Identification of the ball screw load distribution by photoelasticity

Romuald Bertolaso, François Ronde-Oustau, Alain Fermy, Mohammed Cheikh

To cite this version:
Romuald Bertolaso, François Ronde-Oustau, Alain Fermy, Mohammed Cheikh. Identification of the ball screw load distribution by photoelasticity. PHOTOMECHANICS, 2008, Loughborough, United Kingdom. hal-03953988

HAL Id: hal-03953988
https://imt-mines-albi.hal.science/hal-03953988
Submitted on 24 Jan 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Identification of the ball screw load distribution by photoelasticity
Romuald Bertolaso1,2, François Ronde-Oustau1, Alain Fermy3, Mohammed Cheikh1,2.
(1) École Mines Albi \ CROMeP, Campus Jarlard, 81013 Albi
(2) I.U.T. Toulouse II Figeac, av de Nayrac, 46100 Figeac

Ball screw activated by a hydraulic engine.

THSA : RATIER command system of the horizontal plan of Airbus A320 A330.

Mesh: 2-D calculation
- 26637 element
- 16858 nodes

FEM software:
- ZebulonTM

Boundaries conditions:
- Screw displacement imposed.
- Trunnion unbending.
- Friction coefficient 0,2.

Load = 1.0e5 N

Profile ball-groove

Experimental set-up

Experimental PMMA specimen

Polariscope

OK

PMMA specimen Realized at IUT Figeac by A. Fermy.

Realized at IUT Figeac by A. Fermy.

• Conclusion :
 ➢ The photoelasticity is a good measurement method for the load distribution in the ball screw system in 2-D.
 ➢ The calculation of fringe realized thanks to simulation results allows to obtain similar fringes to the one obtained by the experimental tries.
• Under work :
 ➢ Realization of 3-D experimental photoelasticity measurement based on cutting optics for a ball bearing in a first time and for the 3-D ball screw with LMS photomecanic team of Poitiers.

PRINCIPLE OF THE BALLS SCREW

➢ Transform a movement of rotation into a translator movement with a best mechanical efficiency, that is with a minimum of friction.
➢ Use of balls enters the screw and the nut to pass on the power in rotation, what increases the efficiency as well as the yield.
➢ Mechanism of recovery of balls when they reach the end of the nut.

CONCLUSION AND FUTURE WORKS