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Abstract. The Digital Twin (DT) is often used in environments characterized by 
uncertainty and complexity, where operating conditions are prone to variability 
based on external and internal factors. Thus, the literature about DT emphasizes 
the importance, limitations, and absence of uncertainty quantification. However, 
there is no explicit review discussing uncertainty in complex systems and within 
the digital twin model. Such an explicit review could improve the conception, 
construction, and utilization of DT in environments that are both dynamic and 
stochastic. Thus, this article aims to (1) describe how a DT can help manage 
uncertainties in a dynamic system, and (2) explain how DT should deal with 
uncertainties inside the model.

1 Introduction

Multiple fields paid close attention to digital twins (DTs) during the last decade. The 
Digital Twin has been extensively considered in the field of manufacturing [1] such 
as autonomous manufacturing [2] and additive manufacturing [3], and has even been 
extended to cyber-physical systems [4]. It has also been explored for asset management 
activities like damage detection and condition monitoring [5] as well as uncertainty 
quantification [6], and risk assessment [7], and also in the healthcare field [8] for patient 
pathway tracking in hospitals [9] and even inside operating room [10].

Such systems are dynamic, highly complex, and exhibit stochastic characteristics 
[11]. They evolve with time, are hard to model, and can deviate from their initial config-
uration because of random events. Thus, their DT is intended to capture the real system 
dynamics and adapt to changes that might occur in an uncertain environment. Regardless 
of how accurate a DT is or how much data is gathered from the monitored system, a DT 
will always be an imperfect representation. Indeed, a DT systematically suffers from 
modelling errors and parameter uncertainty. Even when these parameters are known and 
correct, there is always a mismatch between the real behaviour of the system and the 
simulated behaviour of the DT because it is only an approximation of the real system.



For all these reasons, the literature abounds with work related to the notion of DT, their
associated enabling technologies, and their problems.

The DT is often used in environments characterized by uncertainty and complexity,
where working circumstances might change based on external and internal variables [9].
As a result, Z. Liu et al. [13] suggest the definition of ‘a living model that continually
adapts to change in the environment or operation using real-time sensory data and can
forecast the future of the corresponding physical assets’, whereas Zhuang et al. [14]
present the concept as ‘a dynamic model in the virtual world that is fully consistent
with its corresponding physical entity in the real world and can simulate its physical
counterpart’s characteristics, behaviour, life, and performance in a timely fashion’.

The literature about DT emphasizes the importance, limitations, and absence of
uncertainty quantification [15–17]. However, to the best of the authors’ knowledge,
there is no clear review regarding uncertainties in the digital and the physical worlds.
Such an explicit review could improve the conception, construction, and utilisation of
DT in environments that are both dynamic and stochastic. Thus, this article aims to (1)
describe how a DT can help manage uncertainties in a dynamic system, and (2) explain
how one should deal with uncertainties inside the DT model.

According to this motivation, we investigate the literature to answer the following
research questions:

• RQ1: What are the types of uncertainties identified in the literature?
• RQ2: What is the difference between uncertainties in the physical world and the DT

model?
• RQ3: What are the used methods to deal with the uncertainties with and within the

DT?

The remainder of this paper is structured as follows. In Sect. 2, we present several
uncertainty categories. Then, in Sect. 3, we investigate where these uncertainties appear
in both the physical system and DT model. In Sect. 4, we describe the methods used to
manage these uncertainties with and within the DT. Finally, Sect. 5 is dedicated to the
Discussion and Sect. 6 proposes concluding remarks.

2 Types of Uncertainty

The scientific community provides field-specific typologies for uncertainties [18]. Mil-
liken [15] characterizes uncertainty in organization theory with state uncertainty as an
inability to “understand how components of the environment might be changing”, effect

uncertainty as “an inability to predict what the nature of the impact of a future state of the
environment or environmental change will be on the organization”, and response uncer-

tainty as “an inability to predict the likely consequences of a response choice”. In [19],
process design and operations uncertainties are divided into model-inherent uncertainty,
process-inherent uncertainty, external uncertainty, and discrete uncertainty. The two first
are epistemic uncertainties, and the two lasts are aleatory uncertainties. The article [18]
defines uncertainty as “any departure from the unachievable ideal of complete determin-
ist”. They distinguish three dimensions of uncertainty in decision support systems: the



uncertainty’s location (the place where the uncertainty occurs), the uncertainty’s level
(the amount of knowledge available), and the uncertainty’s nature (whether the uncer-
tainty is epistemic or aleatory). Finally in the operating room, [20] makes a difference
between natural variability and artificial variability (which we would both call aleatory
uncertainty in this article). Natural variability is the result of clinical variability, patient
flow variability, and professional variability. It cannot be avoided as it is inherent to the
healthcare environment. Artificial variability is human-induced (e.g., patient and staff
preferences, planning, and scheduling). It is non-random and yet non-predictable.

Other definitions are more global. The paper [21] states that uncertainty is “an indi-
vidual’s perceived inability to predict something accurately” and that it “refers to the
psychological state of doubt about what current events mean or what future events are
likely to occur”. [22] describes it as “a cognitive state of the individual, resulting from
the evaluation of the number of alternatives available to predict future behaviour or alter-
natives available to explain a past behaviour”. In the field of risk management, the ISO
31000:2009 standard on risk management vocabulary [23] describes uncertainty as “the
state, even partial, of deficiency of information related to, understanding or knowledge
of, an event, its consequence, or likelihood.” These references agree with the idea that
uncertainty is a perceptive phenomenon in which the access to information is crucial
[24]. In various scientific fields (e.g., computational engineering [25], decision support
[18], and electromechanics [26]), we can distinguish two main types of uncertainty:
aleatory uncertainty and epistemic uncertainty.

Aleatory uncertainty is inherent and specific to any physical phenomenon which
displays a random behaviour. It is the impact of the input natural variation on the outputs.
It is irreducible without changing the studied system itself and is commonly treated with
probability theory. Different classifications can be found in the literature depending
on the area of application; in production planning, aleatory uncertainty is divided into
demand forecast uncertainty, external supply process uncertainty, and internal supply
process uncertainty [27]. In the supply chain domain, it includes supply uncertainty,
process uncertainty, and demand uncertainty [28]. In the operating room environment
[29] identifies four main uncertainties: patient arrival, surgery duration, care requirement,
and resource uncertainty.

Epistemic uncertainty stems from imperfect knowledge of the system studied. It
can thus be reduced by retrieving more information about the system. Different epis-
temic uncertainty categorization exists; for instance modelling errors and parameters
uncertainties [25], or model uncertainty and data uncertainty [26]. More specifically,
uncertainties can be designated as structured if they just affects the values of the model’s
parameters and not its structure, and as non-structured if it impacts the model’s struc-
ture [30]. Kennedy and O’Hagan [31] state that epistemic uncertainties stem from two
sources: parameters and models.

• Uncertainty due to the parameters refer to:

– Parameter uncertainties: models invariably contain parameters that are quantifiable
but are not completely understood or accessible in most circumstances.

– Parametric variability: because inputs cannot be entirely controlled or described,
the circumstance in which the model is used may change. A model, on the other



hand, may necessitate the definition of a single deterministic value, which should
be adjusted depending on process information.

• Uncertainty due to the model are:

– Model discrepancy: it is understood that even when the parameters are deterministic
and ‘really’ known, there will still be mismatches between the model output and
the ‘true’ physical process.

– Residual variability: given the same set of inputs, the process may yield various
results due to a chaotic or stochastic character. This is frequently caused by insuf-
ficiently specified inputs, the inherent random nature of the process, measurement
noise, or caused by a lack of understanding or knowledge of the observed system.

[32] suggests another epistemic uncertainty typology and states that it can be divided
into model uncertainty and data uncertainty. Model uncertainty includes parameter
uncertainty, solution approximation errors, and model form uncertainty. Data uncer-
tainty includes measurement uncertainty and sparse or imprecise. Sometimes aleatory
uncertainty is referred to as “variability” and epistemic uncertainty as “uncertainty”.

To illustrate the difference between epistemic and aleatory uncertainty, we suggest a
simple example. When throwing a fair coin, we know that the results can be head (50%
probability) or tail (50% probability). However, we cannot predict for sure what will be
the output of a specific throw. We call aleatory uncertainty the variability output due to the
inherent randomness of the studied system. In case the coin is not fair, there will also be
epistemic uncertainty as we will not have perfect knowledge of the head/tail frequency.
Thus, we will have to model the probability distribution that predicts the output. As a
side note, the authors of [33] consider aleatory uncertainty as not uncertainty but as pure
variability, and epistemic uncertainty as general uncertainty. This emphasizes the idea
that defining the terms used is extremely important for a good comprehension of the
problem.

Differentiating these two types of uncertainty is not always necessary. On one hand, in
the context of probability theory and mathematical statistics of uncertainty quantification,
the same tools are used for: (1) the stochastic modeling of uncertainties, (2) the analysis
of uncertainty propagation in a computational model, and (3) the solving of inference
or estimation. Thus, it is not necessary to deal with each type of uncertainty separately
[26]. On the other hand, aleatory uncertainty is unavoidable without changing the real
system, while epistemic uncertainty can be reduced by acquiring more knowledge about
the system. When wanting to reduce the uncertainties in a model, one should focus
on epistemic uncertainty only. Consequently,”epistemic uncertainty directly supports
decisions about data collection and model improvement” [21].

3 Digital Twins and Uncertainty

DT’s features allow them to be a powerful tool for modelling and monitoring dynamic
systems [34]. To begin with, a DT can collect data from the physical world in real-
time, which could support the development of dynamic models [35]. Indeed, a DT could



provide at any moment information about the state of the physical system and assess
the operational conditions of an uncertain situation. Moreover, the incorporation of data
processing technologies such as artificial intelligence techniques into the DT may enable
more effective predictive analysis and decision-making processes for uncertain events
[36]. For this reason, in the next two sub-sections, we present an explicit overview of the
aleatoric and epistemic uncertainties. First, we exploit the role of the DT in a dynamic
system prone to uncertain events through literature. Then, we examine uncertainties
within the DT model.

3.1 Uncertainty with Digital Twin in Dynamic Systems (Aleatoric)

There are numerous articles on asset management under uncertainties. A recent study
in structural damage detection [37] describes DT implementation procedures with an
approach combining physics-based models and machine learning. To quantify the uncer-
tainties and develop a more robust method, a probabilistic approach in which a stochastic
model is built and calibrated during the offline phase. In the same field, a technique for
intelligent mission planning based on the DT is presented [38] while quantifying the
uncertainties in the three components of the approach namely damage diagnosis, dam-
age prognosis, and mission optimization considering aleatory and epistemic uncertainty
sources using probabilistic methods. The structural health condition of an aircraft is
known for its variability from one aircraft to another due to material qualities, mission
history, pilot variability, and so on. The concept of dynamic Bayesian networks (DBN)
is used in [39] to develop a health monitoring model for the diagnosis and prognosis of
each aircraft. A probabilistic DT aircraft model is designed to achieve the integration
of diverse uncertainty sources during the whole life of the aircraft wing, and decrease
uncertainty in model parameters.

In the domain of safety and risk assessment, the authors of [34] emphasize how
the inherent capability of DT in acquiring data from the physical world combined with
the potentiality of reliable data processing could support a more effective diffusion of
dynamic risk assessment models for improving safety. In this context, the authors of [40]
propose the use of DTs to better identify high-risk scenarios and thus improve the risk
assessment process. Another study [41] presents a framework for a DT based on machine
learning and prognostics algorithms model to assess and predict the risk probability rate
of an oil pipeline system by focusing on detecting a failure precursor and calculating
risk conditions to determine remaining usable life (RUL).

In the manufacturing sector, several active areas can be identified that suffer from
uncertainties, one of which is dynamic scheduling. Because of unknown occurrences
in the manufacturing process, such as new task insertions, order cancellations, worker
absences, and machine malfunctions, dynamic scheduling methods are needed and cru-
cial to manufacturing systems. DT can aid in the detection of disruptions by continually
comparing physical and virtual space and activating a rescheduling policy directly after-
ward a disturbance. In this context, [42] proposes reinforcement learning; (RL)-driven
DT allows for effective collaborative scheduling between production and maintenance
departments and assists manufacturers in improving real-time decision-making under
uncertainties. Similarly, to address the aforementioned issues, the study in [43] presents
a DT-enhanced dynamic scheduling strategy. Real data from physical machines and



simulated data from their virtual models are fused to assist machine availability predic-
tion. Furthermore, to identify disruptions effectively, the DT’s virtual entity, which is
constantly updated alongside its physical counterpart, is used as a dynamic reference to
quantify the deviation of the real production from the expected plan. Another study [44]
provides an architecture for robust scheduling that is applied to a flow shop scheduling
problem and is connected with the field through the DT. To deal with uncertain events,
a module is dedicated to the real-time estimation of the equipment’s failure probability,
using data-driven statistical models on collected data.

In material resource planning (MRP), DT is also sought to deal with uncertain events.
The study [45] describes how to use DT to improve MRP. During planning, numer-
ous MRP factors are unknown; machine learning is used to predict these parameters.
Nonetheless, no prediction is flawless, and the unpredictability of some parameters may
have a significant influence on the final result. Thus, the optimization methods and
probability distributions are used to consider these uncertainties.

The authors of [46] use hidden Markov models to approximate uncertainties in the
design of manufacturing systems DT. The suggested DT is made up of two parts: a
model component and a simulation component. Using discrete states and associated
transition probabilities, the model component creates a Markov chain that embodies the
dynamics underlying the phenomena. The simulation component uses a Monte Carlo
simulation approach to reproduce the events. [47] presents a DT-based methodology for
simulating all the effects in an artifact-based machine tool calibration process, starting
with the machine and its expected error ranges and progressing to the artifact geometry
and uncertainty, artifact positions in the workspace, probe uncertainty, compensation
model, and so on.

To conclude, most studies rely on probabilistic approaches to model uncertainties due
to the inherent variability of dynamic systems and the occurrence of external disturbances
(aleatory uncertainty).

3.2 Uncertainty Within the Digital Twin Model (Epistemic)

A system’s model is an expression that approximates how the real system behaves.
Regardless of how accurate a model is or how much data is provided, it will always
be an imperfect and incomplete representation of the real system. Indeed, according to
[30], there is always some discrepancy between the modeled and the real behaviours
when modelling a dynamic process to monitor its behaviour. This gap is called residual
resulting in epistemic uncertainty. Disturbances and noise compromise the accuracy and
reliability of the DT to monitor the physical system correctly.

The sources of uncertainty may include: linearizing nonlinearities to simplify the
model, calibrating the model poorly and causing errors in parameters and model form,
and considering some parameter’s value constant even though it might change because of
external effects such (e.g., environmental effects), or parameters having different values
in different units (tolerance).

To overcome the aforementioned uncertainties, the authors of [48] address the design
of the DT model for machinery process deterioration. They present an updated technique
based on parameter sensitivity analysis. In [45], machine learning is used to fine-tune the
DT’s parameters to reduce the model discrepancy. [50] suggest a reinforcement learning



approach to adjust the model and data errors. In addition to reinforcement learning,
[51] uses unsupervised learning to detect anomalies coming from measurement. Other
studies use fuzzy logic to improve the performance of the DT by updating it based on
measurements [52].

Overall, regardless of the emphasis put on the importance of uncertainty quantifi-
cation in the DT, and the efforts put to fill the gap between the DT model and the
physical system, the literature in this context remains poor and lacks more research and
elaboration to tackle the different source of uncertainties and enrich DT functionalities.

4 Methodology

Model uncertainty, noise measurement, external disturbance, and stochastic outcomes
of real systems all contribute to the use of uncertainty in modelling and inference. Thus,
this section illustrates the approaches used to overcome the two types of uncertainty
described previously, whether it is in the DT model or the real system. Figure 1 sum-
marized the following information. First, because of the real process and its inherent
disruptions, a physical system fed with identical inputs may display output variability
(aleatory uncertainty). Second, uncertainty within the DT may be classified into two
types: those depending on model parameters, known as model-parameter uncertainties,
and those generated by modelling errors (epistemic uncertainty). Strategies for deal-
ing with stochastic behaviours have been developed based on the type of uncertainty
targeted.

– Stochastic approaches: Also called probabilistic approaches, all share a common
mathematical foundation. These approaches aim to anticipate the occurrence of uncer-
tainties by modelling them with probability densities. To model stochastic transitions
in system dynamics with a DT one can use Hidden Markov Models [46] or Arti-
ficial Intelligence methods based on Probabilistic Graphical Models, e.g., Bayesian
Networks (BNs) or Dynamic Bayesian Networks (DBNs) [39].

– Non-probabilistic approaches: Other non-probabilistic methods have been used to
quantify and handle uncertainties. The goal of these approaches is to minimize the
effects of uncertainty; they usually deal with epistemic uncertainties using fuzzy
logic [52], rule-based techniques, and expert systems[53]. In the field of artificial
intelligence, reinforcement learning is also being used [46].

– Robust approaches: Given the noise and uncertainty inherent in the system’s mon-
itoring, robust approaches aim at decoupling nonzero residuals caused by modelling
errors/noise and disturbances of the physical system. Instead of establishing assump-
tions about stochastic distributions, it is feasible to use inference techniques to reduce
the noise [54] or machine learning techniques to learn the normal pattern consider-
ing modelling errors and noise and still detect anomalies coming from the physical
system [55]. The main objective of this approach is to obtain a DT which can listen
to aleatory uncertainty from the physical system without being affected by epistemic
uncertainties (model and parameters uncertainty).

Figure 1 summarizes the different uncertainty types and the approaches used to
quantify them. In green, we represented a physical system monitored with a digital twin.



The observed input is the same for both systems. We measure the difference between
the observed output and the expected output; the difference is called the residual. In red
are represented the aleatoric uncertainties of the physical system due to its variability
or external uncertain events occurrence connected with stochastic approaches to deal
with them. In yellow are shown the epistemic uncertainties of the DT due to parameters,
modelling errors or measurement noise connected to non-probabilistic approaches to
deal with them. And then robust approaches are drawn in purple, connected to both
epistemic and aleatoric uncertainties.

Fig. 1. Summary of uncertainty types and different used approaches to quantify them

5 Discussion

This article’s contribution is twofold: (1) highlighting the capacity of a DT to quan-
tify and manage uncertainties in dynamic systems, and (2) emphasizing the necessity
of properly handling the uncertainty sources within the DT model itself. Overall, this
article’s outcome could help improve the use of DT in dynamic systems.

According to [56], uncertainty quantification is implicit in implementing a DT. That
is, to allow risk-informed decisions, the best available knowledge about the DT features
should be represented in the form of probability distributions or other uncertainty quan-
tification metrics. However, as we saw in this article, aleatory uncertainty is irreducible
whereas epistemic uncertainty can be reduced: the more knowledge we have about the
real system, the less we need to model epistemic uncertainty. Indeed, if we have enough
data from the physical system (e.g., by increasing the amount of data gathered and by



improving the data collection methods), there is no need to use probability distributions
to model uncertain events. Thus, the DT would be fed in real-time by the occurring
events and be synchronized with them. On the opposite, if we are not certain about the
behaviour of the physical system, the model will approximate its behaviour through a
probability distribution.

This is the main difference between the simulation and the emulation capabilities of
a DT. A DT based on simulation approximates the behaviour of its environment with
uncertainty quantification; it is not entirely in sync with the real world (static feature). On
the contrary, a DT based on emulation only changes its state when it receives appropriate
information from the real world; it is entirely in sync with the real world (dynamic feature)
[12]. Thus, to reduce epistemic uncertainty, more efforts should be done to develop the
emulation capabilities of a DT.

6 Conclusion

The ability of the Digital Twin to be updated in real-time has earned a lot of attention from
both the scientific and industrial communities. As complex systems generally display
stochastic behaviours, uncertainty should be a crucial part of DT modelling. However,
many elaborations and works on the DT do not consider uncertainty. Thus, until today,
the implementation of DT’s ability to adapt to random events in the physical system
is a core challenge. Two sources of uncertainties must be investigated: (1) the inherent
variability of the studied system (aleatory), and (2) the lack of knowledge regarding the
aforementioned system (epistemic).

In this sense, this paper first proposed a review of the concept of uncertainty. Then it
clarified their presence in both the physical system and the Digital Twin model. Finally,
it discussed the different methods used to estimate them. The paper’s contribution is an
overview of what has been written on the topic and the creation of the first basis for
future research works.
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