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ABSTRACT

The DDMRP (Demand Driven Material Requirements Planning) methodology uses buffer stocks to (i) maintain a
high level of service, (ii) stop the spread of uncertainty and (iii) adapt to market changes. According to theory,
the size of these buffer stocks should be defined regularly. This sizing involves several parameters and policies
to update them, but very little information is available on this subject. We aim to help practitioners choose
sizing policies, while maximizing the performance of a given workshop. We have developed an experimental
design to compare many combinations of flow-shops and bottleneck constraints, taken from industrial use-
cases, and using discrete event simulation. The results show that (i) different degrees of dynamism are
needed depending on the performance metric chosen by practitioners, (ii) completely dynamic control does
not systematically lead to better performance, and (iii) contrary to what the existing literature on DDMRP
suggests, varying buffer sizes may be less effective than fixed ones for an important part of use-cases.

1. Introduction

Over the last decades, supply chain and material management meth-
ods faced increasingly complex problems: more volatile markets, in-
creasing uncertainty both from demand and supply, complexity from
high degrees of product customization or network of actors (Bennett &
Lemoine, 2014). The Demand Driven Material Requirements Planning
method (Ptak & Smith, 2016) is a materials management framework
that is part of the various recent contributions that were developed
to deal with this problem. By building on top of previous successful
methods such as MRP, Kanban or Theory of Constraints and adding a
few innovations, the DDMRP claims the ability to reach higher perfor-
mance with simpler management (Miclo, Lauras, Fontanili, Lamothe, &
Melnyk, 2019).

Using DDMRP requires two main steps: (i) creating a network of
buffers to help mitigate uncertainties and (ii) implementing a dynamic
adaptation of the sizes of these buffers. Creating the network of buffers
(where to place them and what types to use) is the first crucial step of
a successful DDMRP implementation, but is outside the scope of this
paper. It has been previously addressed in Ptak and Smith (2016) for
general principles and in Rim, Jiang, and Lee (2014) with an optimiza-
tion approach or Pekarcikova, Trebuna, Kliment, and Trojan (2019)
with a consideration for product types. The research work presented in
this paper focuses on the second step of the implementation: the sizing
of all the physical buffers once placed.

* Corresponding author.
E-mail address: gmartin@mines-albi.fr (G. Martin).

While buffers in DDMRP come in three types (physical, time and
capacity), we focus solely on the physical buffers. Dynamic adaptation
allows the workshop to follow changes either in the market or in the
processes. It is done through frequent update of several parameters
which, in turn, determine the buffer sizes (Ptak & Smith, 2016). Our
study focuses on this dynamic adaptation mechanism.

Changing the size of a DDMRP buffer is done by adapting several
parameters, possibly all at the same time (Ptak & Smith, 2016). These
parameters govern the sizes of several zones internal to each buffer
that add up to its final size. Updating these parameters is a time-
consuming process if done by hand due to potentially computation
heavy calculations. Additionally, changing a parameter value upstream
in the buffer network may have unforeseen consequences downstream.
The original authors of the DDMRP (Ptak & Smith, 2016), as well as
some authors in more recent works (Dessevre et al., 2019; Lee & Rim,
2019), have recommended some rules to update these parameters. In
this paper, we will refer to these rules as “policies”. As a result, the
parameters of a DDMRP buffer can be seen as the output of one or
more of these independent policies.

As of now, most sources use a single dynamic parameter to control
the sizes over time. Very few authors have investigated the interest
of controlling a DDMRP with multiple dynamic parameters, let alone
across different workshops configurations. In this context, the research
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work presented in this paper aims to answer two questions: (i) what
are the main parameters that could be tuned dynamically for DDMRP
buffers while maintaining sufficient workshop performance and (ii)
what policies or combinations of policies for parameter update give
the best performance, and for which variation of flow-shop? We re-
stricted our study perimeter to flow-shop variations as they make up
a considerable part of implementations and appear in our industrial
use-case.

Section 2 reviews previous work on dynamical parameter setting
inside and outside the DDMRP methodology. Section 3 details the
characteristics of our use-case and how we designed our experiments.
Section 4 summarizes the simulation results statistically and produces
a set of recommended policy choices. Lastly, Section 5 details where to
go from now with the newly acquired knowledge.

2. Literature review

The literature review is split into two sections. In 2.1, we review the
past works on DDMRP that may inform us on how sizing works, and on
which parameters or policies influence the sizing. In 2.2, we review the
parallels between DDMRP sizing and sizing as defined in other planning
methods that preceded DDMRP. Finally, 2.3 concludes on our research
questions. These sections should help us identify the research gaps for
three questions:

1. what are the parameters influencing the dynamic sizing of a
DDMRP physical buffer?

2. which of these parameters are supposed to be dynamically up-
dated according to the DDMRP literature? and,

3. do other fields in literature close to the DDMRP contain elements
on dynamical update of these parameters?

2.1. Sizing the DDMRP buffers

Most works on DDMRP use or challenge guidelines given by Ptak
and Smith (2016), which serves as a basis for the body of knowledge
on the method. They identify a set of equations that, once summed, add
up to form the final size of a buffer. Appropriately sized buffers allow
to decouple demand from supply, while avoiding having too much in
stock. These equations call for four mandatory parameters and one
additional parameter:

the Average Daily Usage (ADU), equivalent to the daily demand
of a buffered reference,

the Decoupled Lead Time (DLT),' defined as the longest manu-
facturing lead time between two consecutive buffers,

the Variability Factor (VF), a coefficient between 0 and 1 propor-
tional to demand instability,

the Lead Time Factor (LTF), a coefficient between 0 and 1 in-
versely proportional to the buffered reference’s DLT,

finally, the Minimum Order Quantity (MOQ), which is an optional
parameter accounting for the minimum lot size.

As recently emphasized by Azzamouri, Baptiste, Dessevre, and Pel-
lerin (2021), the founders of the DDMRP gave only a few details on
parameter definition. In Ptak and Smith (2016), they set the parameters
as follows:

» they recommend using moving averages over the past demands to
compute the ADU of buffered references. The value of the average
window is left to the end user however. Ptak and Smith (2018)
gave an update and proposed to use forecasts in conjunction with
past demands in determining the ADU. ADU is the only parameter
that is explicitly said to vary over time.

1 Our study will focus on these two bold parameters, as shown by the
synthesis of the literature further in the paper.

« they set the DLT directly from the reference data-sheet, instead
of computing it based on historical data.

+ they recommend values for VF and LTF according to a three level
scale.

« if possible, they recommend against using MOQ as performance
of DDMRP may be hindered by fixed lot sizes.

As a result, in Ptak and Smith (2016), only the ADU is explicitly
said to be dynamically controlled. Most of the recent contributions
specific to the DDMRP follow these recommendations: Kortabarria,
Apaolaza, Lizarralde, and Amorrortu (2018), Miclo et al. (2019) or Ve-
lasco Acosta, Mascle, and Baptiste (2019), for example, all study a
DDMRP instance under an evolving ADU only. For the remainder of
this paper, we will refer to any rule or function to dynamically set a
parameter value as a “policy”.

Definition 2.1 (Policy). A policy is any rule or function that returns the
new value for a dynamically set parameter.

Some authors have tested alternatives parameter setting policies.
Dessevre et al. (2019) is the only known source using a variable DLT in
a DDMRP context. They evaluate the impact of using different policies
to set the value from the previous registered cumulative lead times.
They review the impacts of three policies on the performance of a flow
shop: (i) keeping the DLT constant thus following other researchers, (ii)
using exponential smoothing with different smoothing factors and (iii)
setting the DLT as a percentile of registered cumulative lead times for
a specific reference in the flow shop. After submitting the flow shop
to a perturbation in demand, they conclude that controlling both pa-
rameters dynamically is possible but can lead to spiraling effects when
bottleneck load is near capacity. But, contrary to the rules from Ptak
and Smith (2016), to limit the complexity of their simulation, they do
not change the value of the LTF with the value of the DLT.

Lee and Rim (2019) propose an alternative to using the VF parame-
ter. They define the lower zone of the buffer through coefficients of
variation of demand and lead time. They achieve lower inventories
than Ptak and Smith (2016) with their policy, with high client satis-
faction. They also define the DLT as the “average lead time” without
further details on how it was measured.

Through their study of the literature, Azzamouri et al. (2021)
showed a tendency to use different types of simulations in order to
obtain new scientific results on the DDMRP. The most prominent one
is Discrete Event Simulation (DES), that allows to model complex
workshops and specific DDMRP behaviors. Recent works can be di-
vided into two categories: those that compare performance of different
material management methods with DDMRP on the same workshop
and those that compare alternative ways to control the DDMRP, still
on the same workshop. Shofa, Moeis, and Restiana (2018) use DES to
compare MRP and DDMRP in a problem with long purchasing lead
times and shows that DDMRP achieves lower average inventory. Mi-
clo et al. (2019) compare MRP, Kanban and DDMRP and show that
DDMRP globally outperforms the other two in an assembly workshop.
Lastly, Thiirer, Fernandes, and Stevenson (2020) compare different
production planning and control methods on a multi-stage assembly
use-case. They refine results from Miclo et al. (2019) and give insights
to choose between different material management methods. Dessevre
et al. (2019) and Lee and Rim (2019) belong to the second category.
They both evaluate different policies to control the DDMRP on the same
use-case. Dessevre et al. (2019) use a complete DES software, while Lee
and Rim (2019) use spreadsheet simulation.

Table 1 compares how far policies are detailed in all the previously
cited works. It shows that most of the contributions detail how the ADU
parameter is set over time; most of the time however, authors assume or
elude the policies to set the rest of the parameters. For the remainder of
this paper, we define the term “policy” as any function able to propose
a new value for a parameter by taking into account either a past time
series of data or the present state of the system. It follows the definition
in the works of Koulouriotis, Xanthopoulos, and Tourassis (2010).



Table 1
Author vs. Parameter in DDMRP works, sorted by date (oldest).

Parameter

ADU DLT VF LTF MOQ

Reference

Ptak and Smith (2016)

Ptak and Smith (2018)
Kortabarria et al. (2018)
Shofa et al. (2018)

Miclo et al. (2019)

Velasco Acosta et al. (2019)
Dessevre et al. (2019)

Lee and Rim (2019)

Thiirer et al. (2020)
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- not addressed or supposed to follow Ptak and Smith (2016).
! single policy.

P partially addressed.

" several policies.

2.2. Dynamic sizing for related parameters outside the DDMRP

The DDMRP methodology inherits from several materials manage-
ment theories (Ptak & Smith, 2016), it is then fair to turn to these to
search for dynamical update policies which could help practitioners size
their DDMRP buffers dynamically. We identified two main candidate
fields: literature from MRP and from card and token controlled produc-
tion, such as kanban or CONWIP. In these, we aim to find parallels to
our dynamical buffer sizing problem. We also consider close parameter
definitions between fields. This subsection is organized thematically to
better see parallels between the different parameter types.

Dolgui and Prodhon (2007) and Yeung, Wong, and Ma (1998) define
the list of parameters impacting the performance of MRP workshops as:

« the size of safety stocks,

« the length of the safety and planned lead times,

« the lot sizing policies,

« the horizon of the Master Production Schedule (MPS),
+ and the planning horizon of the production orders.

Among these five, three are relatively close to DDMRP parameters:

+ the safety stock size parameter can be closely linked to the
definition of the lower zone of DDMRP buffers (see Ptak and
Smith (2016) or Lee and Rim (2019)),

« the lot sizing policy is related to the MOQ parameter,

» and the definitions of safety and planned lead times are close to
the definition of the DLT.

Defining the MOQ is, in itself, optional in a DDMRP environ-
ment (Ptak & Smith, 2016). It is also a problem of its own, as shown by
the numerous papers on the topic 7288 results on the Web Of Science
only with the request (“lot sizing” OR “lotsizing” OR “lot-sizing” OR
“order quantit*” OR “batch size” OR “lot size*” on July, 30, 2021).
For these two reasons, the dynamic lot sizing problem will not be
considered further in the paper. Lastly, the MPS planning horizon is
very specific to the MRP environment and has no counterpart in a
DDMRP setting for the moment. This leaves us with two topics to
explore.

Defining safety stocks. Earlier works on the definition of safety stocks
in an MRP environment can be found in Orlicky (1974), where they
are sized according the standard deviations of errors between real and
forecast demand. Inderfurth (2009) extends these works by including
a risk factor, either for unstable demands or yields. The risk factor is
established according to the uncertainties and acts as a multiplication
factor of the safety stock. Grubbstrom (1999) proposes to use safety
stock for end products only. The size of these safety stocks is defined
as the difference between the sum of production orders and the sum of
products consumed by the customers. For this reference, optimal is de-
cided for the sizes that assure the best margin in the last period. Caridi

and Cigolini (2001) consider safety stocks in an MRP environment for
irregular demands. They recommend to use two types of safety stocks:
one for day-to-day variance sized without taking spikes into account,
and one for unusual demand spikes. Lastly, Axsiter (2015) gives sev-
eral approaches using either optimization or probabilistic measures to
decide the safety stock size.

Setting lead times. When setting lead times, we emphasize the differ-
ence between two concepts. Firstly, practitioners may want to estimate
the completion date of each individual order with relative degrees of
precision, which is called lead time in most systems and is defined
as the time between order creation in the system and order delivery.
This must be done for each order and may also be referred to as
“lead time quotation” in the literature. This, however, is not what is
needed in order to define the DLT. DLT definition calls for the second
concept: setting lead time as a management parameter in order to
size the system (Hopp & Spearman, 2011). As a result, we limit our
literature review to setting lead times as management constants and
not producing a lead time quotation.

In MRP environments, this concept has two sides: (i) defining the
planned lead times and, if necessary, (ii) defining the safety lead
times. Yano (1987) defines optimal planned lead times in a two-
stage production environment, with stochastic production and supply
times. The works are also extended for the N stage problem under the
hypothesis of independence of lead times for the different stages. The
article uses minimal storing costs and late orders as optimality criteria.
Findings include the fact that lead time variance is different at each
stage and that, lower in the chain, lead time variation is a combination
of variations from the higher stages. The article recommends using a
safety lead time on the stage with the most variance and to define the
planned lead time afterwards.

Melnyk and Piper (1981) use the same decomposition of planned
lead time and safety lead time. They observe that acceptable values for
the safety lead times are between two and three times the variation
of lead times. They also raise the alert of increasing work-in-process
generated by an overestimated safety lead time. They recommend using
such a safety lead time for components lower in the bill of materials,
especially if they are shared between numerous references.

Buzacott and Shanthikumar (1994) and Molinder (1997) compare
using safety stocks and safety lead times in a simulated workshop.
They establish several strategies to choose between any of the two:
for Buzacott and Shanthikumar (1994), we can use safety lead times
if forecast quality is good enough. For Molinder (1997), if there is high
variability on demand and little on lead time, using safety stocks is a
better choice. In case of high variability for both, use safety lead times.

Hnaien, Dolgui, and Louly (2009) or Dolgui, Ammar, Hnaien, Louly,
et al. (2013) propose a series of cases for determining optimal planned
lead times in an MRP environment with stochastic lead times. The series
progressively details the use case of a production stage by continuously
reducing the hypotheses. The only hypothesis kept is the knowledge of
the distribution of the lead times and their discrete nature. The search
for optimal values of the planned lead times is then obtained through
discrete optimization.

Axsédter (2006) approaches the problem of defining planned lead
times in a multi-stage workshop. The workshop is decomposed into
individual stages and the author applies the solution given by Yano
(1987) for the single stage to each of them. Conclusions shift towards
the difficulty of finding exact numerical solutions to large problems and
the need to use heuristics to solve it.

The works from Altendorfer (2015) deal with defining both lot
sizes and planned lead times in a single stage shop. Authors provide
a decision framework to set both parameters with a desired service
level. We recall the warnings from Altendorfer (2015), also found
in Sridharan and Berry (1990), on the nervousness induced by too many
production parameters changes, however.

Major works on lead time definition also borrow from queuing
theory. Central results can be found in Hopp and Spearman (2011), for



example. Most of them derive from the now famous Little’s law (Little,
1961) applied to production lines:

Work in process = Cycle time = Throughput

For example, Hopp and Spearman (2011) consider planned lead
time as the probability of the actual lead time to be under a certain
value. That value can be obtained as a quantile of the lead times
distribution. It could also be set using normal distributions or t distri-
butions if appropriate (Hopp & Spearman, 2011). Hopp and Spearman
(2011) also recommend aggregating the flows when considering a
multi-product system. It is done by expressing throughput in costs of
goods sold (euros per day) and work in process in euros for example.

2.3. Literature synthesis

Analysis of the works on the DDMRP shows that authors agree on
five parameters to define the buffer size, with varying degrees of impor-
tance. The majority of authors evaluate the DDMRP’s performance and,
consequently, follow the policies prescribed by Ptak and Smith (2016).
Few authors have challenged these policies and successfully proposed
variants.

The DDMRP methodology claims better performance by regularly
updating the buffer sizes through these parameters. Most authors only
assume a varying ADU; some include a varying DLT. It appears that no
work has been done on combining more than one varying parameter,
set by more than one policy.

In the meantime, literature shows that, outside works specific to
the DDMRP, there are numerous policies that could be used to set the
DDMRP parameters dynamically. As a whole, previous works also show
the interest of using simulated workshops to establish new results.

Motivated by the gaps in the literature, we focus our study on
dynamically controlling the Average Daily Usage (ADU) and the De-
coupled Lead Time (DLT) of a DDMRP workshop, as they are the two
most influential parameters for setting buffers sizes (see next section for
detailed formulas). We will carry the experiment on simulated versions
of several types of workshops to (i) have more general results and
(ii) set the appropriate level of workshop complexity and still be able
to analyze simulation outputs. This design of experiment approach
supported by simulation is found in previous DDMRP works such
as Miclo et al. (2019) (see 3.3 for more details). Our main objective
is to identify to what extent can a DDMRP workshop be dynamically
controlled by the ADU and DLT parameters, and what situations may
be disadvantageous.

3. Dynamically sized DDMRP model

We base our study on the use-case of dental prosthesis plant, which
manufactures semi-finished blanks. Section 3.1 details the main model
assumptions behind our work and the plant capacities. In this section,
we also detail the future block factors of our experiments: the various
types of shop structures in between stages and the different bottleneck
stresses. These block factors help generalize our study outside the
use-case by synthesizing specific characteristics into more universal
types of problems. In Section 3.2, we add dynamical control policies
to our model and explain all possible policy definitions we will test.
Section 3.3 explains our design of experiments and the metrics we used
in the study.

3.1. Shop characteristics and assumptions

Our study is based on an industrial use-case with well defined
buffer stages. Stages are enclosed between DDMRP buffers with several
parallel machines in between. The plant produces 142 finished products
overall, all from only 2 types of raw materials. Following Thiirer et al.
(2020), we did not build a complete simulation of the 142 individual

Table 2
Work center capacities.

Work center 0 1 2 3 4 5

Capacity 6 3 3 3 3 2

routings and constructed a smaller aggregated model with same fea-
tures as the original. We also assumed raw material buffers to be finite
and refilled according to stochastic lead times (exponential distribution
using the reference’s DLT as parameter). Different shop structures are
found in the global production process, as will be detailed further in
the paper.

In our use-cases, work centers have stochastic set-up and processing
times. We used the industrial data to adapt triangular distributions for
each product-machine pair. All work centers have parallel machines,
with varying capacities (details in Table 2), with perfect yield. Work
centers are opened 24 h a day, 5 days a week. In line with the industrial
use-case, we assumed batch moves and sequential batch production
at the work centers. All the work centers follow the queue discipline
recommended by Ptak and Smith (2016): highest priority is given to
the order with the lowest buffer penetration ratio (buffer level over
buffer size in percentage).

Demand data were aggregated for 10 final products over 1000
worked days from the industrial dataset. As shown in Fig. 1, demand
knows two types: (i) relatively stable as for Product 2 on the left,
or (ii) with various degrees of lumpiness as for Product 5 on the
right. Such data patterns were already encountered in previous DDMRP
works. See Pekarcikova et al. (2019) or Dessevre et al. (2019), for
example.

3.1.1. Shop structure variations

Along the complete industrial process, three shop structures can
be found at various stages. We isolated each of them into a separate
buffer stage, in order to assess policy choices for each structure. These
structure are close to the ones found in previous works on lead time
evaluation, such as Oztiirk, Kayaligil, and Ozdemirel (2006). We named
the structures: type A, type V and type O.

Type A workshop is shown in Fig. 2 on the left. In a type A
workshop, all product routes coincide at the last work center. Note that
this is not an assembly work center however. Type V workshop is shown
in Fig. 2, at the center. In this type of workshop, all routes start at the
first work center and then diverge. Lastly, type O workshop is shown
in Fig. 2, on the right. In a type O workshop, all routes start at the first
work center and end at the last one. Whatever the structure, routes
are assigned a single branch and material flow is not shared between
branches.

3.1.2. Bottleneck factors

Much like the works of Thiirer et al. (2020), we include several
levels of bottleneck occupation in our workshops. The motivation for
this choice is twofold: (i) first, the industrial stages that motivated the
study have several bottlenecks either because of high occupation of
a limited resource work center or because common work centers are
clogged by the sequential batch production discipline of the plant and,
(ii) we wish to study the system under increasing load levels and refine
our recommendations of the best policies for dynamical parameter
update.

We consider three levels of bottleneck occupation, noted Low,
Medium and High. Corresponding occupation ratios are given in Ta-
ble 3. Table 4 also defines which machine is the bottleneck in each
workshop structure.
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Table 3
Bottleneck occupation ratios.
Bottleneck level Low Medium High
Occupation ratio 50% 80% 95%
Table 4
Workshop VS. bottleneck position.
Workshop type Type A Type V Type O
Bottleneck machine Last First First

3.2. ADU and DLT dynamical policies

As explained in 2.3, we wish to investigate a two-parameter dy-
namical update of a DDMRP workshop. These two parameters relate
to: either (i) following the changes in demand with the ADU, or (ii)
controlling the internal flow of materials with the DLT. The Egs. (1) to
(4) dictate the standard way of defining zone sizes (Ptak & Smith, 2016)
(we use “standard” to remind the reader that the majority authors use
these equations, see Lee and Rim (2019) for alternatives). The buffer’s
total size is the sum of all zones. For each parameter, we selected three
policies, defined hereafter.

Green zone = Max(ADU % DLT % LTF, MOQ) 1
Yellow zone = ADU * DLT 2)
Red zone base = ADU * DLT = LTF 3)
Red zone safety = ADU * DLT « LTF « VF 4)

3.2.1. ADU update policies

The first policy is the constant ADU policy: the parameter is set at
the beginning of the experiment and never updated. This level serves as
a baseline for comparisons. In this setting, ADUs are selected randomly
between 50 and 200 units per day. This distribution is based on the
average demands from the industrial use-case. For the rest of the paper,
this policy is called “Constant ADU” and encoded as “ADUOQ” in the
results analysis.

The second policy is a moving average over past demand. This is
the policy recommended by Ptak and Smith (2016). It uses the previous
30 open days to determine the ADU using a moving average function.
The 30 days window was determined based on Ptak and Smith (2016):
window equivalent to twice the longest lead time in the available data,

15 days in our use-case. We call this policy “Simple moving average”
for the rest of the study and encode it as “ADU1”.

The last policy is a moving average including forecasts, as proposed
in Ptak and Smith (2018). This policy takes the last 30 open days, adds
a 30-day forecast and takes the average of these 60 data points as the
new ADU. It is said to better counteract disturbances in demand (Ptak
& Smith, 2018). We refer to this policy as “SMAFC” for Simple Moving
Average with ForeCasts. We encode it as “ADU2”.

3.2.2. DLT update policies

As in the previous paragraph, the first policy is a constant policy
for the DLT. DLTs are selected randomly from the available data-sheets
containing 5, 10 or 15 days. This will also serve as a comparison
baseline and is called “Constant DLT” and encoded as “DLTOQ”.

The second policy is extracted from Hopp and Spearman (2011)
as there is no mention of a dynamical policy for DLT in Ptak and
Smith (2016). For each reference, it returns the 95th percentile of the
registered manufacturing times, with a weekly period. This policy is
called “Percentile DLT”, and given the code “DLT1”.

The last policy is a modification of the previous one. We call it
“Unique DLT” and define it as an extension of the previous policy where
all references receive the same DLT value, equal to the 95th percentile
of all the registered manufacturing times. Is it proposed in order to
evaluate if controlling a stage of the workshop with a single dynamic
DLT suffices to ensure good performance. It is also motivated by the fact
that slowest references with long lead times may hinder global flow in
the workshop (Goldratt & Cox, 1984; Schragenheim & Ronen, 1990).
This last policy is encoded as “DLT2”.

3.3. Design of experiments and metrics

In order to evaluate the multiple combinations of policies and
workshop layouts, we created a Design Of Experiments (DOE) revolving
around Discrete Event Simulation (DES). Several other papers have
already showed the efficiency of this approach (see Georgiadis and
Politou (2013) and Zhang, Jiang, and Guo (2009), or specifically to
DDMRP Miclo et al. (2019) and Thiirer et al. (2020)). Our work borrows
heavily on the methods of Georgiadis and Politou (2013) which used
simulation to help practitioners choose between different parameter
policies in a drum-buffer-rope workshop. Using computer simulation
is especially beneficial whenever analytical forms of the model are not
available or hardly tractable, or when it is necessary to run multiple
iterations of a simulation to account for randomness effects. This is
exactly our situation as DDMRP methods involve multiple non-linear



Table 5
Experiment setup values.

Factor type Factor name

Factor level (Factor Code)

Type V Type O
Medium High

Block factor Workshop structure Type A
Bottleneck occupation Low

Policy factor ADU policy Constant ADU (ADUO)
DLT policy Constant DLT (DLTO)

Simple Moving Average (ADU1)
Percentile DLT (DLT1)

SMAFC (ADU2)
Unique DLT (DLT2)

equations and our workshops have stochastic lead times and processing
times.

The chosen DOE is a full factorial design, containing two policy
factors and two blocking factors. Factors are arranged as follows:

* Blocking factor 1 is the workshop structure,

» Blocking factor 2 is the bottleneck occupation,
» Policy factor 1 is the ADU update policy,

» Policy factor 2 is the DLT update policy.

We summarize the DOE with the experiment setup values in Table 5.
We consider three levels for each factor and, as it is a full factorial DOE,
we run all possible combinations of these four factors. The factor named
“Workshop structure” goes over the three types of workshops described
in 3.1.2 . The factor named “Bottleneck occupation” takes into account
the occupation/capacity ratio in the workshop, also described in 3.1.2.
The factor named “ADU Policy” regroups our three ADU control poli-
cies. As the names are somewhat long, we gave each level a code, used
in the following figures. Lastly, the factor named “DLT Policy” gathers
our three DLT control policies. These levels were also given a specific
code for easier reading.

Each experiment is evaluated against four metrics adapted from Mi-
clo et al. (2019) or Thiirer et al. (2020). The first metric is the average
fill rate, defined as the average percentage of orders directly satisfied
from the DDMRP buffers. Fill rate was chosen because our use-case was
Make-To-Stock environment.

The next two metrics evaluate inventory performance. The first
is average finished goods inventory defined as the average number of
end items in the physical buffers, thus excluding work-in-process. The
second is average work-in-process inventory of all buffered references.

The last metric evaluates lead time performance. We consider aver-
age throughput time, where we collect completion dates of all production
orders minus the release date at the first work center.?

Each individual experiment is replicated 100 times with an individ-
ual random seed. Each simulation is run for 1000 days and metrics are
computed only after a warm-up period of 300 days.

4. Results, recommendations and discussion

We separate the results into two analyses. In Section 4.1, we build
trees showing which factors and levels explain the most change in
performance for all our metrics. Section 4.2 then details only the
best combinations of policies for each of our simulation scenarios.
Section 4.3 discusses the interest of this contribution for managing
DDMRP workshops and the limits of our results.

4.1. Conditional inference trees of factor importance

For each of the four metrics, we conducted a 4-way analysis of
variance, including all interactions. Each ANOVA revealed statistically
significant main and interactions effects at a 1% confidence level
(p < 0.01). To further investigate the effects of each factor, we build
conditional inference trees (“ctrees”) for each metric (Hothorn, Hornik,

2 Following the methods from Thiirer et al. (2020), we considered average
lead time too, defined as the difference between order completion and pool
entry dates. However results were exactly the same as average throughput time.
This metric is consequently left out of the study.

Van De Wiel, & Zeileis, 2006). ctrees are grown by performing recursive
univariate splits of our factors but do so by using the split with the
smallest p-value (hence most statistically significant), instead of max-
imizing the explained variation (such as classic decision trees). Trees
have been cropped to a depth of 4 to limit the place of the figures and
because further splits were less significant at the 1% level. Each of the
subsequent figures contains a ctree, the distribution of the output values
at the leaves, along with the means. Distributions in a box-plot help
the reader evaluate dispersion of the results for the leaves. For level
definitions, please refer to Section 3.2. All metrics were rescaled to the
[0, 1] scale in order to compare similar ranges, avoiding uselessly high
values but keeping the same distributions.

Fig. 3 shows the tree for the Fill Rate. The most important feature
is the type of bottleneck occupation in this case. This is revealed by the
three zones delimited by:

« left-hand side of the plot and the “Low” bottleneck condition with
better Fill Rates between 20% and 90%,

« right-hand side of the plot, further divided into “Medium” (Fill
Rate between 13% and 31%) and “High” (between 7% and 17%
Fill Rate) bottleneck occupation ratios.

This is no surprise for the Fill Rate, considering the link between sizing
the DDMRP physical buffers and queuing theory. This confirms that
little can be done in a DDMRP workshop regarding sizing under heavy
bottleneck constraints, and that solutions must be searched elsewhere,
in capacity increase or load balancing for example. In most branches,
the decision on the ADU policy is encountered before the decision on
the DLT policy. Across bottleneck levels and workshop types, using
variables ADU policies such as ADU1 or ADU2 prove to bring better
results for the Fill Rate, without any clear distinction of which method
outperforms the other. When in presence of a “Low” bottleneck level,
using the DLT2 policy shows better results on average. For “Medium”
and “High” levels, the fixed DLTO policy seems better.

Fig. 4 gives results for the average Finished Goods Inventory. Bot-
tleneck occupation is partly as important as previously, with a “Low”
level governing the left-hand part of tree and other levels the right-
hand part. However in this case, the choice of DLT policy is more
impacting. In all branches, choosing the fixed DLTO policy ensure lower
finished goods inventory, while variable DLT policies result in higher
and more varied inventory levels. The choice of ADU policy has less
consequences, with a fixed ADU ensuring lower inventory on average.
The distribution of workshop types in the tree shows that in some case
of type A, inventories are lower. This might be explained by the first
work center helping to “starve” the line in this set-up, thus avoiding
build-up of material down the line.

Fig. 5 shows the impacts for WIP. This time the choice of DLT policy
is the most important: by choosing either a fixed DLT (DLTO) or a
unique variable DLT for the stage (DLT2), WIP is greatly reduced, as
shown on the left-hand side of the tree. Performance on this side is
equivalent for all levels of bottleneck occupation and workshop types.
These branches suggest that using DLTO enables good and stable results,
while using DLT2 may allow to reach areas of very good performance
if one is willing to account for instability. The variable DLT1 policy
gives interesting results in the Low bottleneck and Type V structure,
but it is otherwise outperformed, probably because it creates extremely
unstable systems.

Effects of factors on average Throughput Time appear in Fig. 6.
Here, choosing the fixed DLTO policy has major consequences: it leads
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Fig. 6. Conditional tree for factors impacting Throughput Time.

to stabler and lower throughput times across all cases, as shown on the
left branches. The exception is the “Low” bottleneck occupation and
“Type V” workshop having both ADU and DLT as variable parameters
is beneficial to the average throughput time. As in the previous para-
graph, we can suspect that a small error in the DLT parameter may have
great consequences in the system’s stability whereas, for this metric, the
choice of ADU appears much lower in the tree.

4.2. Recommendations on policy choices

We conclude our results with a set of recommendations for practi-
tioners. These recommendations are built using the simulation results.
We selected the combination with the best average for each cell. We
also confirmed by a one-way ANOVA for each metric that these means
were significant at the 1% level. The recommendations are gathered in
Table 6. We now go over our six proposed policies and evaluate how
they fare performance-wise.

The “Constant ADU” policy ADUO appears in several cells of Table 6,
especially when not considering Fill Rate as the main metric. The
“Simple Moving Average” ADU1 and “SMAFC” ADU2 policies appear
about as many times but are in majority in the Fill Rate. This may be
explained by two aspects of the experiments:

+ as each metric is considered independently of others in our study,
there is no compromise between all metrics. As a result, a very
good combination fill rate-wise may behave poorly on another
metric. Consequently, stable combinations of fixed parameter
policies may be more efficient than variable ones, especially for
finished goods or WIP if the parameters are already close to
“optimal”.

it is possible that the random setting of parameters during initial-
ization was already very favorable. Data came from an industrial
dataset where practitioners already some experience on setting
the parameters according to their specific environment.

The overall distribution of the 5 combinations in Table 6 is: (i) 36%
for (ADUO, DLTO), (ii) 28% for (ADU1, DLTO), (iii) 25% for (ADU2,
DLTO), (iv) 8% for (ADU1, DLT1) and (v) 3% for (ADU2, DLT1). In
more than a third of the scenarios, the fully constant solution over 1000
days is the best (but never if Fill Rate is the metric). The combination
(ADU1, DLTO), recommended in Ptak and Smith (2016) is the second
most frequent and scattered across the four metrics. Fully variable
solutions are recommended in only four scenarios (11%). The “Constant
DLT” DLTO clearly outperforms the other and is present in a majority
of cells. Very few cells, and only for the Fill Rate metric, call for

Table 6
Policy recommendation based on best simulation results.
Bottleneck Workshop Fill Finished WIP Throughput
occupation type rate goods inventory time
Low Type A ADU2, DLTO ADUO, DLT0O ADUO, DLTO ADU1, DLTO
Type V ADU1, DLT1 ADUO, DLTO ADU2, DLTO ADUO, DLTO
Type O ADU2, DLTO ADUO, DLTO ADU2, DLTO ADUO, DLTO
Medium Type A ADU1, DLT1 ADU1, DLTO ADUO, DLTO ADU1, DLTO
Type V ADU2, DLTO ADU1, DLTO ADU1, DLTO ADUO, DLTO
Type O ADU2, DLTO ADU1, DLT0O ADU1, DLTO ADUO, DLTO
High Type A ADU1, DLT1 ADU1, DLTO ADUO, DLTO ADU1, DLTO
Type V ADU2, DLTO ADU2, DLTO ADUO, DLTO ADU1, DLTO
Type O ADU2, DLT1 ADUO, DLT0O ADUO, DLTO ADU2, DLTO

the “Percentile DLT” DLT1 policy. The “Unique DLT” DLT2 is absent
of the recommendations, despite being a major factor in the ctrees,
particularly for average Throughput.

4.3. Discussion

Our main objective is to identify to what extent can a DDMRP
workshop be dynamically controlled by the ADU and DLT parameters,
and what situations may be disadvantageous.

This study’s objective was to understand to what extent a DDMRP
workshop could be dynamically controlled using more parameters than
the ADU usually mentioned in the literature. As analytical models were
not easily tractable, we had to resort to computer simulation to back up
our design of experiments. While, this limits the universal character of
our contribution, we introduced blocking factors to take into account
multiple workshop types and machine occupation scenarios.

Our results show that, in many cases (36%), stable control is actu-
ally a better solution for stable inventory levels and throughput time.
This finding goes against the claims of DDMRP being able to adapt to
changes and still maintain good performance. Still, in a bit less than
a third of the remain cases, the solution proposed by Ptak and Smith
(2016) with only a varying ADU is the best one. Contrary to previous
claims from Dessevre et al. (2019), dynamically controlling both the
ADU and DLT seems to be reserved to a few select cases, and solely
when the fill rate is the preferred metric. No clear reason appears
for the moment as to why some cases within the fill rate column in
Table 6 tolerate multiple dynamic control better than others. Authors
from Dessevre et al. (2019) had, however, warned against controlling
both parameters in cases where it would introduce instability.



Three aspects then stand out when considering the reach of our
findings: the use of independent metrics, the non-sharing of work
centers and the trouble of analyzing deep interactions.

We chose to measure performance on four distinct metrics to be able
to explain the factor effects independently. This, however, prevented us
from having a global (and possibly weighted) view on an aggregated
metric. Further studies could be done with the same DOE to refine
our analysis. This could prove important as practitioners may look for
balanced choices rather than one-sided solutions. This could also help
in resolving the discrepancies in policy choice when preferring the fill
rate versus the other metrics.

Our use-case required that, outside of the bottleneck work centers,
all other work centers were only shared by specific products. This
allowed us to define clear branches in the workshop structures. This,
however, works against the generalization of our findings; the study
could be applied to general job shops, for example.

Lastly, we need to address the analysis complexity limit of our study.
The 4-way ANOVA showed meaningful interactions up to the fourth
degree, preventing us from drawing conclusions on the main effects of
factors. We chose ctrees as a way to conduct multiple comparison of all
the groups and extract the most import factor choices. Having limited
the depth to the fourth level, we loose precision of analysis and the
leaves of our trees do not contain the same number of samples. The
maximum meaningful depth for the trees according to our data was 7,
but it severely hampered reading.

5. Conclusions

We challenged the possibility of controlling two parameters dy-
namically for several configurations of DDMRP workshops. We tested
different combinations of policies to set both the Average Daily Usage
(ADU) and Decoupled Lead Time (DLT), while considering different
workshop types and bottleneck occupation levels in order to generalize
our conclusions at maximum. The variety of our study is mainly moti-
vated by the fact that DDMRP settings come in various shapes and sizes
and no two evaluations are really the same. We aimed to start bridging
that gap.

Results suggest that two parameter setting (ADU and DLT) may
be reserved to very few cases, particularly when considering evalu-
ation metrics independently from each other. This calls for further
investigation using a mixture of metrics, either from weighting or
from goal programming, for example. Results also hint at the fact that
fixed DLT parameters may be sufficient when work centers are not
shared. However, in more general workshop structures, this hypothesis
may be relaxed, again calling for some more experiments. Lastly, and
maybe more surprisingly, we found that a third of cases had better
performance when statically sized instead of dynamically, which goes
against common claims of the DDMRP.

We conclude that, for the many scenarios we considered, it may
be sufficient to control the sizes of the DDMRP buffers only through
the ADU parameter. A good number of cases even suggest keeping it
constant, thus simplifying the problem to the accurate sizing of Theory
of Constraints or Queuing Theory approaches.

Our study is another step towards understanding the limits and
intricacies of applying the DDMRP to real cases. Our findings suggest
new avenues for research. Can we derive general recommendations for
job shops instead of flow-shops? would composite metrics alter our
conclusions? or are there better policies for DDMRP parameter? are
some of the still unanswered questions in our field.
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