
HAL Id: hal-03833708
https://imt-mines-albi.hal.science/hal-03833708v1

Submitted on 28 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

System Configuration Models: Towards a Specialization
Approach

Maryam Mohammad-Amini, Thierry Coudert, Élise Vareilles, Michel
Aldanondo

To cite this version:
Maryam Mohammad-Amini, Thierry Coudert, Élise Vareilles, Michel Aldanondo. System Con-
figuration Models: Towards a Specialization Approach. MIM 2022 - 10th IFAC Conference on
Manufacturing Modelling, Management and Control, Jun 2022, Nantes, France. pp.1189 - 1194,
�10.1016/j.ifacol.2022.09.551�. �hal-03833708�

https://imt-mines-albi.hal.science/hal-03833708v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

IFAC PapersOnLine 55-10 (2022) 1189–1194

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.09.551

10.1016/j.ifacol.2022.09.551 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

System Configuration Models: Towards a Specialization Approach

M. Mohammad Amini*&**. T. Coudert*. E. Vareilles**. M. Aldanondo***

*INP-ENIT, University of Toulouse, Tarbes, France
(e-mail: maryam.mohammadamini@enit.fr, thierry.coudert@enit.fr)

**ISAE-SUPAERO, University of Toulouse, France

 (e-mail: elise.vareilles@isae-supaero.fr)
*** IMT Mines Albi, University of Toulouse, Albi, France

(e-mail: michel.aldanondo@mines-albi.fr)

Abstract: Nowadays, system configuration helps to achieve mass customization and manage a wide variety
of systems. System configuration is based on a model that gathers all relevant knowledge for a family of
systems. This knowledge model can be difficult to formalize and keep up to date; indeed, the knowledge
must be made explicit, and can come from different departments and experts within an organization. In
addition, it must reflect the different variants and options of a family of systems. Therefore, we try to answer
the following question: how to better formalize and structure knowledge for system configuration to define
configuration models and use the benefits of specialization in terms of modeling? Thus, in our proposal,
we introduce the elements required to formalize the knowledge and define configuration models. This
formalization will be done in a structured way using the association of ontology and Constraint Satisfaction
Problem (CSP). We use the abilities of ontology to model knowledge of the different artifacts, their
characteristics, and composition, and the abilities of CSP to model the relations between artifacts. In our
proposal, we also define artifacts at different levels of abstraction using specialization which allows experts
to detail or refine the formalized knowledge. We illustrate our proposals on a simplified but realistic
example of a bicycle.
Copyright © 2022 The Authors. This work has been accepted to IFAC for publication under a Creative
Commons License CC-BY-NC-ND.
Keywords: System configuration, Knowledge formalization, Ontology, CSP, Configuration model,
Specialization, Abstraction level

1. INTRODUCTION

Nowadays, system configuration helps to achieve mass
customization and manage a wide variety of systems to meet
the demands of the market. To do this, experts need to
formalize the knowledge related to a family of systems,
including the system architecture, components, subsystems,
variants, options, and all the relationships between them. In the
rest of the article, we refer to artifacts as systems, subsystems,
or components (Guillon et al., 2021). It is not easy for experts
to formalize this knowledge and define configuration models
that incorporate it. This formalization must be done in such a
way as to make the formalized knowledge understandable,
shareable, more easily updated, and usable in different models.
Therefore, we try to answer the question of how to formalize
and structure knowledge for system configuration to define
configuration models and use the benefits of specialization in
terms of modeling. In this way, we use the association of
ontology and Constraint Satisfaction Problem (CSP).
Ontologies are used to model, at different abstraction levels,
the knowledge about artifacts, their characteristics, and how
they are composed. We use CSPs to model the allowed
relationships between different artifacts using constraints. In
our proposal, we define the specialization of configuration

models which, to the best of our knowledge, is not the subject
of any work in the literature.

The remainder of this paper is structured as follows. In section
2, we present the related works. In section 3, we propose the
elements needed to model knowledge for system
configuration. In section 4, we formalize knowledge for
bicycle example. In section 5, we present the conclusion and
future perspectives.

2. RELATED WORKS

In this section, the relevant articles on system configuration,
knowledge formalization, approaches such as ontology and
CSP, their association, and the specialization/generalization
relationship are discussed. Then the scientific gaps are found.

2.1 System configuration

(Soininen et al., 1998) mentioned product configuration as a
task “can be roughly defined as the problem of designing a
product using a set of predefined components while
considering a set of restrictions on how the components can be
combined.” Regarding this definition and making it more
general, the set of artifacts is bounded and their connection is
only allowed in specific ways. One of the pillars of

System Configuration Models: Towards a Specialization Approach

M. Mohammad Amini*&**. T. Coudert*. E. Vareilles**. M. Aldanondo***

*INP-ENIT, University of Toulouse, Tarbes, France
(e-mail: maryam.mohammadamini@enit.fr, thierry.coudert@enit.fr)

**ISAE-SUPAERO, University of Toulouse, France

 (e-mail: elise.vareilles@isae-supaero.fr)
*** IMT Mines Albi, University of Toulouse, Albi, France

(e-mail: michel.aldanondo@mines-albi.fr)

Abstract: Nowadays, system configuration helps to achieve mass customization and manage a wide variety
of systems. System configuration is based on a model that gathers all relevant knowledge for a family of
systems. This knowledge model can be difficult to formalize and keep up to date; indeed, the knowledge
must be made explicit, and can come from different departments and experts within an organization. In
addition, it must reflect the different variants and options of a family of systems. Therefore, we try to answer
the following question: how to better formalize and structure knowledge for system configuration to define
configuration models and use the benefits of specialization in terms of modeling? Thus, in our proposal,
we introduce the elements required to formalize the knowledge and define configuration models. This
formalization will be done in a structured way using the association of ontology and Constraint Satisfaction
Problem (CSP). We use the abilities of ontology to model knowledge of the different artifacts, their
characteristics, and composition, and the abilities of CSP to model the relations between artifacts. In our
proposal, we also define artifacts at different levels of abstraction using specialization which allows experts
to detail or refine the formalized knowledge. We illustrate our proposals on a simplified but realistic
example of a bicycle.
Copyright © 2022 The Authors. This work has been accepted to IFAC for publication under a Creative
Commons License CC-BY-NC-ND.
Keywords: System configuration, Knowledge formalization, Ontology, CSP, Configuration model,
Specialization, Abstraction level

1. INTRODUCTION

Nowadays, system configuration helps to achieve mass
customization and manage a wide variety of systems to meet
the demands of the market. To do this, experts need to
formalize the knowledge related to a family of systems,
including the system architecture, components, subsystems,
variants, options, and all the relationships between them. In the
rest of the article, we refer to artifacts as systems, subsystems,
or components (Guillon et al., 2021). It is not easy for experts
to formalize this knowledge and define configuration models
that incorporate it. This formalization must be done in such a
way as to make the formalized knowledge understandable,
shareable, more easily updated, and usable in different models.
Therefore, we try to answer the question of how to formalize
and structure knowledge for system configuration to define
configuration models and use the benefits of specialization in
terms of modeling. In this way, we use the association of
ontology and Constraint Satisfaction Problem (CSP).
Ontologies are used to model, at different abstraction levels,
the knowledge about artifacts, their characteristics, and how
they are composed. We use CSPs to model the allowed
relationships between different artifacts using constraints. In
our proposal, we define the specialization of configuration

models which, to the best of our knowledge, is not the subject
of any work in the literature.

The remainder of this paper is structured as follows. In section
2, we present the related works. In section 3, we propose the
elements needed to model knowledge for system
configuration. In section 4, we formalize knowledge for
bicycle example. In section 5, we present the conclusion and
future perspectives.

2. RELATED WORKS

In this section, the relevant articles on system configuration,
knowledge formalization, approaches such as ontology and
CSP, their association, and the specialization/generalization
relationship are discussed. Then the scientific gaps are found.

2.1 System configuration

(Soininen et al., 1998) mentioned product configuration as a
task “can be roughly defined as the problem of designing a
product using a set of predefined components while
considering a set of restrictions on how the components can be
combined.” Regarding this definition and making it more
general, the set of artifacts is bounded and their connection is
only allowed in specific ways. One of the pillars of

System Configuration Models: Towards a Specialization Approach

M. Mohammad Amini*&**. T. Coudert*. E. Vareilles**. M. Aldanondo***

*INP-ENIT, University of Toulouse, Tarbes, France
(e-mail: maryam.mohammadamini@enit.fr, thierry.coudert@enit.fr)

**ISAE-SUPAERO, University of Toulouse, France

 (e-mail: elise.vareilles@isae-supaero.fr)
*** IMT Mines Albi, University of Toulouse, Albi, France

(e-mail: michel.aldanondo@mines-albi.fr)

Abstract: Nowadays, system configuration helps to achieve mass customization and manage a wide variety
of systems. System configuration is based on a model that gathers all relevant knowledge for a family of
systems. This knowledge model can be difficult to formalize and keep up to date; indeed, the knowledge
must be made explicit, and can come from different departments and experts within an organization. In
addition, it must reflect the different variants and options of a family of systems. Therefore, we try to answer
the following question: how to better formalize and structure knowledge for system configuration to define
configuration models and use the benefits of specialization in terms of modeling? Thus, in our proposal,
we introduce the elements required to formalize the knowledge and define configuration models. This
formalization will be done in a structured way using the association of ontology and Constraint Satisfaction
Problem (CSP). We use the abilities of ontology to model knowledge of the different artifacts, their
characteristics, and composition, and the abilities of CSP to model the relations between artifacts. In our
proposal, we also define artifacts at different levels of abstraction using specialization which allows experts
to detail or refine the formalized knowledge. We illustrate our proposals on a simplified but realistic
example of a bicycle.
Copyright © 2022 The Authors. This work has been accepted to IFAC for publication under a Creative
Commons License CC-BY-NC-ND.
Keywords: System configuration, Knowledge formalization, Ontology, CSP, Configuration model,
Specialization, Abstraction level

1. INTRODUCTION

Nowadays, system configuration helps to achieve mass
customization and manage a wide variety of systems to meet
the demands of the market. To do this, experts need to
formalize the knowledge related to a family of systems,
including the system architecture, components, subsystems,
variants, options, and all the relationships between them. In the
rest of the article, we refer to artifacts as systems, subsystems,
or components (Guillon et al., 2021). It is not easy for experts
to formalize this knowledge and define configuration models
that incorporate it. This formalization must be done in such a
way as to make the formalized knowledge understandable,
shareable, more easily updated, and usable in different models.
Therefore, we try to answer the question of how to formalize
and structure knowledge for system configuration to define
configuration models and use the benefits of specialization in
terms of modeling. In this way, we use the association of
ontology and Constraint Satisfaction Problem (CSP).
Ontologies are used to model, at different abstraction levels,
the knowledge about artifacts, their characteristics, and how
they are composed. We use CSPs to model the allowed
relationships between different artifacts using constraints. In
our proposal, we define the specialization of configuration

models which, to the best of our knowledge, is not the subject
of any work in the literature.

The remainder of this paper is structured as follows. In section
2, we present the related works. In section 3, we propose the
elements needed to model knowledge for system
configuration. In section 4, we formalize knowledge for
bicycle example. In section 5, we present the conclusion and
future perspectives.

2. RELATED WORKS

In this section, the relevant articles on system configuration,
knowledge formalization, approaches such as ontology and
CSP, their association, and the specialization/generalization
relationship are discussed. Then the scientific gaps are found.

2.1 System configuration

(Soininen et al., 1998) mentioned product configuration as a
task “can be roughly defined as the problem of designing a
product using a set of predefined components while
considering a set of restrictions on how the components can be
combined.” Regarding this definition and making it more
general, the set of artifacts is bounded and their connection is
only allowed in specific ways. One of the pillars of

1190 M. Mohammad Amini et al. / IFAC PapersOnLine 55-10 (2022) 1189–1194

configuration problems is the configuration model. (Oddsson
and Ladeby, 2014) defined a product configuration model as
“an abstract representation, describing the structure of the
product, the entities the product consists of, and the rules on
how the entities and their properties can be combined.” In our
work, all the definitions in product configuration are valid for
system configuration. In configuration problems, two steps of
knowledge formalization and knowledge reuse are considered.
In this paper, we only focus on knowledge formalization.

2.2 Knowledge formalization

Knowledge formalization means that knowledge is structured
and formalized in a way that facilitates its interpretation. In
knowledge formalization (Fig. 1), experts are responsible to
model knowledge and define configuration models.
Configuration models must be correct and consistent
representations of the system knowledge, i.e. system
architecture, relationships between systems characteristics, the
list of all options and alternatives... (Sabin and Weigel, 1998)
mentioned that formalizing different types of relationships
between artifacts such as classification (is-a), aggregation
(part-of), and relationships related to cardinality, geometry,
and so on is difficult. Since the formalization of knowledge to
define configuration models is a critical issue, many efforts
have been made to formalize it. For example, (Hotz et al.,
2014) presented various knowledge representation approaches
such as Constraint-Based (CSP, Dynamic Constraint
Satisfaction, Generative Constraint Satisfaction), Graphical
(Feature Models and Unified Modeling Language – UML
models), and Logic-Based (First Order Logic, Answer Set
Programming) to define a configuration model. (Soininen et
al., 1998) proposed a general ontology containing modeling
concepts to represent knowledge in the domain of
configuration. (Cao and Hall, 2020) proposed an ontology-
based method to configure modular buildings. (Yang, Dong
and Miao, 2008) proposed an ontology-based approach to
formalize the knowledge of product configuration using Web
Ontology Language (OWL) and Semantic Web Rule
Language (SWRL). (Esheiba et al., 2021) proposed a
recommender system using ontologies to capture production-
related knowledge and using CSP to encode product-service
systems variants. (Bischof et al., 2018) used Shapes Constraint
Language to model constraints but updating the formalized
knowledge is not easy. Based on the literature, CSP is the most
widely used approach to formalize knowledge in configuration
problems. Ontology is another famous approach to model
knowledge in this domain.

Ontology Definition: So far, different definitions have been
mentioned for ontology regarding the various contexts.
(Studer, Benjamins and Fensel, 1998) defined an ontology as
a “formal, explicit specification of a shared
conceptualization.” An ontology captures domain knowledge
to provide a common understanding of it. It defines concepts
or classes, attributes of classes, attributes domains,
hierarchical relationships, abstraction levels and inheritance,
compositions, rules, axioms, and assertions. In our work,
although ontologies can be used to define artifacts at different
abstraction levels and their relationships, they cannot represent
all the constraints needed to formalize knowledge for system

configuration e.g., compatibility between artifacts or artifacts
characteristics.

CSP Definition: (Montanari, 1974) defined a CSP as a triplet

{X, D, C} where X is a set of variables, D is a set of domains
of variables – one for each variable, and C is a set of
constraints. Constraints represent restrictions on the
combination of variable values. (Felfernig et al., 2014)
mentioned that CSP provides several advantages, including
distinguishing between the modeling part and the solving part,
and defining various variables and constraints with different
types. In our work, while CSPs can be useful for modeling all
the constraints required to formalize knowledge for system
configuration, i.e., incompatibility between artifacts or artifact
characteristics, they cannot represent hierarchical
relationships, abstraction levels, and inheritance.

Association of Ontology and CSP: Based on the literature, the
lack of paper on the knowledge formalization for system
configuration using the association of ontology and CSP is
obvious. In this work, we use the association of ontology and
CSP to formalize knowledge which enables experts to model
knowledge in a structured manner. Ontology can be used to
model knowledge about different artifacts i.e. system, sub-
system, components, specialization of artifacts,
characteristics, and also their relationships (such as
composition) (Fig. 1, highlighted in purple). CSP can be used
to model different types of relationships between different
artifacts and/or artifacts characteristics using constraints (Fig.
1, red lines).

Figure 1. Knowledge formalization

2.3 Specialization/Generalization relationship

(Ohira, Hochin and Nomiya, 2011) mentioned specialization
enables the creation of new artifacts downwards that is
explicitly derived from an existing general artifact. Artifacts
that are far away from the general artifact are more specialized.
Each created artifact in addition to the characteristics inherited
from the general artifact may have specific characteristics only
allocated to itself. (Ohira, Hochin and Nomiya, 2011)
represented that generalization is the process of reversing
specialization. In this paper, we focus on specialization.
Although specialization of artifacts is mentioned in some
articles, e.g. on ontology or UML, to the best of our knowledge
there is no paper about the specialization of models into more
specific models in the context of configuration.

Related works Synthesis: In this section, after reviewing the
relevant papers, we found that there is a lack of work on 1)
knowledge formalization for system configuration using the
association of ontology and CSP, and 2) specialization of
configuration models.

 M. Mohammad Amini et al. / IFAC PapersOnLine 55-10 (2022) 1189–1194 1191

configuration problems is the configuration model. (Oddsson
and Ladeby, 2014) defined a product configuration model as
“an abstract representation, describing the structure of the
product, the entities the product consists of, and the rules on
how the entities and their properties can be combined.” In our
work, all the definitions in product configuration are valid for
system configuration. In configuration problems, two steps of
knowledge formalization and knowledge reuse are considered.
In this paper, we only focus on knowledge formalization.

2.2 Knowledge formalization

Knowledge formalization means that knowledge is structured
and formalized in a way that facilitates its interpretation. In
knowledge formalization (Fig. 1), experts are responsible to
model knowledge and define configuration models.
Configuration models must be correct and consistent
representations of the system knowledge, i.e. system
architecture, relationships between systems characteristics, the
list of all options and alternatives... (Sabin and Weigel, 1998)
mentioned that formalizing different types of relationships
between artifacts such as classification (is-a), aggregation
(part-of), and relationships related to cardinality, geometry,
and so on is difficult. Since the formalization of knowledge to
define configuration models is a critical issue, many efforts
have been made to formalize it. For example, (Hotz et al.,
2014) presented various knowledge representation approaches
such as Constraint-Based (CSP, Dynamic Constraint
Satisfaction, Generative Constraint Satisfaction), Graphical
(Feature Models and Unified Modeling Language – UML
models), and Logic-Based (First Order Logic, Answer Set
Programming) to define a configuration model. (Soininen et
al., 1998) proposed a general ontology containing modeling
concepts to represent knowledge in the domain of
configuration. (Cao and Hall, 2020) proposed an ontology-
based method to configure modular buildings. (Yang, Dong
and Miao, 2008) proposed an ontology-based approach to
formalize the knowledge of product configuration using Web
Ontology Language (OWL) and Semantic Web Rule
Language (SWRL). (Esheiba et al., 2021) proposed a
recommender system using ontologies to capture production-
related knowledge and using CSP to encode product-service
systems variants. (Bischof et al., 2018) used Shapes Constraint
Language to model constraints but updating the formalized
knowledge is not easy. Based on the literature, CSP is the most
widely used approach to formalize knowledge in configuration
problems. Ontology is another famous approach to model
knowledge in this domain.

Ontology Definition: So far, different definitions have been
mentioned for ontology regarding the various contexts.
(Studer, Benjamins and Fensel, 1998) defined an ontology as
a “formal, explicit specification of a shared
conceptualization.” An ontology captures domain knowledge
to provide a common understanding of it. It defines concepts
or classes, attributes of classes, attributes domains,
hierarchical relationships, abstraction levels and inheritance,
compositions, rules, axioms, and assertions. In our work,
although ontologies can be used to define artifacts at different
abstraction levels and their relationships, they cannot represent
all the constraints needed to formalize knowledge for system

configuration e.g., compatibility between artifacts or artifacts
characteristics.

CSP Definition: (Montanari, 1974) defined a CSP as a triplet

{X, D, C} where X is a set of variables, D is a set of domains
of variables – one for each variable, and C is a set of
constraints. Constraints represent restrictions on the
combination of variable values. (Felfernig et al., 2014)
mentioned that CSP provides several advantages, including
distinguishing between the modeling part and the solving part,
and defining various variables and constraints with different
types. In our work, while CSPs can be useful for modeling all
the constraints required to formalize knowledge for system
configuration, i.e., incompatibility between artifacts or artifact
characteristics, they cannot represent hierarchical
relationships, abstraction levels, and inheritance.

Association of Ontology and CSP: Based on the literature, the
lack of paper on the knowledge formalization for system
configuration using the association of ontology and CSP is
obvious. In this work, we use the association of ontology and
CSP to formalize knowledge which enables experts to model
knowledge in a structured manner. Ontology can be used to
model knowledge about different artifacts i.e. system, sub-
system, components, specialization of artifacts,
characteristics, and also their relationships (such as
composition) (Fig. 1, highlighted in purple). CSP can be used
to model different types of relationships between different
artifacts and/or artifacts characteristics using constraints (Fig.
1, red lines).

Figure 1. Knowledge formalization

2.3 Specialization/Generalization relationship

(Ohira, Hochin and Nomiya, 2011) mentioned specialization
enables the creation of new artifacts downwards that is
explicitly derived from an existing general artifact. Artifacts
that are far away from the general artifact are more specialized.
Each created artifact in addition to the characteristics inherited
from the general artifact may have specific characteristics only
allocated to itself. (Ohira, Hochin and Nomiya, 2011)
represented that generalization is the process of reversing
specialization. In this paper, we focus on specialization.
Although specialization of artifacts is mentioned in some
articles, e.g. on ontology or UML, to the best of our knowledge
there is no paper about the specialization of models into more
specific models in the context of configuration.

Related works Synthesis: In this section, after reviewing the
relevant papers, we found that there is a lack of work on 1)
knowledge formalization for system configuration using the
association of ontology and CSP, and 2) specialization of
configuration models.

3. PROPOSALS

In this section, the different elements used to model knowledge
for systems configuration are proposed. Two kinds of elements
are formalized: Generic Artifacts (GA) and Generic Models
(GM). The specialization of both elements is presented.

3.1 Generic Artifact

GA Definition: In the proposed model, as mentioned in the
introduction, artifacts are systems, sub-systems, or
components. Sub-systems can be decomposed into sub-
systems and/or components while a component is not
decomposed. They correspond to tangible parts of systems to
be configured (Guillon et al., 2021). A Generic Artifact or GA
is a family of artifacts with common characteristics (Ohira,
Hochin and Nomiya, 2011). A GA is described using attributes
for which the possible values are defined by their validity
domains. Attributes can be symbolic or numerical and their
domains can be discrete or continuous. It exists specific
attributes corresponding to the Key Performance Indicator
(KPI) such as the cost, the weight, and the performance, to
assess GAs. Some relations between attributes allow or forbid
some combinations of attribute values and then define what the
possible characteristics of the artifacts of the GA family are.

We propose that within a GA, knowledge is formalized using
CSP. As mentioned before, CSP is defined by a triplet
{variables, domains, constraints} which can easily be matched
with attributes, domains, and relations of GAs. The use of CSP
within a GA, allows us to use filtering mechanisms (Bessière,
1994), to restrict attribute domains by keeping only consistent
values. We use the terms attributes, domains, and constraints
in the rest of the paper.

GA Specialization: In the proposed model, GA can be defined
at different levels of abstraction using specialization
relationships. A GA or GAChild can be specialized from a more
general GA or GAParent to refine or detail GAChild knowledge.
In such a case, first, GAChild inherits all the characteristics of
GAParent: the attributes, their domains, and the constraints.
Second, the valid domains of GAChild can be specialized (or
narrowed) by (1) restricting its inherited domains thanks to
inherited constraints modifications (addition of forbidden
combinations of values) or (2) by defining new constraints on
its attributes. In the case where the specialized GAChild has no
specific constraints, its valid domains are equal to the domains
of its parent GAParent. Third, in addition to what a specialized
GAChild inherits from its parent GAParent, specific attributes,
domains, and constraints that are only dedicated to that
specialized GAChild and which are modeling its specific
knowledge can be added. Within a specialized GAChild,
inherited knowledge and specific knowledge can be combined
thanks to constraints linking inherited attributes and specific
attributes.

The proposed model allows for defining general GAParent
which gathers all the common characteristics of more specific
GAChildren. The modification of characteristics of any GAParent
(attributes, domains, constraints) is inherited by all its
specialized GAChildren and their descendants.

3.2 Generic Model

GM Definition: A Generic Model or GM allows to formalize
knowledge about a family of systems that have common
characteristics, including all possible options and alternatives.
Following (Oddsson and Ladeby, 2014), a GM represents:

1. the generic architecture, i.e. the generic Bill of Materials
(BOM), of the family of systems. A BOM is a list of artifacts
(components and subsystems) with the quantities of each
needed to manufacture a specific system. Following the BOM
hierarchical nature, a GM formalizes the decomposition links
connecting a system GA (the root of the BOM and at level 0),
corresponding to a generic system, to all the GA composing it
(sub-systems or components), on k decomposition levels (from
1 to k). This decomposition is made using the type of
association “is composed of.” In the following, we refer to GM
or system GA for the highest-level generic system (level 0) of
the BOM.

2. the relations between all the GA composing the GM,
regardless of their level of decomposition. These relations can
be defined directly between several GAs, such as
“mandatory”, “forbidden”, “excluded” or between GA’s
attributes, such as allowed or forbidden combinations of
attribute values between two or more GAs. Relations between
GAs allow formalizing all the system family solution space,
i.e. all the systems that can be manufactured regarding the GM
knowledge.

3. the method for assessing the GM's KPIs. As each GA is
assessed on KPIs, the way to aggregate them from one level of
decomposition n+1 to the direct upper-level n must be defined.
It can be a simple sum or a much more complicated formula
(MAX, MIN, AVERAGE, etc.).

Within a GM and for GA, knowledge is formalized as a CSP
to model i) the constraints between GAs; ii) the constraints
between the values of the attributes of different GAs
composing the GM; iii) the constraints linking the KPIs. The
use of CSP within a GM allows local filtering on GAs, via
constraints embedded in GA, and propagations over the entire
GM, via constraints between GAs or attribute values of
multiple GAs. The CSPs thus guarantee the overall
consistency of the GM (or system GA) concerning the
different knowledge of its GAs.

KPI assessment: We have seen that GM and GA are assessed
on KPIs (e.g. weight, performance, price, cost, etc.). The way
to aggregate them from one level n+1 to the direct upper-level
n has to be defined at the GM level, regardless of the number
of GAs composing the GM. Such a relation is therefore
formalized as a global constraint (Rossi et al., 2006) to avoid
an exhaustive inventory of all the GAs involved. This global
constraint is applied at each level of decomposition for each
GA. Equation (1) illustrates the computation of a KPI named
GA.KPIj for a GA composed of several GAi. The SUM
operator is used in (1).

𝐺𝐺𝐺𝐺. 𝐾𝐾𝐾𝐾𝐾𝐾𝑗𝑗 = (𝐺𝐺𝐺𝐺𝑖𝑖. 𝐾𝐾𝐾𝐾𝐾𝐾𝑗𝑗 ∗ 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺𝑖𝑖) (1)

GM Specialization: To efficiently model knowledge for
system configuration, as for GA, GM can be defined with

1192 M. Mohammad Amini et al. / IFAC PapersOnLine 55-10 (2022) 1189–1194

different levels of abstraction. A GM or GMParent can be
specialized into one or more specific GMs or GMChildren to
refine or detail GMParent knowledge. That will allow us to
define more specific models corresponding to more specific
systems and their configurations. The benefits of GM
specialization are first the automatic update of knowledge
from one GMParent to all its specialized GMChildren. Second,
specialization avoids knowledge experts to start the blank page
to formalize the knowledge. Several abstraction levels of
knowledge on the same family of systems can thus be
formulated and reused.

Firstly, while specialization, a specialized GMChild inherits all
the characteristics of its parent GMParent, i.e. the architecture of
GMParent (BOM), all the GAs composing it with their
embedded CSP, all constraints linking GAs or GAs attributes,
and all the KPI aggregation methods. As for GA, inherited
constraints between GA or GA attributes can be updated by
the modification of tuples to restrict the allowed combinations,
or new specific constraints between inherited GAs or GA
attributes can be defined.

Secondly, an inherited GA can be specialized within a GMChild
compared to GMParent. To detail knowledge, it is sometimes
necessary to specialize a GAParent to one of its children GAChild
(if they exist). The knowledge of GAChild will be more precise
and accurate than the one of its parent GAParent. This
specialization mechanism is only allowed for GAs belonging
to the same family line: the more specialized GAChild must be a
descendant of the inherited GAParent. Indeed, the set of inherited
attributes and constraints must remain the same between
GAChild and GAParent for the overall consistency of the GMChild.

Thirdly, one or more specific GAs which are only dedicated to
that specialized GMChild and which are modeling its specific
knowledge can be included in the GMChild architecture, at any
level of decomposition. Inherited GA and specific GA can be
combined thanks to new constraints linking their attributes.
KPIs of the direct upper level will automatically consider these
new GA in their assessments and allow the evaluation of the
overall GMChild.

As mentioned for GA, within a GM, filtering mechanisms
ensure the overall consistency of GAs, regardless of their
specialization or decomposition level, and finally of the GM,
whatever the level of specialization. The proposed model
combined with inheritance mechanisms allows us, in a very
simple but efficient way, to define GM with several
specialization levels. GMs are based on GAs by architecting
them and linking them to form a consistent generic model of a
family of systems. Each GM can be specialized by (1) adding
attributes and/or constraints, (2) specializing some GAs (in the
same family line and descendants only), (3) adding new GAs
at any level of the BOM and any level of abstraction, and (4)
adding constraints between inherited and added GAs. The
modification of characteristics of any GMParent (architecture,
GA, constraints) is inherited by all its specialized GMChildren
and their descendants. This allows experts to design and
update GM in a very easy way.

4. CASE STUDY

To illustrate our proposals, knowledge formalization for the
configuration of bicycles is presented. It is considered that a
bicycle is only composed of one saddle, one frame, two
wheels, and one or two brakes. First, we define the relevant
GAs with their attributes, domains, and constraints. Second,
we show the specialization of Wheel GA into City Wheel GA
and Mountain Wheel GA. Third, we define a Bicycle GM and
we illustrate its specialization into City Bike GM.

Illustration of GA Definition: To define knowledge in the
domain of bicycles, we need to define all the important GA
such as System GA, Bike GA, Frame GA, Saddle GA, Wheel
GA, Brake GA, Rim GA, and Tire GA, as shown in Fig. 2. Our
example illustrates GA and GM definition, as well as GA and
GM specialization, on simple examples. We, therefore, define
only the System GA, Rim GA, Tire GA, and Wheel GA, and
their essential characteristics as follows:

The System GA is defined as the most general GA and can be
specialized into other GAs. In our case, it has only one attribute
which is the KPI “Cost”, notated System.Cost, with the validity
domain {[0, 15000]}. As all the other GAs are a specialization
of the System GA, they inherit the KPI Cost with the same
domain.

The Rim GA is only characterized by two attributes: Rim.Size
with domain {[12, 29]}, and Rim.Cost with domain {[0,
15000]} which is inherited from System GA. The cost of the
Rim GA depends on its size. A constraint representing the
compatible values of Rim.Size and Rim.Cost is made explicit
as shown in Table 1.

Table 1. Constraint of Rim GA

Rim.Size Rim.Cost
{18, 19} [290, 320]

{13, 14, 20, 23, 26} [270, 650]
{16, 17} [650, 800]

Filtering this constraint leads to restricting the initial domains
of the attributes Rim.Size and Rim.Cost, respectively to {[13,
14], [16, 20], 23, 26} for Rim.Size and {[270, 800]} for
Rim.Cost.

The Tire GA is only characterized by two attributes: Tire.Size
with domain {[12, 29]} and Tire.Cost with domain {[0,
15000]} which is inherited from System GA. The cost of the
Tire GA depends on its size. A constraint representing the
compatible values of Tire.Size and Tire.Cost is made explicit
as shown in Table 2.

Table 2. Constraint of Tire GA

Tire.Size Tire.Cost
[12, 17] [10, 20]
[18, 29] [18, 40]

Filtering this constraint leads to restricting the initial domains
of the attribute Tire.Cost to {[10, 40]}.

 M. Mohammad Amini et al. / IFAC PapersOnLine 55-10 (2022) 1189–1194 1193

different levels of abstraction. A GM or GMParent can be
specialized into one or more specific GMs or GMChildren to
refine or detail GMParent knowledge. That will allow us to
define more specific models corresponding to more specific
systems and their configurations. The benefits of GM
specialization are first the automatic update of knowledge
from one GMParent to all its specialized GMChildren. Second,
specialization avoids knowledge experts to start the blank page
to formalize the knowledge. Several abstraction levels of
knowledge on the same family of systems can thus be
formulated and reused.

Firstly, while specialization, a specialized GMChild inherits all
the characteristics of its parent GMParent, i.e. the architecture of
GMParent (BOM), all the GAs composing it with their
embedded CSP, all constraints linking GAs or GAs attributes,
and all the KPI aggregation methods. As for GA, inherited
constraints between GA or GA attributes can be updated by
the modification of tuples to restrict the allowed combinations,
or new specific constraints between inherited GAs or GA
attributes can be defined.

Secondly, an inherited GA can be specialized within a GMChild
compared to GMParent. To detail knowledge, it is sometimes
necessary to specialize a GAParent to one of its children GAChild
(if they exist). The knowledge of GAChild will be more precise
and accurate than the one of its parent GAParent. This
specialization mechanism is only allowed for GAs belonging
to the same family line: the more specialized GAChild must be a
descendant of the inherited GAParent. Indeed, the set of inherited
attributes and constraints must remain the same between
GAChild and GAParent for the overall consistency of the GMChild.

Thirdly, one or more specific GAs which are only dedicated to
that specialized GMChild and which are modeling its specific
knowledge can be included in the GMChild architecture, at any
level of decomposition. Inherited GA and specific GA can be
combined thanks to new constraints linking their attributes.
KPIs of the direct upper level will automatically consider these
new GA in their assessments and allow the evaluation of the
overall GMChild.

As mentioned for GA, within a GM, filtering mechanisms
ensure the overall consistency of GAs, regardless of their
specialization or decomposition level, and finally of the GM,
whatever the level of specialization. The proposed model
combined with inheritance mechanisms allows us, in a very
simple but efficient way, to define GM with several
specialization levels. GMs are based on GAs by architecting
them and linking them to form a consistent generic model of a
family of systems. Each GM can be specialized by (1) adding
attributes and/or constraints, (2) specializing some GAs (in the
same family line and descendants only), (3) adding new GAs
at any level of the BOM and any level of abstraction, and (4)
adding constraints between inherited and added GAs. The
modification of characteristics of any GMParent (architecture,
GA, constraints) is inherited by all its specialized GMChildren
and their descendants. This allows experts to design and
update GM in a very easy way.

4. CASE STUDY

To illustrate our proposals, knowledge formalization for the
configuration of bicycles is presented. It is considered that a
bicycle is only composed of one saddle, one frame, two
wheels, and one or two brakes. First, we define the relevant
GAs with their attributes, domains, and constraints. Second,
we show the specialization of Wheel GA into City Wheel GA
and Mountain Wheel GA. Third, we define a Bicycle GM and
we illustrate its specialization into City Bike GM.

Illustration of GA Definition: To define knowledge in the
domain of bicycles, we need to define all the important GA
such as System GA, Bike GA, Frame GA, Saddle GA, Wheel
GA, Brake GA, Rim GA, and Tire GA, as shown in Fig. 2. Our
example illustrates GA and GM definition, as well as GA and
GM specialization, on simple examples. We, therefore, define
only the System GA, Rim GA, Tire GA, and Wheel GA, and
their essential characteristics as follows:

The System GA is defined as the most general GA and can be
specialized into other GAs. In our case, it has only one attribute
which is the KPI “Cost”, notated System.Cost, with the validity
domain {[0, 15000]}. As all the other GAs are a specialization
of the System GA, they inherit the KPI Cost with the same
domain.

The Rim GA is only characterized by two attributes: Rim.Size
with domain {[12, 29]}, and Rim.Cost with domain {[0,
15000]} which is inherited from System GA. The cost of the
Rim GA depends on its size. A constraint representing the
compatible values of Rim.Size and Rim.Cost is made explicit
as shown in Table 1.

Table 1. Constraint of Rim GA

Rim.Size Rim.Cost
{18, 19} [290, 320]

{13, 14, 20, 23, 26} [270, 650]
{16, 17} [650, 800]

Filtering this constraint leads to restricting the initial domains
of the attributes Rim.Size and Rim.Cost, respectively to {[13,
14], [16, 20], 23, 26} for Rim.Size and {[270, 800]} for
Rim.Cost.

The Tire GA is only characterized by two attributes: Tire.Size
with domain {[12, 29]} and Tire.Cost with domain {[0,
15000]} which is inherited from System GA. The cost of the
Tire GA depends on its size. A constraint representing the
compatible values of Tire.Size and Tire.Cost is made explicit
as shown in Table 2.

Table 2. Constraint of Tire GA

Tire.Size Tire.Cost
[12, 17] [10, 20]
[18, 29] [18, 40]

Filtering this constraint leads to restricting the initial domains
of the attribute Tire.Cost to {[10, 40]}.

The Wheel GA is characterized by three
attributes: Wheel.Diameter with domain {[12, 29]},
Wheel.Material with domain {Aluminium alloy, Steel, Carbon
fiber}, Wheel.Cost with domain {[0, 15000]} which is
inherited from System GA. Since any wheel diameter cannot
be associated with any material, we need to formalize this
relationship by a constraint that links the Wheel.Diameter to
its Wheel.Material (Table 3). We also associate the
Wheel.Cost to that constraint.

Table 3. Constraint of Wheel GA

Wheel.Diameter Wheel.Material Wheel.Cost
{12, 14, 16, 18, 20, 24} {Aluminum alloy} [270, 3000]

{26, 27.5, 29} {Aluminum alloy,
Steel, Carbon fiber} [290, 4000]

Filtering this constraint leads to restricting the initial domains
of the attributes Wheel.Diameter to {12, 14, 16, 18, 20, 24, 26,
27.5, 29} and Wheel.Cost to {[270, 4000]}.

Illustration of GA Specialization: To detail Wheel GA
knowledge, we specialize it into CityWheel GA, as shown in
Fig. 2. As explained in section 3.1, CityWheel GA inherits from
its parent Wheel GA all its characteristics: attributes, domains,
and constraints. CityWheel GA is now characterized by three
inherited attributes with filtered
domains: CityWheel.Diameter with domain: {12, 14, 18, 16,
20, 24, 26, 27.5, 29}, CityWheel.Material with domain:
{Aluminium alloy, Steel, Carbon fiber}, CityWheel.Cost with
domain: {[270, 4000]} and an inherited constraint that links
the CityWheel.Diameter CityWheel.Material and
CityWheel.Cost (Table 3). The constraint presented in Table 3
can be more specialized by the addition of tuples, as shown in
Table 4 specialized tuples are explicitly shown with a gray
background.

Table 4. Inherited constraint of CityWheel GA

CityWheel.Diameter CityWheel.Material CityWheel.Cost
{12, 14, 16, 18, 20,

24} {Aluminum alloy} [270, 3000]

{26, 27.5, 29} {Aluminum alloy,
Steel, Carbon fiber} [290, 4000]

29 Carbon fiber [3500, 3700]
29 Steel [1000, 2500]

To illustrate the addition of new attributes and constraints in a
GAChild, we consider that CityWheel GA has optional reflectors.
This option is modeled by the addition of a new attribute
CityWheel.Reflector with domain {[0, 6]} (corresponding to
the number of reflectors) and a new constraint linking the city
wheel diameter and the number of reflectors, as shown in
Table 5.

Table 5. New constraint of CityWheel GA

CityWheel. Diameter CityWheel.Reflector
[12, 17] {[0, 4]}
[18, 29] {0, [3, 6]}

Figure 2. Specialization of Wheel GA

Illustration of GM Definition: Bike GM represents a family
of Bikes using its architecture of GAs, their quantity, the
constraints between GAs, and the aggregation methods for
KPIs. As shown in Fig. 3, Bike GM is composed of 1 Saddle
GA, 1 Frame GA, 1 or 2 Brake GA, and 2 Wheel GA. A Wheel
GA is composed of 1 Rim GA and 1 Tire GA.

Figure 3. Specialization of Bike GM

All the GAs can be linked by constraints to model the system
family solution space, i.e. all the systems that can be
manufactured regarding the GM knowledge. For the
illustration, we have defined a constraint between three
attributes of three GAs: regarding the fact that for a Wheel GA,
the Tire GA is mounted on the Rim GA, they must have the
same diameter otherwise Tire GA mounting is not possible.
This knowledge is defined by (2) which represents the fact that
the diameters of Wheel GA, Tire GA, and Rim GA must be
equal. This constraint is embedded in the Wheel GA which is
decomposed.

Wheel.Diameter = Tire.Diameter=Rim.Diameter (2)

The filtering of constraint (3) has an impact on the domain of
the three GAs. Wheel.Diameter, Tire.Diameter and
Rim.Diameter are now equal to {14, 16, 18, 20, 26}. This
reduction has no impact on the rest of the model.

The aggregation of the KPI cost is made from one GAParent
thanks to the sum of all the KPI Cost of its GAChild:
GAParent.Cost = (GAChild.Cost * Qty of GAChild)

This aggregation method applied to the CityWheel implies that
the CityWheel.Cost = CityRim.Cost + CityTire.Cost. The

1194 M. Mohammad Amini et al. / IFAC PapersOnLine 55-10 (2022) 1189–1194

filtering approach deduces that → = [270, 800] * 1 ⨁ [10, 40]
* 1 = [280, 840] instead of [270, 4000].

The Bike GM is now defined and can be specialized in a
CityBike GM for instance.

Illustration of GM Specialization: To detail Bike GM and
create a CityBike GM, we specialize Wheel GA, Rim GA, and
Tire GA respectively into CityWheel GA, CityRim GA, and
CityTire GA. All the characteristics (attributes, domains, and
constraints) of these more specialized GAs are now considered
in the CityBike GM, as shown in Fig. 3. The
CityWheel.Reflector and all the specialized constraints are now
part of the CityBike model. This specialization of some GAs
into CityBike GM has no impact on the attribute’s domains.
Specific GAs can be included in a GMChild architecture. In the
case of the CityBike GM, we add two specific GAs: one
corresponding to Carrier GA with a quantity of 1, and one
corresponding to Light GA with a quantity between 1 and 2.
As these new GAs have KPI.Cost, they are considered
automatically in the assessment of the CityBike GM. In our
example, there is no impact on the domains of the attributes.

Case Study Synthesis: In this section, first, GA definition and
GA specialization are shown on a wheel example. Then GM
definition and GM specialization are also presented on a bike
example. The constraint filtering, an integrated activity of our
approach, is run to keep only consistent values for a GM.

6. CONCLUSIONS

In this article, we have studied the formalization of knowledge
in system configuration. As far as we know, no scientific work
formalized the specialization of configuration models. This
article aimed to propose the necessary elements to formalize
knowledge and define system configuration models, and then
apply specialization of models to refine knowledge and make
models more specific. For this purpose, first, we defined the
Generic Artifact (GA) to model knowledge of a family of
artifacts. Second, we defined the specialization of GAs to
refine or detail knowledge. Third, using GAs, we defined the
Generic Model (GM) to formalize the knowledge of a family
of systems with all possible options and alternatives. We
defined the knowledge within the GA, and the GM using CSP,
and used constraint filtering to maintain consistent values. The
contributions of this paper include (1) formalizing knowledge
for system configuration using the association of ontology and
CSP (2) defining GMs at different levels of abstraction using
specialization (3) using constraint filtering to keep GAs and
GMs consistent. As future perspectives, we intend to work on
(1) the development of our proposal to consider generalization,
(2) the coding of our proposal in a real mock-up, and (3) the
consideration of Engineer-to-Order configuration (ETO). The
implementation of our proposal on real industrial cases is also
in our minds.

REFERENCES

Bessière, C. (1994). Arc-consistency and arc-consistency
again. in Artificial Intelligence, Volume (65), Issue 1.

Bischof, S., Schenner, G., Steyskal, S., and Taupe, R. (2018).
Integrating semantic web technologies and ASP for

product configuration. in CEUR Workshop Proceedings,
pp. 53–60.

Cao, J., and Hall, D. (2020). Ontology-based product
configuration for modular buildings. in ISARC.
Proceedings of the International Symposium on
Automation and Robotics in Construction, pp. 171–176.

Esheiba, L., Elgammal, A., Helal, I., and El-Sharkawi, M. E.
(2021). A hybrid knowledge-based recommender for
product-service systems mass customization.
Information, 12(8), p. 296.

Felfernig, A., Hotz, L., Bagley, C., and Tiihonen, J. (2014).
Knowledge-based configuration from research to
business cases, Newnes.

Guillon, D., Ayachi, R., Vareilles, É., Aldanondo, M.,
Villeneuve, É., and Merlo, C. (2021). Product⋎service
system configuration: a generic knowledge-based model
for commercial offers. International Journal of
Production Research, 59(4), pp. 1021–1040.

Hotz, L., Felfernig, A., Stumptner, M., Ryabokon, A., Bagley,
C., and Wolter, K. (2014). Configuration knowledge
representation and reasoning. in Knowledge-Based
Configuration, Elsevier, pp. 41–72.

Montanari, U. (1974). Networks of constraints: fundamental
properties and application to picture processing.
Information Sciences, 7, pp. 95–132.

Oddsson, G. and Ladeby, K. R. (2014). From a literature
review of product configuration definitions to a reference
framework. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing: AIEDAM, 28(4),
pp. 413–428.

Ohira, Y., Hochin, T. and Nomiya, H. (2011). Introducing
specialization and generalization to a graph-based data
model. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 6884 LNAI(PART 4),
pp. 1–13.

Sabin, D. and Weigel, R. (1998). Product configuration
frameworks - A survey. IEEE Intelligent Systems and
Their Applications, 13(4), pp. 42–49.

Soininen, T., Tiihonen, J., Männistö, T., and Sulonen, R.
(1998). Towards a general ontology of configuration.
Artificial Intelligence for Engineering Design, Analysis
and Manufacturing: AIEDAM, 12(4), pp. 357–372.

Studer, R., Benjamins, V. R. and Fensel, D. (1998).
Knowledge engineering: principles and methods. Data
and Knowledge Engineering, 25(1–2), pp. 161–197.

Yang, D., Dong, M. and Miao, R. (2008). Development of a
product configuration system with an ontology-based
approach. CAD Computer Aided Design, 40(8), pp. 863–
878.

