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Abstract: Nowadays, system configuration helps to achieve mass customization and manage a wide variety 
of systems. System configuration is based on a model that gathers all relevant knowledge for a family of 
systems. This knowledge model can be difficult to formalize and keep up to date; indeed, the knowledge 
must be made explicit, and can come from different departments and experts within an organization. In 
addition, it must reflect the different variants and options of a family of systems. Therefore, we try to answer 
the following question: how to better formalize and structure knowledge for system configuration to define 
configuration models and use the benefits of specialization in terms of modeling? Thus, in our proposal, 
we introduce the elements required to formalize the knowledge and define configuration models. This 
formalization will be done in a structured way using the association of ontology and Constraint Satisfaction 
Problem (CSP). We use the abilities of ontology to model knowledge of the different artifacts, their 
characteristics, and composition, and the abilities of CSP to model the relations between artifacts. In our 
proposal, we also define artifacts at different levels of abstraction using specialization which allows experts 
to detail or refine the formalized knowledge. We illustrate our proposals on a simplified but realistic 
example of a bicycle.  
Copyright © 2022 The Authors. This work has been accepted to IFAC for publication under a Creative 
Commons License CC-BY-NC-ND. 
Keywords: System configuration, Knowledge formalization, Ontology, CSP, Configuration model, 
Specialization, Abstraction level

1. INTRODUCTION 

Nowadays, system configuration helps to achieve mass 
customization and manage a wide variety of systems to meet 
the demands of the market. To do this, experts need to 
formalize the knowledge related to a family of systems, 
including the system architecture, components, subsystems, 
variants, options, and all the relationships between them. In the 
rest of the article, we refer to artifacts as systems, subsystems, 
or components (Guillon et al., 2021). It is not easy for experts 
to formalize this knowledge and define configuration models 
that incorporate it. This formalization must be done in such a 
way as to make the formalized knowledge understandable, 
shareable, more easily updated,     and usable in different models. 
Therefore, we  try to answer the question of how to formalize 
and structure knowledge for system configuration to define 
configuration models and use the benefits of specialization in 
terms of modeling. In this way, we use the association of 
ontology and Constraint Satisfaction Problem (CSP). 
Ontologies are used to model, at different abstraction levels, 
the knowledge about artifacts, their characteristics, and how 
they are composed. We use CSPs to model the allowed 
relationships between different artifacts using constraints. In 
our proposal, we define the specialization of configuration 

models which, to the best of our knowledge, is not the subject 
of any work in the literature. 

The remainder of this paper is structured as follows. In section 
2, we present the related works. In section 3, we propose the 
elements needed to model knowledge for system 
configuration. In section 4, we formalize knowledge for 
bicycle example. In section 5, we present the conclusion and 
future perspectives. 

2. RELATED WORKS 

In this section, the relevant articles on system configuration, 
knowledge formalization, approaches such as ontology and 
CSP, their association, and the specialization/generalization 
relationship are discussed. Then the scientific gaps are found. 

2.1 System configuration 

(Soininen et al., 1998) mentioned product configuration as a 
task “can be roughly defined as the problem of designing a 
product using a set of predefined components while 
considering a set of restrictions on how the components can be 
combined.” Regarding this definition and making it more 
general, the set of artifacts is bounded and their connection is 
only allowed in specific ways. One of the pillars of 
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configuration problems is the configuration model. (Oddsson 
and Ladeby, 2014) defined a product configuration model as 
“an abstract representation, describing the structure of the 
product, the entities the product consists of, and the rules on 
how the entities and their properties can be combined.” In our 
work, all the definitions in product configuration are valid for 
system configuration. In configuration problems, two steps of 
knowledge formalization and knowledge reuse are considered. 
In this paper, we only focus on knowledge formalization. 

2.2 Knowledge formalization 

Knowledge formalization means that knowledge is structured 
and formalized in a way that facilitates its interpretation. In 
knowledge formalization (Fig. 1), experts are responsible to 
model knowledge and define configuration models. 
Configuration models must be correct and consistent 
representations of the system knowledge, i.e. system 
architecture, relationships between systems characteristics, the 
list of all options and alternatives... (Sabin and Weigel, 1998) 
mentioned that formalizing different types of relationships 
between artifacts such as classification (is-a), aggregation 
(part-of), and relationships related to cardinality, geometry, 
and so on is difficult. Since the formalization of knowledge to 
define configuration models is a critical issue, many efforts 
have been made to formalize it. For example, (Hotz et al., 
2014) presented various knowledge representation approaches 
such as Constraint-Based (CSP, Dynamic Constraint 
Satisfaction, Generative Constraint Satisfaction), Graphical 
(Feature Models and Unified Modeling Language – UML 
models), and Logic-Based (First Order Logic, Answer Set 
Programming) to define a configuration model. (Soininen  et 
al., 1998) proposed a general ontology containing modeling 
concepts to represent knowledge in the domain of 
configuration. (Cao and Hall, 2020) proposed an ontology-
based method to configure modular buildings. (Yang, Dong 
and Miao, 2008) proposed an ontology-based approach to 
formalize the knowledge of product configuration using Web 
Ontology Language (OWL) and Semantic Web Rule 
Language (SWRL). (Esheiba et al., 2021) proposed a 
recommender system using ontologies to capture production-
related knowledge and using CSP to encode product-service 
systems variants. (Bischof et al., 2018) used Shapes Constraint 
Language to model constraints but updating the formalized 
knowledge is not easy. Based on the literature, CSP is the most 
widely used approach to formalize knowledge in configuration 
problems. Ontology is another famous approach to model 
knowledge in this domain. 

Ontology Definition: So far, different definitions have been 
mentioned for ontology regarding the various contexts. 
(Studer, Benjamins and Fensel, 1998) defined an ontology as 
a “formal, explicit specification of a shared 
conceptualization.” An ontology captures domain knowledge 
to provide a common understanding of it. It defines concepts 
or classes, attributes of classes, attributes domains, 
hierarchical relationships, abstraction levels and inheritance, 
compositions, rules, axioms, and assertions. In our work, 
although ontologies can be used to define artifacts at different 
abstraction levels and their relationships, they cannot represent 
all the constraints needed to formalize knowledge for system 

configuration e.g., compatibility between artifacts or artifacts 
characteristics. 

CSP Definition: (Montanari, 1974) defined a CSP as a triplet 

{X, D, C} where X is a set of variables, D is a set of domains 
of variables – one for each variable, and C is a set of 
constraints. Constraints represent restrictions on the 
combination of variable values. (Felfernig et al., 2014) 
mentioned that CSP provides several advantages, including 
distinguishing between the modeling part and the solving part, 
and defining various variables and constraints with different 
types. In our work, while CSPs can be useful for modeling all 
the constraints required to formalize knowledge for system 
configuration, i.e., incompatibility between artifacts or artifact 
characteristics, they cannot represent hierarchical 
relationships, abstraction levels, and inheritance. 

Association of Ontology and CSP: Based on the literature, the 
lack of paper on the knowledge formalization for system 
configuration using the association of ontology and CSP is 
obvious. In this work, we use the association of ontology and 
CSP to formalize knowledge which enables experts to model 
knowledge in a structured manner. Ontology can be used to 
model knowledge about different artifacts i.e. system, sub-
system, components, specialization of artifacts, 
characteristics, and also their relationships (such as 
composition) (Fig. 1, highlighted in purple). CSP can be used 
to model different types of relationships between different 
artifacts and/or artifacts characteristics using constraints (Fig. 
1, red lines). 

 
Figure 1. Knowledge formalization 

2.3 Specialization/Generalization relationship 

(Ohira, Hochin and Nomiya, 2011) mentioned specialization 
enables the creation of new artifacts downwards that is 
explicitly derived from an existing general artifact. Artifacts 
that are far away from the general artifact are more specialized. 
Each created artifact in addition to the characteristics inherited 
from the general artifact may have specific characteristics only 
allocated to itself. (Ohira, Hochin and Nomiya, 2011) 
represented that generalization is the process of reversing 
specialization. In this paper, we focus on specialization. 
Although specialization of artifacts is mentioned in some 
articles, e.g. on ontology or UML, to the best of our knowledge 
there is no paper about the specialization of models into more 
specific models in the context of configuration. 

Related works Synthesis: In this section, after reviewing the 
relevant papers, we found that there is a lack of work on 1) 
knowledge formalization for system configuration using the 
association of ontology and CSP, and 2) specialization of 
configuration models. 
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Related works Synthesis: In this section, after reviewing the 
relevant papers, we found that there is a lack of work on 1) 
knowledge formalization for system configuration using the 
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configuration models. 

3. PROPOSALS 

In this section, the different elements used to model knowledge 
for systems configuration are proposed. Two kinds of elements 
are formalized: Generic Artifacts (GA) and Generic Models 
(GM). The specialization of both elements is presented. 

3.1 Generic Artifact 

GA Definition: In the proposed model, as mentioned in the 
introduction, artifacts are systems, sub-systems, or 
components. Sub-systems can be decomposed into sub-
systems and/or components while a component is not 
decomposed. They correspond to tangible parts of systems to 
be configured (Guillon et al., 2021). A Generic Artifact or GA 
is a family of artifacts with common characteristics (Ohira, 
Hochin and Nomiya, 2011). A GA is described using attributes 
for which the possible values are defined by their validity 
domains. Attributes can be symbolic or numerical and their 
domains can be discrete or continuous. It exists specific 
attributes corresponding to the Key Performance Indicator 
(KPI) such as the cost, the weight, and the performance, to 
assess GAs. Some relations between attributes allow or forbid 
some combinations of attribute values and then define what the 
possible characteristics of the artifacts of the GA family are. 

We propose that within a GA, knowledge is formalized using 
CSP. As mentioned before, CSP is defined by a triplet 
{variables, domains, constraints} which can easily be matched 
with attributes, domains, and relations of GAs. The use of CSP 
within a GA, allows us to use filtering mechanisms (Bessière, 
1994), to restrict attribute domains by keeping only consistent 
values. We use the terms attributes, domains, and constraints 
in the rest of the paper. 

GA Specialization: In the proposed model, GA can be defined 
at different levels of abstraction using specialization 
relationships. A GA or GAChild can be specialized from a more 
general GA or GAParent to refine or detail GAChild knowledge. 
In such a case, first, GAChild inherits all the characteristics of 
GAParent: the attributes, their domains, and the constraints. 
Second, the valid domains of GAChild can be specialized (or 
narrowed) by (1) restricting its inherited domains thanks to 
inherited constraints modifications (addition of forbidden 
combinations of values) or (2) by defining new constraints on 
its attributes. In the case where the specialized GAChild has no 
specific constraints, its valid domains are equal to the domains 
of its parent GAParent. Third, in addition to what a specialized 
GAChild inherits from its parent GAParent, specific attributes, 
domains, and constraints that are only dedicated to that 
specialized GAChild and which are modeling its specific 
knowledge can be added. Within a specialized GAChild, 
inherited knowledge and specific knowledge can be combined 
thanks to constraints linking inherited attributes and specific 
attributes. 

The proposed model allows for defining general GAParent 
which gathers all the common characteristics of more specific 
GAChildren. The modification of characteristics of any GAParent 
(attributes, domains, constraints) is inherited by all its 
specialized GAChildren and their descendants. 

3.2 Generic Model 

GM Definition: A Generic Model or GM allows to formalize 
knowledge about a family of systems that have common 
characteristics, including all possible options and alternatives. 
Following (Oddsson and Ladeby, 2014), a GM represents:  

1. the generic architecture, i.e. the generic Bill of Materials 
(BOM), of the family of systems. A BOM is a list of artifacts 
(components and subsystems) with the quantities of each 
needed to manufacture a specific system. Following the BOM 
hierarchical nature, a GM formalizes the decomposition links 
connecting a system GA (the root of the BOM and at level 0), 
corresponding to a generic system, to all the GA composing it 
(sub-systems or components), on k decomposition levels (from 
1 to k). This decomposition is made using the type of 
association “is composed of.” In the following, we refer to GM 
or system GA for the highest-level generic system (level 0) of 
the BOM. 

2. the relations between all the GA composing the GM, 
regardless of their level of decomposition. These relations can 
be defined directly between several GAs, such as 
“mandatory”, “forbidden”, “excluded” or between GA’s 
attributes, such as allowed or forbidden combinations of 
attribute values between two or more GAs. Relations between 
GAs allow formalizing all the system family solution space, 
i.e. all the systems that can be manufactured regarding the GM 
knowledge. 

3. the method for assessing the GM's KPIs. As each GA is 
assessed on KPIs, the way to aggregate them from one level of 
decomposition n+1 to the direct upper-level n must be defined. 
It can be a simple sum or a much more complicated formula 
(MAX, MIN, AVERAGE, etc.). 

Within a GM and for GA, knowledge is formalized as a CSP 
to model i) the constraints between GAs; ii) the constraints 
between the values of the attributes of different GAs 
composing the GM; iii) the constraints linking the KPIs. The 
use of CSP within a GM allows local filtering on GAs, via 
constraints embedded in GA, and propagations over the entire 
GM, via constraints between GAs or attribute values of 
multiple GAs. The CSPs thus guarantee the overall 
consistency of the GM (or system GA) concerning the 
different knowledge of its GAs. 

KPI assessment: We have seen that GM and GA are assessed 
on KPIs (e.g. weight, performance, price, cost, etc.). The way 
to aggregate them from one level n+1 to the direct upper-level 
n has to be defined at the GM level, regardless of the number 
of GAs composing the GM. Such a relation is therefore 
formalized as a global constraint (Rossi et al., 2006) to avoid 
an exhaustive inventory of all the GAs involved. This global 
constraint is applied at each level of decomposition for each 
GA. Equation (1) illustrates the computation of a KPI named 
GA.KPIj for a GA composed of several GAi. The SUM 
operator is used in (1). 

𝐺𝐺𝐺𝐺. 𝐾𝐾𝐾𝐾𝐾𝐾𝑗𝑗 = (𝐺𝐺𝐺𝐺𝑖𝑖. 𝐾𝐾𝐾𝐾𝐾𝐾𝑗𝑗 ∗ 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑜𝑜𝑜𝑜 𝐺𝐺𝐺𝐺𝑖𝑖)   (1) 

GM Specialization: To efficiently model knowledge for 
system configuration, as for GA, GM can be defined with 



1192 M. Mohammad Amini  et al. / IFAC PapersOnLine 55-10 (2022) 1189–1194

different levels of abstraction. A GM or GMParent can be 
specialized into one or more specific GMs or GMChildren to 
refine or detail GMParent knowledge. That will allow us to 
define more specific models corresponding to more specific 
systems and their configurations. The benefits of GM 
specialization are first the automatic update of knowledge 
from one GMParent to all its specialized GMChildren. Second, 
specialization avoids knowledge experts to start the blank page 
to formalize the knowledge. Several abstraction levels of 
knowledge on the same family of systems can thus be 
formulated and reused. 

Firstly, while specialization, a specialized GMChild inherits all 
the characteristics of its parent GMParent, i.e. the architecture of 
GMParent (BOM), all the GAs composing it with their 
embedded CSP, all constraints linking GAs or GAs attributes, 
and all the KPI aggregation methods. As for GA, inherited 
constraints between GA or GA attributes can be updated by 
the modification of tuples to restrict the allowed combinations, 
or new specific constraints between inherited GAs or GA 
attributes can be defined.  

Secondly, an inherited GA can be specialized within a GMChild 
compared to GMParent. To detail knowledge, it is sometimes 
necessary to specialize a GAParent to one of its children GAChild 
(if they exist). The knowledge of GAChild will be more precise 
and accurate than the one of its parent GAParent. This 
specialization mechanism is only allowed for GAs belonging 
to the same family line: the more specialized GAChild must be a 
descendant of the inherited GAParent. Indeed, the set of inherited 
attributes and constraints must remain the same between 
GAChild and GAParent for the overall consistency of the GMChild. 

Thirdly, one or more specific GAs which are only dedicated to 
that specialized GMChild and which are modeling its specific 
knowledge can be included in the GMChild architecture, at any 
level of decomposition. Inherited GA and specific GA can be 
combined thanks to new constraints linking their attributes. 
KPIs of the direct upper level will automatically consider these 
new GA in their assessments and allow the evaluation of the 
overall GMChild.  

As mentioned for GA, within a GM, filtering mechanisms 
ensure the overall consistency of GAs, regardless of their 
specialization or decomposition level, and finally of the GM, 
whatever the level of specialization. The proposed model 
combined with inheritance mechanisms allows us, in a very 
simple but efficient way, to define GM with several 
specialization levels. GMs are based on GAs by architecting 
them and linking them to form a consistent generic model of a 
family of systems. Each GM can be specialized by (1) adding 
attributes and/or constraints, (2) specializing some GAs (in the 
same family line and descendants only), (3) adding new GAs 
at any level of the BOM and any level of abstraction, and (4) 
adding constraints between inherited and added GAs. The 
modification of characteristics of any GMParent (architecture, 
GA, constraints) is inherited by all its specialized GMChildren 
and their descendants. This allows experts to design and 
update GM in a very easy way. 

4. CASE STUDY 

To illustrate our proposals, knowledge formalization for the 
configuration of bicycles is presented. It is considered that a 
bicycle is only composed of one saddle, one frame, two 
wheels, and one or two brakes. First, we define the relevant 
GAs with their attributes, domains, and constraints. Second, 
we show the specialization of Wheel GA into City Wheel GA 
and Mountain Wheel GA. Third, we define a Bicycle GM and 
we illustrate its specialization into City Bike GM. 

Illustration of GA Definition: To define knowledge in the 
domain of bicycles, we need to define all the important GA 
such as System GA, Bike GA, Frame GA, Saddle GA, Wheel 
GA, Brake GA, Rim GA, and Tire GA, as shown in Fig. 2. Our 
example illustrates GA and GM definition, as well as GA and 
GM specialization, on simple examples. We, therefore, define 
only the System GA, Rim GA, Tire GA, and Wheel GA, and 
their essential characteristics as follows:  

The System GA is defined as the most general GA and can be 
specialized into other GAs. In our case, it has only one attribute 
which is the KPI “Cost”, notated System.Cost, with the validity 
domain {[0, 15000]}. As all the other GAs are a specialization 
of the System GA, they inherit the KPI Cost with the same 
domain. 

The Rim GA is only characterized by two attributes: Rim.Size 
with domain {[12, 29]}, and Rim.Cost with domain {[0, 
15000]} which is inherited from System GA. The cost of the 
Rim GA depends on its size. A constraint representing the 
compatible values of Rim.Size and Rim.Cost is made explicit 
as shown in Table 1. 

Table 1. Constraint of Rim GA 

Rim.Size Rim.Cost 
{18, 19} [290, 320] 

{13, 14, 20, 23, 26} [270, 650] 
{16, 17} [650, 800] 

 

Filtering this constraint leads to restricting the initial domains 
of the attributes Rim.Size and Rim.Cost, respectively to {[13, 
14], [16, 20], 23, 26} for Rim.Size and {[270, 800]} for 
Rim.Cost. 

The Tire GA is only characterized by two attributes: Tire.Size 
with domain {[12, 29]} and Tire.Cost with domain {[0, 
15000]} which is inherited from System GA. The cost of the 
Tire GA depends on its size. A constraint representing the 
compatible values of Tire.Size and Tire.Cost is made explicit 
as shown in Table 2.  

Table 2. Constraint of Tire GA 

Tire.Size Tire.Cost 
[12, 17] [10, 20] 
[18, 29] [18, 40] 

 

Filtering this constraint leads to restricting the initial domains 
of the attribute Tire.Cost to {[10, 40]}. 
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different levels of abstraction. A GM or GMParent can be 
specialized into one or more specific GMs or GMChildren to 
refine or detail GMParent knowledge. That will allow us to 
define more specific models corresponding to more specific 
systems and their configurations. The benefits of GM 
specialization are first the automatic update of knowledge 
from one GMParent to all its specialized GMChildren. Second, 
specialization avoids knowledge experts to start the blank page 
to formalize the knowledge. Several abstraction levels of 
knowledge on the same family of systems can thus be 
formulated and reused. 

Firstly, while specialization, a specialized GMChild inherits all 
the characteristics of its parent GMParent, i.e. the architecture of 
GMParent (BOM), all the GAs composing it with their 
embedded CSP, all constraints linking GAs or GAs attributes, 
and all the KPI aggregation methods. As for GA, inherited 
constraints between GA or GA attributes can be updated by 
the modification of tuples to restrict the allowed combinations, 
or new specific constraints between inherited GAs or GA 
attributes can be defined.  

Secondly, an inherited GA can be specialized within a GMChild 
compared to GMParent. To detail knowledge, it is sometimes 
necessary to specialize a GAParent to one of its children GAChild 
(if they exist). The knowledge of GAChild will be more precise 
and accurate than the one of its parent GAParent. This 
specialization mechanism is only allowed for GAs belonging 
to the same family line: the more specialized GAChild must be a 
descendant of the inherited GAParent. Indeed, the set of inherited 
attributes and constraints must remain the same between 
GAChild and GAParent for the overall consistency of the GMChild. 

Thirdly, one or more specific GAs which are only dedicated to 
that specialized GMChild and which are modeling its specific 
knowledge can be included in the GMChild architecture, at any 
level of decomposition. Inherited GA and specific GA can be 
combined thanks to new constraints linking their attributes. 
KPIs of the direct upper level will automatically consider these 
new GA in their assessments and allow the evaluation of the 
overall GMChild.  

As mentioned for GA, within a GM, filtering mechanisms 
ensure the overall consistency of GAs, regardless of their 
specialization or decomposition level, and finally of the GM, 
whatever the level of specialization. The proposed model 
combined with inheritance mechanisms allows us, in a very 
simple but efficient way, to define GM with several 
specialization levels. GMs are based on GAs by architecting 
them and linking them to form a consistent generic model of a 
family of systems. Each GM can be specialized by (1) adding 
attributes and/or constraints, (2) specializing some GAs (in the 
same family line and descendants only), (3) adding new GAs 
at any level of the BOM and any level of abstraction, and (4) 
adding constraints between inherited and added GAs. The 
modification of characteristics of any GMParent (architecture, 
GA, constraints) is inherited by all its specialized GMChildren 
and their descendants. This allows experts to design and 
update GM in a very easy way. 

4. CASE STUDY 

To illustrate our proposals, knowledge formalization for the 
configuration of bicycles is presented. It is considered that a 
bicycle is only composed of one saddle, one frame, two 
wheels, and one or two brakes. First, we define the relevant 
GAs with their attributes, domains, and constraints. Second, 
we show the specialization of Wheel GA into City Wheel GA 
and Mountain Wheel GA. Third, we define a Bicycle GM and 
we illustrate its specialization into City Bike GM. 

Illustration of GA Definition: To define knowledge in the 
domain of bicycles, we need to define all the important GA 
such as System GA, Bike GA, Frame GA, Saddle GA, Wheel 
GA, Brake GA, Rim GA, and Tire GA, as shown in Fig. 2. Our 
example illustrates GA and GM definition, as well as GA and 
GM specialization, on simple examples. We, therefore, define 
only the System GA, Rim GA, Tire GA, and Wheel GA, and 
their essential characteristics as follows:  

The System GA is defined as the most general GA and can be 
specialized into other GAs. In our case, it has only one attribute 
which is the KPI “Cost”, notated System.Cost, with the validity 
domain {[0, 15000]}. As all the other GAs are a specialization 
of the System GA, they inherit the KPI Cost with the same 
domain. 

The Rim GA is only characterized by two attributes: Rim.Size 
with domain {[12, 29]}, and Rim.Cost with domain {[0, 
15000]} which is inherited from System GA. The cost of the 
Rim GA depends on its size. A constraint representing the 
compatible values of Rim.Size and Rim.Cost is made explicit 
as shown in Table 1. 

Table 1. Constraint of Rim GA 

Rim.Size Rim.Cost 
{18, 19} [290, 320] 

{13, 14, 20, 23, 26} [270, 650] 
{16, 17} [650, 800] 

 

Filtering this constraint leads to restricting the initial domains 
of the attributes Rim.Size and Rim.Cost, respectively to {[13, 
14], [16, 20], 23, 26} for Rim.Size and {[270, 800]} for 
Rim.Cost. 

The Tire GA is only characterized by two attributes: Tire.Size 
with domain {[12, 29]} and Tire.Cost with domain {[0, 
15000]} which is inherited from System GA. The cost of the 
Tire GA depends on its size. A constraint representing the 
compatible values of Tire.Size and Tire.Cost is made explicit 
as shown in Table 2.  

Table 2. Constraint of Tire GA 

Tire.Size Tire.Cost 
[12, 17] [10, 20] 
[18, 29] [18, 40] 

 

Filtering this constraint leads to restricting the initial domains 
of the attribute Tire.Cost to {[10, 40]}. 

The Wheel GA is characterized by three 
attributes:  Wheel.Diameter with domain {[12, 29]}, 
Wheel.Material with domain {Aluminium alloy, Steel, Carbon 
fiber}, Wheel.Cost with domain {[0, 15000]} which is 
inherited from System GA. Since any wheel diameter cannot 
be associated with any material, we need to formalize this 
relationship by a constraint that links the Wheel.Diameter to 
its Wheel.Material (Table 3). We also associate the 
Wheel.Cost to that constraint. 

Table 3. Constraint of Wheel GA 

Wheel.Diameter Wheel.Material Wheel.Cost 
{12, 14, 16, 18, 20, 24} {Aluminum alloy} [270, 3000] 

{26, 27.5, 29} {Aluminum alloy, 
Steel, Carbon fiber} [290, 4000] 

 
Filtering this constraint leads to restricting the initial domains 
of the attributes Wheel.Diameter to {12, 14, 16, 18, 20, 24, 26, 
27.5, 29} and Wheel.Cost to {[270, 4000]}.        

Illustration of GA Specialization: To detail Wheel GA 
knowledge, we specialize it into CityWheel GA, as shown in 
Fig. 2. As explained in section 3.1, CityWheel GA inherits from 
its parent Wheel GA all its characteristics: attributes, domains, 
and constraints. CityWheel GA is now characterized by three 
inherited attributes with filtered 
domains:  CityWheel.Diameter with domain: {12, 14, 18, 16, 
20, 24, 26, 27.5, 29}, CityWheel.Material with domain: 
{Aluminium alloy, Steel, Carbon fiber}, CityWheel.Cost with 
domain: {[270, 4000]} and an inherited constraint that links 
the CityWheel.Diameter CityWheel.Material and 
CityWheel.Cost (Table 3). The constraint presented in Table 3 
can be more specialized by the addition of tuples, as shown in 
Table 4 specialized tuples are explicitly shown with a gray 
background. 

Table 4. Inherited constraint of CityWheel GA 

CityWheel.Diameter CityWheel.Material CityWheel.Cost 
{12, 14, 16, 18, 20, 

24} {Aluminum alloy} [270, 3000] 

{26, 27.5, 29} {Aluminum alloy, 
Steel, Carbon fiber} [290, 4000] 

29 Carbon fiber [3500, 3700] 
29 Steel [1000, 2500] 

 
To illustrate the addition of new attributes and constraints in a 
GAChild, we consider that CityWheel GA has optional reflectors. 
This option is modeled by the addition of a new attribute 
CityWheel.Reflector with domain {[0, 6]} (corresponding to 
the number of reflectors) and a new constraint linking the city 
wheel diameter and the number of reflectors, as shown in 
Table 5.  

Table 5. New constraint of CityWheel GA 

CityWheel. Diameter CityWheel.Reflector 
[12, 17] {[0, 4]} 
[18, 29] {0, [3, 6]} 

 

 
Figure 2. Specialization of Wheel GA 

Illustration of GM Definition: Bike GM represents a family 
of Bikes using its architecture of GAs, their quantity, the 
constraints between GAs, and the aggregation methods for 
KPIs. As shown in Fig. 3, Bike GM is composed of 1 Saddle 
GA, 1 Frame GA, 1 or 2 Brake GA, and 2 Wheel GA. A Wheel 
GA is composed of 1 Rim GA and 1 Tire GA.  

 

 
Figure 3. Specialization of Bike GM 

All the GAs can be linked by constraints to model the system 
family solution space, i.e. all the systems that can be 
manufactured regarding the GM knowledge. For the 
illustration, we have defined a constraint between three 
attributes of three GAs: regarding the fact that for a Wheel GA, 
the Tire GA is mounted on the Rim GA, they must have the 
same diameter otherwise Tire GA mounting is not possible. 
This knowledge is defined by (2) which represents the fact that 
the diameters of Wheel GA, Tire GA, and Rim GA must be 
equal. This constraint is embedded in the Wheel GA which is 
decomposed. 

Wheel.Diameter = Tire.Diameter=Rim.Diameter              (2) 

The filtering of constraint (3) has an impact on the domain of 
the three GAs. Wheel.Diameter, Tire.Diameter and 
Rim.Diameter are now equal to {14, 16, 18, 20, 26}. This 
reduction has no impact on the rest of the model. 

The aggregation of the KPI cost is made from one GAParent 
thanks to the sum of all the KPI Cost of its GAChild: 
GAParent.Cost = (GAChild.Cost * Qty of GAChild) 

This aggregation method applied to the CityWheel implies that 
the CityWheel.Cost = CityRim.Cost + CityTire.Cost. The 
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filtering approach deduces that → = [270, 800] * 1 ⨁ [10, 40] 
* 1 = [280, 840] instead of [270, 4000]. 

The Bike GM is now defined and can be specialized in a 
CityBike GM for instance.  

Illustration of GM Specialization: To detail Bike GM and 
create a CityBike GM, we specialize Wheel GA, Rim GA, and 
Tire GA respectively into CityWheel GA, CityRim GA, and 
CityTire GA. All the characteristics (attributes, domains, and 
constraints) of these more specialized GAs are now considered 
in the CityBike GM, as shown in Fig. 3. The 
CityWheel.Reflector and all the specialized constraints are now 
part of the CityBike model. This specialization of some GAs 
into CityBike GM has no impact on the attribute’s domains. 
Specific GAs can be included in a GMChild architecture. In the 
case of the CityBike GM, we add two specific GAs: one 
corresponding to Carrier GA with a quantity of 1, and one 
corresponding to Light GA with a quantity between 1 and 2. 
As these new GAs have KPI.Cost, they are considered 
automatically in the assessment of the CityBike GM. In our 
example, there is no impact on the domains of the attributes. 

Case Study Synthesis: In this section, first, GA definition and 
GA specialization are shown on a wheel example. Then GM 
definition and GM specialization are also presented on a bike 
example. The constraint filtering, an integrated activity of our 
approach, is run to keep only consistent values for a GM. 

6. CONCLUSIONS 

In this article, we have studied the formalization of knowledge 
in system configuration. As far as we know, no scientific work 
formalized the specialization of configuration models. This 
article aimed to propose the necessary elements to formalize 
knowledge and define system configuration models, and then 
apply specialization of models to refine knowledge and make 
models more specific. For this purpose, first, we defined the 
Generic Artifact (GA) to model knowledge of a family of 
artifacts. Second, we defined the specialization of GAs to 
refine or detail knowledge. Third, using GAs, we defined the 
Generic Model (GM) to formalize the knowledge of a family 
of systems with all possible options and alternatives. We 
defined the knowledge within the GA, and the GM using CSP, 
and used constraint filtering to maintain consistent values. The 
contributions of this paper include (1) formalizing knowledge 
for system configuration using the association of ontology and 
CSP (2) defining GMs at different levels of abstraction using 
specialization (3) using constraint filtering to keep GAs and 
GMs consistent. As future perspectives, we intend to work on 
(1) the development of our proposal to consider generalization, 
(2) the coding of our proposal in a real mock-up, and (3) the 
consideration of Engineer-to-Order configuration (ETO). The 
implementation of our proposal on real industrial cases is also 
in our minds. 
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