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A B S T R A C T   

In spite of the increasing interest in ultrasound processing applications, industrial scale-up remains limited, in 
particular by the unavailability of predictive computer tools. In this study, using a previously published model of 
cavitating liquids implementable as a non-linear Helmholtz equation, it is shown that a full sonoreactor can be 
modelled and simulated. The model includes the full transducer and the vibrations of the vessel walls, using the 
physics of elastic solids and piezo-electricity. The control-loop used by the generator to set the optimal frequency 
is also accounted for. Apart from the geometry, the unique input of the model is the current feeding the 
transducer whereas the dissipated electrical power, transducer complex impedance and working frequency are 
available as outputs. The model is put to the test against experiments realized in different geometries, varying 
either the input current or the transducer immersion depth. Despite the overestimation of the power dissipated in 
the liquid, the evolution of the acoustic load in both cases is reasonably well reproduced by simulation, which 
partially validates the method used.   

1. Introduction 

When a liquid is irradiated with intense ultrasound, thousands of gas 
micro-bubbles appear and collapse violently, leading to the release of an 
enormous amount of energy in the bubbles. This phenomenon known as 
acoustic cavitation [1] induces drastic physical, mechanical and chem-
ical effects and is used in various industrial applications, such as ultra-
sonic cleaning [2,3], wastewater treatment [4–6], extraction [7,8], 
emulsification [9], food processing [10–12], polymerization [13], at-
omization [14], hydrogen production [15,16] and sonochemistry 
[17–21]. The development of stabilized coated microbubbles has also 
triggered various medical applications [22–24]. 

In the 1980s and 1990s, there was a rapid resurgence of interest in 
cavitation and sonochemistry applications, mainly at the laboratory 
scale. As any growing science, the difficulty its extrapolation to the in-
dustrial scale inevitably occurred, and raised critical issues. The phe-
nomena occurring within a sonoreactor are very complex, and 
unfortunately, unlike more traditional branches of process engineering, 
there is currently hardly any tool to design sonochemical reactors. One 
reason for this is the great physical complexity of acoustic cavitation. 
The enormous range of spatial and temporal scales involved, for 
example, makes dimensional analysis impractical. On the other hand, 

because ultrasound is employed, acoustics should be one of the most 
significant ingredients of sonoreactors science. Nevertheless, it remains 
one of the most disregarded in prior research. 

To shed new light on this issue, several groups have attempted to 
simulate the acoustic field inside sonoreactors in order to predict cavi-
tation events within the reactor see [25] for a review. 

Most simulations rely on linear acoustic [26–40], which takes the 
form of an Helmholtz equation and can be easily solved by the finite- 
elements method (FEM). The main drawback of such an approach is 
that the effect of cavitation on the acoustic field is not accounted for, 
apart for some studies using an empirical attenuation coefficient. In 
order to account for the presence of bubbles, nonlinear models of bubbly 
liquids acoustics should be used [41–43], but the latter are difficult to 
solve on large spatial scales, despite interesting results have been ob-
tained on reduced scales by using involved numerical methods [44,45]. 
Several groups [46–54] have used the linearized version of the Caflisch 
model developed by Commander & Prosperetti [55]. As the latter as-
sumes linear oscillations of the bubbles, this approach yields unrealistic 
values of the attenuation coefficient where inertial cavitation is involved 
[56] (see also Ref. [57] for an in-depth discussion). 

Bubbles are the main dissipators in the liquid. Each bubble dissipates 
mechanical energy into heat and the sum of these contributions is the 
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power measured by the calorimetric method. The above-mentioned 
studies cannot therefore compute correctly the calorimetric power, 
either because bubbles are neglected, or because the energy they dissi-
pate is largely underestimated by linearized bubble models [58]. To get 
rid of the latter limitation, Louisnard [59,60] developed a reduced non- 
linear model of sound propagation in cavitating liquids, based on 
Caflisch’s model and accounting for fully nonlinear bubble dynamics. As 
the proposed nonlinear Helmholtz equation directly involves the power 
dissipated by each bubble, computing the power dissipated in the liquid 
becomes natural within this model. This model has been successfully 
used to predict commonly observed cavitation phenomena [60], such as 
conical bubble structures under ultrasonic horns [61] or flare structures 
that are very similar to those observed experimentally in ultrasonic 
cleaning tanks [62]. Several refinements have been proposed since then, 
to account for radiation losses [63,64]. Sojahrood and co-workers have 
extended the theory in various aspects [65], including extension to 
coated microbubbles [66,67]. The latter group also recently performed 
experiments with a layer of almost monodisperse coated microbubbles 
to assess experimentally the attenuation and sound-velocity in the 
bubbly liquid and found good agreement between their extension of our 
model and the experimental results [68]. Both attenuation and sound 
velocity were found to vary with acoustic pressure, and to our best 
knowledge, this constitutes the first experimental results supporting the 
concepts raised by Louisnard in Ref. [59]. Other groups have recently 
used Louisnard’s model for different fluids other than water [69], in 
liquid aluminium [70], at frequencies larger than 20kHz [71]. Inter-
esting results have been obtained by Lesnik and co-workers, who 
coupled our model with the equations governing the translational mo-
tion of bubbles and their effect on the fluid motion [72]. 

A sonoreactor consists of a volume of liquid enclosed within solid 
walls, in contact with one (or more) transducer, which in turn is driven 
by an electrical generator. Using the reasonably realistic model for the 
cavitating liquid of Ref. [59], simulating the full assembly consists in 
modelling the transducer and coupling its vibrations with the one of the 
liquid. Modelling transducers has now become an easy task thanks to the 
implementation of the piezo-electricity equations in most FEM codes, in 
our case COMSOL Multiphysics. Moreover, the equations of mechanical 
coupling between the solid vibrations and the acoustics of the liquid are 
classical [73] and can also be used to study the recipient wall vibrations 
[31,57]. Therefore, as far as the internal design of the transducer is 
precisely known, and circumventing the additional difficulty brought by 
the automatic frequency selection implemented on modern ultrasound 
generator, modelling a full sono-reactor under COMSOL becomes 
feasible. Demonstrating this assertion is the first objective of this paper. 

In order to test our numerical predictions, we also performed a 
significantly large set of experiments by varying several controllable 
parameters: the input current amplitude, which is the quantity experi-
mentally controlled by the generator level button, the geometry of the 
enclosing vessel, and the immersion depth of the transducer. 

The paper is organized as follows: Section 2 describes the experi-
mental setup, the set of experiments realized and the principles under-
lying the frequency control loop of the generator. Section 3 describes the 
model. We first recall the main lines of Louisnard’s model [59], give a 
summary of the equations used for solid vibrations, including piezo- 
electrics, and how we account for the automatic frequency control. 
Section 4 shows the comparison between numerical and experimental 
results, for the two set of experiments, varied current and varied im-
mersion depth. The agreement between the simulated and experimental 
results is discussed in Section 5, along with suggested future enhance-
ments of Louisnard’s model. 

2. Experimental 

2.1. Experimental setup 

A schematic of the experimental setup is shown in Fig. 1. The 

apparatus used in this study was a 20kHz homemade standard Langevin- 
type transducer (SinapTec, Lezennes, France) with two piezoelectric 
rings pre-stressed by a steel screw between a mass and counter-mass, 
both made of titanium alloy. The exact resonance frequency of the 
unloaded transducer, f0 = 20342Hz, was measured with an impedance- 
bridge. The transducer was driven by a computer-controlled ultrasonic 
generator (SinapTec NexTgen Inside 500), by which several electrical 
quantities, such as power, frequency, voltage and current and their 
mutual phase, impedance etc, can be monitored and logged every 50ms 
during experiments. 

2.2. Sets of experiments 

The transducer was immersed in the center of three different com-
mercial glass beakers (hereinafter referred to as A, B and C) filled with 
tap water. The dimensions of the beakers are shown in Table 1. 

For each beaker, two additional geometrical parameters can be 
varied: the transducer immersion depth hT and the water level hliq 

(Fig. 1). In this study, two sets of experiments were carried out. In the 
first set, both the transducer immersion depth hT and the liquid height 
hliq were kept at constant values for each beaker, whereas the input 
current of the transducer was varied. For beaker A, the transducer im-
mersion depth was arbitrarily fixed at hT = 3 cm and the liquid height 
hliq at 12 cm. For beakers B and C the values of hT and hliq were chosen so 
that the two ratios hliq/H and hT/H remain beaker independent. The 
corresponding values of hT and hliq can be found in Table 2. The input 
RMS current provided by the generator was varied from 0.08 to 0.8 A in 
all experiments of set 1. 

In the second set of experiments, the current was fixed at a constant 
value of I0,RMS = 0.6 A and hT was swept in a beaker-dependent range 
(Fig. 2). For each beaker, the liquid volume Vliq was kept constant so that 
the liquid level hliq varied in function of immersion depth hT following: 

Fig. 1. Schematic of the experimental setup.  

Table 1 
Geometrical characteristics of the beakers (see Fig. 1).  

Beaker Form Capacity [L] D [cm] H [cm] d [mm] 

A wide 1 10.5 14.3 2.3 
B narrow 2 11.95 23.7 2.5 
C wide 2 13.2 18.3 2.2  
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Vliq = π D2
int

4
hliq − π D2

T

4
hT (1)  

where Dint = D − 2d is the beaker internal diameter and DT is the trans-
ducer diameter. 

Finally, for each set of current/ transducer depth, the liquid was 
irradiated continuously for only for 30s to avoid heating, at ambient 
temperature and pressure, in all experiments. As the generator internal 
control loop was able to set the frequency in less than 1s, all the elec-
trical data monitored during the first two seconds were removed. The 
remaining data were averaged for each experiment, and the standard 
deviation of the fluctuations was calculated, yielding an error bar for 
each point. In summary, all the measured electrical quantities presented 
hereinafter correspond to averages/standard deviations over 28s with 
data points logged every 50ms. 

2.3. Frequency control loop 

When the transducer is immersed, it operates against a mechanical 
load and is therefore in contact with a non-zero complex mechanical 
impedance. This has the effect to slightly shift the resonance frequency 
and possibly results in a reduction of the vibration amplitude [74]. To 
circumvent this problem, ultrasonic generators usually employ some 
control strategy to ensure a constant vibration amplitude of the ultra-
sonic tool by adjusting in real time the frequency of the system to the 
load. 

In the vicinity of the resonance frequency, the vibration behavior of 
the transducer can be described by the equivalent circuit displayed in 
Fig. 2 [75]. The capacitive branch Cbaccounts for the purely dielectric 

properties of the piezo-electric rings, whereas the motional branch in 
blue (RLC circuit in series) reflects the mechanical properties of the 
vibrating element and the load. It is important to note that all the energy 
dissipation mechanisms are concentrated in the resistance Ra = RZBM. 
The latter include energy dissipated into heat in the transducer, but 
more importantly, all the energy dissipated in the load (for example by 
cavitation). The branch Cb is classically compensated by a parallel 
matching inductance so that only the motional branch remains at 
resonance. The control strategy of the generator consists in estimating 
the complex motional impedance ZBM = V/IBM and to adjust the fre-
quency so that its reactive part vanishes (IZBM = 0). This ensures that 
the whole available input power is transferred to the load, whatever the 
fluctuations of the latter. The additional control of the input current 
amplitude allows a good stability in operating conditions. 

3. Numerical study 

The model detailed hereinafter was implemented in the commercial 
code COMSOL Multiphysics, based on the Finite Element Method (FEM). 
The numerical modeling was performed in the 2D-axisymmetric domain 
and the sketch of the modelled setup is presented in Fig. 3a. Similar 
computation could be easily extended to 3D geometries if required, at 
the expense of heavier computational resources. 

3.1. Cavitating liquid 

In order to account for acoustic energy dissipated by cavitation, the 
liquid was modelled by a previously published reduced nonlinear model 
[59], based on the rigorously derived Caflisch equations [43] describing 
acoustics of bubbly fluids. Our model results in a nonlinear Helmholtz 
equation, whose squared wavenumber is expressed in function of the 
energy dissipated by cavitation bubbles by thermal diffusion and by 
viscous friction in the liquid along their radial oscillations around the 
bubble. The latter energies are estimated by solving a fully nonlinear 
bubble dynamics equation. The nonlinear Helmholtz equation is used 
only in zones where inertial cavitation takes place, i.e. where the 

Table 2 
Summary of parameters used in experiments.  

Experiment set Beaker H [cm] hT (cm) hliq (cm) I0,RMS (A)  

A 14.3 3.0 12.0  
Set 1 B 23.7 5.0 19.9 0.08 to 0.8  

C 18.3 3.8 15.3         

A 14.3 0.5 to 10.0 Computed  
Set 2 B 23.7 1.8 to 12.0 from Eq. (1) 0.6  

C 18.3 1.7 to 12.2    

Fig. 2. Equivalent circuit for the transducer [75]. The capacitor Cb originates 
from the pure dielectric character of piezo-electrics. The motional branch re-
flects the mechanical load of the transducer. 

Fig. 3. (a) Sketch of the geometry used in the simulation. The green rectangle 
connected to the generator are the piezo-electric rings. (b) Mechanical 
boundary conditions (BC) for the solid and acoustic boundary conditions for the 
liquid. The blue lines labelled as FSIC (Fluid Structure Interface Conditions) 
couple the liquid acoustics to the solid vibrations. 
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acoustic pressure exceeds the Blake threshold. Assuming mono- 
harmonic oscillations and setting the pressure field as p

(
r, t) =

1
2 P
(
r
)
eiωt +c.c. (c.c. = complex conjugate), the equations of the model 

can be summarized as: 

∇2P+ k2
l P = 0 where

⃒
⃒P
⃒
⃒ < PB

(
no bubbles

)
, (2c)  

∇2P+ k2
NLP = 0 where

⃒
⃒P
⃒
⃒⩾PB

(
bubbles

)
, (2d)  

where kl = ω/cl , PB is the Blake threshold [76–78]: 

PB = p0

(

1 +

(
4
27

S3

1 + S

)1/2)

, (3)  

S = 2σ/(p0R0) is the dimensionless Laplace tension. ω is the angular 
frequency, cl the sound velocity in pure liquid, p0 the static pressure, σ 
the surface tension, R0 bubble ambient radius. The nonlinear wave-
number kNL is defined by: 

Re
(

k2
NL

)

=
ω2

c2
l
+

4πNR0ω2

ω2
0 − ω2 , (4)  

Im

(

k2
NL

)

= − 2Nρlω
Πv(|P|)
⃒
⃒P|2

, (5)  

where ω0 = [(3(1 + S) − S)p0/(ρlR2
0)]

1/2 is the bubble isothermal reso-
nance frequency, and Πv(|P|) the viscous dissipation function. The latter 
is pre-computed by solving a Keller equation augmented with a reduced 
model accounting for the heat and water transfer between the bubble 
and the surrounding liquid (see A), fitted, and injected in COMSOL as an 
analytical function [59,57]. The nonlinear Helmholtz equation is 
implemented within the Pressure Acoustics COMSOL physics module. 

For all the simulation results presented hereinafter, we considered 
air bubbles of ambient radius R0 = 5μm in water at ambient temperature 
and pressure, and the bubble density was set to 50bubbles/mm3, unless 
otherwise specified. This choice is justified by experimental results 
which shows that at 20kHz, the ambient bubble sizes lie in a narrow 
range between 2μm and 10μm [79,80]. This is moreover consistent with 
theoretical results on bubble shape instabilities leading to bubble 
breakup above some critical size [81–86]. The order of magnitude of 
tens of bubbles per mm3 for N is mentioned in [62] and the selected 
value N = 50bubbles/mm3 yields void fractions β = 4/3πR3

0N ≃ 2.6×

10− 5, which is of the order of magnitude of results reported in Ref. [79]. 
The computational domain and the associated boundary conditions 

(BC) are illustrated in Fig. 3b. On the liquid surface, a soft boundary 
condition (P = 0) was set. The conditions to be applied on the liquid 
boundaries in contact with solid parts are deferred in the next section. 

3.2. Transducer and vessel wall 

The motion of linear elastic materials (mass, screw, counter-mass, 
and vessel boundaries) can be represented by Newton’s equation com-
plemented with Hooke’s law [31]. In time-harmonic form at frequency 
ω, the equations read: 

− ρSω2US = ∇⋅T, (6)  

T = cS, (7)  

S =
1
2
(
∇US+

T ∇US
)
, (8)  

where US is the mono-harmonic displacement field amplitude, T the 
stress tensor, S the strain tensor and c the elasticity tensor. The latter 
equations are available in the basic version of COMSOL within the Solid 

Mechanics physics module. Extension to the motion of piezo-electrics is 
classically performed by adding a constitutive electrostatics equation 
cross-coupled with Hooke’s law, here in stress/charge form: 

T = cES − etE, (9)  

D = eS+∊SE, (10)  

where D is the electric displacement field, E = − ∇V the electric field. 
The system is closed by solving Gauss law ∇⋅D = 0 in the piezo-electrics. 
The latter equations are available in COMSOL additional Acoustics 
module: extension of Hooke’s law for piezo-electrics is available under 
an optional sub-node of the Solid Mechanics physics module, Gauss law is 
implemented in a Electrostatics physics module, and both modules are 
coupled through a Piezoelectric Effect multi-physics node, implementing 
Eqs. (9) and (10). The Frequency domain solver computes the complex 
displacement field US in all materials plus complex electric potential V in 
the piezoelectric material. The electric displacement vector field D can 
further be deduced from Eq. (10) and the input current at the junction 
between two piezo-electric rings can be computed as: 

I =
∫ ∫

S
iω(D2 − D1).n12 dS, (11)  

where n12 is the normal unit vector pointing from piezoelectric disc 1 
towards piezoelectric disc 2. 

Isotropic losses in materials are considered, in order to account for 
mechanical energy dissipated in the transducer. A simple way is to use a 
complex Young modulus 

Eeff = E0(1 + itanδ). (12)  

Preliminary simulations showed that dissipation occurs mainly in the 
titanium mass and counter-mass, and in the steel pre-stress screw. 
Piezoelectric rings would also suffer losses by various mechanical, 
electrical or electro-mechanical mechanisms, but their contribution to 
the power dissipated was neglected in this study. 

The mechanical boundary conditions on all solid parts exposed to air 
are free conditions (T n = 0). For the electric boundary conditions of 
piezo-electrics, the lateral sides are assumed free of surface charge 
(D.n = 0), the faces in contact with mass and counter-mass are grounded 
(V = 0). The classical boundary condition on the interface between the 
two piezo-electric rings would be an imposed known complex voltage. 
Here however, to mimic the generator behaviour, we need to impose the 
input current I. To do so, the boundary between the piezo-electrics is 
assigned to a voltage V, whose value is defined as the solution of a global 
equation constraining the complex input current I, computed from Eq 
(11), to the required value I0,RMS

̅̅̅
2

√
. Finally, Fluid/Structure Interface 

Conditions must be specified at boundaries separating vibrating solids 
and fluid (labelled as FSIC on Fig. 3b). These conditions classically ex-
press continuity of velocity and stress at the boundary [73,31] and are 
easily implementable in COMSOL by an Acoustics Structure Boundary 
multi-physics node. 

The complex electrical impedance of the transducer ZTrans = V/I can 
be easily computed in any conditions. The impedance curve of the 
unloaded transducer can be obtained by performing a frequency sweep 
in a range around the resonance frequency. Since the mechanical 
properties of metals can slightly vary between different samples, they 
were fitted by using the experimental impedance curve of the unloaded 
transducer: the Young modulus of titanium was adjusted so that the 
computed unloaded resonance frequency matched the experimental 
one, and its loss angle tanδ so that the computed and experimental 
impedance module |ZTrans| at unloaded resonance matched. The values 
found by this method (Table 3) are in agreement with commonly re-
ported values [87]. The loss factor for the steel pre-stress screw is set 
arbitrarily to tanδ = 5× 10− 4, a value representative of results reported 
in the literature [88]. This procedure ensures that the simulated 
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transducer shows exactly the same unloaded impedance curve as the one 
used in experiments. 

3.3. Modelling of the control loop 

Since the behavior of the piezoelectric transducer is accounted for in 
the model described above, the input parameters for a given experi-
ments are the same as the experimental ones: frequency f and driving 
current amplitude I0,RMS. However, as described in Section 2.3, fre-
quency is not known by advance and is adjusted by the generator to 
cancel the imaginary part of the motional branch impedance IZBM = 0. 
The working frequency is thus load-dependent and this frequency se-
lection method must be reproduced to perform simulations as close as 
possible to the experimental conditions. 

To do so, the static capacity Cb, which is load independent, is first 
deduced once for all by a fit of the unloaded impedance curve. Then, for 
a given configuration (f , I0,RMS, geometry of the liquid), the electrical 
impedance can be calculated and, knowing Cb, the motional impedance 
ZBM can be deduced by: 

1
ZBM

=
1

ZTrans
− iωCb. (13)  

We thus proceed as follows: for each configuration, several simulations 
are performed for a range of step-wise increasing frequencies, close to, 
and slightly below the resonance frequency. All quantities of interest, 
especially ZBM, are computed each time. The frequency sought is the one 
for which IZBM crosses zero and is determined by inverse interpolation 
on the (f , IZBM) curve. This allows an exact mimicking of the generator 
strategy, at the price of performing multiple simulations for a given 
configuration. More details and illustrations can be found in Ref. [57]. 

4. Results 

4.1. Variable current 

In this set of experiments, the liquid geometry is kept fixed and the 
input current amplitude is varied. The comparison between simulations 
and experimental results is shown in Fig. 4. The operating frequency of 
the system chosen by the generator is displayed in Fig. 4a: it can be seen 
that the simulation correctly captures the frequency evolution with 
current, which asymptotes to a value about 30Hz below the unloaded 
resonance frequency, indicating that our model produces a reasonable 
estimate of the load seen by the transducer despite a slight difference of 
approximately 50Hz between numerical and experimental results 
(which is less than 0.25% error). 

The phase of the transducer impedance is shown in Fig. 4b. The 

Table 3 
Mechanical properties of the materials. See text and Refs. [87,88] for details.  

Material ρ (kg m− 3) E (GPa) ν (–) tanδ (–) 

Titanium alloy (TA6V) 4422.43 107.1 0.33 9 × 10− 4 

Steel 7900 196 0.3 5 × 10− 4 

Borosilicate glass 2230 64 0.2 –  

Fig. 4. Comparison between simulations and experiments for beaker A at constant immersion depth and varied current. Continuous curves (black lines) represent 
numerical results and curves with error bars (blue online) represent experimental results. (a) Operating frequency. (b) Phase of transducer electrical impedance. The 
thin line (pink online) is the measured phase of the motional impedance. (c) Module of transducer electrical impedance. (d) Electrical power consumed. 
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numerical curve reasonably reproduces the experimental result, with a 
minimum value near 0.2 A. The descending part of the curve corre-
sponds to a transition from a constant phase (leftmost part of the curve), 
when there is no cavitation and linear acoustics holds, up to the pro-
gressive buildup of a cavitation cloud at the transducer tip. Fig. (4b) also 
display the experimental and computed phase of the motional branch 
impedance. Apart from small fluctuations of about 1◦, ZBM is close to 
zero, which clearly demonstrates that the generator correctly ensures a 
purely real impedance of the motional branch. 

Fig. 4c shows that the shape of the transducer impedance modulus 
vs. current is also correctly predicted by the model, except for very low 
currents. So far, we don’t have a clear explanation for this mismatch, but 
within this range of low currents, the acoustic impedance seen by the 
transducer varies considerably, rendering frequency control more 
difficult. Furthermore, the generator does not allow the use of very low 
input currents, making a further comparison in this area difficult. 
Finally, in Fig. 4d, the computed and experimental electrical power 
consumed are compared. Our simulation, as can be seen, overestimates 
the electrical power by a factor of about two. Furthermore, the experi-
mental curve is almost linear with increasing currents, whereas the 
numerical curve bends upwards. This suggests that our model over-
estimates the energy dissipated by cavitation in the liquid. 

In order to examine the sensitivity of the results to the model free 
parameters, computations were repeated for R0 in the range 2μm to 
10μm and N0 in 20bubbles/mm3 to 110bubbles/mm3. The same con-
clusions can be drawn, apart from very slight changes in the other output 
variables, as shown in Fig. 5 and 6, respectively. 

4.2. Variable transducer immersion 

The influence of the beaker geometry and the immersion depth of the 
transducer were investigated. The three different-shaped beakers 
formerly labeled as A, B, and C were used in experiments for various 
transducer immersion conditions, and the corresponding acoustic fields 
were computed with our model. The input current of the transducer was 
set to 0.6 A for all experiments. 

The comparisons between numerical results and experimental data 
for the main electrical output quantities in function of immersion depth 
hT are shown in Figs. 7, 9 and 10, for beakers A, B and C, respectively. 

For the 1L beaker A, Fig. 7e shows that the electrical power increases 
with immersion depth, i.e. as the tip of the transducer approaches the 
bottom of the vessel. Our model captures this feature reasonably well, 
and this reflects the progressive enlargement of the cavitation zone on 
the lateral sides of the transducer as immersion increases. This is evi-
denced on Fig. 8 which shows the acoustic field and the cavitation zones 
for various immersion depths. This increase of dissipated power with 

immersion is a general trend in such experimental configurations [89], 
but other acoustic resonance effects may qualify this conclusion. For 
example, the peaks observed for some immersion depths in the power 
curve of beaker A on Fig. 7e are not captured by our simulations. The 
situation becomes more complex for larger volumes, as will be seen for 
beakers B and C. On the other hand, it can also be seen on Fig. 7e that 
here again, our computations overestimate the active electrical power 
by a factor of about two. This conclusion also holds for beakers B and C 
(Figs. 9d and 10d). 

The experimental and computed values of the phases of transducer 
and motional branch impedances are superimposed on Figs. 7b, 9b and 
10b for the three beakers. It can be seen that in all cases, the generator 
correctly maintains IZBM = 0 despite the variations of the load as im-
mersion depth varies (pink dashed line), which demonstrate that the 
control-loop for automatic frequency locking works properly. On the 
other hand, for beaker A (Fig. 7c), our model reasonably captures the 
variations of IZTrans, and our estimation of the working frequency differs 
from the experimental one by less than 100Hz (Fig. 7a). 

It is interesting to compare Figs. 7b and 7e, which show that the 
variations of the impedance module |ZTrans| closely follows the ones of 
the dissipated power, both experimentally and in computations. This is a 
natural result since the phase of ZTrans is close to zero so that |ZTrans|

≃ R(ZTrans). Since the electrical power reads P elec = R(ZTrans)I2
0,RMS, 

both curves are therefore proportional as long as the input current re-
mains constant. Our overestimation of P elec is therefore also naturally 
reflected on |ZTrans|. 

A practical instructive conclusion can be drawn from the power 
curves in function of immersion depth. The imposed current value cor-
responds in fact to a given position of the “power level” button on the 
generator. It can be seen therefore that fixing this position does not 
ensure a given active power since as shown on Figs. 7e, 9d and 10d the 
latter is immersion depth-dependent. The case of beaker B is particularly 
interesting since the dissipated power exhibits a marked maximum for 
an immersion depth slightly above 6 cm and a minimum near 10 cm. 
Thus, since the liquid volume remains constant, two experimenters 
working with the same graduation level, but with these different im-
mersion depths, would conduct sonochemistry experiments with very 
different dissipated powers. 

Going further into this issue, Figs. 9d and 10d show that our model 
also yields extrema in the power curves of beakers B and C, but not at the 
same locations as for the experimental ones. We suspect that the pres-
ence of these extrema reflects some acoustic resonance effects of the 
vessel for specific immersion depths. Were the liquid governed by linear 
acoustics, the location of these peaks would be independent of the 
driving amplitude I0,RMS. But as the liquid behaviour is nonlinear, their 
location may vary with amplitude. As shown so far, our model 

Fig. 5. Sensitivity of results to the bubble radius R0. The bubble density is set to 50bubbles/mm3. (a) Operating frequency. (b) Electrical power consumed.  
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overestimates the energy dissipated in the liquid, possibly predicting 
cavitation zones larger than the experimental ones, and therefore more 
non-linearity. The discrepancy between computed and experimental 
results observed for the locations of the power extrema might therefore 
be a further consequence of our overestimation of the dissipated power. 

In order to check whether the correct peak locations can be recov-

ered for smaller drivings, the current amplitude was lowered to Ieff =

0.3 A in the simulations of beaker C, and compared to the experimental 
curve at Ieff = 0.6 A (Fig. 11): the shape of the computed power curve 
now fits much better the experimental one, and exhibit extrema at the 
same immersion depths, but the electrical power is now underestimated. 

The above considerations clearly show that the vessel and liquid 

Fig. 6. Sensitivity of results to the bubble density N. The ambient radius is R0 = 5μm. (a) Operating frequency. (b) Electrical power consumed.  

Fig. 7. Comparison between simulations and experiments for the beaker A for the experience at a constant current (Ieff = 0.6 A) and varied immersion depth. 
Continuous curves (black online) represent numerical results and curves with error bars (blue online) represent experimental results. (a) Operating frequency. (b) 
Phase of transducer impedance. The horizontal dotted line (pink online) is the measured phase of the motional impedance (constrained to zero in computations). (c) 
Module of transducer electrical impedance. (d) Electrical power consumed. 
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geometry noticeably influence the energy transfer from the transducer 
to the liquid, which is a manifestation of acoustic effects. Our model 
captures such effects qualitatively, but is yet unable to make quantita-
tively correct predictions. Similar results have been reported in the 
literature [90–95,89,96] and deserve further investigations. 

5. Discussion 

The orders of magnitudes and trends of our predictions are in 
reasonable agreement with experimental results. Owing to the 
numerous multi-physics aspects of our simulations, which mimic as 
close as possible a sonoreactor experiment, these results are rather 
encouraging. But the observed systematic overestimation of the dissi-
pated electrical power by a factor of about two deserves further dis-
cussion. As the latter directly reflects the mechanical power dissipated 
by cavitation, this reflects a general overestimation of the dissipated 
power by cavitation bubbles in the model of Ref. [59], despite the latter 
is based on real bubble dynamics. Apart from the semi-arbitrary choice 
of parameters R0 and N, whose parametric variations have shown 
negligible influence, several enhancements should be considered. 

One well-known weakness of our model is the arbitrary setting of the 
real part of k2 to its classical linear expression (4), which is independent 
of pressure amplitude. This issue has been recently re-examined inde-
pendently by Trujillo [97,64] and Sojahrood and co-workers [66,68]. 
They showed that both real and imaginary parts of k2 can be expressed 
as period-averaged expressions involving the pressure field and the local 

void fraction β = N4πR3/3 (with possible extension to poly-disperse 
bubble sizes). The authors finally obtain the same expression for I(k2)

as Eq. (5) but R(k2) is also found to depend on the local acoustic pres-
sure |P|. This not only affects the local sound velocity but also the 
attenuation. Calculations for uncoated 2μm bubbles showed that the 
values of R(k2) can drastically fall as acoustic pressure increases, in an 
increasing range of frequencies around resonance [68]. Interestingly, 
the authors found that the drop of R(k2) could yield values of attenua-
tion falling to near 50% of our own estimation, which is the order of 
magnitude of the discrepancy observed in the present work. Whether 
similar conclusions could still be drawn for the low f/fres ratio used in the 
present study remains to be clarified, and including the correct value of 
R(k2) in our model is part of an ongoing work. 

Our model still disregards the radiation losses [63,64,67,65], despite 
we use the Keller equation in our numerical computations. The historical 
reason for that is that the Caflisch model, from which our model is a 
simplification, was rigorously derived with the Rayleigh-Plesset equa-
tions. To what extent the latter can be replaced by a compressible bubble 
dynamics in the fully nonlinear model remains to be explored, despite it 
is a well-known practice in linear versions [55,98–101]. Nevertheless, 
accounting for the radiative dissipation term has now become common, 
and it will be included in a future version of our model. One should note 
however that adding this term would further amplify the discrepancy 
observed in the present study. 

Another possible overestimation of attenuation may be due to the 
fact that the bubble cloud is very dense in some regions (especially near 

Fig. 9. Comparison between simulations and experiments for the beaker B for the experience at a constant current (Ieff = 0.6 A) and varied immersion depth. 
Continuous curves (black online) represent numerical results and curves with error bars (blue online) represent experimental results. (a) Operating frequency. (b) 
Phase of transducer impedance. The horizontal dotted line (pink online) is the measured phase of the motional impedance (constrained to zero in computations). (c) 
Module of transducer electrical impedance. (d) Electrical power consumed. 
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Fig. 10. Comparison between simulations and experiments for the beaker C for the experience at a constant current (Ieff = 0.6 A) and varied immersion depth. 
Continuous curves (black online) represent numerical results and curves with error bars (blue online) represent experimental results. (a) Operating frequency. (b) 
Phase of transducer impedance. The horizontal dotted line (pink online) is the measured phase of the motional impedance (constrained to zero in computations). (c) 
Module of transducer electrical impedance. (d) Electrical power consumed. 

Fig. 8. Computed acoustic fields for beaker A (Fig. 7), for different immersion depths (from left to right: hT = 0.52,2.89, 5.26,7.63,10 cm). The color-plot represents 
the acoustic field amplitude in bar. The white lines are the computed paths of bubbles in regions above the Blake threshold, assuming they follow the primary 
Bjerknes force field [60]. The red line are the deformed shape of the transducer and beaker’s walls. 
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the transducer), invalidating the basic scaling assumptions of Caflisch 
model, which is valid to O(β). This should be solved by accounting for 
bubble–bubble interactions more carefully than the way they are 
modelled in O(β) models, where bubbles interact only through their 
individual coupling with the mean field. Some extensions have been 
explored for example by [98] under the linear assumption, and in a more 
general context by [44] which yield better agreement with the well- 
known experimental results of Silberman [102] once linearized. 
Another approach may consist in solving coupled radial dynamics of a 
given set of N randomly dispersed bubbles [103,104] extending the two- 
bubbles model of Ref. [105]. The latter approach also yields better 
agreement with Silberman’s experiments near resonance [68]. We think 
however that such subtle refinements would probably compromise the 
simplicity of our model, whose efficiency is guaranteed by the ability to 
compute the power dissipated by a single bubble upstream from the 
COMSOL model (see A). 

Bubble size poly-dispersity may also alter the dissipated power 
evaluation, despite the parametric study proposed in the present paper 
shows little sensitivity of the global power consumed to the precise value 
of bubbles ambient radius. The recent study of Lesnik and co-workers 
[72] shows however some interesting spatial segregation of bubbles 
depending on their sizes. Bubbles sizes are primarily bounded from 
above by bubble breakup, and owing to surface tension, small bubbles 
are expected to be more resilient against large acoustic pressures. 
Defining a main bubble size dependent on the local acoustic pressure in 
our model is under investigation. 

Finally, we would like to stress another flaw in our model, which is 
related to the location we choose for those inertial bubbles that dissipate 
energy, as defined by Eqs (2). The latter impose the presence of bubbles 
in any zone where the acoustic pressure lies beyond the Blake threshold. 
However, it is well-known that in a standing wave, the primary Bjerknes 
force can become repulsive above some threshold, owing to the 
increasingly long expansion phase of inertial bubbles with the driving 
pressure [106,107,62,108,86,60]. This threshold is close to 1.75bar in 
water, and this feature is known to yield the so-called “Jellyfish struc-
tures” [109–111,62], where a large pressure antinodes in a standing 
wave zone repels the bubbles toward the threshold location. Eqs. (2) do 
not catch this subtlety and blindly puts some bubbles in such regions, 
which prohibits the prediction of such bubble structures in our simula-
tions. Our model thus predicts streamers that are not present in exper-
iments, and erroneously compute some dissipation there. In an ongoing 
work extending the present one, we performed comparisons between 
luminol maps and the model’s predictions, that would tend to support 
this interpretation. The shift in the predicted locations of the extrema on 

Figs. 9d and 10d might also stem from the same issue. Whereas the other 
above-mentioned imperfections of our model lied in the potential in-
accuracy in the evaluation of the bubble dissipated power, the present 
one is due to the incorrect prediction of the spatial location of bubbles. 
Correcting this problem rigorously would thus require modelling the 
translational motion of bubbles as in Ref. [72]. However, in order to 
keep reasonable computation costs, we plan to use an in-between solu-
tion in order to patch the condition used in Eqs. (2), taking advantage of 
the ability of our model to compute the primary Bjerknes force field 
[60]. 

6. Conclusions 

Louisnard’s simplified model of nonlinear sound propagation in 
cavitating liquids [59] has been included in a global sonoreactor model, 
accounting for the vessel walls vibrations, the transducer, and the 
automatic frequency control strategy of the generator. For a given 
geometrical configuration, the only required parameter of the simula-
tion is the amplitude of the input current, which is the quantity imposed 
by the power button of the generator. Therefore, our simulations exactly 
mimic experiments, without resorting to debatable arbitrary boundary 
conditions. Our model provides estimates of experimentally measurable 
quantities such as working frequency, electrical complex impedance, 
and consumed electrical power. To the best of our knowledge, this is the 
first reported model allowing such fine and comprehensive simulations 
of acoustic cavitation experiments, allowing large parametric studies, 
and directly testable against experimental data. 

Experiments were also performed, varying either the input current or 
the transducer immersion depth, for three different beaker geometries. 
Our global model was put to test against the electrical data provided by 
the ultrasound generator in the latter experiments. Despite the correct 
order of magnitudes for frequency, impedance and electrical power are 
caught by our simulations, there emerges a net tendency of our model to 
overestimate the consumed electrical power, by a factor of about two. 
Parametric variations of the bubble ambient radius and bubble density 
in our model did not fix the discrepancy observed. 

Geometrical effects can be clearly observed both in experiments and 
simulation, and materialize as extrema in the consumed electrical power 
when the transducer immersion depth is varied, but some discrepancy is 
observed on the location of these extrema. This suggests that strong 
variations of a sonochemical yield may be observed when changing the 
transducer immersion depth at constant input current and constant 
liquid volume. Understanding and correctly predicting these effects to 
optimize the shape of sonoreactors is a future challenge for extensions of 

Fig. 11. Comparison between simulations and experiments for the beaker C for the experience at a constant current and varied immersion depth. Continuous curves 
(black lines) represent numerical results at Ieff = 0.3 A and curves with error bars (blue lines) represent experimental results at Ieff = 0.6 A. (a) Operating frequency 
and (b) Electrical power consumed. 
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the present model. 
The discrepancies observed between theory and experiments open 

the way to future enhancements of Louisnard’s model. Moreover, 
ongoing experimental work extending the present study, including 
luminol and quantitative sonochemistry, is currently under 
investigation. 
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Appendix A. Bubble dynamics model 

The dynamics of the bubbles is computed by a Keller equation, accounting to the liquid compressibility up to first order in Mach number Ṙ/cl 
[112,113]: 
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dt2
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]

(A.1)  

with R(t) is the bubble radius, cl, ρl and μl are the sound velocity, density and viscosity of the liquid, respectively, pg is the pressure in the bubble, σ the 
surface tension, and 

p∞(t) = p0(1 − P*sin2πft) (A.2)  

is the sinusoidal driving pressure at frequency f, around the ambient pressure p0. 
We take this opportunity to report an error in our original paper [59]: we reported there that we simulated the Rayleigh equation in order to obtain 

the dissipated power Πv and Πth. In fact the Keller equation was used and this is true in all our subsequent work, including the present one. 
The pressure in the gas is assumed uniform. The gas content is a mixture of several species (here H2O and air), with number of moles ni, represented 

by an approximate van der Waals equation of state: 

pg =

∑

i
niR T

4
/

3πR3 − b
, (A.3)  

where R is the universal gas constant. Following [114], the reduced volume is computed as averages of the individual species reduced volumes: 

b =

∑

i
nibi

∑

i
ni

(A.4)  

To account for the bubble thermal behaviour and heat transfer with the liquid we followed the following simplified approach: the bubble internal 
temperature is assumed uniform except in a near-wall layer of thickness δth [115–117]. The latter is estimated by: 

δth

R(t)
= min

(
Pe− 1/2

th , 1
/

π
)
, (A.5)  

where Peth = RṘ/αg is a thermal Peclet number, αg is the thermal diffusivity of the gas mixture in the bubble. The cutoff 1/π proposed in Ref. [115] is 
needed to avoid nonphysical large values of δth during nearly isothermal phases of the bubble oscillation. It was shown by Preston et al. [117] that the 
correct value of the cutoff is rather 1/5. 

Following this approach, the temperature of the bubble core can be obtained by applying the first law of thermodynamics to the whole bubble 
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content: 

dU
dt

= − pg
d
(
4
/

3πR3
)

dt
+ ṅH2OhH2O + λ

Tl − T
δth

. (A.6)  

In the latter equation, the left-hand side is the time-derivative of the bubble gas mixture internal energy 

U =
∑

i
ni

∫ T

T0

Cvi

(

T ′

)

dT ′, (A.7)  

the first term in the right-hand side of (A.6) is the rate of work done by the liquid on the bubble, the second is the enthalpy flux of water evaporating 
from (or condensing into) the liquid with a molar flux ṅH2O, and the last one is the conduction heat transfer between the bubble and the liquid, assumed 
at constant undisturbed temperature from ambient [115]. 

To account for water evaporation/ condensation at the bubble wall, an approach similar to heat transfer is used. Water vapour concentration is 
assumed constant in the bubble except in a near-wall layer of thickness 

δm

R(t)
= min

(
Pe− 1/2

m , 1
/

π
)
, (A.8)  

which acts as a barrier to diffusive transfer between the bubble center and the wall [118,116]. In Eq. (A.8), Pem = RṘ/Dg,H2O is the mass Peclet number, 
where Dg,H2O is the diffusion coefficient of water and the mixture of gases present in the bubble. 

The conservation equation of water reads therefore: 

dnH2O

dt
= 4πR2Dg,H2O

CH2O(R) − CH2O

δm
, (A.9)  

where 

CH2O

(

R
)

=
psat(Tl)

R Tl
, CH2O =

nH2O

4
/

3πR3
(A.10)  

are the water vapour concentrations at the bubble wall and in the bubble center, respectively. The molar flux ṅH2O in Eq. (A.6) is equal to the right- 
hand-side of Eq. (A.9). 

The Cv(T) and Cp(T) are computed from Ref. [119]. Following [120], the gas mixture conductivity is computed using method of Chung et al. see 
[121] Sections10.3 and 9.5. This may allow estimations of λ for high density states, but due to convergence issues, we followed Ref. [115] and 
estimated λ at liquid temperature. We also followed Storey & Szeri [120] to compute the diffusion coefficient between air and water, with the Brokaw 
correction to account for polar molecules (here water) see [121] Eq. (11.3.7) and followings. Despite the correction proposed in appendix of Ref. [120] 
to account for high densities is available in our code, the diffusion coefficient was also estimated at liquid temperature. 

The set of differential equations (A.1), (A.6) and (A.9) is solved with a FORTRAN code using the stiff solver DDRIV3 from NIST Core math library 
(CMLIB), over 200 acoustic periods. The solution yields the unknowns R(t),T(t) and nH2O(t), from which the gas pressure can be obtained from Eq. 
(A.3). The power dissipated by the bubble over the last cycle can then be estimated with the integrals: 

Πth =
1
T

∫ T

0
− pg

∂V
∂t

dt, (A.11)  

Πv =
1
T

∫ T

0
16πμlR

(
∂R
∂t

)2

dt. (A.12)  

The graphs reported in our original paper [59] were obtained with the above model and Πth was found to be much smaller than Πv in the parametric 
range of interest, which justifies that only the latter is retained in Eq. (5). It should be noted that a different conclusion was found by Jamshidi & 
Brenner [63,72]. This might be due to the fact that the latter authors cut the computation of the integral at the end of the collapse, rather than over a 
whole bubble cycle. Contrarily to the integrand in the viscous term in (A.12) which is always positive, there are sign changes in the one of (A.11), as 
the heat flow changes direction along the oscillations (even if the integral over one cycle must be positive). The latter authors would miss therefore 
some post-collapse events involving an inward heat flow occurring during part of the rebounds, associated with very low transient temperatures 
attained in the bubble, consecutive to rapid adiabatic re-expansions [122]. Other reasons for discrepancy may lie in the tricky computation of thermal 
properties of the gas mixture. 

The bubble response is computed by parametrically varying the dimensionless driving amplitude P* by small steps between 0 and 3, to compute the 
viscous contribution Πv, for a given ambient radius R0 and frequency f. The resulting curve can be perfectly fitted in dimensionless form by: 

Πv/p0V0ω
P*2 = exp

[

K1 +
2
πK2tan− 1(K3P* − K4)

]

, (A.13)  

and is injected in COMSOL as an explicit function to compute I(k2) from (5). 
We emphasize that the whole procedure must be repeated for any change of R0,f , as well as when changing the liquid or the bubble gas content, or 

the ambient conditions. A universal analytical expression for Πv avoiding this straightforward but lengthy procedure is currently under study. 
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