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Abstract

Optical optimizations for a Concentrated Solar Power (CSP) system
are currently limited largely to gradient-free methods, since the gradient is
hard to obtain by using the existing numerical optics tools available in the
community. This article aims to build new algorithms of the Monte-Carlo
type, which numerically estimate the gradient of power impacting the
receiver with respect to the geometric parameters that characterize the
geometric status of the heliostats in the heliostats field, for a Solar Power
Tower (SPT) system.

Physical models will be built for the specific intensity and also for
its derivatives to the geometric parameters of the heliostats, also called
geometric sensitivities of intensity. Similar to the intensity but with their
own models, they are regarded as physical quantities emitted, absorbed
and reflected in the system. They carry the perturbations of intensity
as information, corresponding to the relations between the geometric
parameters and the physical events in the SPT system: blocking, spillage,
shadowing, etc. These relations will be distinguished and discussed.

Finally, not only the gradient but also the contributions of physical
events (blocking, spillage, shadowing, etc.) to the gradient can be estimated
for further sensitivity analysis and optimization processes.
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Nomenclature

I Intensity

N Number of realizations of
Monte-Carlo estimation

P Total power impacting receiver

Si,j Sensitivity of Power

S Matrix of sensitivity of power

π̈ Matrix of parameters

π̈i,j Geometric parameter of a helio-
stat

G Total set of the position in the
system

S Unit Sphere

I̊ Source of intensity

s̊ Source of sensitivity

s̊blo Source of sensitivity: backward
blocking

s̊shad−b Source of sensitivity: back-
ward shadowing

s̊shad−f Source of sensitivity: forward
shadowing

s̊tar Source of sensitivity: targeting

H Heliostats, H ⊂ ∂G
Hi A Heliostat, Hi ⊂H

H +
i Reflecting surface of a heliostat,

H +
i ⊂Hi

H −
i Rearward surface of a heliostat,

H −
i ⊂Hi

Ol Lower outline, Ol ⊂ ∂G
Os Upper outline, Os ⊂ ∂G
R Receiver, R ⊂ ∂G
∂G Total set of the position on the

boundaries, ∂G ⊂ G
~ω Direction in the system, ~ω ∈ S
~ωb Direction attached on ~xb, ~ωb ∈

S
~ωc Solar position: pointing from

the center of the sun to ~xp.

~ωp Direction attached on ~xp, ~ωp ∈
S

~ωr Direction attached on ~xr, ~ωr ∈
S

~ai,φ Axis of a heliostat for azimuth
angle

~ai,θ Axis of a heliostat for elevation
angle

~ni Normal of a heliostat, ~ni ∈ S
~nr Normal of the receiver, ~nr ∈ S
~v Velocity of deformation

~x Position in the system, ~x ∈ G
~xb Position on rearward surface of

a heliostat, ~xb ∈H −
i

~xp Position on reflecting surface of
a heliostat, ~xp ∈H +

i

~xr Position on receiver, ~xr ∈ R

nπ̈ Number of parameters for each
heliostat

nH Number of heliostats

si,j Sensitivity of Intensity

Acronyms

CBMC Collision-Based Monte-Carlo
algorithms

CSP Concentrated Solar Power

DNI Direct Normal Irradiation

IFMC Integral Formulation Monte-
Carlo

RTE Radiative Transfer Equation

SPT Solar Power Tower

Greek symbols

ρ Reflectivity

σ Standard deviation

Subscrips

b Rearward surface of a heliostat

i Index of heliostat

j Index of parameter of a helio-
stat

k Index of borders of a heliostat

l Lower outline

p Reflecting surface of a heliostat

r Receiver

s Upper outline
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1 Introduction

Concentrating solar power (CSP) technology is one of the promising options to
replace fossil fuel resources. Solar Power Tower (SPT) is a mature technology,
and commercial facilities that follow this principle are currently in operation [1].
The optical system described by the heliostats field usually contributes to about
40% of the total cost of an SPT system[2]. The optical study of SPT systems
has been an active research field [3–5]. Evaluations and optimizations of optical
performance for SPT systems are essential.

As regards the evaluation of optical performance, there are two common
categories of optical modeling methods: Monte-Carlo ray-tracing methods [6–
9] and the cone optics convolution-based methods [10–12]. Compared to the
latter kinds of method, the Monte-Carlo ray tracing methods are more versatile
and can reproduce the real intersections of photons in complex geometries[13].
Several Monte-Carlo-based tools are compared to the convolution methods in
the study[14], revealing that the Monte-Carlo methods have better performance
in accuracy.

However, the optimizations of optical performance, which are usually related
to geometric optimizations are limited largely to gradient-free methods [15, 16].
An important reason for choosing gradient-free methods is usually that ‘no
gradient information is available from Monte-Carlo ray tracing methods’ [17,
18]. The gradient-based methods are usually used when the dimension of the
parameter space of optimization is large [19], which is often the case in CSP
optimization. Limited by the dimension of the parameter space, researchers
can only perform optimization with small numbers of parameters. Diago et
al. optimized only the height and the diameter of the tertiary concentrator in
a Beam-Down system. In order to decrease the number of parameters to be
optimized, Yu et al. optimized the aiming strategy by regrouping the heliostats,
which point to some fixed points on the receiver. Furthermore, the gradient-free
methods are usually treated as a “black box” tool, and the knowledge of the
gradient helps to understand the parameters’ influences on the optimization’s
objective.

Only a few studies have applied gradient-based methods to optimize the
geometry of solar concentrators. Yang et al. [20] suggested approximating it
by using area ratios. However, this method introduces an empiric weight. In
studies carried out by Marston et al., the gradient is approximated by a finite
difference [21, 22], which is also called the resimulation method by Gobet [23].
However, beyond the fact that these studies deal only with simple geometrical
situations, these authors claim that associated uncertainties are difficult to control.
Regarding complex geometries such as a heliostat field in an SPT system with a
large number of parameters, they cannot be treated in such a way (using finite
difference approximation) because of the huge computational time and the lack of
accuracy. Besides this approach of approximation, in the framework of Integral
Formulation Monte-Carlo (IFMC) [24], the impacting power on the receiver in an
SPT system is written as an integral formulation based on the physics of radiation.
By differentiating and reformulating the corresponding integral formulation (for
example, with respect to the angular spreading coefficient [24]), the gradient
is also formulated as an integral formulation and can be estimated through
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(b) Blocking effect.
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Figure 1: Spillage, blocking, and shadowing effects are common physical events
in the SPT system. In this work, we further classify them into spillage, forward-
blocking, backward-blocking, forward-shadowing, and backward-shadowing ef-
fects to estimate and analyze the sensitivity of geometric parameters. In the
figure, Hi and Hi′ are the heliostats and R is the receiver.

the Monte-Carlo method[25]. However, when the differentiated parameter is a
geometric parameter that interacts in the integral domain (for example, the size
of heliostats), great formal development efforts are needed[26]. Integrating this
approach to a complex system such as the heliostats field of an SPT system seems
nowadays to be impracticable. A very recent work [27] proposes an alternative
to the work performed by [26]. This new approach proposes that the intensity
and the geometric sensitivity of intensity (the derivative of the intensity with
respect to a geometric parameter) should be regarded as two physical quantities
emitted, transported, and intersected in a radiative system [27]. Based on this
point of view, we can benefit from years of research in the radiative transfer field,
on modeling the intensity to model the geometric sensitivity in an SPT system,
making estimating the gradient in such a complex system possible. In parallel
to our works, the literature shows that shape sensitivity calculations using the
radiative transfer equation and its derivative has been the subject of much work
in the computer graphics community [28–31]. Their objective is to reconstitute
shapes to create the desired image by inversion. For many applications, such
as remote sensing or deep neural networks for artificial intelligence [32] this
“differentiable rendering” will become increasingly important in the coming years
in this community. While we can take advantage of computer graphics tools to
deal with the complex geometry of an SPT system, we still need to understand
how the phenomena in SPT systems (blocking in Fig.1b, shadowing in Fig.1c,
and spillage in Fig.1a) influence the sensitivities, which is also the objective of
this work. Therefore, we will build a model of sensitivity and analyze the sources
of the sensitivities in this model, which is specific to our approach [27, 33]. The
sensitivities are propagated instead of the intensities following the Radiative
Transport Equation (RTE) and the sensitivity sources are identified by this
approach on the borders or on the surfaces of the studied system when we change
geometric parameters. Consequently, we will see in this work that sensitivities
can be presented in an intuitive manner: displacements and rotations of heliostats
create sensitivity sources on the edges and surfaces of the heliostats that move
according to different parameters of displacement and rotation.

As stated above, this paper aims to develop a method to estimate the
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unit W/m

Star676,1 70.63 ± 0.94
Sblo676,1 -30.69 ± 0.58

S676,1 39.93 ± 1.51

Table 1: Sensitivity and its contributions (estimated values and their standard
deviations) for the translation X of the 676th heliostat. For the 676th heliostat in
Fig.2 (indexed as 676 in the table), the sensitivity of its translation X (indexed as
1 in the table) has two contributions. The translation will block its neighboring
heliostat in its back (Sblo676,1 is negative). However, the translation helps it to
be blocked less by its neighboring heliostat on its front (Star676,1 is positive).
The sensitivity of translation X for this heliostat is then the sum of these two
contributions (S676,1).

geometric gradient (sensitivities) of SPT systems and to indicate how the blocking,
spillage, and shadowing effects contribute to the gradient (sensitivities). The
implementation of this method leads to different results that will be of interest to
the SPT community to design (Fig.2a,2b,2c,2d) solar power plants, and also for
their remote control (Fig.2e,2f). In Fig.2, x-y represents the ground plane, z is
the height of the heliostat position, and each point is dedicated to a heliostat in
the field. Furthermore, for each parameter of each heliostat, a detailed analysis
of the contributions (spillage, blocking, shadowing) of sensitivity can be carried
out (Table.1).

Finally, the article is organized into three parts:

- Section.2 provides the models of transport for the intensity and its derivative
towards each heliostat five degrees of freedom (three translations and two
rotations) and its size.

- Section.3 provides the integral formulations and algorithms to estimate
the power collected by the receiver and the different sensitivities towards
these six geometric parameters for each heliostat.

- Section.4 is dedicated to validation purposes: the estimation of the different
sensitivities is compared to the approximation by the finite difference
method. Comparisons and discussions about these two methods will be
undertaken.

2 General models

In this work, we address the question of estimating the power P impacting
the receiver of an SPT system with flat squared heliostats (Fig.3), as well as
its derivatives Si,j ≡ ∂π̈i,j

P of geometric parameters π̈ with i the index of
a heliostat in the heliostats field and j the index of a geometric parameter
(j ∈ {1, 2, 3, 4, 5, 6}, see Fig.4).

In order to numerically estimate P , we will build a model following the
standard radiative transfer physics, using the intensity I as the descriptor. The
transport of I in the medium is governed by a partial differential equation at any
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(a) Sensitivity of position-x for each
heliostat.
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(b) Sensitivity of position-y for each
heliostat.
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(c) Sensitivity of position-z for each
heliostat.
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(d) Sensitivity of the length of borders for
each heliostat.
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(e) Sensitivity of elevation angle for each
heliostat.
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(f) Sensitivity of azimuth angle for each
heliostat.

Figure 2: Sensitivity of the total impacting power P [w] for each heliostat
in the field. Each point is dedicated to a heliostat, pointing to the center of
the receiver at the moment of solar noon at the summer solstice. The layout
corresponds to a real heliostat field: Sierra SunTower [34] (receiver at 50 m height
at (0,0) and more details of the heliostats field are in Table.6 and Section.4.2).
The corresponding color indicates its sensitivity with respect to its positions,
rotations, and lengths. (106 Monte-Carlo realizations on each border of each
heliostat and 108 Monte-Carlo realizations on each surface of heliostats).
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· · · Hi+1 Hi+2

· · ·

R
~xr~nr

~ωr

Figure 3: An SPT system consists of heliostats Hi (with an index of i) on the
ground and a receiver R at the top of a tower.

~e1
~e2

~e3

π̈i,1
π̈i,2

π̈i,3

π̈i,4

π̈i,5

π̈i,6

~ni

~ai,φ

~ai,θ

Hi

~ai,θ

Figure 4: A heliostat (Hi) has 5 degrees of freedom, which includes the translation
(π̈i,1,π̈i,2 and π̈i,3), following the three axes in the global coordinate system (~e1,
~e2 and ~e3) and the rotation (π̈i,4 and π̈i,5) corresponding to an altazimuth mount
according to the two vectors of rotation (~ai,θ and ~ai,φ). Also, the length of the
size of the heliostat is included in this study (π̈i,6). Those six parameters are
indexed by j.

locations ~x inside the field G, following a vector of direction ~ω in a unit sphere S
(RTE). On the boundaries ∂G, the transport of I is governed by the boundary
conditions, where the locations are noted with index, see Section.2.4 for details.

Equivalent to P , in order to numerically estimate Si,j , we will build a
radiative model in the medium and on the boundaries using the geometric
sensitivity of intensity s ≡ ∂π̈i,j

I as the descriptor[27]. This descriptor carries
the perturbation of I as information, corresponding to the relations between the
geometric parameters π̈i,j and the physical events in the SPT system: blocking,
spillage, shadowing, etc.

I and si,j will be modeled locally in the medium and boundary conditions.
After that, P and Si,j can be observed by formulating integral formulations of I
and of si,j .
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2.1 Definitions

2.1.1 Geometric sensitivity of intensity

The specific intensity used to model the STP system is considered independent
of the wavelength [14, 35]. It is defined as I ≡ I(~x, ~ω, π̈), where π̈ is the matrix
composed of π̈i,j (see Fig.4):

π̈ ≡ [π̈i,j ] . (1)

~x, ~ω and π̈ are independent variables and matrix s is defined as the derivative
of I with respect to π̈ [33]:

s(~x, ~ω, π̈) ≡ [si,j(~x, ~ω, π̈)] = ∂π̈I(~x, ~ω, π̈). (2)

The components of s are:

si,j(~x, ~ω, π̈) = ∂π̈i,j
I(~x, ~ω, π̈). (3)

2.1.2 Geometric sensitivity of power

We implement this work within the framework of IFMC [24]. P can be estimated
by the product of spatial integral and angular integral of incoming I on the
receiver:

P (π̈) =

∫
R

d~xr

∫
2π

|~ωr · ~nr|d~ωrI(~xr, ~ωr, π̈) (4)

where ~xr is a position on the receiver, ~ωr the direction of observation, ~nr the
normal of the receiver, and R the absorbing surface of the receiver (see Fig.3).

Matrix S is defined as the derivative of P with respect to π̈, which can be
developed in a straight forward way since ~xr and ~ωr are independent of π̈ that
characterizes only the heliostats:

S(π̈) ≡ [Si,j(π̈)] =

∫
R

d~xr

∫
2π

|~ωr · ~nr|d~ωrs(~xr, ~ωr, π̈). (5)

The components of S are:

Si,j(π̈) =

∫
R

d~xr

∫
2π

|~ωr · ~nr|d~ωrsi,j(~xr, ~ωr, π̈). (6)

We aim to estimate P (π̈) and Si,j(π̈) by building a model of I and a model
of si,j in an SPT system.

2.2 Assumptions

The following assumptions are made for modeling I and si,j in an SPT system:

1. The Pill-Box model is used to describe the sun shape (Eq.15).

2. The heliostats are considered perfectly specular, and beam pointing error
is neglected.

3. The reflectivity of heliostats is considered homogeneous on the surface.

4. The medium between heliostats and the receiver is considered transparent.
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It is noted that even though they are typical assumptions for modeling an
SPT system, more realistic modelings can be realized based on the theoretical
studies[27, 33] without specific difficulties (more realistic sun shape model,
spatially and angularly inhomogeneous reflectivity, imperfect reflection, semi-
transparent medium, etc.). In this work, we aim to build a basic model for
I and si,j in an SPT system. More realistic assumptions can be taken into
account based on the developed basic model in this work. For example, if an
angularly inhomogeneous reflectivity is considered in future work, it will have
extra influences on the sensitivity with respect to the rotations of the heliostats.
These extra influences can be considered as an additional source of sensitivity
based on the developed model in this work.

2.3 Transport in the medium

2.3.1 Transport of intensity

The transport of intensity in the medium is modeled by RTE [36]. In an
inhomogeneous medium, the collisions of absorption and scattering are described
by the collision operator C [29]:

∂I(~x, ~ω, π̈)

∂~x
= C[I(~x, ~ω, π̈)] + κa(~x)Ib(~x) (7)

with

C[I(~x, ~ω, π̈)] =

− κa(~x)I(~x, ~ω, π̈)

− κs(~x)I(~x, ~ω, π̈)

+
1

4π

∫
ω′=4π

κs(~x)I(~x, ~ω′, π̈)Φ(~ω′, ~ω)d~ω′

(8)

where κa is the absorption coefficient, κs the scattering coefficient, ~x the
position vector in the medium, ~ω the vector of propagation and Φ(~ω′, ~ω) is the
phase-function. Under the assumption of local thermal equilibrium, the source
κa(~x)Ib(~x) (in Eq.7) is isotropic and is a function of temperature, and Ib is the
specific intensity at equilibrium following the Planck’s law.

In this work, we will consider a transparent and cold medium (where κs = 0,
κa = 0, and Ib(~x) = 0). Therefore, the equation of transport for I used in this
work is:

∂I(~x, ~ω, π̈)

∂~x
= 0 (9)

2.3.2 Transport of geometric sensitivity of intensity

We differentiate Eq.7 with respect to the geometric parameter π̈ on the both
sides:

∂2I(~x, ~ω, π̈)

∂~x∂π̈
=
∂
[
C[I(~x, ~ω, π̈)]

]
∂π̈

(10)

Referring to the definition of the sensitivity (Eq.2), the following equation
transport is yielded:

9



∂s(~x, ~ω, π̈)

∂~x
= C[s(~x, ~ω, π̈)] (11)

The development from Eq.7 to Eq.11 is relatively straightforward. First, it is
because the medium’s properties (κa, κs,Φ and Ib) are not dependent on π̈, and
secondly, ~x, ~ω and π̈ are three independent variables.

Referring to Eq.2 and Eq.3, the equation of transport of each of the component
si,j is [33]:

∂si,j(~x, ~ω, π̈)

∂~x
= C[si,j(~x, ~ω, π̈)] (12)

with C the same collision operator as it is in Eq.8:

C[si,j(~x, ~ω, π̈)] =

− κa(~x)si,j(~x, ~ω, π̈)

− κs(~x)si,j(~x, ~ω, π̈)

+
1

4π

∫
ω′=4π

κs(~x)si,j(~x, ~ω
′, π̈)Φ(~ω′, ~ω)d~ω′

(13)

Finally, the collision operator C is also applied to the geometric sensitivities
when describing its transport in the medium. si,j can be regarded as a physical
quantity transported in the medium. Similar to the intensity I, the sensitivity
of intensity si,j is also absorbed and scattered. This new point of view allows us
to study the geometric sensitivity of intensity practically, benefiting from years
of research in the transport of intensity in the physics of radiative transfer.

In this work, we will consider a transparent and cold medium. The intensity
and the geometric sensitivity will have the same model of transport in the
medium:

∂si,j(~x, ~ω, π̈)

∂~x
= 0 (14)

In order to create a similar physical picture for the transport of I and si,j
in the medium, we can consider that the medium is also ‘transparent’ for the
geometric sensitivities si,j .

2.4 Boundary conditions

I and si,j are transported following Eq.9 and Eq.14 in the medium, while on the
boundaries, they can be emitted, reflected, or absorbed.

Seeing Fig.5, positions and directions on the boundaries are noted with an
index of s on Os, r on R, p on H +

i , b on H −
i and Ol on Ol. We will build the

boundary conditions for I and then differentiate them with respect to π̈i,j to
establish the boundary conditions for si,j .

2.4.1 Upper outline Os

In an SPT system, the only source of intensity is the sun. Most of the time, we
use the sun-shape models, which are usually angular functions, to describe the
arriving intensity in the system[14, 37, 38]. To be noticed that this work is a
stationary study, which means it is established for a fixed solar position.

The pill-box sun shape is used in this work:

10
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Figure 5: The system consists of heliostats Hi (with index of i) on the ground
with H +

i its reflecting surface and H −
i its rearward surface, a receiver R, an

upper outline Os and an lower outline Ol. Solar intensity is reflected by H +
i

and collected on the R.

I(~xs, ~ωs, π̈) ≡ I̊(~ωs) = I0H(~ωs · ~ωc − cos (θdisk)) (15)

where ~ωc is a vector that characterizes the solar position (fixed in this work),
I0 the constant intensity coming from the sun, H the Heaviside function and
θisk = 0.0046 rad the radial angular radius of the solar disk. Moreover, this
boundary condition is noted I̊ because it is the source of I in the system.

The upper outline Os can be considered emitting intensity towards the system,
but it is not reflecting the incoming intensity. Therefore, this boundary can be
considered as a ‘black body’ for I.

The derivative of I on Os with respect to π̈i,j is therefore null, because π̈i,j
characterizes the geometry of heliostats instead of Os:

si,j(~xs, ~ωs, π̈) = 0. (16)

Following Eq.16, no si,j is emitted by the sun, and all si,j transported to the
upper outline Os are not reflected but absorbed. Therefore, in order to create
a similar physical picture for the transport of I and si,j on the boundaries, Os
can be regarded as a ‘cold black body’ for si,j .

2.4.2 Receiver R and lower outline Ol

R and Ol in our system (Fig.5) are considered ‘cold black body’ for I. All the
intensity is not hitting the heliostats, and the receiver will be lost. The radiative
emission of the receiver is not included in the model since the heat transfer of
the receiver is out of the scope of this work.

The boundary conditions of receiver R and lower outline Ol are then estab-
lished:
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{
I(~xr,−~ωr, π̈) = 0

I(~xOl
,−~ωOl

, π̈) = 0
(17)

where −~ωr and −~ωOl
are the outgoing direction of propagation of I from the

receiver and the lower outline (Fig.5).
Since π̈i,j only characterizes the heliostats, there are no si,j going out from

these boundaries: {
si,j(~xr,−~ωr, π̈) = 0

si,j(~xOl
,−~ωOl

, π̈) = 0.
(18)

In order to create a similar physical picture for the transport of I and si,j on
the boundaries, R and Ol can also be regarded as ‘cold black body’ for si,j . All
si,j that are not hitting the heliostat or the receiver will be lost, and si,j are not
emitted from these boundaries.

2.4.3 Heliostat Hi

Intensity: We define ~ni as the normal of the reflecting surface of Hi. The
boundary conditions of I on a heliostat Hi are modeled separately by two parts:
one for the reflecting surface H +

i (where ~ωp ·~ni > 0), the other for the rearward
surface H −

i (where ~ωb · ~ni < 0), see Fig.6. Also, the heliostats are considered
‘cold’, which means they do not emit intensity.

~ni

H +
i

~xp
~ωs

~ωp

(a) Reflecting surface where ~ωp · ~ni > 0

~ni

H −
i

~xb ~ωb

(b) Rearward surface where ~ωb · ~ni < 0

Figure 6: Orientation convention of the heliostat Hi

The transport of intensity on the reflecting surface of the heliostat can be
described by:

I(~xp, ~ωp, π̈) = ρI(~xp, ~ωs, π̈) (19)

where ρ is the reflectivity, I(~xp, ~ωs, π̈) the incoming intensity and ~ωp the
direction reflected by heliostat of ~ωs (Fig.6a).

The transport of I on the rearward surface of Hi can be described by:

I(~xb, ~ωb, π̈) = 0. (20)

The rearward surface of Hi is also considered a ‘cold black body’.

12



Geometric sensitivity of intensity: The development of the boundary con-
ditions of si,j for Hi is less straightforward. [33] proposed a model of geometric
sensitivity on reflecting surfaces. Based on this model, the boundary conditions
of si,j is yielded for reflecting surface (Eq.21, referring to Fig.6a) and also for
the rearward surface (Eq.22, referring to Fig.6b). It is found that the boundary
condition of the reflecting surface contains emission terms (the sources) and a
reflection term, see details in Appendix.A.

si,j(~xp, ~ωp, π̈) =s̊i,j(~xp, ~ωp, π̈)

+ρsi,j(~xp, ~ωs, π̈)
(21)

si,j(~xb, ~ωb, π̈) = s̊i,j(~xb, ~ωb, π̈) (22)

We note s̊i,j as the sources of si,j (as we noted I̊ as the source of I).
The sources s̊i,j can be physically regarded as the local perturbations of I

with respect to π̈i,j on Hi, while si,j is such perturbations transported in the
radiative system (see Fig.7). Usually, the sources of sensitivity s̊i,j are functions
of I, where the two models of transport are coupled.

HiHi′

R

I̊Os

Ol

(a) Source of intensity I̊

HiHi

R

π̈i,1

I̊Os

Ol

Hi′

s̊i,1

si,1

I

(b) Source of sensitivity s̊i,1: An example.

Figure 7: The source of intensity is on the boundary Os. In this example, The
source of sensitivity is on the border of heliostat Hi because the perturbation of
π̈i,1 will create locally a perturbation of I on the border of Hi, which causes a

perturbation of P . Also, the source s̊i,j is coupled with the arrived intensity I̊.
Therefore, the model of si,j is coupled with the model of I. The optical path of
si,j is in red, and the coupled optical path of I is in brown.

Moreover, different types of perturbations (sources) are distinguished, related
to blocking, shadowing, and spillage effects. Therefore, we further classify the
sources by their contributions to these different physical effects.

For the reflecting surface H +
i :

s̊i,j(~xp, ~ωp, π̈) = s̊tari,j (~xp, ~ωp, π̈) + s̊bloi,j (~xp, ~ωp, π̈)

+ s̊shad−bi,j (~xp, ~ωp, π̈)
(23)
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and for the rearward surface H −
i :

s̊i,j(~xb, ~ωb, π̈) = s̊shad−fi,j (~xb, ~ωs, π̈). (24)

s̊tari,j is named the source of targeting. It is the perturbation caused by the

targeting or missing of the reflected intensity on H +
i , with respect to π̈i,j . It is

separated into two parts:

s̊tari,j = s̊tar,spatiali,j + s̊tar,angulari,j . (25)

s̊tar,spatiali,j is originated from the change of position of Hi with respect to

π̈i,j , located on the border of H +
i (see Fig.8 for an example of π̈i,1). s̊tar,angulari,j

is originated from the change of normal, located on the surface of H +
i (see Fig.9

for an example of π̈i,4, but to be noted that perturbation of π̈i,4 leads to the
change of position and also the change of normal).

Concerning the change of position, the sources s̊tar,spatiali,j are located on the
border of the heliostat (see formal developments in Appendix.A and Appendix.B).

If we note the sum of s̊tar,spatiali,j captured on R to be Star,spatiali,j , it will be 0

when s̊tar,spatiali,j are all captured or all missed, see Fig.8. However, when the
spillage effect (Fig.8c), forward-blocking effect (Fig.8d) or backward-shadowing
effect (Fig.8e) occurs, the perturbation of π̈i,j will perturb these effects and

s̊tar,spatiali,j will be partially captured. Therefore, Star,spatiali,j will be non-null .

Concerning the change of normal, the sources s̊tar,angulari,j are located on the
surface of the heliostat (see details in Appendix.A and Appendix.B). If we note

the sum of s̊tar,angulari,j captured on R to be Star,angulari,j , it will be non-null when

s̊tar,angulari,j is all captured on R since the perturbation of π̈i,j perturbs the cosine
effect, and it will be 0 when all is missing, see Fig.9. Moreover, when the spillage
effect (Fig.9c), forward-blocking effect (Fig.9d) or backward-shadowing effect

(Fig.9e) occurs, the perturbation of π̈i,j will perturb these effects and s̊tar,angulari,j

will be partially captured.
We must distinguish the contributions from backward and forward shadowing

in the model of si,j . Backward-shadowing means that the perturbation of π̈i,j
affects the shadows on the heliostat itself Fig.10a. Forward-shadowing means
that the perturbation of π̈i,j affects the shadows on a neighboring heliostat
Fig.11.

s̊shad−bi,j is named the source of backward-shadowing. This perturbation is

observed on the surface of H +
i , but originated from the border of a neighboring

heliostat, see Fig.10a and 10b. It is also separated by two parts, corresponding
to the change of position and direction of Hi:

s̊shad−bi,j = s̊shad−b,spatiali,j + s̊shad−b,angulari,j (26)

We note Sshad−b,spatiali,j as the sum of the source s̊shad−b,spatiali,j captured on
R. When backward-shadowing occurs, the perturbation of π̈i,j will perturb the
effect of backward-shadowing by the change of position (see an example of π̈i,1
in Fig.10a) and Sshad−b,spatiali,j 6= 0.

We note Sshad−b,angulari,j as the sum of the source s̊shad−b,angulari,j captured
on R. When backward-shadowing occurs, the perturbation of π̈i,j will perturb
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Hi

R

π̈i,1

Hi

s̊tar,spatiali,1

(a) All the sources are captured.

Hi

R

π̈i,1

Hi

s̊tar,spatiali,1

(b) All the sources are missing

HiHi

R

π̈i,1

s̊tar,spatiali,1

(c) Sources are partially
captured:
Spillage effect.

HiHi

R

π̈i,1

s̊tar,spatiali,1

(d) Sources are partially
captured:

Forward-blocking effect.

HiHi

R

π̈i,1

s̊tar,spatiali,1

(e) Sources are partially
captured:

Backward-shadowing effect.

Figure 8: The optical path of I is in yellow, and that of si,j is in red. When

all the sources of s̊tar,spatiali,1 are all captured by R or they are all missing, the

perturbation of π̈i,1 is not causing the perturbation of P and Star,spatiali,1 = 0.
When spillage effect, forward-blocking effect, or backward-shadowing effect
occurs, s̊tar,spatiali,1 is partially captured by R and Star,spatiali,1 6= 0.
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Hi

R

π̈i,4

s̊tar,angulari,4

(a) All the sources are captured

Hi

R

π̈i,4

s̊tar,angulari,4

(b) All the sources is missed

Hi

R

π̈i,4

s̊tar,angulari,4

(c) Sources are partially
captured:
Spillage effect

Hi

R

π̈i,4

s̊tar,angulari,4

(d) Sources are partially
captured:

Forward-blocking effect

Hi

R

π̈i,4

s̊tar,angulari,4

(e) Sources are partially
captured:

Backward-shadowing
effect

Figure 9: With a perturbation of π̈i,4, the perturbation of I is observed on
all surfaces of Hi and borders of Ωs (the solar cone). When all the sources of

s̊tar,angulari,1 is all captured on Ri,1, the perturbation of π̈ causes the perturbation

of P because of the cosine effect and Star,angulari,1 6= 0. When all the sources

are missing, Star,angulari,1 = 0. Finally, when the spillage effect, forward-blocking

effect or backward-shadowing effect occurs, s̊tar,angulari,1 is partially captured by

R and Star,angulari,1 6= 0.
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HiHi

R

π̈i,1

s̊shad−bi,1

(a) Perturbation due to the change of
position

Hi

R

π̈i,4

s̊shad−b,angulari,4

(b) Perturbation due to the change of
normal

Figure 10: When the backward shadowing effect occurs, with a perturbation of
π̈i,4, P is perturbed because of its change of normal. The source of sensitivity
s̊shad−bi,4 is on the border of the neighboring heliostat. P is also perturbed because

of its change of position. The source of sensitivity s̊shad−bi,1 is on the border of the
neighboring heliostat. The backward-shadowing is about the shadowing effect
created by the neighboring heliostat.

the effect of backward-shadowing by the change of normal (see an example of

π̈i,4 in Fig.10b) and Sshad−b,spatiali,j 6= 0.

s̊shad−fi,j is named the source of forward-shadowing. This perturbation of I is
caused by the creation of shadows. With a perturbation of π̈i,j , shadows might
be created on another heliostat in the field.

We note Sshad−fi,j as the sum of the source s̊shad−fi,j captured on R. When
forward-shadowing occurs, a perturbation of π̈i,j will perturb the effect of

forward-shadowing (see an example of π̈i,1 in Fig.11) and Sshad−fi,j 6= 0.

s̊bloi,j is named the source of backward-blocking. This perturbation of I is
caused by blocking. With a perturbation of π̈i,j , Hi might block the I reflected
on another heliostat in the field.

We note Sbloi,j as the sum of the source s̊bloi,j captured on R. When backward-
blocking occurs, a perturbation of π̈i,j will perturb the effect of backward-blocking
(see an example of π̈i,1 in Fig.12) and Sbloi,j 6= 0. Finally, the geometric sensitivity
of power Si,j is the sum of all captured sources:

Si,j = Stari,j + Sbloi,j + Sshad−bi,j + Sshad−fi,j (27)

with

Stari,j = Star,spatiali,j + Star,angulari,j (28)

and

Sshad−bi,j = Sshad−b,spatiali,j + Sshad−b,angulari,j . (29)

17



Hi

R

π̈i,1

Hi

s̊shad−fi,1

Figure 11: When the forward-shadowing effect occurs, with a perturbation of
π̈i,1, a perturbation of P is observed. The source of sensitivity s̊shad−fi,1 is on the
border of the heliostat itself. The forward-shadowing is about the shadowing
effect created by the heliostat itself.

HiHi

R

π̈i,1

s̊bloi,1

Figure 12: When the backward-blocking effect occurs, a perturbation of π̈i,1
causes the perturbation of P . This is because π̈ characterizes how much intensity
reflected is blocked by Hi. The source of sensitivity s̊bloi,j is on the border of H +

i .

Each contribution in Eq.27 is the sum of the sources s̊i,j captured by the
receiver respectively:

Stari,j (π̈)
Sbloi,j (π̈)

Sshad−bi,j (π̈)

Sshad−fi,j (π̈)

 =

∫
R

d~xr

∫
2π

|~ωr · ~nr|d~ωr


s̊tari,j (~xr, ~ωr, π̈)
s̊bloi,j (~xr, ~ωr, π̈)

s̊shad−bi,j (~xr, ~ωr, π̈)

s̊shad−fi,j (~xr, ~ωr, π̈)

 . (30)

3 Algorithms

In the previous section, general models for the intensity I and its derivatives si,j
are built for an SPT system. Based on the models, we aim to build algorithms

18



to estimate the impacting power P and the matrix S by the Monte-Carlo ray
tracing method.

Concerning the model of intensity I, the only source is the intensity from
the sun I̊ located on the surface that delimits the sky, Os. P will be estimated
by summing the source I̊ captured on the receiver R(see Eq.4).

Concerning the model of si,j , there are several sources of sensitivities on the
heliostat Hi. Si,j will be estimated by summing all the sources s̊i,j captured on
the receiver R(see Eq.5).

The corresponding statistical ray tracing process can start from the receiver
looking for the sources or, inversely, from the sources located on the heliostat,
looking for the receiver. The strategy of proceeding statistical ray tracing process
has enormous influences on the convergence rate.

In order to estimate the impacting power P , unlike the Collision-Based
Monte-Carlo algorithms (CBMC) where the ray-tracing starts from a plane
above reflectors (Os in our case)[7], we integrate this work in the framework of
IFMC, starting the ray-tracing process from the reflecting surfaces (H + in our
case), which improves convergence rate[14, 24].

In order to estimate the matrix of sensitivity S, we start the statistical
ray-tracing process by the sources, looking for the receiver R.

3.1 Estimation of impacting power

The algorithm to compute the impacting power by IFMC has been thoroughly
described by [24, 39]. Here is a quick reminder of the integral formulation for
estimating P under the assumptions made in Section.2.2:

P =

∫
H +

pX(~xp1)d~xp1

∫
Ωs

pΩs
(~ωs)d~ωs

{H(~xp0 ∈ Os)H(~xp2 ∈ R)ŵ} (31)

with

pX(~xp1) =
1

SH +

, (32)

pΩs
(~ωs) =

1∫
C
d~ωs

=
1

2π(1− cos θdisk)
(33)

ŵ = DNIρ|~ωs · ~ni|SH + (34)

where SH + is the area of all reflected surfaces of the heliostats field.
Equation 31 is the integral formulation of the model to compute the impacting

power P and can also be seen as an expected value which is the core of an IFMC
algorithm. The expected value P can be estimated by the mean operator (Algo.2
in Appendix.E):

P ≈ 1

N

N∑
q=1

[H(~xp0,q ∈ Os)H(~xp2,q ∈ R)ŵq] (35)
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Hi

R

Os

Ol

~xp1

~xp0

~xp2

~ni
~ωs

~ωp

Figure 13: In order to estimate P , for each realization, the algorithm starts by
uniformly sampling a random position ~xp1 (following Eq.32) on the reflected
surface of the whole heliostat field H +. Then, a direction is sampled within
the solar cone Ωs of angular radius θdisk following the density of probability pΩs

(Eq.33). In order to check if the shadowing effect occurs, ~xp0 is defined as the
first intersection with a boundary of the system, starting at ~xp1 in the direction
−~ωs, and it is tested if ~xp0 belongs to Os. If there is no shadowing, the reflected
direction ~ωp is computed based on the law of reflection for specular surfaces from
the sampled ~ωs and the local normal ~ni at position ~xp1. In order to check if the
spillage or the blocking effect occurs, ~xp2 is defined as the first intersection with
a boundary of the system, starting at ~xp1 in the direction ~ωp, and it is tested if
~xp2 belongs to R. Finally, if no shadowing nor blocking occurs, the weight of
Monte-Carlo for this realization ŵ is computed.

where ~xp0,q and ~xp2,q are obtained through the described ray-tracing al-
gorithm on Fig.13 for the qth realization. ŵq is the value of ŵ for the qth

realization.
The standard deviation σ(P ) is computed simultaneously with P [40].

3.2 Estimation of the geometric sensitivities of power

The whole matrix of sensitivity of impacting power S has a dimension of nH ×nπ̈,
where nH is the number of heliostats and nπ̈ = 6 is the number of geometric
parameters of each heliostat, referring to Fig.4. When the number of heliostats
nH becomes large, it will be very costly in computing time if we estimate them
one by one.

Herein, we will build an efficient algorithm to estimate S. The matrix of S

is composed of the vectors of sensitivities for each heliostat S ≡
[
~Si

]
(reminding

the index i for ith Heliostat in the field):
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~Si(π̈) ≡


Si,1(π̈)
Si,2(π̈)
Si,3(π̈)
Si,4(π̈)
Si,5(π̈)
Si,6(π̈)



T

(36)

Following Eq.27, each Si,j has 4 contributions. We defined the vectors of
contributions as well as the vectors of sources similarly, and finally, we have:

~Si = ~Stari + ~Sbloi + ~Sshad−bi + ~Sshad−fi (37)

and

~̊si = ~̊stari + ~̊sbloi + ~̊sshad−bi + ~̊sshad−fi . (38)

The contributions will then be the sum of captured sources respectively on
the R. The corresponding integral formulations are detailed in Appendix.B. The
algorithm to estimate S and its standard deviation σ(S) is Algo.1.

Algorithm 1 Estimate S and σ(S)

Input: Geometries of heliostats and receiver, ~ωc
. ~ωc characterizes the solar position (Eq.15)

Initialization: i← 0
while i < nH do . nH number of heliostats

Estimate ~Stari and ~σ(~Stari ) by Algo.3

Estimate ~Sbloi and ~σ(~Sbloi ) by Algo.4

Estimate ~Sshad−bi and ~σ(~Sshad−bi ) by Algo.6

Estimate ~Sshad−fi and ~σ(~Sshad−fi ) by Algo.5
~Si ← ~Stari + ~Sbloi + ~Sshad−bi + ~Sshad−fi

~σ(~Si)← ~σ(~Smati ) + ~σ(~Sbloi ) + ~σ(~Sshad−bi ) + ~σ(~Sshad−fi )
i← i+ 1

end while
Output: S ←

[
~Si

]
, σ(S)←

[
~σ(~Si)

]
In the following part of this section, we will discuss the estimation of each

vector of contribution in Eq.37.

3.2.1 Contribution of the effect of targeting ~Stari

Stari,j is a component of ~Stari , estimated by the sum of the sources of targeting
s̊tari,j (π̈) arriving to the receiver. The corresponding integral formulation is
yielded in Appendix.B and is separated into two parts, corresponding to the
change of position (Fig.8) and the change of normal (Fig.9), noted ~Star,spatiali

and ~Star,angulari respectively. The corresponding sources of sensitivities are

separated by s̊tar,spatiali,j and s̊tar,angulari,j in Eq.25. Those sources correspond
to the spatial gradient of intensity I and the angular gradient of I [33]. It is
noted that the π̈i,4 and the π̈i,5 characterize the change of normal and also the
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change of positions (because they are related to the rotations). In contrast, other
parameters characterize only the change of position.

Hi

R

Os

Ol

~x′p1

~x′p0

~x′p2

~ni
~ωs

~ωp

~xp1

~xp0

~xp2

~ω′s

~ω′p

Figure 14: Algorithm to compute ~Stari . ~x′p1 is on the 4 borders of the heliostat
∂Hi having k as the index of the border, ~x′p0 the first intersection starting by
~x′p1 following -~ωs, ~x

′
p2 the first intersection starting by ~x′p1 following ~ωp, ~ω

′
s the

direction on the border of solar cone ∂Ωs, ~ω
′
p the direction of reflection of ~ω′s, ~xp0

the first intersection starting by ~xp1 following -~ω′s and ~xp2 the first intersection

starting by ~xp1 following ~ω′p. For each realization of estimating ~Star,spatiali , we
sample ~x′p1 and ~ωs. If ~x′p0 hits Os and ~x′p2 hits R we count ~w1 (Eq.42). For each

realization of estimating ~Star,angulari , we sample ~xp1 and ~ω′s. If ~xp0 hits Os and
~x′p2 hits R we count ~w2 (Eq.43).

The integral formulation for estimating ~Stari is detailed in Eq. 39 and Eq.
40. Corresponding probability density functions are given in Eq. 41. In Eq. 40,
k refers to the four sides of the squared heliostat.

~Stari (π̈) = ~Star,spatiali (π̈) + ~Star,angulari (π̈) (39)



~Star,spatiali (π̈) =

4∑
k=1

∫
lk

pX′(~x
′
p1)d~x′p

∫
Ωs

pΩs
(~ωs)d~ωs{

~w1H(~x′p0 ∈ Os)H(~x′p2 ∈ R)
}

~Star,angulari (π̈) =

∫
H +

i

pXi
(~xp1)d~xp

∫
∂Ωs

pΩ′s
(~ω′s)d~ω

′
s

{~w2H(~xp0 ∈ Os)H(~xp2 ∈ R)}

(40)

where
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pXi(~xp1) =
1

SH +
i

; pX′(~x
′
p1) =

1

lk
; pΩ′s(~ω′s) =

1

2π
(41)

~w1 =
~̊star,spatiali (~xp, ~ωp, π̈)

pX′(~x′p1)pΩs
(~ωs)

; (42)

~w2 =
~̊star,angulari (~xp, ~ωp, π̈)

pXi
(~xp1)pΩ′s

(~ω′s)
. (43)

The notation and the Monte-Carlo ray-tracing algorithm are shown in Fig.14.
See also Algo.3 for the complete algorithm and Appendix.C for the explicit
expression of ~w1 and ~w2.

3.2.2 Contribution of backward-blocking effect ~Sbloi

Sbloi,j is a component of ~Sbloi , estimated by the sum of the sources of backward-

blocking s̊bloi,j (π̈) arriving to the receiver. The corresponding integral formulation
is yielded in Appendix.B.

Unlike the source of targeting, the evolution of π̈i,j has no effects on the
change of normal of the reflected intensity (Fig.15). Intensity is reflected following
~ni′ on H +

i′ , while π̈i,j characterizes the heliostat Hi. Therefore, s̊bloi,j is only
about the change of position.

Hi′

R

Hi

Os

Ol

~ni′
~x′p2

~x′p1

~x′p0

~x′p3

~ωs

~ωp

Figure 15: Algorithm to compute ~Sbloi . ~x′p1 is the first intersection starting by
~x′p2, following -~ωp, ~x

′
p0 the first intersection starting by ~x′p1 following -~ωs, ~x

′
p3 the

first intersection starting by ~x′p1 following ~ωp. For each realization of estimating
~Sbloi , we sample ~x′p2 and ~ωs, and we calculate ~ωp. If ~x′p0 hits Os, ~x′p1 hits Hi′

and ~x′p2 hits R we count ~w3.

Seeing Fig.15 for the ray-tracing algorithm, the integral formulation for
estimating ~Sbloi is as following:
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~Sbloi (π̈) =

nH ,i′ 6=i∑
i′=1

4∑
k=1

∫
lk

pX′(~x
′
p2)d~x′p2

∫
Ωs

pΩs(~ωs)d~ωs{
~w3H(~x′p0 ∈ Os)H(~x′p1 ∈H +

i′ )H(~x′p3 ∈ R)
}

(44)

where

~w3 =
~̊sblo(~x′p2, ~ωp, π̈)

pX′(~x′p2)pΩs
(~ωs)

(45)

with nH the number of heliostats in the field.
Moreover, the blocked heliostat Hi′ can be all other heliostats except Hi

in the heliostats field. In order to capture all the sources s̊bloi,j (π̈i,j), we need to
proceed ray-tracing test for all other heliostats except Hi in the field to detect
the blocking effect. However, most of them will not be blocked by Hi since the
distance between the two heliostats is large. In order to accelerate and optimize
the algorithm, we will proceed with the ray-tracing tests on the heliostats, of
which the distance to Hi is within a limited length. This length is defined as ld.
See Algo.4 for the complete algorithm and Appendix.C for the explicit expression
of ~w3.

3.2.3 Contribution of forward-shadowing ~Sshad−fi,j

Sshad−fi,j is a component of ~Sshad−fi,j , estimated by the sum of the sources of

forward-shadowing s̊shad−fi,j (π̈) arriving to the receiver. The corresponding
integral formulation is yielded in Appendix.B.

Seeing the ray-tracing algorithms on Fig.16, ~Sshad−fi can be estimated by
the following integral formulation:

~Sshad−fi (π̈) =

4∑
k=1

∫
lk

pX′(~x
′
p1)d~x′p1

∫
Ωs

pΩs(~ωs)d~ωs{
~w4H(~x′p0 ∈ Os)H(~x′p2 ∈H +)H(~x′p3 ∈ R)

}
, (46)

where

~w4 =
~̊sshad−fi (~x′p1, ~ωp, π̈)

pX′(~x′p1)pΩs
(~ωs)

. (47)

See also Algo.5 for the complete algorithm and Appendix.C for the explicit
expression of ~w4.

3.2.4 Contribution of backward-shadowing effect ~Sshad−bi

Sshad−bi,j is a component of ~Sshad−bi , estimated by the sum of the sources of

backward-shadowing s̊shad−bi,j (π̈) arriving to the receiver. The corresponding
integral formulation is yielded in Appendix.B. Similar to the targeting effect, the
evolution of π̈i,j might have two possible impacts on the heliostat Hi: the change

24



Hi′

R

Hi

Os

Ol
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~x′p3

~ωs

~ωp

Figure 16: Algorithm to compute ~Sshad−fi . ~x′p0 is the first intersection starting
by ~x′p1, following -~ωs, ~x

′
p2 the first intersection starting by ~x′p1 following ~ωs,

~x′p3 the first intersection starting by ~x′p2 following ~ωp. For each realization of

estimating ~Sbloi , we sample ~x′p1 and ~ωs, and we calculate ~ωp. ~ωp is reflected

following the normal ~ni′ which is the normal of Hi′ . If ~x′p0 hits Os, ~x′p2 hits H +
i′

and ~x′p3 hits R we count ~w4.

of position and the change of normal, impacting the backward-shadowing effect.
Therefore, the contribution ~Sshad−bi can be divided by two parts: ~Sshad−b,spatiali

for the change of position and ~Sshad−b,angulari for the change of normal. Also,

the sources s̊shad−b,spatiali,j are divided by two parts respectively: s̊shad−b,spatiali,j

and s̊shad−b,angulari,j in Eq.26. They correspond to the spatial and the angular

gradient of intensity I on the reflecting surface of the heliostat H +
i [33].

Seeing Fig.10a and Fig.10b, these two gradients (spatial and angular) are
both originated from the borders of another heliostat (from point ~x′p1 in Fig.17).

Seeing the algorithm of ray-tracing in Fig17, ~Sshad−bi can be estimated
through the following integral formulation:

~Sshad−bi (π̈) =

4×nH∑
k=1

∫
lk

pX′(~x
′
p1)d~x′p1

∫
Ωs

pΩs
(~ωs)d~ωs{

(~w5 + ~w6)H(~x′p0 ∈ Os)H(~x′p2 ∈H +
i )H(~x′p3 ∈ R)

}
, (48)

where

~w5 =
~̊sshad−b,spatiali (~x′p1, ~ωp, π̈)

pX′(~x′p1)pΩs
(~ωs)

; (49)

~w6 =
~̊sshad−b,angulari (~x′p1, ~ωp, π̈)

pX′(~x′p1)pΩs
(~ωs)

. (50)
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~x′p2
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~x′p3

~ωs
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Figure 17: Algorithm to compute ~Sshad−bi . ~x′p0 is the first intersection starting
by ~x′p1, following -~ωs, ~x

′
p2 the first intersection starting by ~x′p1 following ~ωs, ~x

′
p3

the first intersection starting by ~x′p2 following ~ωp, ~ti′,k the vector of circulation
on the shadowing heliostat Hi′ , lshad−b the length of the optical path between

~x′p1 and ~x′p2. For each realization of estimating ~Sbloi , we sample ~x′p1 and ~ωs, and
we calculate ~ωp. ~ωp is reflected following the normal ~ni which is the normal of
Hi. If ~x′p0 hits Os, ~x′p2 hits H +

i and ~x′p3 hits R we count ~w5 + ~w6.

Similar to the backward-blocking effect, Hi′ can be all other heliostats except
Hi itself in the heliostats field. In order to detect all backward-shadowing effects,
we need to proceed with ray-tracing tests for all the borders of all heliostats in
the field except the borders of Hi (4× (nH −1) in total where nH is the number
of heliostats in the field). However, most of them will not create shadows on Hi

since they are too far from each other. In order to accelerate and optimize the
algorithm, we will only proceed with the ray-tracing tests for the heliostats, of
which the distance to Hi is within ld. See also Algo.6 for the complete algorithm
and Appendix.C for the explicit expression of ~w5 and ~w6.

4 Results, validations, and comparisons

In this section, we will proceed with the following:

1. Validations of our method by finite difference method using four examples.

2. A comparison of the finite difference method with our method in calculating
time.

4.1 Validations

We will here proceed with four simple examples (see Fig.18) where we apply our
method and finite difference method for validation purposes. The sensitivities of
H1 are calculated and results are shwon in Table.2, 3, 4 and 5. In case 1, only
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the spillage effect is detected. In case 2, the blocking effect is detected. In case
3, the backward-shadowing effect is detected. In case 4, the forward-shadowing
effect is detected. The estimation results by our method are validated by the
finite difference method, which will be discussed in the following subsection.

~e1

~e2

~e3

h1 θ1

H1

r1

R

(a) Case 1: r1 = (0, 0, 0), h1 = (1, 5, 1)
and θ1 = 30◦. Solar elevation angle =
60◦.

~e1

~e2

~e3 h1

H1

h2

H2

r1

R

(b) Case 2: r1 = (0, 0, 2), h1 =
(0.25, 2, 0) and h2 = (0, 3, 0). Solar ele-
vation angle = 60◦.

~e1

~e2

~e3 h1

H1

h2

H2

r1

R

(c) Case 3: r1 = (0, 0, 2), h1 =
(0.25, 2, 0) and h2 = (0, 3, 0). Solar ele-
vation angle = 30◦.

~e1

~e2

~e3 h2

H2

h1

H1

r1

R

(d) Case 4: r1 = (0, 0, 2), h2 =
(0.25, 2, 0) and h1 = (0, 3, 0). Solar ele-
vation angle = 30◦.

Figure 18: The receiver R is a rectangular with lengths of 1.50 m and r1 is its
geometric center. The heliostats H1 and H2 are two rectangles with lengths
of 1 m and h1, h2 are their geometric centers respectively. In case 1, θ1 is the
horizontal angle of H1. In case 2, 3 and 4, the heliostat H1 and H2 point to r1

according to the solar elevation angle.

4.1.1 Approximation by finite difference method

The finite difference method is a standard method to approximate the sensitivities.
When P is derivable around π̈i,j :

Si,j = lim
ε→0

P (π̈i,j + ε)− P (π̈i,j − ε)
2ε

. (51)

The finite difference method approximates Si,j by giving a non-zero fixed

value to ε. We note the result of approximation as S̃i,j :

Si,j ≈
P (π̈i,j + ∆π̈i,j)− P (π̈i,j −∆π̈i,j)

2∆π̈i,j
≡ S̃i,j . (52)
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unit W/m W/m W/m W/rad W/rad W/m

j 1 2 3 4 5 6

Star,spatial1,j −4.56 244.82× 10−3 −125.12 54.24 −2.02 33.45

Star,angular1,j 0.00 0.00 0.00 1.14× 103 −10.37 0.00

Sblo1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−b,spatial1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−b,angular1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−f1,j 0.00 0.00 0.00 0.00 0.00 0.00

S1,j −4.56 244.82× 10−3 −125.12 1.20× 103 −12.39 33.45
σ
(
S1,j

)
47.41× 10−3 876.00× 10−6 331.02× 10−3 2.19 382.67× 10−3 106.14× 10−3

S̃1,j −4.50 244.00× 10−3 −124.91 1.19× 103 −12.27 33.41

σ
(
S̃1,j

)
235.23× 10−3 235.23× 10−3 238.22× 10−3 2.38 2.35 236.04× 10−3

Table 2: Validation - Case 1: 106 realizations on each border and 108 realizations
on the surface for an estimation of S1,j and 107 realizations for each estimation

of P when approximating S̃1,j by finite difference method.

unit W/m W/m W/m W/rad W/rad W/m

j 1 2 3 4 5 6

Star,spatial1,j −793.35 143.71× 10−3 141.22× 10−3 456.62 356.02× 10−3 991.76

Star,angular1,j 0.00 0.00 0.00 −912.74 −463.55 0.00

Sblo1,j 139.39 −277.29 −415.94 −188.09 14.84 −234.30

Sshad−b,spatial1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−b,angular1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−f1,j 0.00 0.00 0.00 0.00 0.00 0.00

S1,j −653.96 −277.15 −415.80 −644.22 −448.36 757.46
σ
(
S1,j

)
270.41× 10−3 890.09× 10−3 1.03 13.81 2.08 643.34× 10−3

S̃1,j −654.25 −277.20 −415.90 −640.00 −450.50 757.50

σ
(
S̃1,j

)
180.35× 10−3 181.87× 10−3 181.38× 10−3 18.23 1.82 1.82

Table 3: Validation - Case 2: 106 realizations on each border and 109 realizations
on the surface for an estimation of S1,j and 109 realizations for each estimation

of P when approximating S̃1,j by finite difference method.

Practically, the approximation of S̃i,j requires estimating P twice. Since
the impacting power P is estimated by the Monte-Carlo method, its statisti-
cal standard deviation σ(P ) is also estimated at the same time [40]. When
approximating S̃i,j , its standard deviation σ(S̃i,j) can be obtained [23]:

σ(S̃i,j) ≈
σ(P (π̈i,j + ∆π̈i,j)) + σ(P (π̈i,j −∆π̈i,j))

2∆π̈i,j
. (53)

The major drawback of the finite difference method is that the related
standard deviation σ(S̃i,j) is hard to control[23] and tends to infinity as ∆π̈i,j
tends to zero.

4.2 Comparison with the finite difference method

In this section, we will apply and discuss the algorithms previously introduced
in the context of a functioning solar tower station: Sierra SunTower [34]. This
case study has been chosen since our sensitivity model was developed for flat
heliostats.

This solar tower station is located in Mojave Desert, California, at a latitude
of 34.7◦. It consists of 2 solar towers, each with north and south heliostat
subfields[34].

The heliostat field and the two towers are symmetrically distributed. There-
fore, we only focus on the field on the southwest side and its related tower,
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unit W/m W/m W/m W/rad W/rad W/m

j 1 2 3 4 5 6

Star,spatial1,j −236.19 −531.19 −530.35 −493.65 35.84 801.24

Star,angular1,j 0.00 0.00 0.00 1.64× 103 137.89 0.00

Sblo1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−b,spatial1,j 0.00 155.41 1.18× 103 −461.94 −19.41 12× 10−6

Sshad−b,angular1,j 0.00 0.00 0.00 −200.32 −1.56 0.00

Sshad−f1,j 0.00 0.00 0.00 0.00 0.00 0.00

S1,j −236.19 −375.79 650.09 479.69 152.76 801.24
σ
(
S1,j

)
496.41× 10−3 427.22× 10−3 1.02 11.88 1.53 393.25× 10−3

S̃1,j −236.00 −376.00 649.50 490.00 150.00 800.50

σ
(
S̃1,j

)
780.28× 10−3 771.28× 10−3 770.40× 10−3 7.72 7.72 773.85× 10−3

Table 4: Validation - Case 3: 106 realizations on each border and 109 realizations
on the surface for an estimation of S1,j and 109 realizations for each estimation

of P when approximating S̃1,j by finite difference method.

unit W/m W/m W/m W/rad W/rad W/m

j 1 2 3 4 5 6

Star,spatial1,j −1.29× 10−3 −2.10× 10−3 −2.31× 10−3 −849.47 242.46× 10−3 1.06× 103

Star,angular1,j 0.00 0.00 0.00 1.69× 103 −88.94× 10−3 0.00

Sblo1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−b,spatial1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−b,angular1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−f1,j −68.35 375.08 −649.65 −318.62 17.21 −232.07

S1,j −68.35 375.08 −649.66 523.12 17.37 823.17
σ
(
S1,j

)
181.08× 10−3 220.47× 10−3 382.90× 10−3 10.45 973.89× 10−3 206.71× 10−3

S̃1,j −68.50 375.00 −649.50 530.00 15.00 823.00

σ
(
S̃1,j

)
771.70× 10−3 771.28× 10−3 770.40× 10−3 7.72 7.72 771.70× 10−3

Table 5: Validation - Case 4: 106 realizations on each border and 109 realizations
on the surface for an estimation of S1,j and 109 realizations for each estimation

of P when approximating S̃1,j by finite difference method.

29



which includes 6090 flat heliostats. It is easy to extend the calculation for the
whole field in the south (including 12180 heliostats). However, extra efforts are
needed for the field on the north side since the towers’ shadows will impact the
sensitivities.

Table.6 shows the geometric parameters of the radiative system, as well as
the solar positions for the summer solstice.

Characteristic Value

Overall north-south length 95 [m]
Overall east-west length 175 [m]

Distance between the tower and the first row of heliostats 12.5 [m]
Number of heliostats per column 58

Number of heliostats per row 105
Size of heliostats 1.067× 1.067 [m2]

Height of the centre of receiver 50 [m]
Size of receiver 4× 4 [m2]

Zenith angle for the summer solstice at solar noon 79◦

Table 6: Geometric configuration of the system[34]

The present work focuses on the optical performance (the impacting power
P ). It is assumed that:

1. The sun’s position is fixed (solar noon for the summer solstice)

2. Incoming Direct Normal Intensity (DNI) is considered homogeneous for
the whole heliostat field (DNI = 1000W/m2).

The incoming power, P (π̈) and its derivatives S(π̈) towards geometric
parameters π̈ ≡ [π̈i,j ] are estimated. It is reminded that i refers to the ith

heliostat (i ∈ {1, 2 . . . , 6090}) and j to one of the six geometric parameters
(j ∈ {1, 2, . . . , 6}) as shown on Fig.4.

Results have already been shown at the beginning of this article (Fig.2). It
is noted that the accuracy of the simulation depends on the number of Monte
Carlo realizations. Each Monte-Carlo realization consists of the corresponding
sampling process and the ray-tracing tests described in Section.3.

When we focus on one parameter of one heliostat in the field (for example, the
size of the 5297th heliostat: π̈5297,6), it has a tinny impact on the total impacting
power P . It causes a poor convergence performance when applying the finite
difference method, as shown in Table.7. Compared to our method, the method of
approximation by finite difference takes much more time to converge because the
choice of ∆π̈ enormously impacts the convergence rate and the precision for the
approximation method of finite difference. In contrast, our method of estimation
avoids this choice. These calculations are run parallelly in an ordinary laptop1,
and our method converges in 0.188s. According to [40], to reduce ten times the
standard deviation of a Monte-Carlo estimation, approximately 100 times the
calculation time is needed. In this application case, the approximation of the

14 CPUs of i5 Intel™, 8th generation
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finite difference method will then spend approximately 2× 1011 more times of
calculating time to attend the same order of standard deviation of our method.

Last but not least, it is found that in Table.2, Table.3, Table.4 and Table.5,
the advantage of our method in convergence performance is not that significant
compared to the finite difference method. We have the following comments:

1. The four cases are dedicated to validation purposes. Therefore, the geome-
tries are relatively simple compared to a functioning SPT system. However,
the finite difference method will become impracticable when the geometries
become more complex.

2. Even with simple geometries, the standard derivation of the finite difference
method (σ(S̃i,j)) is hard to be controlled. It is strongly dependent on the
value of ∆π̈i,j chosen in Eq.52 and Eq.53.

3. The derivation related to the discretization can not be handled for the
finite difference method. It is also largely related to the choice of ∆π̈ in
Eq.52 and Eq.53. However, our method can handle the statistical standard
derivation. We avoid the derivation related to the discretization and the
choice of ∆π̈i,j .

Finite difference method Value standard deviation calculation time

P (π̈5297,6 −∆π̈5297,6) 3231.62[w] 0.0389[w] 272.5[s]
P (π̈5297,6 + ∆π̈5297,6) 3231.85[w] 0.0389[w] 272.5[s]

S̃5297,6(π̈5297,6) 1.15[w/m] 0.389[w/m] 545[s]

Our method Value standard deviation calculation time

S5297,6(π̈5297,6) 1.14974[w/m] 0.000041[w/m] 0.188[s]

Table 7: π̈5297,6 is originally equal to 1.067 (see Table.6), while herein, a rea-
sonable value of ∆π̈5297,6 is chosen: ∆π̈5297,6 = 0.1[m]. Two estimations of
impacting power (P (π̈5297,6 −∆π̈5297,6) and P (π̈5297,6 + ∆π̈5297,6)) are realized

following Algo.2 (109 Monte-Carlo realizations) . The sensitivity of power S̃5297,6

is approximated based on these two estimations. Also, the sensitivity of power
S5297,6 is estimated following Algo.1 (104 Monte-Carlo realizations for each
border of the heliostats).

5 Conclusion

We have presented general models for the intensity I and the sensitivity of
intensity si,j in a radiative system of an SPT system, as well as the complete
algorithms for estimating the matrix of sensitivity of power S. These algorithms
are validated by the finite difference method using four typical examples. Since
the sensitivity of a heliostat of a geometric parameter Si,j is estimated by

the accumulation of four contributions: Stari,j , Sbloi,j , Sshad−bi,j and Sshad−fi,j , the
contributions of different physical events to the sensitivity Si,j in an SPT system
(blocking, shadowing, spillage) can be analyzed in detail. After that, an actual

31



functioning SPT system was used as a test-case study. Firstly, a comparison
of computing time was made for estimating sensitivity by our method and its
approximation by the finite difference method. Secondly, the matrix of sensitivity
of power S was calculated. Engineers can benefit from this information on
sensitivities to optimize the optical design and the aiming strategy for the SPT
system. Last but not least, this work makes the integration of gradient-based
optimizations for the optical system in an SPT becomes possible. However, the
sensitivity model developed in the present paper is only applied to a field of
flat heliostats. Thus, a promising perspective would be to extend this model to
curved heliostats.

This work received financial support from the from Region Occitanie and the
SOLSTICE laboratory of Excellence (ANR-10-LABX-22-01).

A Boundary conditions of geometric sensitivi-
ties for a heliostat

In this work, a heliostat is modeled by two surfaces without thickness: the
reflecting surface H +

i and the rearward surface H −
i .

Based on the general model in[33], the boundary condition of geometric
sensitivities for a cold, specular mirror with homogeneous reflectivity is developed,
where I(~xp, ~ωp, π̈) and I(~xp, ~ωs, π̈) are spatially and angularly smooth:

si,j(~xp, ~ωp, π̈) =− ∂1,~vi,jI(~xp, ~ωp, π̈)

+ ρ∂1,~vi,jI(~xp, ~ωs, π̈)

− ρ∂~aRI(~xp, ~ωs, π̈)

+ ρ∂~a
′

R I(~xp, ~ωs, π̈)

+ ρsi,j(~xp, ~ωs, π̈)

(54)

where ∂1,~vi,j is the operator for spatial gradient following the vector ~vi,j which

are the velocity of deformation (yielded in Appendix.D), ∂~aR the operator for
angular gradient following the vector of rotation ~a, and ~a′ the reflected vector of
−~a on H +

i [33]. However, when we model the reflecting surface H +
i , I(~xp, ~ωp, π̈)

is spatially discontinued because the heliostat has 4 edges and I(~xp, ~ωs, π̈) can
be angularly discontinued (when backward-shadowing occurs, see Fig.10b).

In [33], the discontinuity of spatial gradient and angular gradient of intensity I
are studied. The boundary condition of H +

i can then be yielded. Furthermore, in
this work, we classify the different sources of sensitivity based on the background
of CSP applications:

si,j(~xp, ~ωp, π̈) = s̊tari,j (~xp, ~ωp, π̈) + s̊bloi,j (~xp, ~ωp, π̈)

+ s̊shad−bi,j (~xp, ~ωp, π̈) + ρsi,j(~xp, ~ωs, π̈). (55)

s̊tari,j is separated into the source s̊tar,spatiali,j on the border of heliostat ∂H +
i

and the source s̊tar,angulari,j on the surface H +
i : s̊tari,j = s̊tar,spatiali,j + s̊tar,angulari,j ,

where:

s̊tar,spatiali,j (~xp, ~ωp, π̈) = −(~ωp × ~vi,j) · ~ti,kρI(~xp, ~ωs, π̈) (56)
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and

s̊tar,angulari,j (~xp, ~ωp, π̈) = −ρ∂~aRI(~xp, ~ωs, π̈)

+ ρ∂~a
′

R I(~xp, ~ωs, π̈). (57)

~ti,k are the vectors of circulation of H +
i , depending on ~xp, see Fig.19.

When the backward-shadowing does not occur, the angular gradient in
Eq.57 will be the angular derivative of the boundary condition of Os (previously
defined in Eq.15, which is the Pill-box sun shape model). The development is
straightforward, and they are the sources on the border of the solar cone ∂Ωs:

∂~aRI(~xp, ~ωs, π̈) = I0(~ωs × ~a) · ~ωcH(hitb ∈ Os) (58)

∂~a
′

R I(~xp, ~ωs, π̈) = I0(~ωs × ~a′) · ~ωcH(hitb ∈ Os) (59)

where H(hitb ∈ Os) corresponds to a backward ray-tracing test which will be
true if the direction of −~ωs starting from ~xp is not shadowed by other heliostats
in the field.

s̊bloi,j is the source on the border of heliostat ∂H +
i :

s̊bloi,j (~xp, ~ωp, π̈) = (~ωp × ~vi,j) · ~ti,kI(~xp, ~ωp, π̈) (60)

When backward-shadowing effect occurs, H +
i is shadowed by another helio-

stat H +
i′ , a spatial gradient exists on the surface of H +

i (Fig.10a). An angular
gradient exists within the solar cone Ωs (Fig.10b). Furthermore, in our case,
these sources on the surface of H + and within the cone Ωs all come from the
border of the shadowing heliostat ∂H +

i′ .
Following the models of spatial gradient and angular gradient in [33], the

source s̊shad−bi,j is on the borders of all heliostats in the field except the heliostat

Hi, which is ∂H +
i′ , i

′ 6= i. Similar to the source of targeting, we separate the

source s̊shad−bi,j by s̊shad−b,spatiali,j and s̊shad−b,angular:

s̊shad−bi,j (~xp, ~ωp, π̈) = s̊shad−b,spatiali,j (~xp, ~ωp, π̈)

+ s̊shad−b,angulari,j (~xp, ~ωp, π̈) (61)

where

s̊shad−b,spatiali,j (~xp, ~ωp, π̈) =

ρ
~vi,j · ~ni
~ωp · ~ni

(~ωs × ~ωp) · ~ti′,kI(~xp′ , ~ωs, π̈) (62)

and
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s̊shad−b,angulari,j (~xp, ~ωp, π̈) =

− ρlshad−b(~ωs × ~a× ~ωs) · ~ti′,kI(~xp′ , ~ωs, π̈)

+ ρlshad−b(~ωs × ~a′ × ~ωs) · ~ti′,kI(~xp′ , ~ωs, π̈). (63)

~ti′,k are the vectors of circulation of H +
i′ [33], see Fig.19 and lshad−b is the

length of optical path between ~x′p and ~xp (Fig.17).

The boundary condition of the rearward surface H −
i can be developed based

on the general model of opaque-black surface in [33]:

s(~xb, ~ωs, π̈) = s̊shad−fi,j (~xb, ~ωs, π̈) (64)

and s̊shad−fi,j is the source on the border of the heliostat H −
i :

s̊shad−fi,j (~xb, ~ωb, π̈) =

(~ωs × ~vi,j) · ~ti,kI(~xb, ~ωs, π̈) (65)

B Integral formulations

The vectors of contributions of S defined in Section.3.2 are the sum of the vectors
of sources captured by the receiver R respectively. ~Star,spatiali (π̈) is estimated

by integrating ~̊star,spatiali on ∂H +
i and on Ωs:

~Star,spatiali (π̈) =

∮
∂H +

i

d~xp

∫
Ωs

d~ωs{
H (hitf ∈ R)~̊star,spatiali (~xp, ~ωp, π̈)

}
(66)

where the Heaviside function H(hitf ∈ R) corresponds to a forward ray-
tracing test which will be true if the source arrives at R (the ray staring at ~xp,
following ~ωp impacts the receiver R).

~Star,angulari (π̈) is estimated by integrating ~̊star,angulari on H +
i and on ∂Ωs:

~Star,angulari (π̈) =

∫
H +

i

d~xp

∮
∂Ωs

d~ωs{
H (hitf ∈ R)~̊star,angulari (~xp, ~ωp, π̈)

}
(67)

~Sbloi (π̈) is estimated by integrating ~̊sbloi on ∂H +
i and on Ωs:

~Sbloi (π̈) =

∮
∂H +

i

d~xp

∫
Ωs

d~ωs {
H (hitf ∈ R)~̊sbloi (~xp, ~ωp, π̈)

}
(68)
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~Sshad−bi (π̈) is estimated by integrating ~̊sshad−bi on all the borders of other
heliostats in the field ∂H +

i′ and on Ωs:

~Sshad−bi (π̈) =

nH ,i′ 6=i∑
i′=1

∮
∂H +

i′

d~xp

∫
Ωs

d~ωs{
H (hitf ∈ R)~̊sshad−bi (~xp, ~ωp, π̈)

}
(69)

~Sshad−fi (π̈) is estimated by integrating ~̊sshad−fi on ∂H −
i and on Ωs:

~Sshad−fi (π̈) =

∮
∂H −

i

d~xb

∫
Ωs

d~ωs {
H (hitf ∈ R)~̊sshad−fi (~xb, ~ωb, π̈)

}
(70)

Finally, the corresponding integral formulations of ~Star(π̈), ~Star(π̈), ~Sblo(π̈),
~Sshad−b(π̈) and ~Sshad−f (π̈) are shown in Section.3.

C Explicit expression of Monte-Carlo weight

C.1 Contribution of targeting

We substitute Eq.56 into Eq.42, as well as Eq.57 into Eq.43. The following
explicit expressions of Monte-Carlo weight are then yielded:

~w1 = −lkDNI



(~ωp × ~vi,1) · ~ti,k
(~ωp × ~vi,2) · ~ti,k
(~ωp × ~vi,3) · ~ti,k
(~ωp × ~vi,4) · ~ti,k
(~ωp × ~vi,5) · ~ti,k
(~ωp × ~vi,6) · ~ti,k


; (71)

~w2 = 2πI0SH +
i
|~ω′s · ~ni|



0
0
0

−2(~ω′s × ~ai,θ) · ~ωc(
~ω′s × (~a′i,φ − ~ai,φ)

)
· ~ωc

0


. (72)

where SH +
i

the area of the reflecting surface of the heliostat H +
i , lk the

length of kth side of the heliostat Hi and ~ti,k the vectors of circulation which is
clockwise around the normal ~ni following the convention of[33], see Fig.19. ~vi,j
is the velocity of deformation linked to the point ~x′p1. Generally, it is a function
of a point ~x on the heliostat Hi:

~vi,j ≡ ~vi,j(~x). (73)
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~ni
~ai,φ

~a′i,φ

~ai,θ

Hi

~ai,θ
~ti,1

~ti,2

~ti,3

~ti,4

Figure 19: ~ti,k are the clockwise vectors of circulation around ~ni

The vectors of ~vi,j are given by Table.8, where ~e = ~x− ~xc,i and ~xc,i is the
central position of the heliostat Hi. The demonstrations are in Appendix.D and
for example, the field of ~vi,4(~xp) and ~vi,5(~xp) are shown in Fig.20 and Fig.21.

~vi,1 ~vi,2 ~vi,3 ~vi,4 ~vi,5 ~vi,6
[1, 0, 0] [0, 1, 0] [0, 0, 1] ~ai,θ × ~e ~ai,φ × ~e ~e

lk

Table 8: Components of ~vi,j for a point ~x on Hi

In Eq.72, ~ai,θ is the axis of rotation related to π̈i,4 and ~ai,φ the axis of rotation
related to π̈i,5. ~a′i,φ is the vector reflected by H +

i from -~ai,φ [33], see Fig.19.

~ai,θ

~vi,4(~xp)

Figure 20: Schema of the field of ~vi,4(~xp)
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~ai,φ

~vi,5(~xp)

Figure 21: Schema of the field of ~vi,5(~xp)

C.2 Contribution of backward-blocking

We substitute Eq.60 into Eq.45. The following explicit expression of Monte-Carlo
weight is then yielded:

~w3 = lkDNI



(~ωp × ~vi,1) · ~ti,k
(~ωp × ~vi,2) · ~ti,k
(~ωp × ~vi,3) · ~ti,k
(~ωp × ~vi,4) · ~ti,k
(~ωp × ~vi,5) · ~ti,k
(~ωp × ~vi,6) · ~ti,k


; (74)

C.3 Contribution of forward-shadowing

We substitute Eq.65 into Eq.47. The following explicit expression of Monte-Carlo
weight is then yielded:

~w4 = −lkDNI



(~ωs × ~vi,1) · ~ti,k
(~ωs × ~vi,2) · ~ti,k
(~ωs × ~vi,3) · ~ti,k
(~ωs × ~vi,4) · ~ti,k
(~ωs × ~vi,5) · ~ti,k
(~ωs × ~vi,6) · ~ti,k


. (75)

C.4 Contribution of backward-shadowing

We substitute Eq.62 into Eq.49, as well as Eq.63 into Eq.50. The following
explicit expressions of Monte-Carlo weight are then yielded:

with
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~w5 = ρlkDNI



~vi,1 · ~ni
~ωp · ~ni

(~ωs × ~ωp) · ~ti′,k
~vi,2 · ~ni
~ωp · ~ni

(~ωs × ~ωp) · ~ti′,k
~vi,3 · ~ni
~ωp · ~ni

(~ωs × ~ωp) · ~ti′,k
~vi,4 · ~ni
~ωp · ~ni

(~ωs × ~ωp) · ~ti′,k
~vi,5 · ~ni
~ωp · ~ni

(~ωs × ~ωp) · ~ti′,k
~vi,6 · ~ni
~ωp · ~ni

(~ωs × ~ωp) · ~ti′,k



(76)

and

~w6 =ρlkDNIlshad−b
0
0
0

−2(~ωs × ~ai,θ × ~ωs) · ~ti′,k
(~ωs × (~ai,φ − ~ai,φ′)× ~ωs) · ~ti′,k

0


(77)

D Velocity of deformation

Following [33], we need to define a geometric space, and a material space for
a heliostat Hi, and special notations are needed to calculate the velocity of
deformation. In geometric space, the positions ~̌y and directions ~̌ω are functions
of the geometric parameter π̈i,j , while in material space, the positions are noted
~y and directions are noted ~ω. They are not depended on π̈i,j .

The function Z and Ω link the two spaces so that the positions and directions
in one space can refer to the other space:

~̌y = Z(~y, π̈i,j); ~̌ω = Ω(~ω, π̈) (78)

We define the velocity of deformation ~vi,j as the derivative of Z with respect
to π̈i,j :

~vi,j ≡ ∂π̈i,j
Z(~y, π̈i,j) (79)

For different π̈i,j , the velocities of deformations ~vi,j are summarized in Table.9,
where ~aθ and ~aφ are two axes of rotation for the heliostat Hi (in Fig.4) and lk
the original length of size of the heliostat.
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Z(~y, π̈i,j) ~v = ∂π̈Z

π̈i,1

 π̈i,1
0
0

+ ~y ~v =

 1
0
0



π̈i,2

 0
π̈i,2
0

+ ~y ~v =

 0
1
0



π̈i,3

 0
0
π̈i,3

+ ~y ~v =

 0
0
1


π̈i,4 ~y + π̈i,4(~ai,θ × ~y) ~ai,θ × ~y

π̈i,5 ~y + π̈i,5(~ai,φ × ~y) ~ai,φ × ~y

π̈i,6
π̈i,6

lk
~y ~y

lk

Table 9: The functions Z and ~v for the 6 geometric parameters of heliostat

E Algorithms

Algorithm 2 Estimate P

Input: Geometry of heliostats and receiver, ~ωc, N
. N number of realizations

Initialization: n← 0, sum← 0, sum2← 0
while n < N do

Sample ~xp1 on SH + based on pX
Sample ~ωs within Ωs based on pΩs .
Compute ~ωp by the law of specular reflection
Get ~xp0 from ~xp1 following −~ωs
Get ~xp2 from ~xp1 following ~ωp
if ~xp0 ∈ Os & ~xp2 ∈ R then

Compute ŵ
sum← sum+ ŵ
sum2← sum2 + ŵ2

else
sum← sum+ 0
sum2← sum2 + 0

end if
n← n+ 1

end while

Output: P ← sum
N , σ(P )←

√
sum2

N −( sum
N )2

N−1
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Algorithm 3 Estimate ~Stari and ~σ(~Stari )

Input: Geometry of heliostats and receiver, ~ωc, N
. N number of realizations

Initialization: ~Stari ← 0, ~σ(~Stari )← 0
while k < 4 do . Hi has 4 borders

Initialization: n← 0, −−→sum← 0,
−−−→
sum2← 0

while n < N do
Sample ~x′p1 on lk based on pX′

Sample ~ωs within Ωs based on pΩs
.

Compute ~ωp based on ~ωs and ~ni by the law of specular reflection
Get ~x′p0 from ~x′p1 following −~ωs
Get ~x′p2 from ~x′p1 following ~ωp
if ~x′p0 ∈ Os & ~x′p2 ∈ R then

Compute ~w1−−→sum← −−→sum+ ~w1−−−→
sum2← −−−→sum2 + ~w2

1

else−−→sum← −−→sum+ 0−−−→
sum2← −−−→sum2 + 0

end if
n← n+ 1

end while

~Stari ← ~Stari +
−−→sum
N , ~σ(~Stari )← ~σ(~Stari ) + σ(P )←

√
−−−→
sum2

N −(
−−→sum
N )2

N−1

k ← k + 1
end while
Initialization: n← 0, −−→sum← 0,

−−−→
sum2← 0

while n < N do . N number of realizations
Sample ~xp1 on SH +

i
based on pXi

Sample ~ω′s on ∂Ωs based on pΩ′s
.

Compute ~ω′p based on ~ω′s and ~ni by the law of specular reflection
Get ~xp0 from ~xp1 following −~ω′s
Get ~xp2 from ~xp1 following ~ω′p
if ~xp0 ∈ Os & ~xp2 ∈ R then

Compute ~w2−−→sum← −−→sum+ ~w2−−−→
sum2← −−−→sum2 + ~w2

2

else−−→sum← −−→sum+ 0−−−→
sum2← −−−→sum2 + 0

end if
n← n+ 1

end while

~Stari ← ~Stari +
−−→sum
N , ~σ(~Stari )← ~σ(~Stari ) + σ(P )←

√
−−−→
sum2

N −(
−−→sum
N )2

N−1

Output: ~Stari , ~σ(~Stari )
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Algorithm 4 Estimate ~Sbloi and ~σ(~Sbloi )

Input: Geometry of heliostats and receiver, ~ωc, N , i
. N number of realizations

Initialization: i′ ← 0, ~Sbloi ← 0, ~σ(~Sbloi )← 0 . i′ index of heliostat being
blocked
while i′ < nH do . nH number of heliostats

Compute the distance li,i′ between Hi and Hi′

if li,i′ < ld & i′ 6= i then
. Ignore the too-far-away heliostats for backward-blocking effect

Initialization: k ← 0
while k < 4 do . Hi has 4 borders

Initialization: n← 0, −−→sum← 0,
−−−→
sum2← 0

while n < N do
Sample ~x′p2 on lk based on pX′

Sample ~ωs within Ωs based on pΩs
.

Compute ~ωp based on ~ωs and ~ni′ by the law of specular reflection
Get ~x′p1 from ~x′p2 following −~ωp
Get ~x′p0 from ~x′p1 following −~ωs
Get ~x′p3 from ~x′p2 following ~ωp
if ~x′p0 ∈ Os & ~x′p1 ∈H +

i′ & ~x′p3 ∈ R then
Compute ~w−−→sum← −−→sum− ~w1−−−→
sum2← −−−→sum2− ~w2

1

else−−→sum← −−→sum+ 0−−−→
sum2← −−−→sum2 + 0

end if
n← n+ 1

end while
k ← k + 1

~Sbloi ← ~Sbloi +
−−→sum
N , ~σ(~Sbloi )← ~σ(~Sbloi ) + σ(P )←

√
−−−→
sum2

N −(
−−→sum
N )2

N−1

end while
end if
i′ ← i′ + 1

end while
Output: ~Sbloi , ~σ(~Sbloi )
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Algorithm 5 Estimate ~Sshad−fi and ~σ(~Sshad−fi )

Input: Geometry of heliostats and receiver, ~ωc, N
. N number of realizations

Initialization: k ← 0, ~Sshad−fi ← 0, ~σ(~Sshad−fi )← 0
while k < 4 do . Hi has 4 borders

Initialization: n← 0, −−→sum← 0,
−−−→
sum2← 0

while n < N do
Sample ~x′p1 on lk of H +

i based on pX′

Sample ~ωs within Ωs based on pΩs
.

Get ~x′p2 from ~x′p1 following ~ωs
Get the normal ~ni′ on ~xp2
Compute ~ωp based on ~ωs and ~ni′ by the law of specular reflection
Get ~x′p0 from ~x′p1 following −~ωs
Get ~x′p3 from ~x′p2 following ~ωp
if ~x′p0 ∈ Os & ~x′p1 ∈H + & ~x′p3 ∈ R then

Compute ~w−−→sum← −−→sum+ ~w3−−−→
sum2← −−−→sum2 + ~w2

3

else−−→sum← −−→sum+ 0−−−→
sum2← −−−→sum2 + 0

end if
n← n+ 1

end while
k ← k + 1

end while
~Sshad−fi ← ~Sshad−fi +

−−→sum
N , ~σ(~Sshad−fi ) ← ~σ(~Sshad−fi ) + σ(P ) ←√

−−−→
sum2

N −(
−−→sum
N )2

N−1

Output: ~Sshad−fi , ~σ(~Sshad−fi )
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Algorithm 6 Estimate ~Sshad−bi and ~σ(~Sshad−bi )

Input: Geometry of heliostats and receiver, ~ωc, N , i
. N number of realizations

Initialization: i′ ← 0, ~Sshad−bi ← 0, ~σ(~Sshad−bi )← 0 . i′ index of shadowing
heliostat
while i′ < nH do . nH number of heliostats

Compute the distance li,i′ between Hi and Hi′

if li,i′ < ld & i′ 6= i then
. Ignore the too-far-away heliostats for backward-shadowing effect

Initialization: k ← 0
while k < 4 do . loop all borders onHi′

Initialization: n← 0, −−→sum← 0,
−−−→
sum2← 0

while n < N do
Sample ~x′p1 on lk of Hi′ based on pX′

Sample ~ωs within Ωs based on pΩs
.

Get ~x′p2 from ~x′p1 following ~ωs
Compute ~ωp based on ~ωs and ~ni by the law of specular reflection
Get ~x′p0 from ~x′p1 following −~ωs
Get ~x′p3 from ~x′p2 following ~ωp
if ~x′p0 ∈ Os & ~x′p2 ∈H +

i & ~x′p3 ∈ R then
Compute ~w4 and ~w5−−→sum← −−→sum+ ~w4 + ~w5−−−→
sum2← −−−→sum2 + (~w4 + ~w5)2

else−−→sum← −−→sum+ 0−−−→
sum2← −−−→sum2 + 0

end if
n← n+ 1

end while
k ← k + 1
~Sshad−bi ← ~Sshad−bi +

−−→sum
N , ~σ(~Sshad−bi ) ← ~σ(~Sshad−bi ) + σ(P ) ←√

−−−→
sum2

N −(
−−→sum
N )2

N−1

end while
end if
i′ ← i′ + 1

end while
Output: ~Sshad−bi , ~σ(~Sshad−bi )
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[10] Peter Schwarzbözl, Robert Pitz-Paal, and Mark Schmitz. Visual hflcal-a
software tool for layout and optimisation of heliostat fields. In Proceedings,
2009.

[11] Charles N Vittitoe and Frank Biggs. User’s guide to helios: a computer
program for modeling the optical behavior of reflecting solar concentrators.
part iii. appendices concerning helios-code details. Technical report, Sandia
National Lab.(SNL-NM), Albuquerque, NM (United States), 1981.

[12] Michael J Wagner and Tim Wendelin. Solarpilot: A power tower solar field
layout and characterization tool. Solar Energy, 171:185–196, 2018.

[13] Pierre Garcia, Alain Ferriere, and Jean-Jacques Bezian. Codes for solar flux
calculation dedicated to central receiver system applications: A comparative
review. Solar Energy, 82(3):189–197, 2008.

44



[14] Ye Wang, Daniel Potter, Charles-Alexis Asselineau, Clotilde Corsi, Michael
Wagner, Cyril Caliot, Benjamin Piaud, Manuel Blanco, Jin-Soo Kim, and
John Pye. Verification of optical modelling of sunshape and surface slope
error for concentrating solar power systems. Solar Energy, 195:461–474,
2020.

[15] Robert Pitz-Paal, Nicolas Bayer Botero, and Aldo Steinfeld. Heliostat field
layout optimization for high-temperature solar thermochemical processing.
Solar energy, 85(2):334–343, 2011.
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[30] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differen-
tiable monte carlo ray tracing through edge sampling. ACM Transactions
on Graphics (TOG), 37(6):1–11, 2018.
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