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A B S T R A C T

Coupling energy networks becomes unavoidable in order to decarbonize human usages, increase global energy 
efficiency and ensure flexibility in so-called ‘‘multi-energy’’ network. In such a network, high temperature 
thermal energy storage (HTTES) can be a relevant solution when designed and managed in an optimal way. 
However, the precise modeling of its physical behavior requires complex models whose computational costs 
are not compatible with optimal control. A fortiori, a co-optimization approach requires to select a less precise 
but faster model. This article proposes to study the consequences of using a panel of such lighter models, in 
particular by discussing the modeling of losses. To do so, two business models will be discussed on a case 
study composed of a heat network linking a concentrated solar power (CSP) to thermal industrial load. When 
losses are not a consideration, the use of very simplistic models is sufficient to determine a good estimate 
of storage sizing. However, if losses are included, a proper co-optimization can only be achieved by using a 
metamodeling approach.
1. Introduction

In 2018, 76% of global greenhouse gas emissions (GHG) are emitted
in the energy sector, where 42% of this energy is designed to meet heat
and electricity needs in residential, service and industrial sectors [1].
o overcome this problem, governments and industries seek energy
trategies and technical solutions to reduce the carbon footprint of the
roduced energy. In Europe, 78% of electricity, in the residential sector,
as been consumed for space and water heating in 2020 [2]. However,
onsidering the coupling between heat and electricity sectors is unusual
today when building networks, even though it is necessary to reach
a global optimal design and management. This approach is complex,
as it uses innovative technologies and requires fine optimization to
reach a profitable solutions, compared to standard approaches [3]. The
efforts made to overcome the difficulties of a multi-energy network
are justified by the numerous resources and technologies that could
then be exploited much more widely than today [4]. For instance,
8900TWh/year of waste heat can be exploited if considered when
designing energy networks [5]. Moreover, the share of renewable en-
ergy in the final consumption needs to be doubled by 2030, to be
on track with the net zero emissions by 2050 Scenario [1]. Hence,
flexible networks will be required to accommodate important amount

∗ Corresponding author at: SATIE Laboratory (CNRS) - Ecole Normale Superieure of Rennes, Bruz, France.

of intermittent energy and to meet heat and electrical needs. To achieve
this, conversion systems (Power-To-Heat, Heat-To-Power...) to couple
networks and multiple storage technologies do exist such as Electro-
chemical Energy Storage (EES) and Thermal Energy Storage (TES). TES
can have many uses such as storing excess of heat or even electricity,
after being converted into heat by the help of Power-To-Heat (PTH)
system, during production peak periods. In the other way, TES can
deliver heat or electricity, coupled to a steam turbine or an Organic
Rankine Cycle (ORC), during load peak periods [6].

TES technologies are multiple and can be categorized based on their
temperature, physical principle, geometry, storage medium (HSM) and
heat transfer fluid (HTF) as discussed in [7]. Here, a sensible thermo-
cline high temperature thermal energy storage (HTTES), using air as
HTF and rocks as HSM, will be studied [8]. This technology has proven
to be cost effective and recently undergone numerous developments
as shown in [9–11]. In a multi-energy network, the HTTES system
represents an important flexibility to accommodate intermittent energy
resources but also to meet uncontrolled demand. The investment cost of
such a system (CAPEX) can be a barrier if not optimized. In other words,
if operation costs (OPEX) and benefices do not payback the CAPEX
E-mail address: Ibrahim.alasmi@ens-rennes.fr (I. Al Asmi).
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Nomenclature

Acronyms

1D/2D One dimension, two dimensions
BM Business model
CED Cumulative energy demand
CSP Concentrated solar power
DNI Direct normal irradiation
EPBT Energy payback time
HT High temperature
HSM Heat storage material
HTF Heat transfer fluid
LF Logistic function
MM Metamodel
MPC Model predictive control
no Number
NRMSD Normalized root mean square deviation
PDE Partial differential equations
SLSQP Sequential least squares programming
TES Thermal energy storage

Greek Symbols

𝜌 Density, (kg m−3)
𝛥 Difference
𝜂 Efficiency, (%)
𝜀 Void fraction

Latin Symbols

𝐴 Surface area, (m2)
𝐶 Optimization costs, (MWh)
𝑐p Heat capacity, (J K−1 kg−1)
𝐷 Diameter, (mm)
𝐸 Energy, (MWh)
ℎ Heat transfer coefficient, (W K−1 m−2)
𝑘 Thermal conductivity, (W K−1 m−1)
𝐿 Storage length, (m)
𝑚 Mass, (kg)
�̇� Mass flow rate, (kg s−1)
𝑁 Time horizon, (h)
𝑁𝑦𝑒𝑎𝑟𝑠 Operating period length, (years)
𝑛𝑤 Optimization sliding window size, (h)
𝑃 Power, (MW)
𝑠 Thermocline slope at inflection point
𝑆 Section, (m2)
𝑇 Temperature, (°C)
𝑡 Time, (s)
𝑢 Fluid velocity, (ms−1)
𝑉 Volume, (m3)
𝑋 Metamodel state vector
𝑥 Axial position, (m)
𝑧 Thermocline position (m)

over its lifetime, the system is considered as not profitable. Therefore,
it is essential to co-optimize such a system coupling its design and its
management to find the best compromise between both. This requires
the storage to be designed and operated optimally with the help of
a predictive controller that calculates the installed capacity and the
management strategy. To do so, it is decisive to have a controller
Subscripts

bed Storage bed
blo Reflected sunlight blocked by adjacent

heliostats
cons Simulations for model construction
c Central
CH Charging phase
DC Discharging phase
design Design cost
eff Effective
exp Experimental
ext External
f Fluid
fuel Gas consumption
fuel-saved Saving in gas consumption thanks to storage
fuel-saved𝑚𝑎𝑥 Saving in gas consumption with maximum

investigated storage size
hel Heliostat field
load Load consumption
loss Losses
loss-ch Losses during the charging phase
mean Mean
max Maximum
min Minimum
m Measurement
mis Difference between production and con-

sumption
operating Operating cost
opt Optimization
p Particle
prod Production source
rated Maximum storage rate
ref Heliostat reflectivity
s Solid
sto Storage
sim Simulation iteration
sh Heliostat surface shaded by adjacent he-

liostats
shed Over production shedding
spil Reflected sunlight missing the receiver due

to other technological errors
th Thermal carrier
tot Total
tra Atmospheric transmission between the he-

liostat and the receiver
v Interstitial between fluid and solid
w Wall

model enabling the anticipation of future events that would lead to
a realistic optimal design and management. Additionally, within the
control optimization, the chosen model requires accuracy and speed
to reach the best performance within acceptable time cost adapted
for real-time management applications. Moreover, the controller model
needs to be suitable for the objective function that changes from case
to another. Typically, a simple objective function would not consider
losses of storage system. On the other hand, objective function in
multi-energy network needs to consider storage losses and other terms
that depends on local storage information. As a result, HTTES co-
optimization requires appropriate models in terms of computation time,
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accuracy but also the ability to estimate all objective function terms. 
herefore, the sensitivity of HTTES co-optimization to different model-
ng levels need to be evaluated for different objective functions more 
r less complex.

.1. State of the art

HTTES modeling have been the subject of many research and de-
elopment work, mainly in the recent years. Here we will focus on 
ime-dependent HTTES models as they allow the anticipation of future 
vents based on the current state of the system. Most of those models 
olve partial differential equations (PDE) to estimate precisely the 
volution of the system temperature respecting the energy conservation
rinciple. Those models are relatively time consuming but relevant 
or simulation purposes along several cycles. [12–14] describe some 
f commonly used models in the literature, that solve PDE along one 
r two spacial dimensions (1D and 2D). It is to be noticed that in 
D models, radial effects are neglected compared to 2D models. [15] 
nvestigated three hot water TES models of increasing complexity level. 
hey stated that accurate modeling of losses and storage temperature 
as an impact on the profitability of the projects. [16] proposes and 
xperimentally validates 1D models based on PDE by the help of an 
il/rock HTTES prototype. A similar model for air/rock HTTES has 
een conducted by [17], where radial effects have been neglected to 
chieve 1D model. Besides, other work focused on developing models 
ithout solving PDE to avoid computation time limitation. [18] de-
cribes a model based on an analytical formulation, used to calculate 
he storage temperature evolution with low computation time but 
nly for partial cycle configurations. [19] proposed a new algebraic 
ormulation of the developed model in [20,21]. In this formulation, 
he algebraic solution for thermocline HTTES is given as polynomial
unction, and allowing for any initial temperature profile to predict the 
torage temperature evolution. [8] suggested a metamodel based on 
ata issued from 1D - PDE model simulations, representing a suitable 
rade-off between accuracy and computation time. In case of manu-
acturing defects or highly dimension-dependent phenomena like flow 
hanneling, this metamodel can be constructed on data issued from 
xperimental measures. However, researchers conclude that such an 
xperiments based metamodel requires experimental validation.
The state of the art shows that, thermal storage optimization re-

earch are mainly conducted to calculate the optimal design or the 
anagement strategy. 0D models are often used for those purposes 
s they have low computation time adapted for predictive controller 
sages. Model Predictive Control (MPC) has been developed, to define 
he optimal thermal storage strategy for a heat network case study, 
n [22–24]. Other studies such as [25] investigate the operational 
ptimization of a heat district network using TES and solving Mixed 
Integer Linear Programming (MILP) problem. Researchers agree that 
0D models can by used for a quick estimation of large systems optimal 
design and management. It is to be mentioned that, in all those studies, 
simulation and optimization models are identical. Moreover, [26,27] 
study the design optimization, whereas [28] investigates the pricing 
and the management, of a multi-energy system at the scale of a region. 
The models involved in these works are 0D in order to guarantee 
reasonable computation time and low complexity level. The impact of 
coupling management and design when optimizing a storage system 
had been a subject of interest of several papers in EES field. [29] 
studied the impact of forecasting models on the sizing of electrical 
vehicle fleet, where batteries are charged by the help of a photovoltaic 
power plant. It appeared that the forecast model quality impact the 
optimal battery size but author recommend further investigations. [30] 
investigated the impact of battery aging model on the management 
and design results. Researchers conclude that introducing an aging 
model, even a simplistic one, greatly improves the choice of storage 
capacity. Three EES models of different accuracy level, used for optimal 
design, have been explained in [31]. It concludes that a temperature
model is necessary when it impacts the controller actions. In addition,
introducing aging into controller models can have important impact on
the rate of degradation. Researchers conclude that trade-offs between
model complexity and model accuracy can be difficult to navigate, but
offer significant benefits in terms of performance.

This review shows that multiple models of HTTES exist with increas-
ing level of complexity and accuracy. However, most of optimization
work related to HTTES uses 0D models for computation time reasons.
On the other hand, a 1D metamodel based on experience was proposed
but lack experimental validation. Moreover, the state of the art shows
that the impact of the model choice on the HTTES management and
design was not evaluated. Also, most of works study either the man-
agement or the design of the HTTES but, to our knowledge, none of
them study the co-optimization of this system.

1.2. Scope of this work

The goal of the present contribution is to study the impact of the
HTTES model choice on the performance of the simulator and the co-
optimization controller for two case studies. Therefore, four models of
increasing complexity, including models that consider losses and others
that does not, are being selected from the literature and investigated.
Also, the first case study is formulated with simple objective function
that does not take into account losses. On the contrary, the second case
study takes into account losses in the objective function. The impact
of model choice is measured by the help of time, management and
design cost. For this purpose, a new physical metric is formulated to
evaluate management and design costs. As a result, suitable trade-
off between accuracy and computation time can be found for future
real-time management and design purpose. Also, the impact of model
choice, in function of its accuracy and computation time, on the co-
optimization results is being analyzed for different storage capacities.
Moreover, 1D metamodel based on measured data is being studied
in the case of HTTES with manufacturing defects. This metamodel is
constructed on the bases of four experiments and being validated over
three days of continuous experimental tests by the help of an HTTES
test facility in the south of France.

Section 2 presents the selected models from the literature that are
used along this article. Section 3 describes the case study used to con-
uct the co-optimization study, the mathematical formulation as well
s the optimization algorithm. Section 4 discuss simulations models
nd evaluate their performance. Also, in case of defected installation,
etamodel based on experimental measures is discussed as well as the
acility, experimental protocol and instrumentation used for its experi-
ental validation. In Section 5, the co-optimization results are shown
nd analyzed. Finally, Section 6 will be dedicated for conclusions and
erspectives of this work.

. Modeling

In HTTES systems, a fan is used to push hot air through the porous
edium as shown in Fig. 1(a) in order to charge the system with en-

ergy. The air (HTF) enters the storage through the hot section and gives
up its heat to the storage materials (HSM). The heat exchange is done
by convection between the fluid and the solid but also by conduction
from one solid particle to another. Therefore, the storage medium heats
up throughout the storage, creating what is called a thermocline that
can be seen in Fig. 1(b). During the discharge process, the cold air
enters the storage though the cold section and warms up thanks to
the convective heat exchange with hot HSM. Here, multiple complexes
heat transfer mechanisms occur such as convection, conduction and
radiation between the three storage phases (solid, fluid and walls). To
control the thermal charging power 𝑃𝑠𝑡𝑜 of such a system, the flow
rate and entry air temperature are accordingly calculated. During the
discharge process, cold air is blown into the storage, and its flow rate
is calculated based on the outlet temperature, to reach the desired
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Fig. 1. HTTES simplified illustration.

hermal discharging power. In order to estimate the storage energy
volution, an energy balance can be applied using the HSM tempera-
ure. System losses can be divided into loss at walls and charging phase
oss. In fact, when charging the system, the outlet temperature of the
torage increases. Therefore, the charging phase air leaving the system,
ontains residual heat that is being lost into the atmosphere.
As said before, the predictive controller used to operate optimally

he storage needs a model to estimate the system behavior. Here, the
torage energy state and losses evolution in function of the power
ommand are required for the controller to design and manage the
ystem. This section will be dedicated for describing two 0D models, a
D based on PDE model as well as a 1D metamodel as explained in [8],
hereas 2D models are out of the scope of this work.

.1. Accurate model: 1D - PDE

In this work, 1D - PDE represents the most accurate model in the
cope of this work. It solves PDE on the fluid (HTF) but also the two
olid phases (HSM and walls) respecting the energy conservation princi-
le. As a results, the temperature evolution can be obtained accordingly

o time and to one spacial dimension (length of the storage). Here below t
the heat equations taking into account the convection, conduction and
fluid advection phenomena :

• Fluid :
𝜀
(

𝜌𝑐𝑝
)

𝑓

( 𝜕𝑇𝑓
𝜕𝑡

+ 𝑢
𝜕𝑇𝑓
𝜕𝑥

)

= (1a)

𝑘eff𝑓

𝜕2𝑇𝑓
𝜕𝑥2

+ ℎ𝑣(𝑇𝑠 − 𝑇𝑓 ) + ℎ𝑤
𝐴𝑓↔𝑤

𝑉𝑓 + 𝑉𝑠
(𝑇𝑤 − 𝑇𝑓 )

• Solid :
(1 − 𝜀)

(

𝜌𝑐𝑝
)

𝑠
𝜕𝑇𝑠
𝜕𝑡

= (1b)

𝑘eff𝑠
𝜕2𝑇𝑠
𝜕𝑥2

+ ℎ𝑣(𝑇𝑓 − 𝑇𝑠) + ℎ𝑤
𝐴𝑠↔𝑤
𝑉𝑓 + 𝑉𝑠

(𝑇𝑤 − 𝑇𝑠)

• Wall :
(

𝜌𝑐𝑝
)

𝑤
𝜕𝑇𝑤
𝜕𝑡

= 𝑘𝑤
𝜕2𝑇𝑤
𝜕𝑥2

+ ℎext
𝐴𝑤↔ext
𝑉𝑤

(𝑇ext − 𝑇𝑤)+

ℎ𝑤

(𝐴𝑓↔𝑤

𝑉𝑤
(𝑇𝑓 − 𝑇𝑤) +

𝐴𝑠↔𝑤
𝑉𝑤

(𝑇𝑠 − 𝑇𝑤)
)

(1c)

Physical proprieties as well as correlations for effective thermal
conductivities and heat transfer coefficients are presented in Appendix.
olving numerically PDE on the three phases, using finite difference
ethod, results in the evolution of the storage temperature. Later
n, the energy evolution and the losses of the system, based on the
btained temperature, can be calculated using Eqs. (2a) and (2b). More
nformation on how to calculate the Eqs. (1a), (1b) and (1c) parameters
can be found in [13,16,18].

𝐸𝑠𝑡𝑜 = (1 − 𝜀)𝑆𝑏𝑒𝑑 ⋅ 𝜌s ∫

𝐿

0
𝑐𝑠𝑝(𝑥)

(

𝑇𝑠(𝑥) − 𝑇𝑒𝑥𝑡
)

d𝑥 (2a)

𝑃𝑙𝑜𝑠𝑠−𝑐ℎ =

{

0 if 𝑇𝑜𝑢𝑡𝑙𝑒𝑡 = 𝑇𝑒𝑥𝑡
�̇� ⋅ 𝑐𝑓𝑝 (𝑇𝑜𝑢𝑡𝑙𝑒𝑡−𝑇𝑒𝑥𝑡) if 𝑇𝑜𝑢𝑡𝑙𝑒𝑡 > 𝑇𝑒𝑥𝑡

(2b)

This model has the highest computation time compared to other
odels in the scope of this work (approximately 1 to 10 s for the
imulation of one hour of the storage operation). Hence, this model is
ot suitable for use in an optimization controller. Further information
n models computation time can be found in Section 4.

.2. Ideal storage: 0D - ideal

In 0D - Ideal models, the losses before saturation are completely
eglected. This means that all the injected energy into the system is
eing stored. In other words, heat transfer between fluid and solid
s supposed to be perfect and instant, and heat transfer to walls is
ompletely neglected. As a results, the thermocline (temperature gradi-
nt) which is the zone where the HSM temperature varies is null. The
ynamics of the system according to this model can be expressed as
ollows:
𝑡+𝛥𝑡
𝑠𝑡𝑜 = 𝐸𝑡

𝑠𝑡𝑜 + 𝛥𝑡 ⋅ 𝑃 𝑡
𝑠𝑡𝑜 (3a)

𝑃 𝑡
𝑙𝑜𝑠𝑠 =

{

0 if 𝐸𝑡
𝑠𝑡𝑜 < 𝐸𝑟𝑎𝑡𝑒𝑑

𝑃 𝑡
𝑠𝑡𝑜 if 𝐸𝑡

𝑠𝑡𝑜 = 𝐸𝑟𝑎𝑡𝑒𝑑
(3b)

here 𝐸𝑟𝑎𝑡𝑒𝑑 is the maximum storage capacity.
Storage heat losses are zero at all times except when the system is

harged even though it is already fully charged and can be calculated
s expressed here above. The advantage of such a model is the low
omputation time that comes with rough heat transfer and losses
ssumptions.

.3. Uniform temperature storage: 0D - uniform

0D - Uniform models assume the same temperature value 𝑇𝑚𝑒𝑎𝑛 for

he whole HSM. This means that the thermocline zone covers the whole
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Fig. 2. Illustration of the inputs, outputs and the main activated tasks when running
the metamodel. 𝐿𝐹 : Logistic Function, 𝐿𝑆 : Least Square algorithm.

storage length. This temperature can be calculated using Eq. (4c).
In such a model, energy evolution and losses, based on 𝑇𝑚𝑒𝑎𝑛, are
xpressed in Eq. (4a) and (4b).

𝐸𝑡+𝛥𝑡
𝑠𝑡𝑜 = 𝐸𝑡

𝑠𝑡𝑜 + 𝛥𝑡 ⋅ 𝑃 𝑡
𝑠𝑡𝑜 − 𝛥𝑡 ⋅ 𝑃𝑙𝑜𝑠𝑠(𝑇 𝑡

𝑚𝑒𝑎𝑛, �̇�) (4a)

ith 𝑃 𝑡
𝑙𝑜𝑠𝑠 = �̇� ⋅ 𝑐𝑓𝑝 (𝑇

𝑡
𝑚𝑒𝑎𝑛 − 𝑇𝑒𝑥𝑡) (4b)

and 𝑇 𝑡
𝑚𝑒𝑎𝑛 =

𝐸𝑡
𝑠𝑡𝑜

𝑐𝑠𝑝𝑚
+ 𝑇𝑒𝑥𝑡 (4c)

Concerning losses, only the charging phase heat losses are being
onsidered in this model. This model does not consider the second
spect of loss, the loss at walls, unlike 1D models. This model comes
ith low computation time but overestimates losses and has inaccurate
epresentation of the storage temperature. This explains their frequent
se in TES optimization work and their limitation to achieve feasible
ptimal design and management strategy. Consequently, a trade-off
odel is required to optimize design and management of TES with
cceptable computation time.

.4. Metamodel: 1D - MM

This subsection presents the metamodeling approach, based on a 1D
PDE model simulations, that has been developed in [8]. Depending

on the initial storage temperature 𝑇 𝑡(𝑥) and the power command 𝑃𝑠𝑡𝑜,
t is possible to calculate the evolution of the storage temperature
𝑡+𝛥𝑡(𝑥) after a fixed period of time 𝛥𝑡. Later on, the storage energy
nd losses can be deduced by applying Eq. (2a) and (2b). Thanks to an
nalytical approximation based on a pre-built information matrix, 1D -
M is able to estimate the temporal evolution of the HSM temperature
long the storage length. Fig. 2 illustrated the main calculation steps
n the metamodel. 1D - MM showed a trade-off between accuracy and
omputation time as discussed in [8], thanks to the pre-built matrix
hat avoids solving PDE in the simulation stage. Therefore, it seems
dequate to use 1D - MM inside a predictive controller, which will be
he subject of next sections in this work.
The temperature spacial approximation in the metamodel is

chieved by applying a least square algorithm to estimate the logistic
unction parameters described in Eq. (5).

(𝑥, 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, 𝑧𝑐 , 𝑠) = 𝑇𝑚𝑎𝑥 +
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
1 + 𝑒(𝑥−𝑧𝑐 )∕𝑠

(5)

The temporal approximation used to estimate the final state, starting
from an initial state, is a linear interpolation based on a pre-built
matrix. The construction of the information matrix use 1D - PDE
Fig. 3. Synopsis of the reference case study.

simulations data as shown in algorithm 1. This step can be time
consuming depending on the discretization level of the logistic function
parameters (𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, 𝑧𝑐 , 𝑠) as well as the power command 𝑃𝑠𝑡𝑜. On
he other hand, a higher discretization level signifies higher accuracy
or the metamodel as finer temporal approximation can be achieved.
herefore, it is necessary to find the best trade-off between accuracy
nd computation time. Here we will call 𝑖 the discretization of logistic
unction parameters and 𝑗 the discretization of the power command. All
long this work, two metamodels will be investigated. A first one with
ow discretization level called 1D - MM3,7 (𝑖 = 3 and 𝑗 = 7) and another
ith high discretization level called 1D - MM7,15 (𝑖 = 7 and 𝑗 = 15).
ore details on the metamodel can be found in [8]. The next subsection
ompares the computation time between the discussed models.

Algorithm 1: Procedure for the construction of the metamodel
identification matrix.
Data: 𝑇 𝑡

𝑚𝑖𝑛 ∈ 𝑻𝒎𝒊𝒏, 𝑇 𝑡
𝑚𝑎𝑥 ∈ 𝑻𝒎𝒂𝒙, 𝑧𝑡𝑐 ∈ 𝒛𝒄 , 𝑠𝑡 ∈ 𝒔, 𝑃 𝑡

𝑠𝑡𝑜 ∈ 𝑷𝒔𝒕𝒐

Result: 𝑓 ∶ 𝑋𝑡;𝑃 𝑡 ⟼ 𝑋𝑡+𝛥𝑡

with 𝑋𝑡+𝛥𝑡 = [𝑇 𝑡+𝛥𝑡
𝑚𝑖𝑛 , 𝑇 𝑡+𝛥𝑡

𝑚𝑎𝑥 , 𝑧𝑡+𝛥𝑡𝑐 , 𝑠𝑡+𝛥𝑡]
and 𝑋𝑡 = [𝑇 𝑡

𝑚𝑖𝑛, 𝑇
𝑡
𝑚𝑎𝑥, 𝑧

𝑡
𝑐 , 𝑠

𝑡]
initialization;
foreach 𝑇 𝑡

𝑚𝑖𝑛, 𝑇
𝑡
𝑚𝑎𝑥, 𝑧

𝑡
𝑐 , 𝑠

𝑡 do
foreach 𝑃 𝑡

𝑠𝑡𝑜 do
calculate 𝑇 𝑡(𝑥) with Eq. (5)
calculate 𝑇 𝑡+𝛥𝑡(𝑥) by solving Eq. (1a) (1b) (1c)
calculate 𝑇 𝑡+𝛥𝑡

𝑚𝑖𝑛 , 𝑇 𝑡+𝛥𝑡
𝑚𝑎𝑥 , 𝑧𝑡+𝛥𝑡𝑐 , 𝑠𝑡+𝛥𝑡 with Eq. (5) and least

square algorithm
end

end

3. Description of case study

The goal of this work is to study the sensitivity of HTTES co-
optimization results to model choice in terms of controller performance
and computation time, for different business models. Here, studied
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Fig. 4. Power time series for thermal source and load. In blue is the thermal source power issued from 5500 m2 CSP field in the south of France, with a total annual production
of 7 500 MWh. In pink is the load power consumed by 2 MW industry in France, with a total annual consumption of 5 000 MWh. All data corresponds to 2013 and can be found
in [32,34].
models consider storage losses more or less accurately as described in
Section 2. Therefore, two business models have been formulated to
compare the obtained results in case that losses are counted or not
in the objective function. Indeed to calculate losses accurately, local
information such as outlet temperature needs to be estimated which
is the case of multi-energy networks. Here, the case study includes
a thermal carrier with two sources and one load as this would be
sufficient to study the HTTES co-optimization sensitivity to models.
The case study used for the optimization work is presented in Fig. 3.
The consumed thermal power 𝑃𝑙𝑜𝑎𝑑 is given by [32], an aggregated
estimation of consumed thermal power by heat networks in France in
2013. Based on those data, the load is supposed to be an industrial
with a thermal peak load of 2 MW that consumes a total of 5000
MWh per year. As shown in Fig. 3, this case study includes a main
ource which is a fuel boiler 𝑃𝑓𝑢𝑒𝑙 to cover the load. Additionally, a
renewable production source of 5500 square meters concentrated solar
power (CSP) field will be connected in order to avoid fuel consumption.
This source is composed of heliostat mirrors and thermal receiver
tower as described in [33], with a total production of 7500 MWh per
year and a production peak of 5 MW. The solar data for the direct
normal irradiation (DNI) is issued from PVGIS database developed by
the European commission [34], and correspond to the Occitania region
in the south of France in 2013. The thermal output of the central is
calculated using Eq. (6).

𝑃𝑝𝑟𝑜𝑑 (𝑡) = 𝜂ℎ𝑒𝑙(𝑡) ⋅ 𝑆ℎ𝑒𝑙 ⋅𝐷𝑁𝐼(𝑡) (6a)

ith 𝜂ℎ𝑒𝑙 = 𝜌𝑟𝑒𝑓 ⋅ 𝜂𝑡𝑟𝑎 ⋅ 𝑐𝑜𝑠𝜃 ⋅ 𝜂𝑠ℎ ⋅ 𝜂𝑏𝑙𝑜 ⋅ 𝜂𝑠𝑝𝑖𝑙 (6b)

where 𝑃𝑝𝑟𝑜𝑑 is the CSP field thermal produced power, 𝜂ℎ𝑒𝑙 is the instan-
taneous optical efficiency of the heliostat field, 𝑆ℎ𝑒𝑙 is the reflective
area (here 5500 m2), 𝐷𝑁𝐼 is the direct normal irradiation, 𝜌𝑟𝑒𝑓 is
the heliostat reflectivity, 𝜂𝑡𝑟𝑎 is the atmospheric transmission between
the heliostat and the receiver, 𝑐𝑜𝑠𝜃 is the cosine of the angle formed
between the normal to the heliostat surface and the incident rays, 𝜂𝑠ℎ is
the fraction of the heliostat surface shaded by adjacent heliostats, 𝜂𝑏𝑙𝑜 is
the fraction of the reflected sunlight blocked by adjacent heliostats and
𝜂𝑠𝑝𝑖𝑙 refers to the fraction of reflected sunlight missing the receiver due
to other technological errors. For simplicity, 𝜂ℎ𝑒𝑙 is assumed constant
nd equal to 0.9. In addition, HTTES is considered with charge and
ischarge thermal power 𝑃𝑠𝑡𝑜. As a result, the storage flexibility would
elp the CSP energy to meet the considered load and so that allows
urther reduction in boiler fuel consumption. Here, thermal sources,
oad and storage system are supposed to be on high temperature of
00 ◦C. It is to be noticed that, the only considered power loss in this
ase in the heat storage losses (losses from heat network and others are
ot considered). Both production and load time series can be visualized
ver a year in Fig. 4.
The goal of this case study is to optimize the management of

he thermal storage for different design points in order to minimize
he objective function. Two objective functions are studied here and
orrespond to two different business models (BM). In the first one, only

he call on the main boiler 𝑃𝑓𝑢𝑒𝑙 in case of overconsumption is to be
minimized over a year without paying the losses related to the storage
system. In the second one, thermal losses linked to storage 𝑃𝑙𝑜𝑠𝑠 is to be
minimized also with the call on the boiler which mean that the storage
operator pays the losses also. This problem is deterministic and subject
to physical constraints which are explained in Eq. (7).

min
𝑛𝑤
∑

𝑡=𝑖
𝐶𝑡𝑜𝑡(𝑡) (7a)

where 𝐶𝑡𝑜𝑡 =

{

𝑃𝑓𝑢𝑒𝑙 ⋅ 𝛥𝑡, for BM 𝑛𝑜1
(𝑃𝑓𝑢𝑒𝑙 + 𝑃𝑙𝑜𝑠𝑠) ⋅ 𝛥𝑡, for BM 𝑛𝑜2

(7b)

with 𝑃𝑚𝑖𝑠(𝑡) − 𝑃𝑠𝑡𝑜(𝑡) + 𝑃𝑓𝑢𝑒𝑙(𝑡) − 𝑃𝑠ℎ𝑒𝑑 (𝑡) = 0 (7c)

𝑃𝑚𝑖𝑠(𝑡) = 𝑃𝑝𝑟𝑜𝑑 (𝑡) − 𝑃𝑙𝑜𝑎𝑑 (𝑡) (7d)

0 ≤ 𝑃𝑓𝑢𝑒𝑙(𝑡) and 0 ≤ 𝑃𝑠ℎ𝑒𝑑 (𝑡) (7e)

−𝑃𝑟𝑎𝑡𝑒𝑑 ≤ 𝑃𝑠𝑡𝑜(𝑡) ≤ 𝑃𝑟𝑎𝑡𝑒𝑑 (7f)

0 ≤ 𝐸𝑠𝑡𝑜(𝑡) ≤ 𝐸𝑟𝑎𝑡𝑒𝑑 (7g)

𝑃𝑟𝑎𝑡𝑒𝑑 = 𝐸𝑟𝑎𝑡𝑒𝑑 (7h)

It is to be noticed that 𝑃𝑠𝑡𝑜 follows a receptor convention: 𝑃𝑠𝑡𝑜
has a positive sign when charging and negative when discharging.
The storage dynamics reflecting storage energy 𝐸𝑠𝑡𝑜 and heat loss
𝑃𝑙𝑜𝑠𝑠 evolution in function of the storage command 𝑃𝑠𝑡𝑜 are estimated
using one of the four models described in the previous sections. The
problem is solved numerically using Model Predictive Control (MPC)
as described in algorithm 2. The time horizon 𝑁 of the resolution is
8760h. At each time step (here 𝛥𝑡 = 1h), an optimization problem
is formulated and solved on a sliding window of size 𝑛𝑤. Only the
first sample of the output sequence is implemented for simulation,
subsequently the sliding window is shifted of 1h. Within the present
simulation framework, the new state of the system at the next time
step is estimated by the accurate model 1D - PDE simulation, which is
considered as a reference. Then a new optimization problem is solved
using this new information. In whole work, the accurate 1D - PDE
model is the only model used for simulation and estimation of the real
system energy state and losses. It is to be noticed that investigated
HTTES capacities are ranging from 2 to 20 MWh𝑡ℎ. This choice has
been made based on the HTTES studied technology which is adapted for
daily to weekly cycles but not for seasonal storage purpose. This means
that a part of fuel consumption is not replaceable as more load appears
in winter period, oppositely to CSP production that is more important
in summer period as shown in Fig. 4. In other words, a seasonal storage
would be needed to cover the totality of the heat consumption in this
case study — which is out of this work scope. Otherwise, an irreducible
residual consumption is unavoidable.

4. Simulation models discussion

The goal of this section is to validate the studied models for sim-
ulation purposes and to evaluate their committed errors. This step is

necessary before beginning the co-optimization work. Indeed, HTTES
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Algorithm 2: MPC description
Data: 𝑛𝑤, 𝑁

esult: min
𝑁
∑

𝑖=0

𝑖+𝑛𝑤
∑

𝑡=𝑖
𝐶𝑡𝑜𝑡(𝑡)

initialization;
for i in N do

calculate ⟨𝑷𝒔𝒕𝒐⟩𝑛𝑤 by solving Eq. (7) using a model in Table 1 ;
simulate 𝑃𝑠𝑡𝑜[0] with 1D - PDE model ;
calculate 𝑃𝑓𝑢𝑒𝑙(𝑡) + 𝑃𝑙𝑜𝑠𝑠(𝑡) and energy balance with Eq. (2a)

end

installations can be divided into two categories; installations that fit
with 1D - PDE assumptions and installations presenting manufacturing
defects, aging or highly dimension-dependent phenomena like flow
channeling.

4.1. Standard HTTES models validation

In most designs, 1D - PDE reproduces faithfully the real system be-
havior, except in certain configurations as described in [8]. In general,
this is the case of large scale HTTES without manufacturing defects. An
alternative could be the 1D - MM based on 1D - PDE simulations data
which is accurate and divides the computation time by a 1000 factor.
Also, 0D models can be used to estimate storage energy evolution
with low computation time but not local variable such as storage
outlet temperature. Here, we will study, on the basis of a year optimal
command simulation, the evolution of the HTTES energy based on
four models. 1D - PDE is supposed to reproduce faithfully the real
storage energy evolution. Hence, the 1D - PDE simulation results will
be compared to the four models, listed in Table 1, to calculate each
model error. For this purpose, an example of 20MWh capacity HTTES
is used to conduct simulations and evaluate models errors.

Fig. 5 shows the evolution of the storage energy over a year with
a time step of 1 h. Also, the relative error as well as the normalized
root mean square deviation (NRMSD) (defined in [8]), between studied
models and 1D - PDE are illustrated. Indeed the NRMSD error has
been selected as a metric in order to sidestep calculation problems that
appear when investigated values are near from zero. It can be defined
as :

NRMSD = RMSD
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

(8a)

with RMSD =

√

√

√

√

√

√

𝑛
∑

𝑖=0
(𝑥𝑒𝑥𝑝𝑖 − 𝑥𝑚𝑜𝑑𝑒𝑙𝑖 )2

𝑛
(8b)

here 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are the maximum and minimum in the investigated
umerical values, respectively and 𝑛 is the sample size.
Results show that for 0D models, errors are mostly committed when

attery is near from saturation. This can be explained by the fact
hat, 0D models assumptions estimate poorly the outlet temperature.
herefore, losses during the charge phase, that are mostly present in
nergy levels near saturation, are underestimated in 0D - Ideal and
verestimated in 0D - Uniform. It is to be noticed that 1D - MM3,7 that
s poorly discretized, commits more errors than 0D models in mean.
herefore, it is important to find the best trade-off of discretization in
erms of computation time and accuracy for metamodels. Furthermore,
he error committed by 1D - MM7,15 is the lowest error as it represents
aithfully the 1D - PDE. NRMSD values for 0D - Ideal, 0D - Uniform, 1D
MM3,7 and 1D - MM7,15 can be visualized in Table 1. 𝑁𝑐𝑜𝑛𝑠 stands for
the number of simulation iterations, and 𝑡𝑐𝑜𝑛𝑠 for the computation time,
to build the metamodel information matrix. The model computation
time to simulate one hour of storage operation will be called 𝑡𝑠𝑖𝑚. In
his example, the 1D - MM allows to reduce the computation time by a
Table 1
Summary of studied models simulation performance in terms of computation time
and NRMSD error. The NRMSD concerns the storage energy evolution over a year
of operation, and has been calculated relatively to 1D - PDE results.
Model 𝑁𝑐𝑜𝑛𝑠 𝑡𝑐𝑜𝑛𝑠 [s] 𝑡𝑠𝑖𝑚 [s]a NRMSD [%]

0D - Ideal – – < 0.001 8
0D - Uniform – – < 0.001 13
1D - MM3,7 567 600 ≈ 0.001 15
1D - MM7,15 36 015 36 000 ≈ 0.001 3
1D - PDE – – 1 – 10 –

aIntel® Core i7-6820HQ CPU @ 2.70 GHz.

factor of 1000 for simulation purposes, compared to the 1D - PDE model.
As a result, for storage systems without defects, 1D - MM7,15 shows
high accuracy with suitable computation time as well as the ability to
estimate local variables of HTTES. This can be an alternative for 1D -
PDE, in co-optimization work, that is accurate but time consuming.

4.2. Defected HTTES models validation

As the construction of a HTTES is not an easy task, it can hap-
pen that the behavior of a real infrastructure does not correspond to
the 1D - PDE model. This may result from imperfections during the
construction such as non homogeneous air distribution, increased wall
effects, manufacturing defects or material aging particularly in small
scale installations. Such flaws could undermine the effectiveness of
the whole co-optimization approach, since the behavior of the actual
infrastructure could no longer be anticipated before implementation.
Thus, this paragraph presents how a metamodel can be built from
experimental tests on an installation with defects. The accuracy evo-
lution of such a model can be estimated in function of the number
of experimental tests and measurement frequency as described in [8].
This subsection will investigate the construction of such a model and
evaluate its performance based on real experimental data and will
compare its performance to 1D - PDE in this configuration.

On the one hand, this allows for the optimal control of an installa-
tion that cannot be modeled analytically. Moreover, in an operational
co-optimization approach, an analysis of the risks related to such
defects could be taken into account.

Fig. 6 describes the HTTES facility studied in this work. This instal-
lation is classified as high-temperature unpressurized air/rock packed-
bed storage, where atmospheric air is used as heat transfer fluid (HTF)
and rocks as heat storage material (HSM). Further more, the packed
bed has a horizontal cylindrical geometry with a maximum storage
capacity 𝐸𝑚𝑎𝑥 of 40 kWhth (calculated for an ambient temperature of
0 ◦C). 𝑃𝐶𝐻,𝑚𝑎𝑥 and 𝑃𝐷𝐶,𝑚𝑎𝑥 are the maximum charge and discharge
power, here equal to 27.6 and 37.6 kWth respectively. The presented
installation is a prototype that has been developed by the company
Eco-Tech CERAM for material characterization purpose and innovative
thermal storage applications validation. In this work, the facility has
been connected to an electrical heater as shown in Fig. 6(a). The storage
is composed of a metallic cylinder that encapsulated insulation and the
HSM. The HTTES is equipped with a total of 29 temperature sensors
of which 9 are along the central axis of the unit distributed over the
sections named A and B, as shown in Fig. 6(b). To avoid wall effects,
only temperatures date from the 9 central axis sensors will be used.
A summary of the main characteristics of the HTTES, such as the bed
diameter 𝐷𝑏𝑒𝑑 , length 𝐿𝑏𝑒𝑑 , volume 𝑉𝑏𝑒𝑑 , particle diameter 𝐷𝑝, storage
maximum temperature 𝑇𝑠𝑡𝑜𝑟𝑎𝑔𝑒,𝑚𝑎𝑥 can be found in Table 2. It is to be
mentioned that the whole installation has been adapted to receive real-
time commands remotely passing by a virtual private network. This
applies for all registers, heater and fan. Also, all measures are recorded
in real time on a remote data base.

Since this HTTES facility is of small capacity and has been operating

under extreme conditions for more than 5 years, its behavior differs



Fig. 5. Simulation results of an optimal management issued from four investigated models and compared to 1D - PDE for a 20MWh storage. Results show the evolution of the
storage energy estimation and the error between the investigated model and the accurate 1D - PDE over a year.

Fig. 6. Description of the HTTES facility from Eco-Tech Ceram.
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Fig. 7. Simulation results of an optimal management, issued from two 1D - PDE models and 1D - MM, compared to experimental test data for a 40 kWh test facility. 1D - PDE
models use different correlations for ℎ𝑣 coefficient as described in Appendix. The 1D - MM used in this figure is a metamodel built on experimental results measured for previous
experiments explained in Table 3. Results show the evolution of the storage energy estimation and the error between investigated models and the experimental data over 78 hours
experiment.
Table 2
Summary of the HTTES prototype characteristics used for conducting experimental tests.
Geometry Flow HTF HSM 𝐷𝑏𝑒𝑑

[m]
𝐿𝑏𝑒𝑑
[m]

𝑉𝑏𝑒𝑑
[m3]

𝐷𝑝
[mm]

𝐸𝑚𝑎𝑥
[kWhth]

𝑇𝑠𝑡𝑜𝑟𝑎𝑔𝑒,𝑚𝑎𝑥
[◦C]

𝑃𝐶𝐻,𝑚𝑎𝑥
[kW]

𝑃𝐷𝐶,𝑚𝑎𝑥
[kW]

𝜀 Sensors
used

Cylindrical Horizontal Air rocks 0.35 1.5 0.144 30 40 575 27.6 37.6 0.425 9
.

from hypothesis supposed by most of literature models. This is due
to important air leakage and preferential passages that become more
important in small scale designs and which are not modeled neither in
1D - PDE nor in 0D models. In fact, energy balance has been calculated
on the basis of the installation measures. This showed that, nearly
35% (in average) of the energy consumed by the heating system is not
being transferred to the storage, during the charge phase. Although
losses through the outlet section during the charging phase has been
accounted for, this energy difference is still being observed. After
several verification by the mean of measuring instruments and mass
balance, an important hot air leakage has been confirmed and located
upstream of the storage inlet. It is to be noticed that other source of
errors can impact the accuracy of the 1D - PDE model. Moreover, model
correlations choice can be another source of errors. The impact of
HTTES model correlations choice has been discussed partially in some
research work [18,35]. In general, results show that models are poorly
sensitive to heat transfer coefficient with the outside and between walls
and other components. However, heat transfer coefficient between
solid and fluid ℎ𝑣 can has an important impact on the model results.
Hence, 0D - Ideal, 0D - Uniform, and two 1D - PDE models have been
used to simulate the behavior of the studied facility using an optimal
management command over 78 h. Each 1D - PDE model use a different
correlation for ℎ𝑣 coefficient as shown in Appendix. The first 1D - PDE
odel uses Wakao, 1979 [36] correlation where the second one uses
outier, 1982 one [37]. A sample of models results, only for the two 1D
PDE models are shown in Fig. 7(a). It shows high discrepancy between
oth models and experimental results. Indeed, the first correlation
nderestimates the heat transfer efficiency, compared to experiments,
hereas the second one overestimates it. In terms of NRMSD, the
cores values are 12, 17, 13 and 30%, for 1D - PDE (Wakao, 1979),
D - PDE (Coutier, 1982), 0D - Uniform and 0D - Ideal respectively.
n the following, we will focus on the metamodeling approach when
hysical defects occur and lead to important discrepancies between
xperience and models results, independently of the choice of the
odels correlations.
To address this limitation, this same installation is being used to

onduct four experimental tests, with full charging and discharging
ycles. Those tests results will be used to construct the 1D - MM
ased on experimental measured data with variable power commands
Table 3
Summary of the different conducted experimental tests for the metamodel construction
Test number 1 2 3 4

Charge power [kW] 13.4 18.15 22.87 27.6
Discharge power [kW] 20 25.87 31.74 37.6
Test duration [h:m] 8:15 6:32 5:38 5:00
Measurement period [s] 60 60 60 60

and fixed measurement frequency as illustrated in Table 3. Once the
experiments are conducted, the data collected and treated, and then the
1D - MM can be constructed. Afterward, this model is used to simulate
an optimal management command over 78 h, which is also being
applied on the same test facility in order to evaluate the performance
of the constructed model. Fig. 7(b) shows the evolution of the storage
energy level for both experimental data and the 1D - MM based on
experiments as well as the error of the model. It is to be noticed that
the NRMSD value is slightly higher than 6%, which is near from values
estimated by [8]. Also, this 1D - MM has higher accuracy than the three
other investigated models studied here.

As a consequence, metamodeling based on experience can replace
physical equation based models in case of defected installations or
specific designs. This section showed that 1D - PDE and 1D - MM can
be used to simulate non defected large scale HTTES installations in the
designing phase. On the other hand, experimental based metamodels
can be used to simulate or optimize management of existing defected
or small scale HTTES installations. In the next section, we will admit
1D - PDE as a simulation model to conduct co-optimization work, in the
design phase, on a unique accurate base. All investigated installations
in the next section are supposed to be without manufacturing defects.

5. Co-optimization

The goal of this section is to select appropriate controller model for
co-optimization work based on two business models. The first BM does
not count losses while the second one does. This aims to distinguish the
impact of models on co-optimization when taking into account losses or
not. The optimization model performance evaluation will be based on
a physical metric that will be presented later in this section. All along
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Fig. 8. Evolution of the cost function, with 0D - Uniform as optimization model and
D - PDE as simulation model, according to increasing sliding window size. Curves
orrespond to investigated storage capacities.

his work, simulation and optimization models will be distinguished.
n fact, 1D - PDE model will be used along this work to simulate the
ptimization results in order to verify the accuracy of the calculated
ptimal commands. The choice of the 1D - PDE is motivated by the
act that real system behavior is reproduced faithfully by this model in
ost designs especially for large scale storages [8] – except regarding
efaults as discussed Section 4.2. The studied optimization models are
0D - Ideal, 0D - Uniform, 1D - MM3,7 and 1D - MM7,15. Moreover,
study for sliding window size 𝑛𝑤 selection in function of the storage
apacity will be conducted. Based on the obtained results, the minimum
ccepted size (the size from which the cost function converges to an
symptote) can be decided for each capacity in order to limit the
alculation time. In the rest of this work, the optimization is coded in
ython language and uses SciPy library [38]. A summary of all models
n the scope of this study are described in Table 1. It is to be noted that
equential Least Squares Programming (SLSQP) optimization algorithm
rom SciPy library has been used to solve the minimization problem
long this work.

.1. Identification of sliding window size

For this part, 0D - Uniform model is used to solve the MPC problem
ver 8760h with different sliding window sizes as shown in Fig. 8.
For each capacity, the smallest window size is chosen, ensuring the
minimum value of the cost function with 5% tolerance. Results shows
a faster convergence of the cost function for small battery capacities.
This can be explained by the fact that for small storage capacity,
saturation is reached earlier. Therefore, future events anticipation has
lower weight in the cost function. The sliding window size selected
for the rest of this study is fixed on 24 h. This choice is made as
it is the smallest window size (less time consuming) that guarantees
convergence of cost function values for all studied capacities.

5.2. Results discussion and analysis

In this subsection, four models (as described in Table 1) of increas-
ing accuracy will be used for the optimization process while only 1D
- PDE will be used for the simulation of the optimization results. As
a reminder, the storage system operator in this study case has two
business models. The first one aims to avoid the boiler fuel consumption
only and the second one aims to avoid losses as well as boiler con-
sumption as explained in Section 3. For each storage system design,
multiple optimization models have been used to calculate an optimal
management command. Once the command is obtained, the simulator
is launched in order to evaluate the real system behavior according to
the optimal command and to calculate the system life cost in terms of

primary energy. In order to evaluate the model impact on both design (
and management results, multiple criteria can be used for this purpose.
Here we focus on criteria that are based only on system energy costs
without accounting for financial aspects. A first criteria can be the sum
of the system primary energy costs over a fixed number of years. Those
costs are equivalent to the cumulative energy demand (CED) and being
calculated by the help of the tool developed by [10]. Here 𝐸𝑑𝑒𝑠𝑖𝑔𝑛 is the
ED needed for the storage construction, 𝐸𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 is the CED needed
o operate the storage system during a year of operation, 𝐸𝑙𝑜𝑠𝑠 is the
ED of generated losses by the storage system over a year of operation,
nd 𝐸𝑓𝑢𝑒𝑙 is the CED of consumed fuel that can be substituted thanks
o the storage flexibility over a year of operation. It is to be noticed
hat losses are supposed to have the same CED value as the fuel per
Wh of generated heat (here the fuel is natural gas with a CED of
.215 MWh-𝑒𝑞 per MWh of generated heat). Also, it is reminded that a
esidual consumption is unavoidable in the considered case study due
o the absence of a seasonal storage. Then for the sake of readability of
he results, only the boiler consumption 𝐸𝑓𝑢𝑒𝑙 that can be substituted
hanks to storage flexibility, will be visualized in the next figures as
efined here below:

ystem life cost =𝐸𝑑𝑒𝑠𝑖𝑔𝑛+ (9a)
(𝐸𝑓𝑢𝑒𝑙 + 𝐸𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 + 𝐸𝑙𝑜𝑠𝑠) ⋅𝑁𝑦𝑒𝑎𝑟𝑠

with 𝐸𝑓𝑢𝑒𝑙 =𝐸𝑓𝑢𝑒𝑙−𝑠𝑎𝑣𝑒𝑑𝑚𝑎𝑥 − 𝐸𝑓𝑢𝑒𝑙−𝑠𝑎𝑣𝑒𝑑 (9b)

here 𝑁𝑦𝑒𝑎𝑟𝑠 is the operating period of the installation in years,
𝑓𝑢𝑒𝑙−𝑠𝑎𝑣𝑒𝑑𝑚𝑎𝑥 is the maximum yearly saved fuel when installing a 20
Wh𝑡ℎ HTTES and optimizing management with the 1D - MM7,15

odel (here equal to 1516 MWh/year) and 𝐸𝑓𝑢𝑒𝑙−𝑠𝑎𝑣𝑒𝑑 is the avoided
uel consumption over a year of operation of the investigated storage
apacity.
Fig. 9 shows the evolution of the system cost components as a

unction of the storage installed capacity over a year of operation and
or BM no2 (with losses being taken into account in the objective
unction). This figure can be used to evaluate the performance of the
ontroller and the obtained design if the HTTES relevance is evaluated
ver a one year period.
Fig. 9 shows high total life cost for the system controlled by a 0D

Ideal caused by important loss generation even though the fuel cost
s well minimized compared to other models. This can be explained
y the poor capacity of this model to estimate losses as it considers
o loss before storage saturation. On the other hand, 0D - Uniform
ucceeds to limit losses, as this model overestimates the storage losses,
ut achieve a higher fuel consumption compared to metamodels results
articularly when compared to 1D - MM7,15. Optimal designs and total
ife cost values over a year of operating system for different models are
llustrated on Fig. 9 with 𝑥 symbols. Reductions of optimal costs are
0%, 20% and 14% when comparing 1D - MM7,15 to 0D - Ideal, 0D -
niform and 1D - MM3,7 respectively. It is to be noticed that all models
ind near optimal designs around 10 MWh𝑡ℎ, except of 0D - Ideal that
ituates optimal design around 4 MWh𝑡ℎ storage.
To investigate the impact of the facility’s operating time, Fig. 10

hows the evolution of the sum of system life costs after multiple
ear operation for BM no2 where 1D - MM7,15 has been used in the
ontroller. The red dots shows the optimal designs that minimize the
um of system life costs, which are 12, 16 and 18 MWh𝑡ℎ after 1, 2
nd 4 years of operation respectively. It is be noticed that the optimal
esign changes in function of number of years of operation. In fact, the
onger the length of operation, the higher the saved fuel cost, whereas
he design cost is constant and independent of the operation length.
his means that, for long term projections, optimal designs can have
igher storage capacities compared to short term projections, which
s the case here. Indeed, higher storage capacities (tending towards
easonal storage systems) are more profitable when storage operator
s engaged for longer years of exploitation, but comes with higher risk
uncertainties linked to far future).
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Fig. 9. Evolution of the system life cost components, after a year of exploitation,
according to thermal storage installed capacity. Each sub figure refers to a system
that has been operated with a controller using one of the four investigated models. 𝑥
symbols on the plots indicates the minimum values of the system life cost after a year
of operation and correspond to the optimal design.

Fig. 10. Evolution of the sum of system life costs as a function of the installed storage
apacity after different years of operation. Results are based on BM no2 and issued
rom a controller that uses 1D - MM7,15 for co-optimization.

.2.1. Comparison between BM no1 and BM no2
In order to discuss the difference between the two business models

in a way that is independent of the length of operation, the Energy
Payback Time (EPBT) is introduced in this section, as proposed in [10].
This criteria is used to calculate the time needed to payback the
initial investment (here 𝐸𝑑𝑒𝑠𝑖𝑔𝑛), which allows to determine the storage
capacity to install with shortest payback time as follows:

𝐸𝑃𝐵𝑇 =
𝐸𝑑𝑒𝑠𝑖𝑔𝑛

𝐸𝑓𝑢𝑒𝑙−𝑠𝑎𝑣𝑒𝑑 − 𝐸𝑙𝑜𝑠𝑠 − 𝐸𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔
(10)

Here, for each design the EPBT criteria is evaluated as defined in
Eq. (10). This criteria is calculated without taking into account the loss
cost 𝐸𝑙𝑜𝑠𝑠 in BM no1 and with loss cost in BM no2. It is to be noticed
that EPBT criteria, unlike the previous criteria, is adapted for high risk
projects where the storage operator is engaged on short amount of time.

Figs. 11(a) and 11(b) show the evolution of EPBT in function of the
storage installed capacity for each optimization model and for the two
defined BM.
Fig. 11(a) for BM no1 shows that all models, except 1D - MM3,7, 
have similar controller performances and objective function minimized 
value. In mean, for all investigated storage capacities, 1D - MM3,7 

increases the EPBT criteria by 5% as shown in Table 4. This is an illus-
tration of the consequences of insufficient discretization when building 
a metamodel. Also, degraded model performance decreases (compared 
to other models) for large storage capacities. On the other hand, 0D 
models have similar management performances as 1D - MM7,15 for BM 
no1, where objective function accounts only for fuel consumption with-
out finer terms such as losses that depends on local system temperature 
values. Although 1D - MM3,7 has degraded performance, all models give 
the same optimal design situated around 4 MWh𝑡ℎ storage. This shows 
that in case of BM no1, where only fuel consumption is being taken 
into account in the objective function, simple and degraded models can
be used to find the optimal design. However, degraded models do not 
succeed to reach other models optimal management performance.

As a comparison, regarding BM no2, Fig. 11(b) shows that an 
increasing error can be observed for larger storage capacities when 
investigating the 0D - Ideal results. This can be explained by the poor 
estimation of generated losses, in 0D - Ideal, that is being taken into 
account in BM no2. Those errors become more important as more losses 
are generated in large storage capacities. It is to be noticed that 1D
- MM7,15 has the best optimal management score that other models 
could not reach. In mean, for all investigated storage capacities, the 
increase in EPBT criteria is 100, 25 and 14% for 0D - Ideal, 0D -
Uniform and 1D - MM3,7 respectively compared to 1D - MM7,15. On the 
other hand, the increase in optimal EPBT criteria is 35, 32 and 15%
for 0D - Ideal, 0D - Uniform and 1D - MM3,7 respectively compared to 
1D - MM7,15 as shown in Table 4. However, the decrease in models 
management performances, except for 0D - Ideal, does not prevent 
them from reaching the optimal design as they commit similar errors
for all storage capacities. All models except 0D - Ideal reach similar 
optimal design around 6 MWh𝑡ℎ. Only 0D - Ideal reaches lower optimal 
design capacity around 4 MWh𝑡ℎ. The results show that for BM no2, 
where losses are being taken into account, only models that consider 
global losses can reach the optimal design point. On the contrary, 
0D - Ideal that only considers losses after storage saturation, fails to 
reach the optimal design. It is to be mentioned that metamodels results 
show improvements when they are more discretized (as described 
in Table 1) achieving better results for 1D - MM7,15. In fact, larger 
state discretization vectors in metamodel lead to higher accuracy and 
lower approximations during the interpolation process. The limit of 
the discretization is governed by the choice of the logistic function 
used to approximate the storage temperature curve in the metamodel. 
Finally, it is to be mentioned that, the EPBT criteria for the optimal 
design does not increase significantly by accounting the storage losses. 
In effect, it is possible to apply an optimal management avoiding losses 
without decreasing significantly the saved gas amount thanks to storage 
flexibility.

5.2.2. Simulation vs co-optimization performances
As a reminder, Section 4 showed that 1D - MM7,15 have the best 

simulation performance score with an NRMSD lower than 3% when 
compared to 1D - PDE as shown in Table 1. Hence, the optimization 
scores achieved by 1D - MM7,15 are the best achieved scores in both 
BM no1 and BM no2. In BM no1, 0D - Ideal as well as 0D - Uniform 
optimized EPBT remain very close from 1D - MM7,15 EPBT for almost all 
investigated capacities. This occurs although both 0D models commit 
non neglected errors in simulation process. On the other hand, 1D
- MM3,7 commits the highest EPBT and NRMSD simulation errors. 
It seems that models which are able to estimate approximately the 
objective function terms (here storage energy level only for BM no1) 
can be used for optimal design purposes. However, the more models 
are accurate in the storage energy simulation, the more management 
performance is improved. In BM no2, 0D - Ideal fails to reach the
optimal design as it does not consider storage losses before saturation.
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Fig. 11. Evolution of the Energy Pay Back Time (EPBT) according to battery capacity for BM no1 and BM no2. The optimization uses different models as described in the legend.
The simulation of results is carried out by the physical model 1D - PDE.
Table 4
Summary of different models optimization performances. The increase in EPBT is calculated relatively to 1D - MM7,15 EPBT that reaches the lowest values. 𝑡𝑜𝑝𝑡 is the computation
time to solve the optimization problem over one hour using MPC algorithm as described in Section 3.
Models Loss modeling

[yes/no]
Local 𝑇 modeling
[yes/no]

𝑡𝑜𝑝𝑡 [s] Optimal design for
BM no1 [MWh𝑡ℎ]

EPBT increase for
BM no1 [%]

Optimal design for
BM no2 [MWh𝑡ℎ]

EPBT increase for
BM no2 [%]

0D - Ideal no no ≈1 4 <1 4 35
0D - Uniform yes no ≈1 4 <1 8 32
1D - MM3,7 yes yes ≈10 4 3 6 15
1D - MM7,15 yes yes ≈10 4 – 6 –
1D - PDE yes yes >1500
a
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a
p
i
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w
d
m
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c
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E
1
E
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An important increase in EPBT can also be observed in the management
performance, although it has an acceptable NRMSD simulation score.
This shows that models which does not consider one of the objective
function terms, are not able to find the optimal design and scores poor
management performance. Other models that consider losses succeed
to reach the optimal design and acceptable management scores even
though those models commit important NRMSD simulation errors. In
terms of simulation and optimization computation time, in average, 0D
models are 10 times faster than metamodels, which are 100 to 1000
imes faster than 1D - PDE as described in Tables 1 and 4. In other
ords, for objective functions such as BM no1 where the goal is to op-
imize system-wide quantities, 0D models reach satisfying optimization
cores compared to accurate 1D models with lower computation time.
owever, for finer objective functions such as BM no2, 1D - MM7,15

llows to reach a more optimal design and management score with
reater but acceptable computation time.

. Conclusions and perspectives

In this work, 5 models of increasing complexity level (0D - Ideal, 0D
Uniform, 2 metamodels and 1D - PDE), have been investigated. Those
odels have been confronted using a HTTES co-optimization problem,
n the basis of a CSP energy source and industrial load over a year,
here boiler fuel is to be avoided. Two BM have been studied, with and
ithout considering losses generated by the HTTES. A simulation over a
ear has been carried out, where NRMSD has been calculated between
ach investigated model results and those of 1D - PDE (the latter is the
ost accurate model considered in this study). Results show that the
etamodel that has high discretization level achieves the best NRMSD
core lower than 3%.
Later on, a defected experimental setup is used to validate the
odels on the basis of real measurements. In this case it has been shown
hat all previously studied models fail to predict the behavior of such
nstallation with NRMSD greater than 12%. However, a new metamodel
onstructed on the basis of real measurements, succeeds to predict the
xperimental setup behavior with NRMSD lower than 6%.
 e
Furthermore, a co-optimization study has been conducted using the
vailable models and for the two BM. A first optimal design evaluation
sing CED criteria has been conducted, over multiple operating periods.
esults show that the longer the HTTES operating period, the greater
s the optimal design capacity, with 12 and 18 MWh optimal capacities
fter 1 and 4 years of operation respectively. Therefore, it is more
rofitable to invest in greater storage capacities if storage operator
s engaged over longer period, but this come with higher risk linked
o unknown future events. Finally, a criteria called EPBT has been
stablished for models performance comparison. BM n𝑜1 shows that,
hen losses are not considered, all models succeed to reach the optimal
esign, but the most degraded model fails to reach the optimal manage-
ent performance with an increase of 3% in the EPBT criteria for the
atter. BM n𝑜2 shows that, when losses are considered, models which
onsider losses succeed to predict the optimal design point but fails to
chieve the same management performance as the highly discretized
etamodel. In average over all investigated designs, an increase of
PBT criteria of 100, 25 and 14% for 0D - Ideal, 0D - Uniform and
D - MM3,7 respectively, can be observed compared to 1D - MM7,15

PBT values. Finally, the comparison between the 2 BM shows that,
onsidering losses increases slightly the EPBT from 4.3 to 5.5 months,
f co-optimized with appropriate model.
To summarize, we can distinguish three categories of models.

• First, models that consider all objective function terms with high
accuracy. They reach the optimal design but also the optimal
management score. This comes with considerable calculation
time, in average 10 s per MPC iteration.

• Second, models that consider approximately all objective function
terms. They reach the optimal design but score less optimal man-
agement. Generally, they have low computation time, in average
1 s per MPC iteration.

• Finally, models that do not consider all objective function terms.
Those models fail to find the optimal design and management
strategy.

In future work, multi-energies network could be considered to

valuate the model impact in such environment. Additionally, more



Table A.1
Summary of all correlations and physical proprieties used in this study 1D - PDE model. l𝑤𝑎𝑙𝑙 is the wall thickness, l𝑖𝑠𝑜 is the insulation layer thickness, 𝑅𝑒 and 𝑃𝑟 are Reynolds
and Prandtl numbers.
Parameter Signification Correlation/value Choice justification Reference

𝜌𝑓 [kg m−3] Air density 6.75E−18 T6𝑓 - 2.429E−14 T5𝑓 +
3.561E−11 T4𝑓 - 2.799E−8 T3𝑓 +
1.343E−5 T2𝑓 - 0.004509 T𝑓 + 1.274

Experimental measurements [17]

c𝑝𝑓 [J kg−1 K−1] Air heat capacity 2.42E−10 T4𝑓 - 7.131E−7 T3𝑓 +
6.581E−4 T2𝑓 - 8.615E−3 T𝑓 + 1006

Experimental measurements [17]

k𝑓 [W m−1 K−1] Air thermal
conductivity

9.38E−12 T3𝑓 - 2.59E−8 T2𝑓 +
7.30E−5 T𝑓 + 2.477E−02

Experimental measurements [17]

k𝑒𝑓𝑓𝑓 [W m−1 K−1] Air effective thermal
conductivity

𝜀 ⋅ 𝑘𝑓 HTF conductivity in porous
medium

[17]

𝜌𝑠 [kg m−3] Bauxite density 3005 Experimental measurements [17]
c𝑝𝑠 [J kg−1 K−1] Bauxite heat capacity 8.890E−10 T3𝑠 - 1.850E−6 T2𝑠 +

1.531E−3 T1𝑠 + 7.527E−1
Experimental measurements [17]

k𝑠 [W m−1 K−1] Bauxite thermal
conductivity

−2.518E−9 T3𝑠 + 5.423E−6 T2𝑠 -
4.95E−3 T1𝑠 + 5.070

Experimental measurements [17]

k𝑒𝑓𝑓𝑠 [W m−1 K−1] Bauxite effective
thermal conductivity

(1 − 𝜀) ⋅ 𝑘𝑠 HSM conductivity in porous
medium

[17]

𝜌𝑤 [kg m−3] Wall density 8070 Steel density –
c𝑝𝑤 [J kg−1 K−1] Wall heat capacity 500 Steel heat capacity –
k𝑤 [W m−1 K−1] Wall thermal

conductivity
18–45 Experimental measurements [18]

𝐴𝑓↔𝑤[m2] Exchange surface
between fluid and walls

(𝜀)(𝜋⋅ D𝑏𝑒𝑑 ⋅L𝑏𝑒𝑑+(2 𝜋⋅ D2
𝑏𝑒𝑑 )/4) Exchange surface in porous

medium
[35]

𝐴𝑠↔𝑤 [m2] Exchange surface
between solid and walls

(1-𝜀)(𝜋⋅ D𝑏𝑒𝑑 ⋅L𝑏𝑒𝑑+(2 𝜋⋅ D2
𝑏𝑒𝑑 )/4) Exchange surface in porous

medium
[35]

𝐴𝑤↔ext [m2] Exchange surface
between walls and
outside

𝜋⋅ (D𝑏𝑒𝑑+2 l𝑤𝑎𝑙𝑙) ⋅L𝑏𝑒𝑑+(2 𝜋⋅ (D𝑏𝑒𝑑+2 ⋅
l𝑤𝑎𝑙𝑙)2)/4

Exchange surface in porous
medium

[35]

ℎ𝑣 [W m−3 K−1] Heat transfer coefficient
between fluid and solid

(2+1.1𝑅𝑒0.6𝑃𝑟0.33)𝑘𝑓 ∕𝐷𝑝
(700(𝜌𝑓 ⋅ 𝑢/𝐷𝑝)0.76

Models that takes into account
inter-particle diffusion and
adapted for air-solid bed

Wakao and
Funazkri, 1979
[36] Coutier
and Farber,
1982 [37]

ℎ𝑤 [W m−2 K−1] Heat transfer coefficient
between walls and bed

(0.203𝑅𝑒0.33𝑃𝑟0.33+0.220𝑅𝑒0.8𝑃𝑟0.4)𝑘𝑓 ∕𝐷𝑝 Adapted for near-wall zone
air-solid bed with spherical
particles and with 𝑅𝑒>40

Beek, 1962
[18]

ℎ𝑒𝑥𝑡 [W m−2 K−1] Global heat transfer
coefficient between
walls and outside

1
𝐴𝑤↔ext

⋅
1

log 𝐷𝑏𝑒𝑑+𝑙𝑤𝑎𝑙𝑙+𝑙𝑖𝑠𝑜
𝐷𝑏𝑒𝑑+𝑙𝑤𝑎𝑙𝑙

2𝜋𝑘𝑖𝑠𝑜𝐿𝑏𝑒𝑑
+

1
ℎ𝑎𝑖𝑟 ⋅ 𝐴𝑤↔ext

Adapted for cylindrical packed
bed

[35]

ℎ𝑎𝑖𝑟 [W m−2 K−1] Heat transfer coefficient
between walls and
outside air

(0.664𝑅𝑒0.5𝑎𝑖𝑟𝑃𝑟
0.5
𝑎𝑖𝑟)𝑘𝑎𝑖𝑟∕𝐿𝑏𝑒𝑑 Adapted for forced convection

of an incompressible laminar
air flow on a plane wall

[35]
sophisticated objective functions and business cases can be investigated
for further comprehension of modeling impact on controller perfor-
mance. Finally, the study of HTTES co-optimization under uncertainties
is essential as it corresponds to real time management characteristics.
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