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ABSTRACT: The distributed activation energy model (DAEM) is widely used in
chemical kinetics to statistically describe the occurrence of numerous independent
parallel reactions. In this article, we suggest a rethink in the context of a Monte
Carlo integral formulation to compute the conversion rate at any time without
approximation. After the basics of the DAEM are introduced, the considered
equations (under isothermal and dynamic conditions) are respectively expressed
into expected values, which in turn are transcribed into Monte Carlo algorithms. To
describe the temperature dependence of reactions under dynamic conditions, a new
concept of null reaction, inspired from null-event Monte Carlo algorithms, has been
introduced. However, only the first-order case is addressed for the dynamic mode
due to strong nonlinearities. This strategy is then applied to both analytical and experimental density distribution functions of the
activation energy. We show that the Monte Carlo integral formulation is efficient in solving the DAEM without approximation and
that it is well-adapted due to the possibility of using any experimental distribution function and any temperature profile.
Furthermore, this work is motivated by the need for coupling chemical kinetics and heat transfer in a single Monte Carlo algorithm.

■ INTRODUCTION
DAEM Background. The efficient utilization of biomass

has never been as critical as it is today, with the need to
develop more efficient renewable biomass conversion tech-
nologies. For decades, the scientific community has developed
numerous chemical models through different approaches to
cover a wide range of complex systems. The development of
these chemical kinetic models has made it possible to control
the selectivity and kinetics of the reactions.
Pyrolysis of natural polymers is often described by various

degradation schemes (reaction patterns) resulting in numerous
chemical species. These degradation pathways are in general
associated with rates and therefore with reaction models.
However, the most challenging part remains to capture all the
details of a complex and multiphasic process and to develop a
detailed kinetic model based on fundamental chemistry. For
this reason, lumped species are used when global kinetic
models for the pyrolysis of complex fuels are applied. Among
the variety of global kinetic models, including single-step,
finite, and infinite multistep reactions reviewed by Burnham et
al.,1 distributed reactivity models are used. More specifically,
the distributed activation energy model (DAEM) has proven
to be convenient,2 as it mathematically transcribes a set of
independent and parallel reactions of first-order or particular-
order reactions as a distribution of reactivity expressed by the
activation energy distribution, p E( ).

When it comes to assessing solid-state reactions, it implies
tracking the transformation of reactants. In thermal analysis
and, more specifically, thermogravimetric analysis, the weight
loss is measured, and the extent of conversion expressed as
follows:
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where m0 is the initial mass of the reactant, m(t) is the reactant
mass at a specific time t, and mf is the final mass of the reactant.
The temperature dependence of the kinetic rate constant,
kE(t), in chemical kinetics is conveniently described by the
Arrhenius law as follows:
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where AE(T(t)) is the pre-exponential factor depending on the
temperature time evolution T(t), E is the activation energy,
and R is the universal gas constant. The reaction rate constant,
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kE(t), can then be parametrized as a function of the kinetic
parameters and its dependence on the extent of conversion,
αE(t), by the mathematical reaction model, f(αE(t)). A wide
range of mathematical models for f(αE(t)) exist, and its choice
depends on the homogeneous and heterogeneous nature of the
reaction, on the physical state of reactants and products, and
on the reaction network. There are three major types of
reaction model, which can be classified according to their
accelerating, decelerating, and sigmoidal reaction profiles.
Here, the most common example of a decelerating model is
a reaction-order model:3 f(αE(t)) = γE(t)n, in which γE(t) = 1 −
αE(t) is the fraction unreacted and n is the reaction order. The
evolution of γE(t) is controlled by the following differential
equation:
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in which the conversion rate at the initial time, ti = 0, is equal
to 1 and the value of γi,E is equal to 1 when the reaction starts
because none of the mass has been converted.
When a kinetics evaluation is conducted, knowledge of the

sample temperature is paramount. However, this can be
difficult to measure because of thermal lag (the temperature
difference existing between the sample environment and its
bulk). Indeed, thermal transfer resistance can have an
important effect on the evaluation of intrinsic kinetic
parameters, and then appropriate corrections must be made,4

such as the temperature profile.5 As kinetically controlled
isothermal pyrolysis is rarely achieved, linear heating ramps, β
= dT(t)/dt, corresponding to the heatup phase of the particles,
are often considered.6 The difficulty of integrating the reaction
rate will depend on the thermal history and the chosen
reaction model. Under non-isothermal conditions (often called
dynamic mode), the integration becomes difficult and does not
have an analytical solution.2 When the hypothesis that the
temperature increases linearly with time is made, this is a
strong assumption and also an important starting point to
develop the present statistical approach to solve an integral
with a minimum of error, whatever the temperature profile.
The idea of coupling a robust chemical kinetic model with a

comprehensive heat and mass transfer computational code to
model the whole process at a particle level has never been
more important, as it could improve any modeling predictions
and therefore improve technology efficiency. Perre ́ et al.7

recently developed a DAEM introducing the heat capacity of
the sample, thus allowing the DAEM to be successfully
validated using very different temperature−time profiles. In
this study, an approach is suggested to deal with any
temperature profile and to open up new perspectives on a
possible coupling between the chemical kinetics and heat
equations.
The DAEM describes an infinite number of independent

reactions, where a unique activation energy is given for each
reaction. Statistically, we introduce a mean conversion rate,

=t t( ) 1 ( ). This mean conversion rate is a statistical
mean over all possible activation energies from the considered
system. As there are an infinite number of reactions, the
activation energies are distributed over a density probability,
denoted as p E( ). Hence, at a time t0 the mean conversion rate

is the sum of all reaction contributions over the possible range
of activation energies:
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where the expression is dependent on the reaction order, n.
One can distinguish two regimes: the isothermal mode, where
the temperature T is kept constant, and the non-isothermal
configuration, where the temperature is time-dependent and so
is the reaction rate.
Solving these equations is challenging and requires iterative

loops of double integral functions that lead to significant
numerical complications.8 Several numerical techniques have
been proposed to tackle this problem of double integration,
such as Simpson’s 1/3 rule9 and the trapezoidal rule,10 which
change the limits of the activation energy integral, or Gauss−
Hermite integration.1112 The double exponential term in the
DAEM, which disappears in the isothermal process, is one of
the primary sources of the numerical challenges. Please et al.13

reviewed the existing approaches to simplify the double
exponential term in the non-isothermal pyrolysis of coal. By
considering the original statistical nature of DAEM, one can
think of using a stochastic method of resolution. Here we
propose this approach by estimating the activation energy
distribution of the DAEM using a Monte Carlo integral
formulation that has already been widely used in the radiative
heat transfer community.14

When referring to Monte Carlo in chemical kinetics, the
most recurrent terminology is kinetic Monte Carlo (KMC).
KMC is used to simulate elementary processes for each
molecule or each site; then the dynamic changes are modeled
by the master equation, where the parameters are, for each site,
the probability of state change.15 This method requires
describing the whole system, and the solving computation
time increases according to a probabilistic combination of
states at any given time and by a transition rate matrix to
determine the switching between states. This probabilistic
approach has been used to determine bond formation
probabilities and therefore follow species with a large reaction
network during thermal degradation.16 Other Monte Carlo
algorithms have been used in conjunction with the Boltzmann
distribution and percolation equations to describe bond
formation, improving the prediction of bond populations
during coal pyrolysis.17 More recently, this random number
generation tool has been used to randomly generate
coordinates of a derivative thermogravimetric curve and
directly determine kinetic parameters.18 By using an
asymptotic technique to approximate the solution, the authors
unfortunately introduced a bias.
Here we propose another Monte Carlo approach, which

needs no approximation, to solve the DAEM based on an
integral formulation, as initially proposed by Metropolis and
Ulam,19 who introduced the Monte Carlo method. This
approach, consisting of determining the quantity expressed as a
sum or integral, will be quoted as the Integral Formulation
Monte Carlo approach in the next sections.



The Use of Fictitious Events. The origin of our work was
the similarity between eq 4 for the first-order reaction and a
quantity from the radiative transfer corpus called the mean
transmissivity. The mean transmissivity, like the mean
conversion rate, is an averaged quantity, but over the frequency
domain. The transmissivity itself describes the attenuation of
light along a spatial direction through a material medium.
Thus, a strict parallel has been made between these quantities:
one averaged over the activation energy range and the other
over the frequency range. Also, for each the quantity of interest
is a propagation, over the time domain for the conversion rate
and over the spatial domain for the transmissivity. In both
corpuses, a kinetic transport equation describes our problems.
That is why it is more intuitive to write the mean conversion
rate over the time domain than over temperature: the
representation of propagation through the time domain is
quite clear and continuous, whereas over the temperature
domain it is not. In radiative transfer, a same resolution
difficulty appears when the medium is heterogeneous. The
mean transmissivity is difficult to solve even statistically.
However, Galtier et al.20 introduced, in an integral Monte
Carlo scheme, the null-collision technique, which permits the
use of Monte Carlo to solve such equations.
Historically, the method of fictitious events took off in three

different physics communities in the late 1960s: plasma
physics, neutronics, and semiconductor physics. This method
was then adopted by other disciplinary fields and is often given
different names. In plasma physics, Skullerud21 used this
technique to statistically sample a collision time of charged
particles in plasma. This method has strongly influenced the
plasma culture.22−27 The technique is not exclusively called
“null collisions”, and there are several other names: null event,
pseudocollisions, fictitious collisions, hole tracking, Woodcock
scattering, delta scattering, pseudoscattering, or maximum
cross section by Marchuk.28 On the other hand, in neutronics,
some authors29,30 introduced the method in this community,
followed by the works of others31−34 who implemented the
same method in various simulation codes of neutron transport.
Finally, during the same period, other scientists35,36 used
fictitious events in semiconductor physics. From 1985,
application to the dynamics of rarefied gases appeared.37−39

The method was adapted to other areas: image synthesis from
2010, or medical radiotherapy40,41 and tomography42,43 from
the beginning of the 2000s. However, none of these statistical
approaches have ever used an integral formulation like that
proposed by Galtier in the field of radiative transfer. This work
has had multiple consequences and inspired a lot of research.
First, it helped the radiative community to treat heterogeneous
media.44,45 It is now a reference in this community and even
used in the film industry.46 Second, the null-collision method
has found a wide range of applications in physics: cloud
rendering,47 combustion chambers,48 and also gas kinetics.49 A
null-collision review was written by El Hafi et al.,50 providing
more details. The fictitious events concept is also used in KMC
chemistry for “computational speed-up upon coarse-graining
illustrated in adsorption−desorption” in the context of
heterogeneous catalysis.51,52

Our objective is to solve the DAEM by taking an integral
Monte Carlo approach using the fictitious events method to
solve the non-isothermal configuration. This method intro-
duces the new concept of the null-reaction phenomenon into
the chemical kinetics corpus.

■ COMPUTATIONAL METHODS
As the rate conversion equations (eq 4) emerge from an energy
probability distribution, they will be treated as such by the
Monte Carlo integral approach. First, the isothermal case is
considered for any reaction order, and second, the dynamic
(non-isothermal) mode is considered, where the concept of
null reaction is useful. For any condition, the conversion rate at
an observation time, t0, and for any order can be written more
concisely than eq 4 as follows:

=
+

t p E t E( ) ( ) ( ) dE0
0

0 (5)

where the mean conversion, t( )0 , is the average of the
conversion rate, γE(t0), over the activation energy distribution,
p E( ). It can be noted that in the integral Monte Carlo one
estimates the observable t( )0 at a given time, unlike in the
usual approaches using discretization, where we evaluate the
total field. This expression is mathematically defined as an
expected value =t W( ) ( )0 . However, the Monte Carlo
integral method is based on the expected value: if one can
express a quantity as an expected value, this quantity can be
approximated by the arithmetic mean of a large number of
realizations w of the random variableW. Here the Monte Carlo
weight w = γE(t0) is obtained by sampling an activation energy
according to the distribution function p E( ). The greater the
number of realizations, the more the arithmetic mean
converges to the expected value.
Also, all statistical realizations are independent and tend

toward a normal distribution according to the central limit
theorem. The Gaussian standard deviation is interpreted as the
statistical error in our estimation. That is a real advantage of
the integral Monte Carlo approach: one can estimate a
quantity with a corresponding error bar which is inversely
proportional to the square root of the realization number. If
the number of realizations were infinite, the error term would
be zero. Thus, the above equation can be estimated by a
Monte Carlo integral approach.
Several choices are possible for the energy distribution. The

only condition is that it must be normalized over the definition
space: =+

p E E( ) d 1
0

. These choices rely on the complex-
ity of the kinetics in the presence of homogeneous and/or
heterogeneous reactions and on experimental observations. A
common distribution choice is a Gaussian distribution (or
several):

=p E
E E

( )
1
2

exp
( )

2
0

2

2

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ (6)

where σ is the standard deviation and E0 is the Gaussian mean,
which are fixed in accordance with the nature of the reactant. It
is important to mention that for some complex processes such
as pyrolysis, the reactivity distribution tends to be asymmetric,
and therefore, the use of a Gaussian distribution may be not
realistic.8 To better describe the thermal behavior of natural
polymers, a combination of Gaussian distributions can be used
to appropriately represent the reactivity distribution. As a
result, the distribution p E( ) can be expressed as a linear
combination of different distributions weighted by factors.28 A
DAEM combining three Gaussian functions has been
suggested by Wang et al.53 to describe the concomitant



degradation of cellulose, hemicelluloses, and lignin. It is
important to mention that the Gaussian distribution is not
normalized on the [0, +∞] interval. In the following parts,
different expressions for γE(t0) for both the isothermal and
dynamic regimes will be used.
Isothermal Configuration. In the isothermal case, the

temperature is time-independent and constant. Thus, the
reaction rate constant, kE, is dependent only on the activation
energy and, for a given energy, γE(t0), which is constant and
expressed by

=
=
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For any reaction order, the above expressions are analytical.
Hence, the estimation of the mean conversion rate in the
isothermal regime for any reaction order is quite straightfor-
ward: to obtain a realization, one needs to sample an energy
according to p E( ) and inject this value into the above
expression according to the reaction order of interest. Directly
from the mathematical expression of the mean conversion rate,
there is an algorithmic procedure to estimate this value
(Algorithm 1). The isothermal case is fully handled by the
Monte Carlo method, whatever the value of the reaction order.

Dynamic Configuration. In the non-isothermal case, eq 4
cannot be treated directly by Monte Carlo because of the
integral inside the exponential for the first-order case or the
integral raised to the power of 1/(1 − n) for any other order.
Indeed, the purpose is to also express γE(t0) as an expected
value. The property =f X f X( ( ( ))) ( ( )) is respected if
f(X) is a linear function. If the function is nonlinear, as here
with the exponential or the power of 1/(1 − n), it will be not
possible to write the mean conversion rate as a unique
expected value and estimate it by Monte Carlo. In the
following, we propose a solution only for the first-order case.
In this case, the exponential attenuation of the reaction rate

is problematic due to the dependence on the integral over time
inside eq 4. The objective is to rewrite this expression in such a
way that the attenuation of the rate occurs in a homogeneous
medium.
First, we introduce an upper bound of the reaction rate

constant, denoted as k̂E, to make the temporal attenuation
homogeneous. This term can be expressed as the reaction rate
constant with an additional term: k̂E = kE,n(t) + kE(t), where
the quantity kE,n(t) is a contribution depending on time, which
can be interpreted as a possibility of occurrence of null
reactions. For a given activation energy, this corresponds to an
upper-bound constant through time (Figure 1).
Second, we introduce k̂E directly into the differential kinetic

equation (eq 3) as an additional attenuation. The conversion
rate for only one reaction is expressed for the first-order case
by

= + + ×
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To express eq 3 in a statistical form, we have added a kE(t) × 0
contribution to use it in the next step of our statistical
formulation. One has to consider that the above formulation
does not change the underlying chemistry. Then we
reformulate eq 8 in order to introduce a statistical view:

= + [ × + ]
t
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where Pr(t) = kE(t)/k̂E is the probability of occurrence of a real
reaction at a time t. The complementary probability, Pn(t) = 1
− Pr(t) = kE,n(t)/k̂E, is interpreted as a null-reaction event,
which corresponds to an event where the reaction is not
happening. Thus, by introducing a supplementary contribution
of the reaction, kE,n(t), fictitious reactions are happening. To
continue to satisfy the initial rate expression, this action must
bring no change in the kinetic process, invoking the principle
of null reaction.
From the differential formulation (eq 9), one can write the

conversion rate in an integral form as a Fredholm equation
(see the Appendix for the mathematical background):
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where =p k k( ) exp( )E E is the probability density
allowing us to sample a time interval τ. In fact, the integral
Monte Carlo formulation is interpreted as a transport equation
through time by starting from the time of observation and
going backward in time. At a time t0 − τ, the corresponding
reaction for the activation energy chosen may happen or not,
depending on the value of kE(t0 − τ).
Finally, by introducing the previous expression in the mean

conversion rate (eq 5), it is now possible to estimate this
quantity by Monte Carlo for the non-isothermal regime at first
order. Practically, as for the isothermal mode, an activation
energy is sampled according to p E( ). Considering a simple
activation energy E, the upper bound of the kinetic rate k̂E is
constant on the time domain, it is feasible to sample a time τ
from p ( ). If τ > t0 − ti, then the reaction at this activation
energy is not occurring, and the Monte Carlo weight retained
is 1 (the Heaviside function > t t( )0 i assesses this
condition when τ > t0 − ti). This statement makes sense: if no

Figure 1. Time evolution of the rate constant from the time of
observation, t, to the initial time, ti. The rate constant upper bound, k̂,
is represented in red and is constant in time for a given activation
energy.
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reaction happens at all, the value will be always 1, as will the
mean conversion rate, since no mass has been converted. If τ <
t0 − ti, a reaction may happen. Now, due to null-reaction
addition at this time t0 − τ, a reaction could be real with the
discrete probability Pr(t0 − τ) or fictive according to Pn(t0 −
τ). If the reaction is real, the weight is zero: the conversion is
complete. On the other hand, if the reaction is fictive, we need
to estimate γ(t0 − τ), the conversion rate at time t0 − τ.
Consequently one needs to re-estimate eq 10. In fact, the use
of the null-reaction method allows us to sample a time interval
thanks to the p ( ) distribution by homogenizing the time
attenuation. The consequence is the recursivity of the method.
As for the isothermal configuration, there is a corresponding
algorithmic procedure to estimate this value (Algorithm 2).

The choice of the upper rate constant value, k̂E, is of
paramount importance for this approach: it will contribute to
CPU time optimization. Indeed, at a time t, the closer the
upper value of the reaction rate constant is to the real reaction
rate constant, the more fictive reactions will happen. For each
fictive reaction, one needs to compute γE, which can be time-
consuming if too many reactions of this type occur. Hence an
appropriate value must be selected for this upper bound: it
could be an upper rate constant value over the total time range,
or one could discretize the time domain into several intervals
where in each part an upper rate constant value is defined.

■ RESULTS AND DISCUSSION
As a proof of concept, we applied our method in both
isothermal and dynamic regimes for some practical illustra-
tions.1 In the following, all of the Monte Carlo simulations
(labeled as M-C) are compared to discrete numerical
approaches for validation. In the following figures, the Monte
Carlo error bars are 68% confidence intervals.
Isothermal Mode. The mean conversion rate under

isothermal conditions is estimated by Monte Carlo according
to a first-order reaction scheme for a given temperature and
pre-exponential factor. The activation energy was assumed to
be obtained from a Gaussian distribution described by a mean
energy, E0, with the standard deviation as a free parameter.
Indeed, the standard deviation has an important impact on the
statistical results, as shown in Figure 2, where this parameter
was varied. The mean conversion rate, γ̅, is equal to 1 at the
initial time, as there has been no mass loss. Through time γ̅
decreases until reaching zero if enough time is given. The
different evolution curves in Figure 2 correspond to different
Gaussian standard deviation values determined by Cai et al.54

to describe the pyrolysis of lignocellulosic biomass. For a wide
activation energy distribution with a large standard deviation
such as σ = 30,000 J/mol, the reactivity profile (the Gaussian
distribution) is broader and corresponds to the degradation of

the complex and heterogeneous lignin structure over a large
activation energy range. Narrower activation energy distribu-
tions with smaller standard deviation values of 1000 and 5000
J/mol give narrower reactivity profiles and are used to describe
cellulose and hemicellulose pyrolysis, respectively.54 Statisti-
cally, the wider the distribution is, the greater is the sampling
probability of activation energies far away from the mean
activation energy of the Gaussian, E0. This implies a broader
diversity for the Monte Carlo weight calculation, which results
in slower convergence for the same number of Monte Carlo
realizations. Indeed, as represented in Figure 2, for a given
amount of Monte Carlo realizations, the statistical variance is
smaller when the Gaussian standard deviation decreases.
Inversely, if it tends to zero, one will sample a unique
activation energy, so the weight will always be the same: the
Monte Carlo algorithm is then called “null variance”.
For this same configuration, there are no severe difficulties in

estimating γ̅ for several orders of reaction in the isothermal
mode, as shown in Figure 3. A chemical reaction is usually
described by an interaction between reacting species at the
molecular level, and the notion of molecularity is used to
account for the number of molecules participating in this
reaction, which can be monomolecular, bimolecular, or
trimolecular. The chemical reaction rate depends on the
reactant concentrations and their related power exponents,
which are the reaction orders. In the presence of complex
reactions, therefore with several reactants, the overall reaction
order is the sum of the power exponents of the reactants.55

Thus, the Monte Carlo method captures the dynamics of
different reaction orders quite well: no variance is introduced
when the order is changed.

Dynamic Configuration. In this section, we show the
feasibility of the proposed method under non-isothermal
conditions for the first-order case in typical configurations: one
is described by a Gaussian energy distribution, and another is a
configuration where the energy distribution results from
experimental measurements and the pre-exponential factor
depends on the activation energy.
As said above, reaction orders different from 1 are not

treated due to the nonlinearity of the problem. Also, there is no

Figure 2. Effect of the Gaussian standard deviation on the statistical
results against the time. The temperature is fixed at 773 K, and the
Gaussian energy distribution is centered at E0 = 220 kJ/mol. The pre-
exponential factor has a value of A = 1014 s−1. The solid lines are
computed with a trapezoidal rule to be compared to the Monte Carlo
estimations (M-C).

https://pubs.acs.org/doi/10.1021/acs.jpca.2c06893?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c06893?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c06893?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c06893?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c06893?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c06893?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c06893?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c06893?fig=fig2&ref=pdf


need to study the influence of the reaction order under
dynamic mode, as both the reaction rate constant, kE(t), and
the reaction model, f(αE(t)), vary simultaneously, giving rise to
sigmoidal curves that prevent the determination of the reaction
model type.
Analytical Distribution of Activation Energies. We

considered a furnace at the initial temperature of 443 K and
heated up at a constant ramp (β) of 10 K/min, which is typical
of slow pyrolysis conditions. Here the value of the pre-
exponential factor was fixed, and the distribution of activation
energies was Gaussian. For several values of the standard
deviation of the Gaussian distribution, the mean conversion
reaction rate was computed by Monte Carlo through time
(Figure 4). Contrary to the isothermal mode, the Gaussian

standard deviation has no impact on the convergence of the
statistical estimator. Indeed, the selected weights are not
dependent on this parameter; this was the case for the
isothermal configuration. However, for each σ value, the
variance significantly increases when the reaction is fast; in
other words, when the mean conversion rate starts to notably
decrease. The cause is due to the reaction statistics where the
weight can take the value of 0 or 1 when the extent of
conversion reaches its maximum value.

Experimental Distribution of Activation Energies. Using
the integral Monte Carlo approach, the activation energy
sampling does not necessarily require an analytical distribution.
It is possible to sample a distribution of activation energies
from experimental data. This is an interesting approach
because we are not assuming a predefined function (e.g.,
Gaussian(s), Weibull, etc.) for the activation energy distribu-
tion, in the same way as the model-free or isoconversional
kinetic approaches, where no reactional models are assumed in
the first place. They allow the determination of apparent
kinetic parameters, and the accuracy and precision of resulting
values depend on the differential or integral character of the
collected data.3 However, one needs to use an experimental
strategy allowing the control of a pure kinetic regime to obtain
it, such as the method proposed by Miura and Maki56 to
retrieve the energy distribution from experimental data and
also to determine a pre-exponential factor depending on the
activation energy. Despite concerns related to the use of the
Miura−Maki integral method demonstrated by Cai et al.,57 the
primary objective of Miura and Maki was to determine a true
energy distribution from isoconversional analysis, which we
believe to be an adequate approach, as an infinitely sequential
reaction model could provide further insights in terms of
pyrolysis stages (e.g., degradation scheme) and associated
levels of reactivity if heat and mass transfer limitations are
adequately removed from data sets. To justify the utility of our
method in an experimental context, in the following section we
propose to find the same mean conversion rate estimated by
Miura and Maki from the same experimental energy
distribution (see Figure 6 in the Appendix). Furthermore,
Miura and Maki provided a pre-exponential factor depending
on the activation energy from the following expression: AE =
1015 exp[0.08(E − 250)] with E in kJ/mol. The calculation
details to sample an energy from a discrete distribution can be
found in the Appendix. The mean conversion rate was
estimated by Monte Carlo with the null-reaction method for
the same heating ramp and configuration as that used by Miura
and Maki56 (Figure 5). To establish a strict comparison, the
value was plotted against the temperature.
Hence, there are no difficulties in treating an experimental

activation energy distribution and its dependence on the pre-
exponential factor.

Temperature Evolution Consideration. An interesting fact
is that one needs to evaluate the reaction rate constant, kE(t),
only for testing whether a reaction occurs or not at time t.
There is no need to know the value of kE(t) for every time
location, but only for t. A direct consequence is that the value
needed to determine the reaction rate can be extremely
complex and estimated by other models or experimentally
measured. For this reason, we can use any form of the pre-
exponential factor and apply the same reasoning on the
temperature profile. It is straightforward to use a linear heating
ramp as an analytical formulation of temperature. One can also
use an exponential profile of temperature, which would model

Figure 3. Effect of the reaction order, n, on the mean conversion rate
evolution under isothermal conditions. The temperature is fixed at
773 K, and the Gaussian energy distribution is centered at E0 = 220
kJ/mol with the Gaussian standard deviation fixed at σ = 30,000 J/
mol. The pre-exponential factor has a value of A = 1014 s−1. The solid
lines are computed with a trapezoidal rule to be compared to the
Monte Carlo estimations (M-C).

Figure 4. Evolution in time of the mean conversion rate for a heating
ramp of 10 K/min for different Gaussian standard deviations. At ti = 0
s, the initial temperature is 443 K. The activation energy distribution
is Gaussian and centered on E0 = 220 kJ/mol. The pre-exponential
factor is A = 1014 s−1. The continuous curve was computed with a
Gauss−Hermite quadrature to be compared to the Monte Carlo
estimations (M-C).
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in a better way a biomass sample inserted in a furnace
preheated at fixed temperature:5

= [ ] +T t T t t T( ) 1 exp( / )f c 0 (11)

where Tf is the furnace final temperature, T0 is the initial
furnace temperature, and tc is a characteristic time of
temperature evolution.
In radiative transfer, a similar property occurring by the use

of fictitious events, the absorption coefficient (the equivalent of
the kinetic rate in our case), only needs to be known at a given
spatial point. If the absorption coefficient is expressed as an
expected value, Galtier et al.58 showed that it is possible to
couple the radiative transfer to a spectral model without
calculating that coefficient. The same question can be
addressed here: is it feasible to couple simultaneously chemical
kinetics with a heat transfer model providing the temperature?
In order to achieve this, one needs to express the kinetic rate
constant, kE, as an expected value. The question is open, but
recent studies59−62 showed that the temperature could be
expressed as an expected value in kE.

■ CONCLUSIONS
A new method to solve the distributed activation energy model
(DAEM) based on the Monte Carlo integral formulation was
developed. This method resolution is inspired by the statistical
nature of the model and the proposition made by the radiative
transfer community. For the first time, an exact DAEM
resolution method with no statistical bias is introduced, and
each value of the conversion rate has an associated and
estimated confidence interval. With this method, any activation
energy distribution (analytical or experimental), any function
for the pre-exponential factor, and any temperature profile
(heating ramp or experimental data) can be used and the
reaction kinetics assessed.
For future investigations, the coupling of chemical kinetics

with a thermal model (such as a heat equation) will be
considered. This is a concept that has already been
demonstrated in radiation physics by coupling the radiative
transfer to the absorption coefficient model,58 while other
research coupling heat transfer phenomena is ongoing.59−62

There are some remaining considerations, such as varying
the reaction order from 1 under dynamic conditions. Recent

techniques in nonlinear Monte Carlo could open up some
interesting perspectives.63

Another outlook could be the sensitivity estimation,
meaning that the derivative of the mean conversion rate with
respect to a parameter (such as the Gaussian standard
deviation or the heating ramp parameter) could be studied.
This could be useful for inversion strategies but also to
understand the underlying chemistry dependences. Such an
implementation is straightforward because the Monte Carlo
estimation for a value and these sensitivities have no
computational additional cost as they are evaluated in a single
algorithm.64

■ APPENDIX

Differential Equation to Integral Formulation
Introducing a function f(t) depending on the parameter t that
is attenuated through time according to k(t) can be done by
adding an additional term from a fictitious event:
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A solution of eq 12 is
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f(t) can be written in integral form as follows:
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Substituting the expression for the source term S from eq 13
gives
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Finally, one can introduce the complementary probability of [1
− k(t − τ)/k̂] to express f(t) as an expected value:

Figure 5. Mean conversion rate time evolution for different heating
ramps. The Monte Carlo values (M-C) are compared to the data of
Miura and Maki (continuous curves) for an initial temperature of
303.15 K.
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Energy Sampling from a Distribution
In our configuration, a simple numerical method exists to
sample an activation energy from a Gaussian distribution.
Otherwise, the inverse cumulative density function (CDF)
method can be used.65 When dealing with the Miura−Maki
energy distribution,56 an activation energy is sampled from the
CDF. In Figure 6, the blue curve represents the Miura−Maki
energy distribution and the red curve the corresponding CDF
(which varies between 0 and 1).
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