their algorithm does not consider a learning method and presents a
weak responsivity to uncertain demand.

Next to that, reinforcement learning-based algorithms have become
more and more popular to deal with supply chain management prob
lems. Reinforcement learning is an area of machine learning relying on
trial and error (Morales, 2020) that has been widely used in many in
dustrial problems. For instance, Xanthopolous et al. (2018) present
different reinforcement learning uses in industrial contexts. To our
knowledge, only one article proposes integrating a reinforcement
learning entity in a DDOM. Cuartas Murillo and Aguilar (2022) intro
duce an agent that intervenes on general parameters that are not specific
to the DDOM (i.e., the inventory levels and the setup time). However,
little attention has been paid to setting up DDOM parameters such as
OST and OSH.

The present article deals with the management of atypical demand
profiles (including spikes), which is a rarely addressed problem in the
literature. An innovative approach allows the adjusting of two DDOM
parameters, which are usually calculated with simplistic formulas
advised by Ptak and Smith (2019), by using reinforcement learning. The
structure of the article is the following: the second section present the
literature related to the DDMRP and the reinforcement learning themes,
and underlines the article’s contribution. Then, Section 3 exposes the
case study, the methodology, and the experimentation, while the results
are presented and analyzed in Section 4. Finally, we conclude and offer
research perspectives in Section 5.

2. Related literature review

In this section, we first present a short DDMRP literature review,
along with a functional description of the method. Then, we build a
reinforcement learning literature related to our specific context. Finally,
we evoke the article’s contribution.

2.1. DDMRP literature review

Ptak and Smith (2011) introduced the DDMRP in 2011. Their two
books establish the first documentation type of the method (Ptak and
Smith, 2011, 2019), and induce some research around it. Consequently,
DDMRP projects have been realized in the past years, although not many

were documented.
One type of studies that can be found in DDMRP literature is

comparative studies. Because DDMRP is partly based on the MRP, those
two production methods are often compared. The authors show that, in
specific contexts, the DDMRP is better than the MRP in a quantitative
way (Miclo et al., 2015, Miclo, 2016; Shofa et al., 2018). Miclo et al.
(2015) show that a DDMRP can reduce the Work in Process (WIP) of an
MRP by 26 %, while Shofa et al. (2018) achieved a reduction of 11 % in
terms of inventory volumes compared to an MRP system. The authors
also seek to realize a qualitative analysis to compare both methods in
industrial environments (Kortabaria et al., 2018; Shofa and Widyarto,
2017; Ihme and Stratton, 2015). The results show a stock level decrease
(up to a 52.53 % inventory level decrease for Kortabaria et al., 2018) and
shorter delivery times (for example, Shofa and Widyarto managed to
compress the lead time from 52 to 3 days). The results are a better vis
ibility in the supply chain for the workers and fewer instabilities in the
system. DDMRP is also often compared to other production methods like
Kanban/Lean (Miclo et al., 2019) or Optimised Production Technology,
a method of production flow management (Thürer et al., 2022). In all
cases, it reveals itself more performing in the studied environments and
more attractive to academic study.

DDMRP has also been documented by case studies, which use com
pany data to observe the effects of DDMRP in specific industries. For
instance, DDMRP has been studied in the automotive industry (Shofa
and Widyarto, 2017) and ink manufacturing (Ihme and Stratton, 2015).
Across 30 case studies, Bahu et al. (2019) proved that a DDOM is
adapted to different industrial contexts. On the same note, Velasco
Acosta et al. (2019) showed that a DDOM can be developed to run in a
complex manufacturing environment. Then, one strand of research has
been to improve DDMRP and its performance. For instance, Jiang and
Rim (2017) suggest a way to reduce lead time and inventory costs by
keeping work-in-progress stocks at specific stations. On another note,
Lee and Rim (2019) present a safety stock formula for DDMRP replen
ishment, while proving it outperforms traditional DDMRP results. It is
worth noticing that the DDMRP literature mostly relies on case studies,
including simulations of real data or implementation methods in com
panies (Damand et al., 2022). Even though some authors already
addressed some problems like the positioning of the buffers (Abdelhalim
et al., 2021), the literature on implementation methods is not quite
developed (Butturi et al., 2021).

Authors have also contributed to the DDMRP literature by building
reviews. Azzamouri et al. (2021) present a literature review of the
evolution of the methods and the research advancement. The main point
that can be drawn from their literature review is that the method is still
not enough studied and validated. Most of the studied cases remain
theoretical and lack concrete applications. They also manage to show
that DDMRP is adapted to the industrial field and is not limited to only
one area by aggregating its literature. The authors (Azzamouri et al.,
2021) tend to give methodological and practical comments since the
method is still new (Pekarčíková et al., 2019). Nevertheless, DDMRP
integration results are rarely published. Furthermore, DDMRP is mostly
used in discrete-processed industries, while neglecting
continuous-processed industries such as gas, cement, or mines (Azza
mouri et al., 2021). The reviews also point out that the DDOM can be
modeled in different ways. It is possible to simply use Excel (Shofa and
Widyarto, 2017; Ihme and Stratton, 2015), but we note that
discrete-event simulation is widely used (Martin, 2020; Miclo et al.,
2015; Kortabaria et al., 2018; Velasco Acosta et al., 2019).

Finally, little attention has been paid to DDOM parametrization
(Butturi et al., 2021). Ptak and Smith (2019) leave only general rec
ommendations about the setting inputs, although Miclo et al. (2015)
insist on the importance of the parametrization. Only recently has there
been some research about it. Lee and Rim (2019) suggest some param
etrization elements for the lead time factor and the variability factor.
Dessevre et al. (2019) propose to implement a dynamic adjustment
method for the setup time. Nevertheless, Bahu et al. (2019) and Damand

(Pekarčíková et al., 2019). This principle relies on 5 five components
that allow any Demand-Driven Operation Model (DDOM) to focus on
actual demand and prioritize flow-based orders. The five components
are listed below:

et al. (2022) point out the lack of automatic algorithms to set up the
DDOM parameters. We suppose it is due to the high number of software
that is compliant with a DDMRP implementation (Demand Driven
Institute, 2022). Even though some softwares are compliant with a
DDMRP implementation, such as Asprova or SAP, some practitioners
can struggle to integrate general methods of DDOM parametrization in
their software.

The next section focuses on DDMRP mechanisms and more precisely
the DDOM parametrization.

2.2. DDMRP parametrization

The DDOM revolves around the net flow position equation (Ptak and
Smith, 2019). It is defined in Eq. (1).

Net Flow Position (NFP) = On hand + on order − qualified demand (1)

The qualified demand is the sum of today’s demand, qualified spikes,
and eventual backlog (Ptak and Smith, 2019). An order is a pike if it is
over the order spike threshold (OST). We illustrate a qualified demand
calculation in Fig. 1. The qualified demand is 30 (day 1) + 130 (order
spike at day 5) = 160 products (sum of the bars with diagonal hatches in
Fig. 1).

The buffers are decoupling points allowing us to maintain some
reference stock. They are represented by 4 zones (green, yellow, red
base, and red safe), which are calculated with 4 different equations. By

following the NFP evolution in the buffer zones, the production manager
can easily make decisions along the supply chain. If the NFP is below the
top of the yellow zone (TOY), a supply order is generated to bring back
the NFP on top of the green zone (TOG). This equation also replaces a
decision made on an actual stock with a decision made on an equivalent
of the stock position.

Besides the OST and OSH, other parameters are used to compute the
buffer zones:

• the Average Daily Usage (ADU);
• the Decouple Lead Time (DLT): the longest cumulative time between

the buffer and the previous references;
• the Lead Time Factor (LTF): the uncertainty factor of lead time;
• the Variability Factor (VF): the uncertainty factor of demand;
• the Minimum Order Quantity (MOQ).

These factors are used to compute the levels of the four buffer zones,
presented in Eqs. (2)–(5).

Green zone = Max (ADU ∗ DLT ∗ LTF, MOQ) (2)

Yellow zone = ADU ∗ DLT (3)

Red base zone = ADU ∗ DLT ∗ LTF (4)

Fig. 1. Example of a qualified demand calculation using the order spike threshold (OST) and the order spike horizon (OSH).

Table 1
Analyzed parameters in DDMRP literature.

Authors ADU Spikes DLT LTF VF Demand
variability

Internal
variability

Buffer
levels

MOQ OST and
OSH

Used approach

Cuartas Murillo and Aguilar
(2022)

X X X X RL

Damand et al. (2022) X X X X X X X X Genetic algorithm
Dessevre et al. (2019) X X X X Adjustment

module
Ihme and Stratton (2015) X Simulation
Jiang and Rim (2017) X X X Genetic algorithm
Kortabaria et al. (2018) X X X Qualitative study
Lee and Rim (2019) X X X X X X X Optimization
Miclo et al. (2015) X X DES
Miclo (2016) X X X X X X DES
Miclo et al. (2019) X X X Simulation
Pekarčíková et al. (2019) X X X Simulation
Shofa and Widyarto (2017) X X X Simulation
Shofa et al. (2018) X X X Simulation
Velasco Acosta et al. (2019) X X X X DES
The present paper X X X X X RL and DES

Red safe zone = ADU ∗ DLT ∗ LTF ∗ VF (5)

In addition to the buffer levels, the buffer parameters intervene in the
OST and OSH calculation methods. Ptak and Smith (2019) recommend
setting the OSH above 1.0 ×DLT, and they propose to use three different
methods to initialize the OST:

1. At 50 % of the top of the red zone (TOR);
2. At the top of the red safe zone;
3. Using ADU, OST = 3 × ADU.

Nevertheless, the DDMRP authors state that it is possible to calculate
those parameters using historical data. Yet no calculation method with
historical data has been developed.

As we evoked in the introduction, the research around DDOM
parametrization is concise. Table 1, which is an updated version of the
literature of Azzamouri et al. (2021), gathers the DDMRP articles
dealing with parameters analysis. Only a few recommendations are
made to establish the DDOM parameters, so it can be uneasy for a pro
duction manager to drive them. Only Miclo (2016), Lee and Rim (2019),
and Damand et al. (2022) suggest some parametrization elements with
an algorithm. Miclo (2016) presents two different approaches to opti
mize some parameters: one with a meta-heuristic formula, and the other
one with a simulated annealing algorithm, aiming at optimizing the
buffers’ LTF, VF, and DLT. On another note, Lee and Rim (2019) use a
heuristic formula to adjust the LTF and VF. Other authors, like Dessevre
et al. (2019) and Martin (2020) suggest some parametrization elements
but do not use an algorithm to adjust them.

Among those authors, only Damand et al. (2022) studied OST and
OSH adjustment, as can be seen in Table 1. They developed a
multi-objective genetic algorithm to adjust 8 different DDOM parame
ters, including the OST and OSH. However, in Damand et al. (2022), a
“strong assumption” was made: demand was assumed to be known in
advance. Besides, the proposed genetic model has only been used for
optimization purposes and does not include a learning process, in
contrast to the present study. We deal with a realistic context and feed
the RL algorithm with demand data daily. Thus, as in real life, we as
sume that we know only demand (i.e., customer orders) received up to
the present day. This paper aims at incorporating a learning entity that
enables the DDOM to deal efficiently with unknown demand by
adjusting the parameters OST and OSH. The learning entity will take the
shape of a reinforcement learning agent.

2.3. Reinforcement learning-related literature

Reinforcement learning (RL) is a machine learning area based on a
trial-error algorithm. An autonomous entity called an agent decides for
actions to take in an environment, which is a set of states and values. The
agent aims to reach a goal. This goal is translated in the algorithm by a
reward function, which returns a numerical value for a state. During the
training process, the agent learns from its actions to create an optimal

policy, i.e., a function that prescribes the best action to proceed
considering a specific state. A state change, called a timestep, includes
the following steps:

1) Observation and reward: the agent observes the environment
through a space state and assigns a numerical value called a reward;

2) Improvement of the policy π: the agent improves the policy to pre
scribe better actions;

3) Realization of the action a: the agent selects an action a in the action
space and prescribes it to the environment;

4) Transition and state change s: the environment realizes the action a
and makes the state change s.

The composition of a timestep is represented in Fig. 2. The algorithm
stops if a terminal state is reached. If there is no terminal state, the al
gorithm is limited by a time restraint. A set of timesteps from an initial
state to a terminal state is called an episode (Morales, 2020).

RL proceeds by using trial and error. This means that it needs to find
a compromise between exploration, which consists to try new actions,
and exploitation, which attempts to use what the agent already learned.
When the agent is exploiting, it seeks to maximize the action-value
function or Q-function. This function is used to calculate the sum of
the collected rewards in a single episode, considering a decision policy
noted π. A decision policy is a function that prescribes an action to do for
a non-terminal state. The Q-function is defined in Eq. (6) if the agent
considers a policy π and does the action a at state s. The gain at a
timestep t (Gt) is the sum of the rewards from the timestep t + 1 to the
final timestep T (Gt = Rt+1 + Rt+2 + … + RT , where Rt is the reward of
the timestep t).

qπ(s, a) = E[Gt|St = s, At = a] (6)

In practical applications of RL, the exact value of that function
cannot be calculated. Therefore, an approximated value is used, which
can be calculated with a neural network. A neural network is a set of
processors called neurons, which are activated by an activation function.
Real values are injected into an input layer and travel through the
network to produce an activation sequence. They go through hidden
layers and come out of an output layer. During the learning process, the
neural network aims to determine the neuron weights to reproduce the
desired behavior (Schmidhuber, 2015).

Neural networks have been widely used in RL problems; this type of
algorithm is called Deep Q-learning. Dittrich and Fohlmeister (2020) use
a neural network to develop a cooperative multi-agent system. Neural
networks can also be used to create a shared decision system, allowing
one to take independent actions on different degrees of liberty, such as
the movements of a robot (Tavakoli et al., 2018). In the present work,
the neural network is used to reproduce the behavior of the Q-function
(Eq. 6).

Reinforcement learning relies on concrete, well-defined, and simple
tasks (Morales, 2020). However, it has some drawbacks, like the need of

Fig. 2. One timestep of reinforcement learning.

a lot of experiments, and the potential difficulty to understand and
interpret the obtained rewards. One of the stakes of this algorithm is
temporal credit attribution. The algorithm must be able to identify
which states and actions should be rewarded after a certain amount of
timesteps.

As will be illustrated, there exist many different reinforcement
learning applications in the industry (Xanthopolous et al., 2018). For
example, Tsai et al. (2020) show that it is possible to control an artic
ulated arm with a reinforcement learning agent in a shoe factory. The
methodology that they used is for comparing RL with traditional heu
ristics and for showing that RL can bring better results (Wang et al.,
2017). RL is often used in discrete optimization to limit the associated
cost to production constraints (Stockheim et al., 2003; Cao et al., 2003).
It shows that reinforcement learning is not limited to the optimization of
the production line, while it is necessary to well define the problem and
adapt the RL elements, such as the space state, the reward function, and
the action state.

The literature around reinforcement learning is quite developed and
many of its drawbacks have already been addressed, such as overfitting
(Lai et al., 2021), and the exploration-exploitation compromise (Stock
heim et al., 2003; Dittrich and Fohlmeister, 2020). On another side,
Zhou et al. (2021) solved the curse of dimensionality by showing that it
was possible to use RL on large databases, which is an important stake if
reinforcement learning tends to spread in the industry.

Finally, reinforcement learning gathers a large number of algorithms
(Kemmer et al., 2018), which is convenient when it comes to adapting an
algorithm to a problem. Nevertheless, it is still possible to enrich its
study and literature (Neves et al., 2021).

To our knowledge, only Cuartas Murillo and Aguilar (2022) inte
grated a DDOM and an RL agent. They use a hybrid algorithm using
DDMRP methodology and RL to optimize the time to buy a product and
to determine the quantity they need; a strategy that is totally different
from that of this paper, which focuses on DDOM parameters. While
creating a Q-learning algorithm, they come up with three approaches
concerning the reward function: one which uses the inventory levels,
another one that evaluates the distance between the inventory level and
the optimal level, and one that involves the inventory levels and their
distance to the optimal levels. They train their algorithm on various case
studies, contexts, and demand profiles. Their agents show promising
results in different scenarios.

2.4. Article contribution

The DDMRP literature presents some gaps concerning the parame
trization of its Demand-Driven Operating Model. While it is known for
its dynamic adjustments, it seems that the buffer parameters adjustment
is not studied deeply enough. In particular, it lacks automatic methods to
drive the DDOM parameters. Instead of acting on the stock levels
(Cuartas Murillo and Aguilar, 2022), we propose to adjust the OST and

OSH. While it has already been done by using a multi-objective genetic
algorithm for optimization purposes (Damand et al., 2022), we attempt
to include a machine learning entity to solve problems with unknown
demand. No study has been done with this methodology on the adjust
ment of those parameters. By using a reinforcement learning algorithm,
we develop an innovative calculation method for these parameters while
evaluating the impact on stock and service levels. This approach fits in
an automating process of the DDOM parameters adjustment.

We also point out that the proposed method is adapted to a multi-
product environment. Based on Branching Dueling Q-Network pre
sented by Tavakoli et al. (2018), we manage to create a shared repre
sentation system that is able to make independent decisions between
different products. It widely limits the effects of complexity and poten
tial dimension concerns.

3. Case study and methodology

In this section we first present the case study and the model hy
pothesis. Then, we explain the agent integration and the
experimentation.

3.1. Case study

We consider a DDMRP hybrid flowshop (see Fig. 3), which uses a
workflow pulled by the demand and a pushed flow of production orders.
Based on the model developed by Martin (2020), a set of p products are
made by n parallel machines using m raw materials. The stocks of raw
materials and finished products are controlled by DDMRP buffers.

We choose to use a hybrid flowshop, first because it is a common
manufacturing environment that can cover many case studies (Martin,
2020). Second, because a hybrid flowshop possesses some advantages
including flexibility and avoidance of bottlenecks due to the redundancy
of machines (Zhou et al., 2019). The environment is modeled with a
Python discrete-event simulation (DES), in which different entities
communicate to realize the simulation events. The events are treated
according to a priority list (see below), which allows us to set the
execution order, in case two events are to be realized at the same
moment. The priority list is the following:

1. serve the orders due;
2. update the ADU;
3. update the DLT;
4. update the LTF;
5. update the zones;
6. decide the quantities to product.

Demand generation is inspired by the model of Dessevre and Benali
(2020). The interarrival time between two orders follows an exponential
distribution of a 2-days mean. We draw uniformly an order at ± 20 % of

Fig. 3. DDMRP hybrid flowshop model.

the mean size of the demand. This mean size is drawn uniformly be
tween 50 and 200 products. On average, the order spikes appear each 5
or 20 days, following an exponential distribution. The size of an order
spike is uniformly drawn at 2, 3, 4, or 5 times the size of a regular order.
An example of a demand profile is available in Fig. 4, with a spike fre
quency set at 20 days. We study a rarely addressed problem in the
literature: a demand profile presenting regular spikes. Our work does
not apply to stable demands (stationary or seasonal), but can be easily
incorporated in environments presenting changing and regular spikes,
which matches with atypical demand contexts.

The model developed by Martin (2020) allows us to change the
flowshop workload. This is made by modifying the number of machines
by production line. Thereby, we can use a workload of 50 %, 80 %, and
95 %; a liberty degree that is used in the analysis of the results.

3.2. Agent integration

The agent integration consists of adding an autonomous entity called
an Agent to the model developed by Martin (2020). First, this entity
needs to be adapted to the discrete-event simulation. Consequently, we
need to create agent events, which are recurrent processes involving the
agent. In a traditional RL algorithm, the agent timesteps would set the
actions and the updates. In this paper, timesteps are already set by the
DDOM. This means that we must consider timesteps for the agent and
timesteps for the DDOM. These two notions overlap, while they are very
different. Therefore, we replace the "agent timesteps" with the "agent
interactions": when the agent interacts with the system, it changes the
state and adjusts the parameters.

Secondly, the agent entity needs to communicate with the other
entities, such as the buffers and the environment. Consequently, it needs
to be able to receive and send messages, which are: "do an agent inter
action" and "update the neural network". Details about the intervention

of a neural network will be given further down. Because two events were
added, we had to create a new event priority list, which allows us to
respect the DDMRP principles while giving the agent information about
the state updates. The new event priority list is now the following:

1. serve the orders due;
2. do an agent interaction;
3. update the ADU;
4. update the DLT;
5. update the LTF;
6. update the zones;
7. decide the quantities to product;
8. update the neural network.

We use an algorithm with two neural networks called Double Deep
Q-Network. Compared to traditional RL algorithms (e.g., Monte Carlo,
Q-learning, or State-action-reward-state-action (SARSA)), Deep Q-
Network is the only type of RL algorithm that can work with a discrete
action space and a continuous state space while overcoming some
dimensional issues (Morales, 2020). Unlike traditional RL algorithms, a
Deep Q-Network algorithm uses a neural network to reduce the
complexity and detect underlying links between the values of the
Q-function in a way to improve learning (Tavakoli et al., 2018). When
using Double Deep Q-Network, both neural networks can be updated
without creating a positive bias. Such an algorithm is simultaneously
sequential (it considers the consequences of delaying the actions),
evaluative (it considers the exploration-exploitation compromise), and
sampled (it limits the experiments if the history is too large) (Morales,
2020). More precisely, we use a variant of the Double Deep Q-Network,
called Branching Dueling Q-Network (BDQ) inspired by Tavakoli et al.
(2018). This algorithm has the advantage of splitting the Q-function in
the neural network into a "state-value" part (shared between all the

Fig. 4. Demand profile of a product.

Fig. 5. Branching Dueling Q-Network (BDQ) architecture.

OST = αOST ∗ TOR (7)

OSH = (1 + αOSH) ∗ DLT (8)

First, the choices of αOST and αOSH values follow Ptak and Smith
(2019)’s recommendations. To preserve the buffer’s integrity (defined
as the penetration rate of the buffer, the ratio between the available flow
and the total size), Ptak and Smith (2019) recommend setting an OST
smaller or equal to TOR (i.e., αOST ≤ 1) and an OSH higher or equal to
DLT (i.e., αOSH ≥ 0). Second, we proceed by trial-and-error to set an
upper bound for αOSH and concluded that a high value of αOSH is irrele
vant for learning (some actions are quickly ignored by the agent). Be
sides, Ptak and Smith (2019) mention that it is useless to consider a too
big value of OSH, unless for “finished items that have large and known
dependent demand orders […] in which customers have agreed to take a
significant amount of stock within a short window”. Finally, we proceed
by trial and error on how many values we should consider in order to
achieve proper learning (i.e., with an observable growth of the Average
Accumulated Reward (AAR) function). Fewer values do not offer enough
possibilities to learn. In contrast, too many values lead to considerable
computational time to explore all actions.

The state space is composed of the moving demand average of the 30
last days and the NFP of each product. The interaction frequency of the
agent is set at 25 days, while the update of the neural network is done
every 500 days. Therefore, the neural network is updated twice by
episode. This decision regarding the frequency of the event has been
made by trial and error while balancing a compromise with the neural

network size.
Finally, we established three reward functions. Each of these reward

functions is characterized by a goal and a numerical function associated
with the goal. They are made to reach the stakes of the DDMRP: optimize
the stock levels and reduce delivery time. The three agents are described
below:

Agent 1 attempts to optimize the stock levels. It uses the NFP position
of each product in its corresponding buffer. Its reward function is
defined in Eq. (9).

R1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−

(

1 +
NFP − TOG

NFP

)

if TOG < NFP

−1 if TOY < NFP ≤ TOG

3 if TOR < NFP ≤ TOY

0 if 0 ≤ NFP ≤ TOR

−1 if NFP < 0

(9)

Agent 2 aims at maximizing customer satisfaction by decreasing the
delivery time. The On-Time Delivery (OTD) value is defined as the ratio
between the number of complete delivered orders and the number of
received orders. It is calculated on a time window. The reward function
of agent 2 is defined in Eq. (10).

R2 = OTD =
number of complete delivered orders

number of received orders
(10)

Finally, agent 3 conciliates the two first reward functions by sum
ming them. It considers at the same time the stock levels and customer
satisfaction. Its reward function is defined in Eq. (11).

R3 = R1+R2 (11)

These three reward functions allow us to study different goals and
the different possibilities of reinforcement learning.

3.3. Experimentation

The experimentation deals with two subjects: the validity limits of
reinforcement learning and its capacity to react to external factors. We
use four key performance indicators to support our analysis:

1. The average service level, which reflects the ratio between the
number of complete delivered orders and the number of received
orders.

2. The finished goods inventory mean, which indicates the mean level
of goods inventory for the last 200 days of an episode (an episode is
1000 days long).

3. The Average Accumulated Reward (AAR). We define it in Eq. (12),
where N is the number of episodes and rt represents the reward at
episode t. This indicator allows us to check the growth of the rewards
and so the agent efficiency. The AAR is calculated on a time window
of the last 30 episodes. Furthermore, each AAR is normalized to be
contained on a [0,1] interval.

Table 2
Experimentation.

Experiment Experiment 1:
OST and OSH adjusting

Experiment 2:
Comparison of different reward functions

Experiment 3* :
Effects of external factors on the learning process

Variable OST Yes / No Yes Yes
Variable OSH Yes / No No No
Reward Function R2 R1 / R2 / R3 R3
OST Initialization 50% / RS / ADU 50% / RS / ADU 50% / RS / ADU
OSH Initialization 1.0 / 1.25 / 1.5 * DLT 1.0 * DLT 1.0 * DLT
Spike Frequency 1 per 5 days 1 per 5 days High (1 per 5 days) / Low (1 per 20 days)
Workload 80% 80% 50% / 80% / 95%
of scenarios 27 9 18

* : Experiment where a comparison with a Baseline and a Know-It-All is done

actions) and an "action-advantage" part (specific to each action).
Moreover, it allows us to work on several products at the same time
which are treated independently (Tavakoli et al., 2018). The BDQ ar-
chitecture is presented in Fig. 5. The BDQ algorithm is available in
Appendix A. We also provide the main pseudocode of the proposed
DDMRP simulation in Appendix B.

The model includes 3 finished products. We consider that an episode
covers 1000 days and that a replication contains 100 episodes. A sce-
nario assumes the same configuration, which means the same parame-
ters and external factors. Each scenario is repeated 3 times. To bring
consistency to the analysis of the results, we suppose that two replica-
tions with the same configuration also have the same demand. Only the
setup times and the manufacturing times change from one replication to
another.

We propose to calculate two factors αOST and αOSH, with ∈ αOST ∈ {
0.25; 0.5; 0.75; 1.0} and αOSH ∈ {0.0; 0.15; 0.35; 0.5}. Each couple of
αOST and αOSH represents an action of the agent. We hypothesize that
those two DDOM parameters can have a cross-effect and can both be
improved using reinforcement learning with peak demand profiles. We
mix the two strategies since the OST and the OSH both apply on order
spikes. Since our experiments are time-consuming, we choose not to use
a continuous action space, because it will have greatly increased the
algorithm complexity and the execution time (Morales, 2020). The OST
and OSH are modified after an action is taken so that Eqs. (7) and (8) are
fulfilled. Thus, our initial action space contains 16 actions.

AAR =
r1 + r2 + … + rt

N
(12)

The reward gain, formulated at Eq. (13), where AAR100is the Average
Accumulated Reward of the 100th episode, and (AAR) is the lowest
value of the Average Accumulated Reward. It calculates the global
growth of the AAR function.

RG = AAR100 − min(AAR) (13)

During the experimentation, each replication is conducted with and
without reinforcement learning. The replication without RL is called
Baseline, which is the behaviour of the simulation without an agent, and
so without the parameter adjustment. It allows us to compare the RL
performance with a free-agent simulation. We also propose to compare
the RL agent to a Know-It-All agent which knows all demands in
advance. The Know-It-All is inspired by Damand et al. (2022)’s study
which assumes demand to be known, but without including a learning
process. Furthermore, we propose to initialize the OST with each of the
three methods of Ptak and Smith (2019): 50 % of TOR (50 %), at the top
of the red safe zone (RS) and using ADU (ADU). Likewise, we use three
calculation methods for the OSH initialization: 1.0 × DLT, 1.25 × DLT,
and 1.5 × DLT. The experimentation is presented in Table 2 and has 3
objectives.

The first experiment (second column of Table 2) studies the interest
of adjusting the OST and OSH. It contains 27 scenarios, which set the
OST and OSH variable or fixed. We also propose considering different
OST and OSH initialization to respect the general recommendations of
Ptak and Smith (2019). Therefore, we fix the frequency of the spikes at 1
per 5 days and the workload at 80 % to limit the effect of external fac
tors. Finally, we use a fixed reward function (R2) because we do not want
to study the impact of the reward function. This experiment allows us to
check if it is relevant to adjust either only the OST, or only the OSH, or
both. The two parameters have different roles and shapes, so it is
reasonable to assume they do not act the same way when they are
adjusted using reinforcement learning.

The second experiment (third column of Table 2) aims at identifying
the best reward function. The objective is to create an optimal agent,
which can correctly learn in different contexts. We study the three
reward functions defined in Eqs. (9)–(11). Like the first experiment, we
limit the effects of external factors by fixing the spike frequency and the
workload. We initialize the OSH at 1.0 × DLT and consider different

methods of initialization for OST. This experiment points out the
importance of the goal in a reinforcement learning algorithm. For an RL
agent to learn, it needs to have a well-defined and simple goal, which is
entirely translated through the reward function. Therefore, a bad reward
function can induce bad learning. To choose the goals of our reward
function, we naturally think about the goals of the DDMRP: stock opti
mization and customer satisfaction. We can easily evaluate that by using
the NFP and the local service levels. The two first experiments tend to
create a consistent agent for the third experiment.

The third and last experiment (fourth column of Table 2) studies the
effects of external factors on the learning process. Therefore, we
consider two levels of the spike frequency (low and high) and three
levels for the workload (50 %, 80 %, or 95 %) of the workshop. As we did
for the second experiment, the OSH is initialized at 1.0 × DLT, while the
OST is initialized with three different methods. This experiment checks
if reinforcement learning is more efficient than the calculation methods
proposed by Ptak and Smith (2019). If it is not, we identify the prob
lematic contexts and try to bring an explanation.

4. Results and discussion

In this section, we present and discuss the results of the experimen
tation phase.

4.1. Effects of the adjusted parameters on the learning process

The first objective of the experimentation part is to check if the agent
can learn by adjusting the OST and OSH. Fig. 6 shows the AAR of three
comparable scenarios, for which we chose to adjust the OST and OSH or
not. The curves for the scenario with variable OST and OSH, and the
scenario with variable OST but fixed OSH are visibly crescent. Never
theless, it is not the case for the scenario with fixed OST and variable
OSH: the growth of the AAR is not remarkable. The results show us that
the OSH variation has none or little effect on reinforcement learning.
This disproves our hypothesis, according to which it is possible to learn
by adjusting both OST and OSH. However, we proved that we can learn
by focusing only on adjusting the OST.

We point out that the interaction frequency, set to one interaction
each 25 days, has been chosen by trial-and-error. Changes in the OSH
interaction frequency (from 1 to 100 days) did not bring any conclusive

Fig. 6. Average accumulated rewards (AAR) of three scenarios with the same characteristics except the OST and OSH adjusting.

results (growth of the reward function). To conclude, according to the
results from experiment 1, it seems that OSH adjusting is not relevant
since it has too little effect on the environment.

Finally, we point out that while using reinforcement learning, small-
sized action spaces are preferred to improve the learning process (Mo
rales, 2020). In this first experiment, we noticed that a 4-state action
space achieved better learning (evaluated by the growth of the AAR
function) than a 16-state action space. We also want to reduce execution
time by exploring a 4-state action space rather than a 16-state action
space: a scenario with a 16-state action space presents a time execution
of 3 h, while a scenario with a 4-state action space is limited to 1.5 h.
The bigger the action space, the more difficult it is to explore all the
actions and possibilities. Though during one episode, we only work with
50 agent interactions, this is too little for a 16-states actions space.
Consequently, for the rest of the study, we chose to only adjust the OST
and set the OSH fixed at 1.0 × DLT (which is reflected in Table 2 by “No”
for variable OSH in columns 3 and 4). It brings us up to a 4-state action
space.

4.2. Choice of an agent

The second experiment compares the three reward functions R1, R2,
and R3. Each of them has a different goal, and then a different learning
process. We seek to use a reward function allowing the growth of the
AAR. Therefore, we expose the reward gains expressed by Eq. (13) of the
second experiment scenarios in Table 3. This table enables us to evaluate
the learning efficiency. Since the R3 agent has the best reward gains, it
seems to be the most efficient reward function. Using production man
agement terms, this proves that reinforcement learning is adapted to
improve customer satisfaction and minimize inventory levels.

To find the best trade-off, we plot the service levels (y-axis) and the
finished goods inventory mean (x-axis) for the scenarios of the second
experiment in Fig. 7. We consider these two industrial KPI at episode
100 (the last episode) since the agent is supposed to be well-trained at
this step.

As we expect, the scenarios using R1 as a reward function have lower

stock levels than scenarios using R2. In return, there is not a significant
improvement in service level with R2. Scenarios using R3 (we remind
that R3 = R1 + R2) present the benefits of R1 and R2 regarding industrial
KPI (i.e., the best trade-off with lower stock levels and higher service
levels). This demonstrates that R3 is the best reward function to use if an
industrial implementation may be considered.

To conclude, R3 is the best reward function regarding industrial and
learning KPI. Consequently, we chose to pursue the study with this
reward function. The first two experiments enabled us to build a
consistent agent which is now adapted and optimal for reinforcement
learning in a DDOM.

4.3. Effects of external factors

The last step of the experimentation aims at studying the effects of
external factors such as spike frequency and workload. To do so, we use
R3 as the reward function with fixed OSH at 1.0 × DLT (see Table 2,
fourth column) and we analyze the industrial KPI (finished goods in
ventory mean and service level) of the last episode by comparing the RL
results with those of the Baseline and the Know-It-All.

As mentioned in Section 3.3, we consider two levels for the Spike
Frequency (SF) and three levels for the workload (WL) of the workshop.
Low SF and High SF correspond respectively to 1 per 20 days and 1 per 5
days. WL takes 50 %, 80 %, or 95 %. We still consider the three OST
initialization methods recommended by Ptak and Smith (2019).

In what follows, we present average results on the three OST ini
tializations. We made this choice for clarification purposes, since the use
of boxplots revealed that there is no noticeable impact (see Appendix C).
The results gathered in Fig. 8 display the industrial KPI achieved
respectively by the RL agent, the Baseline, and the Know-It-All agent at
episode 100 in different contexts (i.e., different SF and WL levels).

First, we point out that the performance of the RL agent is close to the
performance of the Know-It-All agent. This proves the efficiency of the
learning process and demonstrates that an RL agent is adapted for in
dustrial cases when demand is unknown or difficult to predict. Second,
we try to identify when it is beneficial to use RL rather than the Baseline.
We notice that with high SF (square markers in Fig. 8), Baseline out
performs RL only for WL = 50 %, while with low SF (circle markers in
Fig. 8), Baseline outperforms the RL agent for WL = 50 % and WL = 80
%. The RL agent seems to learn better if the spikes are frequent (i.e., high
SF) since it can detect more spikes. It also seems to be more useful for
workshops presenting high workloads (beyond 80 % in our case).
Consequently, we recommend using reinforcement learning with

R1 R2 R3

50 % 0.014 0.022 0.031
RS 0.012 0.024 0.040
ADU 0.018 0.035 0.046

Fig. 7. Industrial KPI for the scenarios of experiment 2 at episode 100.

Table 3
Reward gains by reward function and OST initialization.

workshops presenting high workloads and facing frequent spikes.

5. Conclusion and research perspectives

This article introduces a new approach to parametrize a Demand-
Driven Operation Model (DDOM) facing an unknown and atypical de
mand. A reinforcement learning agent based on a Branching Dueling Q-
Network model is used and enables the DDOM to deal with demand
spikes by adjusting the parameters OST and OSH.

First, we explored the interest in adjusting OST and OSH. Results
demonstrate that better learning is achieved by adjusting only OST.

Second, we compared the performance of the RL agent with three
different reward functions and identified the one that achieved the best
trade-off with low stock levels and high service levels. Finally, we
challenged the RL agent and compared it to a Baseline and a Know-It-All
agent in different contexts. Results show that the RL agent outperforms
the Baseline (up to a 33 % stock decrease) in workshops presenting high
workloads (beyond 80 % in our case) and facing frequent demand
spikes. In addition, the performance of the RL agent is close to the
performance of the Know-It-All agent, which demonstrates that an RL
approach is adapted for industrial cases when demand is unknown or
difficult to predict.

Fig. 8. Industrial KPI for the scenarios of experiment 3 at episode 100.

Experiments have been carried out for a specific industrial case
study. Altogether, this paper provides the tool and the methodology
needed to perform other experiments with different settings and in other
industrial contexts. This study is the first to bring a proof of concept for
the potential benefits of dynamically adjusting DDOM parameters using
a learning approach.

Future research efforts concerning the DDOM parametrization may
provide some new insights. First, RL or other machine learning ap
proaches can be compared and used to adjust parameters other than OST
and OSH. Second, considering different sources of uncertainty and
operational constraints may be of theoretical and practical interest.
Finally, RL can be used to parametrize the DDOM for different produc
tion processes, such as a divergent process rather than an assembly
process.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data Availability

No data was used for the research described in the article.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.compind.2023.103874.

References

Abdelhalim, A., Hamid, A., Hsu, T., 2021. Optimization of the automated buffer
positioning model under DDMRP logic. IFAC-Pap. 54 (1), 582–588. https://doi.org/
10.1016/j.ifacol.2021.08.067.

Azzamouri, A., Baptiste, P., Dessevre, G., Pellerin, R., 2021. Demand-driven material
requirements planning (DDMRP): a systematic review and classification. URL:
http://www.jiem.org/index.php/jiem/article/view/3331 J. Ind. Eng. Manag. 14 (3),
439–456. https://doi.org/10.3926/jiem.3331.

Bahu, B., Bironneau, L., Hovelaque, V., 2019. Compréhension du DDMRP et de son
adoption: premiers éléments empiriques. Logistique Et. Manag. 27 (1), 20–32.
https://doi.org/10.1080/12507970.2018.1547130.

Butturi, M.A., De Rosa G., Balugani E., Gamberini, R., 2021. Understanding the Demand
Driven Material Requirements Planning Scope of Application: a Critical Literature
Review, in: Proceedings of the 32nd DAAAM International Symposium, Vienna,
Austria. pp. 462–471. doi: 10.2507/32nd.daaam.proceedings.067.

Cao, H., Xi, H., Smith, S.F., 2003. A reinforcement learning approach to production
planning in the fabrication/fulfillment manufacturing process, in: Proceedings of the
2003 Winter Simulation Conference, New Orleans, LA, USA. pp. 1417–1423. URL:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1261584, doi:〈10.
1109/WSC.2003.1261584〉.

Cuartas Murillo, C.A., Aguilar, J.L., 2022. Hybrid algorithm based on reinforcement
learning and DDMRP methodology for inventory management. J. Intell. Manuf.
https://doi.org/10.1007/s10845-022-01982-5. 〈https://link.springer.
com/article/10.1007/s10845-022-01982-5#citeas〉.

Damand, D., Lahrichi, Y., Barth, M., 2022. Parametrisation of demand-driven material
requirements planning: a multi-objective genetic algorithm. Int. J. Prod. Res.
https://doi.org/10.1080/00207543.2022.2098074.

Demand Driven Institute, 2022. DDMRP compliant software. Consulted on November,
15th 2022. URL: 〈https://www.demanddriveninstitute.com/ddmrp-compliant-s
oftware〉.

Dessevre, G., Martin, G., Baptiste, P., Lamothe, J., Pellerin, R., Lauras, M., 2019.
Decoupled Lead Time in finite capacity flowshop: a feedback loop approach, in: 2019
International Conference on Industrial Engineering and Systems Management
(IESM), Shangai, China. URL: 〈https://ieeexplore.ieee.org/document/8948198〉,
doi:10.1109/IESM45758. 2019.8948198.

Dessevre, G., Benali, M., 2020. Modélisation et simulation d′un module d′ajustement de
la capacité d′un système DDMRP, in: 13ème Conférence Francophone de
Modélisation, Optimisation et SimulationMOSIM’20, Agadir, Maroc. URL: 〈https
://hal.archives-ouvertes.fr/hal-03178098/〉.

Dittrich, M.A., Fohlmeister, S., 2020. Cooperative multi-agent system for production
control using reinforcement learning (URL). CIRP Ann. 69, 389–392. https://doi.
org/10.1016/j.cirp.2020.04.005 (URL). 〈https://www.sciencedirect.com/science/
article/pii/S0007850620300263〉.

Ihme, M., Stratton, R., 2015. Evaluating Demand Driven MRP: a case based simulated
study, in: International Conference of the European Operations Management

Association, Neuchatel, Switzerland. URL: 〈http://irep.ntu.ac.uk/id/eprin

t/2666〉〈8〉.
Jiang, J., Rim, S.C., 2017. Strategic WIP inventory positioning for maketo-order

production with stochastic processing times. Math. Probl. Eng. https://doi.org/
10.1155/2017/8635979.

Kemmer, L., von Kleist, H., de Rochebouët, D., Tziortziotis, N., Read, J., 2018.
Reinforcement learning for supply chain optimization, in: European Workshop on
Reinforcement Learning 14, Lille, France.

Kortabaria, A., Apaolaza, U., Lizarralde, A., Amorrortu, I., 2018. Material management
without forecasting: From MRP to demand driven MRP. URL: http://www.jiem.org/
index.php/jiem/article/view/2654 J. Ind. Eng. Manag. 11 (4), 632–650. https://doi.
org/10.3926/jiem.2654.

Lai, Y.H., Wu, T.C., Lai, C.F., Yang, L.T., Zhou, X., 2021. Cognitive optimal-setting
control of aiot industrial applications with deep reinforcement learning (URL). IEEE
Trans. Ind. Inform. 17, 2116–2123. https://doi.org/10.1109/TII.2020.2986501
(URL). 〈https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9072609〉.

Lee, C.J., Rim, S.C., 2019. A mathematical safety stock model for DDMRP inventory
replenishment. Math. Probl. Eng. https://doi.org/10.1155/2019/6496309.

Martin, G., 2020. Contrôle dynamique du Demand Driven Sales and Operations Planning.
PhD thesis. Université de Toulouse. Toulouse, France. URL: 〈http://www.theses.fr/2
020EMAC0010〉.

Miclo, R., 2016. Challenging the Demand Driven MRP Promises: A Discrete Event
Simulation Approach. PhD thesis. Ecoles des Mines d′Albi-Carmaux. Albi, France.
URL: 〈https://tel.archives-ouvertes.fr/tel-01673811〉.

Miclo, R., Fontanili, F., Lauras, M., Lamothe, J., Milian, B., 2015. MRP vs. demand-driven
MRP: Towards an objective comparison, in: 2015 International Conference on
Industrial Engineering and Systems Management (IESM), Seville, Spain. URL:
https://ieeexplore.ieee.org/document/7380288, doi:10.1109/IESM.2015.7380288.

Miclo, R., Lauras, M., Fontanili, F., Lamothe, J., Melnyk, S, A., 2019. Demand driven
MRP: assessment of a new approach to materials management. Int. J. Prod. Res. 57
(1), 166–181. https://doi.org/10.1080/00207543.2018.1464230.

Morales, M., 2020. Grokking Deep Reinforcement Learning. Manning Publications Co,
Shelter Island, NY, USA.

Neves, M., Vieira, M., Neto, P., 2021. A study on a Q-learning algorithm application to a
manufacturing assembly problem (URL). J. Manuf. Syst. 59, 426–440. https://doi.
org/10.1016/j.jmsy.2021.02.014 (URL). 〈https://www.sciencedirect.com/science/
article/pii/S0278612521000509〉.

Pekarčíková, M., Trebuňa, P., Kliment, M., Trojan, J., 2019. Demand driven material
requirements planning. Some methodical and practical comments. Manag. Prod.
Eng. Rev. 10 (2), 50–59. https://doi.org/10.24425/mper.2019.129568.

Ptak, C., Smith, C., 2011. Orlicky’s Material Requirements Planning 3/D. McGraw Hill
Professional.

Ptak, C., Smith, C., 2019. Demand Driven Material Requirements Planning (DDMRP).
Industrial Press, Inc, South Norwalk, Connecticut, USA.

Schmidhuber, J., 2015. Deep learning in neural networks: an overview. Neural Networks
61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003.

Shofa, M.J., Widyarto, W.O., 2017. Effective production control in an automotive
industry: MRP vs. demand-driven MRP, in: AIP Conference Proceedings. URL:
https://aip.scitation.org/doi/abs/10.1063/1.4985449, doi:10.1063/1.4985449.

Shofa, M.J., Moeis, A.O., Restiana, N., 2018. Effective production planning for purchased
part under long lead time and uncertain demand: MRP vs demand-driven MRP, in:
IOP Conference Series: Materials Science and Engineering. doi:〈10.1088/1757–899
X/337/1/012055〉.

Stockheim, T., Schwind, M., Koenig, W., 2003. A reinforcement learning approach for
supply chain management, in: 1st European Workshop on Multi-Agent Systems
(EUMAS), Oxford, UK. URL: https://www.researchgate.net/publication/
228523960_A_reinforcement_learning_approach_for_supply_chain_management.

Tavakoli, A., Pardo, F., Kormushev, P., 2018. Action branching architectures for deep
reinforcement learning, in: Proceedings of the AAAI Conference on Artificial
Intelligence, New Orleans, Louisiana, USA. URL: 〈https://ojs.aaai.org/index.php/
AAAI/article/view/11798〉.

Thürer, M., Fernandes, N.O., Stevenson, M., 2022. Production planning and control in
multi-stage assembly systems: an assessment of Kanban, MRP, OPT (DBR) and
DDMRP by simulation. Int. J. Prod. Res. 60 (3), 1036–1050. https://doi.org/
10.1080/00207543.2020.1849847.

Tsai, Y.T., Lee, C.H., Liu, T.Y., Chang, T.J., Wang, C.S., Pawar, S., Huang, P.H., Huang, J.
H., 2020. Utilization of a reinforcement learning algorithm for the accurate
alignment of a robotic arm in a complete soft fabric shoe tongues automation
process. J. Manuf. Syst. 56, 501–513. URL: https://www.sciencedirect.com/science/
article/pii/S0278, doi:10.1016/j.jmsy.2020.07.001.

Velasco Acosta, A.P., Mascle, C., Baptiste, P., 2019. Applicability of demand-driven MRP
in a complex manufacturing environment. Int. J. Prod. Res. 58 (14), 4233–4245.
https://doi.org/10.1080/00207543.2019.1650978.

Wang, J., Qu, S., Wang, J., Leckie, J.O., Xu, R., 2017. Real-time decision support with
reinforcement learning for dynamic flowshop scheduling, in: Smart SysTech 2017;
European Conference on Smart Objects, Systems and Technologies, Munich,
Germany. URL: 〈https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumb
er=8084561〉.

Xanthopolous, A.S., Kiatipis, A., Koulouriotis, D.E., Stieger, S., 2018. Reinforcement
learning-based and parametric production-maintenance control policies for a
deteriorating manufacturing system. URL: https://ieeexplore.ieee.org/stamp/stamp.

https://doi.org/10.1016/j.compind.2023.103874
https://doi.org/10.1016/j.ifacol.2021.08.067
https://doi.org/10.1016/j.ifacol.2021.08.067
https://doi.org/10.3926/jiem.3331
https://doi.org/10.1080/12507970.2018.1547130
http://10.1109/WSC.2003.1261584
http://10.1109/WSC.2003.1261584
https://doi.org/10.1007/s10845-022-01982-5
https://link.springer.com/article/10.1007/s10845-022-01982-5#citeas
https://link.springer.com/article/10.1007/s10845-022-01982-5#citeas
https://doi.org/10.1080/00207543.2022.2098074
https://www.demanddriveninstitute.com/ddmrp-compliant-software
https://www.demanddriveninstitute.com/ddmrp-compliant-software
https://ieeexplore.ieee.org/document/8948198
https://hal.archives-ouvertes.fr/hal-03178098/
https://hal.archives-ouvertes.fr/hal-03178098/
https://doi.org/10.1016/j.cirp.2020.04.005
https://doi.org/10.1016/j.cirp.2020.04.005
https://www.sciencedirect.com/science/article/pii/S0007850620300263
https://www.sciencedirect.com/science/article/pii/S0007850620300263
http://irep.ntu.ac.uk/id/eprint/2666
http://irep.ntu.ac.uk/id/eprint/2666
http://8
https://doi.org/10.1155/2017/8635979
https://doi.org/10.1155/2017/8635979
https://doi.org/10.3926/jiem.2654
https://doi.org/10.3926/jiem.2654
https://doi.org/10.1109/TII.2020.2986501
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9072609
https://doi.org/10.1155/2019/6496309
http://www.theses.fr/2020EMAC0010
http://www.theses.fr/2020EMAC0010
https://tel.archives-ouvertes.fr/tel-01673811
https://doi.org/10.1080/00207543.2018.1464230
http://refhub.elsevier.com/S0166-3615(23)00024-6/sbref12
http://refhub.elsevier.com/S0166-3615(23)00024-6/sbref12
https://doi.org/10.1016/j.jmsy.2021.02.014
https://doi.org/10.1016/j.jmsy.2021.02.014
https://www.sciencedirect.com/science/article/pii/S0278612521000509
https://www.sciencedirect.com/science/article/pii/S0278612521000509
https://doi.org/10.24425/mper.2019.129568
http://refhub.elsevier.com/S0166-3615(23)00024-6/sbref15
http://refhub.elsevier.com/S0166-3615(23)00024-6/sbref15
http://refhub.elsevier.com/S0166-3615(23)00024-6/sbref16
http://refhub.elsevier.com/S0166-3615(23)00024-6/sbref16
https://doi.org/10.1016/j.neunet.2014.09.003
http://10.1088/1757-899X/337/1/012055
http://10.1088/1757-899X/337/1/012055
https://ojs.aaai.org/index.php/AAAI/article/view/11798
https://ojs.aaai.org/index.php/AAAI/article/view/11798
https://doi.org/10.1080/00207543.2020.1849847
https://doi.org/10.1080/00207543.2020.1849847
http://refhub.elsevier.com/S0166-3615(23)00024-6/sbref19
http://refhub.elsevier.com/S0166-3615(23)00024-6/sbref19
http://refhub.elsevier.com/S0166-3615(23)00024-6/sbref19
http://refhub.elsevier.com/S0166-3615(23)00024-6/sbref19
http://refhub.elsevier.com/S0166-3615(23)00024-6/sbref19
https://doi.org/10.1080/00207543.2019.1650978
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8084561
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8084561

jsp?tp=&arnumber=8114172 IEEE Access 6, 576–588. https://doi.org/10.1109/
ACCESS.2017.2771827.

Zhou, R., Lei, D. and Zhou, X., 2019. Multi-Objective Energy-Efficient Interval
Scheduling in Hybrid Flow Shop Using Imperialist Competitive Algorithm. in IEEE
Access, vol. 7, pp. 85029–85041, doi:〈10.1109/ACCESS.2019.2924998〉.

Zhou, T., Tang, D., Zhu, H., Zhang, Z., 2021. Multi-agent reinforcement learning for

online scheduling in smart factories. Robotics and computer-integrated
Manufacturing 72. URL: https://www.sciencedirect.com/science/article/pii/
S0736584521000855, doi:〈10.1016/j.rcim.2021.102202〉.

https://doi.org/10.1109/ACCESS.2017.2771827
https://doi.org/10.1109/ACCESS.2017.2771827
http://10.1109/ACCESS.2019.2924998
http://10.1016/j.rcim.2021.102202

