N

N
N

HAL

open science

Compiling capacitated single-item lot-sizing problem in
a CostMDD
Walid Khellaf, Romain Guillaume, Jacques Lamothe

» To cite this version:

Walid Khellaf, Romain Guillaume, Jacques Lamothe. Compiling capacitated single-item lot-sizing
problem in a CostMDD. MIM 2022 - 10th IFAC Conference on Manufacturing Modelling, Management

and Control, IFAC, Jun 2022, Nantes, France. pp.2024 - 2029, 10.1016/j.ifacol.2022.10.005 .

03833551

HAL Id: hal-03833551
https://imt-mines-albi.hal.science/hal-03833551
Submitted on 28 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License


https://imt-mines-albi.hal.science/hal-03833551
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 55-10 (2022) 2024-2029

Compiling capacitated single-item lot-sizing
problem in a CostMDD

Walid Khellaf* Romain Guillaume ** Jacques Lamothe ***

* IRIT, university of Toulouse paul sabatier, 31062, France (e-mail:
walid.khellaf@irit.fr).
** IRIT, University of Toulouse Jean Jaures, 31058, France (e-mail:
romain. Guillaume @irit.fr)
¥ Industrial Engineering Center, Mines Albi, Toulouse University,
Albi, 81000, France, (e-mail: jacques.lamothe@mines-albi.fr)

Abstract: This paper deals with capacitated single-item lot sizing problem (CLSP) in an
interactive support system context. The interaction is done thanks to queries to the system:
The decision-maker makes partial choices and asks about the consequences in terms of costs but
also about possible inventory levels. Hence, three fundamental queries are investigated: Find
production plans with a cost less than K; Find possible plans with conditioning on a pair of
variables (production and inventory); Find the production plans that simultaneously satisfy the
previous queries. A knowledge compilation approach is used and composed of two phases: offline
and online. Offline, a top-down algorithm computes cost multivalued decision diagrams. While
online, we show how cost multivalued decision diagrams can improve the reactivity of answers
to queries.

The proposed approach is compared to classical constraint programming with CP Optimizer.
Tests indicate that our algorithm is more efficient than CP re-solving in terms of computation

time.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Capacitated single-item lot-sizing, knowledge compilation, Multivalued decision

diagrams, Queries.

1. INTRODUCTION

Beginning in the 1950s (Wagner and Whitin (1958),
Manne (1958)), research on the lot sizing problem ap-
plied most of the methods of operations research. The
goal is always to decide when and how much to produce
(or order) in order to meet customer demand (firm or
forecasted), period by period over a finite time horizon,
in order to minimize the total expected cost (production
costs and/or storage costs and/or setup costs, etc.) for one
or more items while respecting general constraints. The
resolution methods are generally classified A.Drexl (1997)
into exact methods (dynamic programming Klein. (1971),
branch-and-bound Chung et al. (1994)) and approximate
methods (heuristics, meta-heuristics, Lagrangian relax-
ation J.R. Hardin (2005)).

The lot sizing (LS) problem is one of the most impor-
tant problems in production planning, see the review
in N.Brahimi (2006) with many versions depending on
various characteristics A.Drexl (1997). Moreover, many
specialized heuristics Degraeve (2007) or approaches based
on multi-reference relaxation Manne (1958) have also been
proposed. Here, is investigated a basic version, the single-
product lot sizing problem (CLSP) Klein. (1971) with
time-varying capacity. It is known to be NP-Hard Yanasse
(1982) and Klein. (1971).

One of the main challenges of today’s planning problem
solving is interactivity Alexander N (2005): decision mak-
ers may want to work interactively with their planning

systems in real time. For CLSP, this corresponds to check-
ing the feasibility of a production plan with a given cost
window, obtaining a production plan with conditioning
on decision variables or with bounds on the cost. This
difficulty of taking into account the additional set of
queries and decision maker preferences can be achieved
by knowledge compilation languages Henrik Reif Andersen
(2010), Bart Selman (1996) and Cadoli (1997), or cou-
pling decision diagrams and dynamic programming Hooker
(2013). This differentiates our resolution approach from
those reviewed in the CLSP literature.

The idea is to reformulate knowledge, offline, in a compact
and efficient representation while keeping guarantees on
the complexity of the online calculation of requests. This
approach is used in several application fields of operational
research and in artificial intelligence, especially in product
configuration task Amilhastre J (2002) , Fargier H (2014),
in the control of an autonomous system Alexandre N
(2010).

This paper is organized as follows: Section 2, presents
the capacitated single-item lot sizing and the associated
queries. Section 3 and Section 4 presents the formal
definitions of knowledge compilation, source, and target
languages. Section 5 and Section 6 presents our proposal
with two top-down algorithms for solving the offline and
online problems. Section 7 presents a description of the
experiments and the analysis of the first results obtained.

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2022.10.005



Walid Khellaf et al. / IFAC PapersOnLine 55-10 (2022) 2024-2029

Section 8 concludes the paper and gives some perspectives
on the future work.

2. CAPACITATED LOT SIZING PROBLEM

Let’s consider the traditional capacitated single item lot
sizing . It aims to find a production schedule achieving
an optimal trade-off between setup and inventory holding
costs while complying with given capacity constraints and
ensuring that demand for this product is satisfied. Two
basic queries are identified : computing whole of the plans
having the same cost, and imposing preferences on a
quantity of inventory or production at some periods. The
answers of those two queries informs the decision maker
to address unforeseen events and thus better manage the
resources and the production.

2.1 Mathematical formulation of CLSP

The following is a summary of the notations used in the
representation of the data and of the decision variables.

Parameters:
T: Number of periods ¢
dy - Demand at ¢
X, X Minimal, Maximal production quantities at ¢
Iy : Initial inventory
I, 1, Minimal, Maximal inventory at the end of ¢
Pi, 8¢, he © Production, Setup and Holding cost at ¢
fi: Cost function of Xy, Y;, and I; at ¢
Variables:
X;: Quantity produced at period ¢

Itl
Y;:

In order to be brief let DY = [ Xy, X;] and D} = [I, I].

Inventory at the end of period ¢
Setup existence at period t

A classical objective of CLSP is to minimize the sum
of production, inventory holding, and preparation costs,
which is expressed by (1). Constraints (c1.2) express the
inventory balance. Constraints (c1.3) are the capacity con-
straints. Constraints (c1.4) and (c1.5) bound Production
and Inventory. Constraints (c1.6) are the non-negativity
conditions on the production quantities and the binary
nature of the set up variables. However, the CLSP problem
resolution usually produces only one optimal solution, if
there is one.

T T
Mmztht‘FSth'thIt Zth(Xt,Y;:Jt) (1)
t=1 t=1
(C].Q) It—l + Xi dt + It te [1,Tﬂ
(cl.4) X € Dy te[1,7]
(c1.5) I, € D} te[1,T]
(c1.6) X, I; eN>0,Y;, € {0,1} te[1,7T]
2.2 Queries

Although, once the CLSP is resolved, decision makers may
want to understand the solution space and be able to
query it, in real time, with some additional preferences.
The research question here is: Is it more time efficient to

2025

put the problem 1 into a compiled form that is used to
answer queries; or to resolve problem 1 to answer each
query?

Let introduce two types of fundamental queries based of
two types of preference restriction that a decision maker
may have: on variables ou on costs.

Conditioning on the decision variables:  The conditioning
queries was introduced by Amilhastre J (2002). It is a
partial assignment of decision variables. In CLSP, it corre-
sponds to the resolution of the problem (1) with addition of
constraints on the production or on the inventory quantity.
In this paper a conditioning query is a vector Q of couples

of conditioning;:
Q= () (2)

with Qt = {Qz ?:1, with (Ut|’Ut)‘{t S H].,TH, U € Dg:U{*},
v € DU {x}}.

For instance Qi = (qg(t|*) means that the production

quantity of the period ¢ is constrained to qé(yt while the
inventory quantity is not. Qf = (*|g7,) means that the
inventory quantity is constrained but not the production
quantity. And Q; = (¢ ;|7 ;) means that both production
and inventory quantities are constrained at t. Finally O, =
{(ax..1%), (¢ [*)} means that the production quantity of
the period ¢ is constrained to be ‘I}(,t or qg(’t.

Conditioning on the cost function: The cost conditioning
query constrains the maximal deviation from the optimal
value (eq.3), sometimes called cost regular (Alessandro and
Gilles P (2006)). Let H* be the optimal cost of the problem
(1) and A be the maximal deviation given by the decision
maker, this query is formulated as follows:
T
S (XY L) < H + A

t=1

(3)

3. KNOWLEDGE COMPILATION

The concept of knowledge compilation (KC) consists of
solving once, offline, a problem (called a source language)
that can be expressed by constraints Hooker (2013) or
solution tuples. Then, compilation means that the set of
feasible solutions is transformed into a compact graph
format that allows to answer a series of online-queries in
polynomial time (Bart Selman (1996), Cadoli (1997) and
Darwiche A (2002)). This compilation concept is not new.
For example, Alexandre N (2010) proposes a compilation
of CSP into an interval automaton. Koriche et al. (2015)
proposes a decomposed representation for a constraint net-
work. In literature, two main types of methods allow com-
piling: Top-down methods Bergman D (2016) start from
an empty set of solutions and add solutions in the repre-
sentation, until having a representation of all the solutions
of the problem. Conversely, Bottom-up methods Fargier H
(2014) start from an unconstrained representation, add
the constraints one by one to the graph. These graphical
languages can take several forms of representation and also
depend on the queries to be processed. They can be binary
decision diagrams (BDD), or valued decision diagrams
(VDD), or multi-values decision diagrams (MDD).



2026

3.1 Source language for CLSP

Our source language is CLSP easily formulated as a
constraint satisfaction problem (CSP) in (1). It is defined
as a set of constraints involving a number of variables
associated with a finite domain (cl1.4 and cl.5). The
objective is simply to find a set of values to assign to
the variables so that all constraints are satisfied (c1.2 and
c2.3).

4. TARGET LANGUAGE FOR CLSP

For the choice of compact graph format, called the target
language, it is necessary to overcome the difficulty of
allocating memory space for the compiled graph (called
the knowledge map). Thus, it is interesting to adapt the
representation to a partial knowledge of the nature of the
requests Darwiche A (2002). The compiled form proposed
in this paper (see Fig.1) will be in the family of Cost Multi-
valued decision diagrams.

A Cost Multi valued decision diagram (Henrik Reif An-
dersen (2010), Alessandro and Gilles P (2006)) denoted
M is a directed acyclic graph M = (V| E, f) such that the
function f associates to each edge e € E', a couple (X¢|1})
and a real cost f(X4,I;). In our proposed representation,
the set of nodes of M are partitioned into 7"+ 1 periods
Vi,..Vry1. It initially contains a root node ni, and one
terminal nodes, the true terminal node 1. One node in V4
is associated to a value of the inventory I; at t. The number
of nodes in v; is limited by the domain of I;. It can have as
many input edges as there are values in the domain of X;.

Thus, each edge e € E from u € V;_; to v € V4 is labelled
by a couple ((gx.t|qr.t), f(gx,t,qr+)). It means that from
the state node u at (t— 1) to the state node v at ¢t which is
associated to the inventory value gy, the production X,
is ¢x ¢, the inventory I; is ¢r+ and f is the resulting cost
for period t.

Each path from the root n; node to the node 1 is said to
be valid. It represents a solution of the CLSP problem (1).
The cost of a valid solution is the sum of cost of the edges
of the path.

Let’s add two attributes (F*(n¢), BT(n;)) to each node
ny € V4, defined as follows:

e In Top-down manner:
F(n)* = Min[F(u)* + f(u — n)|lu € V; — 1]
e For bottom-up manner :
B(n)" = Min[B(u)" + f(n — u)|lu € V; + 1]
F*(n) : represents shortest path (the minimum cost) from

node (n;) to node (n). BT(n) : represents shortest path
(the minimum cost) from node (n) to node (1)

This gives CostMDD graph denoted CostM which takes
into account the specificity of CLSP with respect to the
two requests previously mentioned.

5. OFFLINE COMPILATION OF CLSP INTO COSTM

Our approach for compiling a constraint network into a
cost Multi valued decision diagrams CostM is a top-down
method. The graph G in Algorithm 1 grows in a recursive

Walid Khellaf et al. / IFAC PapersOnLine 55-10 (2022) 2024-2029

way. At the beginning G has one layer V; with only one
node nl|ly. A layer of nodes is added in the graph G
at each while loop. If it exists one realisable production
plan, The line R1 returns the decision diagrams CosM
that represents all the admissible solutions. The Line R2
stops if there do not exist an admisible production plan i.e.
any partition V; is empty. At each call (period), are added
the nodes corresponding to all feasible I and edges to all
feasible pairs (X |I) with the associated objective function
f. we have indicated in the function AddE2G, that all
the nodes (Vp_1) of the last period must be connected to
the node ny_1 = 1 and we also calculate the attribute
F(n) for each node at the same time as the nodes are
constructed. At the end of the resolutions corresponding
to node (1), we initialize the attribute of this node to
B(1) = 0, in Line R3, we add attributes B(n;) to the other
nodes in a bottom-up manner from the graph CostM.

Algorithm 1: CLSP2CostM

Data: G,t,X,X,I,1.7,d,1y,p,s,h, f
Result: G = (V,E), E = (ny, ny4+1,a, f(a))

if t =T then

| return G ; // R1
ift£T AV, =0 then

| return UNSAT ; // R2

NodeAtPeriod =: () ;
while V; # () do
ne—1 = Vi.pop(0) ;
for x € {X;, X;} do
i =+ int(ng_1.split("")[1]) — d;
if i € {I;, I;} then
ny =" +str(t+1)+7 " +str(i);a = (x4, i)
F(ni) = Min(F(n), F(ne-1) + f(a)
AddE2G(ni—1,n¢,a, f(a), F(ng))
if n; & NodeAtPeriod then
| NodeAtPeriod.append(ny);

// Set of nodes at t

// Select node in t-1

// Nnode

Vii1 := NodeAtPeriod, // Set of nodes at t+1
CLSP2CostM(G,t+ 1, X, X, I,I1,T,d, Iy,p,s,h, f) ;
// Backward
forteT,...,1do
for n € V; do
for u € Output(n) do
L | B(n) = Min(B(n), B(u) + f(n, w);

// R3

The advantage of this algorithm is its incremental as-
pect. Finding the optimal solution is finding a shortest
path from node n; to 1 in G. According to Lotfi and
Yoon (1994) it can be done in pseudo-polynomial time
O(T * (min{D¥, Di})?).

Ezxample 1. Let’s introduce a small CLSP instance with
4 periods (T = 4). The requirements are d = [4,2,4,8§],
the limited production capacity are 8 for all periods and
the limited inventory are 1 for all periods. The production,
inventory and setup cost are respectively: p; = [1,2,1, 3];
hy =1[1,2,3,4]; s = [4,3,2,1] for t = 1,2, 3,4.

Figure 1 presents the Multivalued decision diagrams
CostM by the CLSP compiled with the above data. Each
node represents a feasible inventory in each period, for



Walid Khellaf et al. / IFAC PapersOnLine 55-10 (2022) 2024-2029

example: starting from nl to the first one whose initial
stock is null, we can produce 4 and put nothing in stock
with a cost of 8 or produce a quantity of 5 and put one
in stock with a cost of 10. We execute the same operation
until period T. The outgoing edges go to nodes having
the same inventory quantity. However, there is a limit to
the number of nodes in each V;, which is bounded by the
domain D;{. Finally there exists 12 paths (12 admissible
solutions) from nl to 1. And the shortest path has cost
46.

Fig. 1. Cost Multivalued decision diagrams (CostM) for
the problem(1) with cost function.

6. ALGORITHM FOR ANSWERING QUERIES
6.1 Optimisation under conditioning

Let suppose that the CLSP is compiled by Algorithm 1
into CostM (see for instance figure 1) so all the feasible
solutions are loaded in the CostM. Now, the decision
maker gives his assignment list Q); at each period ¢. In

Algorithm 2: Conditioning queries

Data: G = (V, E), Q

Result: G = (V, E); E = (n¢, ne11,a, f(a))

LREdge =: 0 ; // Edge deleted by Q
for t € [1,7] do

for e € F; do

L if a # Q; then

| LREdge.append(e)
while LREdge # 0 do
e(nt, ne+1, a) := LREdge.pop(0) remove(e);
if Output(n;) =0 then
| LREdge.appendAll(ni—1 — ny)
if Input(niy1) =0 then
| LREdge.appendAll(ni 1 — niq2)

2027

algorithm 2, for each edge of the graph at each period,
the edges that are not consistent with assignment @; are
deleted (in for t loop). As a consequence of deletion, two
conditions must be verified in the while loop: if the number
of edges outgoing from the node (n;) is null, all the n; input
edges must be deleted. if the number of edges inputting
node (n;) is null, all the n; outgoing edges must be deleted.

6.2 Possible solutions under cost conditioning

This step of updating is necessary when the first request
is applied (LREge # 0), the attributes (F' A B) must be
recalculated and their information will be preserved in the
nodes (V) of each period Vn; € V; and Vt € T

In R.K. Ahuja (1993), two cost attibutes for any node
n of a CostM Graph have been introduced: F(n)t,
B(n)'. They can be calculated thanks to a single forward
and backward operation in CostM with a complexity of
O(|V] + |E|) time and space of size CostM.

The minimum cost H* can be found in the F*[1] or in
theB'[n1]. Now, the decision maker introduces a maximal
deviation of the objective A (second type of query).
Algorithm reduces the graph Cost M according to the cost
window thanks to 2 conditions : - if in a node n, F(n) +
B(n) j H* + A, then node n can be deleted. - if for an edge
e(u,v) from node u to node v, F(U) + f(u,v) +B(v) | H*
+ A, then edge e can be deleted.

Algorithm 3: Conditioning on cost function
Data: (G(V,E), H*,A)
Result: CostMQ =: MultiDAG(V, E, f)
for te€1,...,T do
for n; € V; do
for e € ny — nyyq do
if F(?’Lt) + fa,t + B(?’Lt+1) < H* + A then
L | AddE2CostMQ(ng,ney1,a, f(a))

return CostMQ@Q : CostM

Ezample 2. The two decision maker queries are assumed
to be defined as follows :

- ql: a packing list contains @ = {Q2 = (¥|0)}:hence the
decision maker want to have in period two an inventory
quantity 0 at the end of period 2. - g2 : is a cost interval
A = 2 for which the decision maker tolerates expressing

as 23:1 fi( X, Yy, 1) < H* 4+ A; H* = 46.

The set of solutions by the intersection of the results of two
queries can be visualised by the acyclic decision diagrams
represented in figure 4. Each edge is drawn differently
if it was eliminated because of query ql (dashed) and
deletion consequence res ql(dotted) or q2 (darker white),
or remainder (full black).

In this example, there are three solutions satisfying the
decision maker’s requests are represents by the black
path in Figure 1. Sol; = (4/0,2|0,4/0,8]|0) and Soly =
(5|1, 1|0, 4]0, 8]|0) with cost 46, Sols = (5|1,1|0,5|1,7|0)
with cost 47.

This is one of the important properties of Costmdd which

plays a crucial part in decision making at the deciders level
to formalize all the admissible decisions.



2028

Bk Period

—_{.

||1Eﬁ’]

46(8)  sN10)

n..iEJS‘] n2(10.36)

n3(1s, H‘.I

4{5{-L

e
Del by res ql

Del by ui

=2

:13(19 30)

~ zu(%“ ]R""-'
|

LH""\-\
IE I
EEDS

L SO T0G8E)
Edge feazible 1(46.0)

Fig. 2. CostMQ after both conditioning in CostM
7. EXPERIMENTS

To evaluate the effectiveness of our approach, i.e. compile
the problem into CostM and then answer the queries, we
compare it to:

(1) Exactly integrate the constraints in the initial prob-
lem and restart solving, noted: CP.

The experiments were performed on a computer equipped
with an Intel(R) i7-8665u cpu at 2.1GHz with 16 Gb
of RAM. The CostM code was implemented in python
version 3.8.8 using NetworkX to write the G-graph and in
Graphviz dot format for export. In order to compare the
different results, we used a library from the ILOG CPLEX
Academic Studio V.20.1 for the CLSP problem, and the
implementation for csp is done on CP Optimizer 20.1.0.

To compare each mode in terms of time, we adapted the
problem data set of (Lotfi and Yoon (1994)) to create ran-
dom test data. We tested the problems over the following
periods: T' € {6,12,24, 48} and A € {0, 20, 40, 60, 80, 100}.
The demand for period t (dy,) is uniformly distributed
between 67 and 200. The size of the domain D} is set
to 50. As the minimal inventory is fixed at 50, inventories
can vary in the interval [50; 100]. The minimal production
quantity and initial inventory are set to 0. The values of
the production capacity, maximum inventory, and costs
are generated thanks to uniform distributions as defined
in table 1. First, the offline solving. The following table

Table 1. Problem data

Quantity Uniform Cost Uniform
Max production X; | (1,1.5)*« | Production p: | (10,30)

Max inventory Iy (50,100) Setup st (1,1.5)*8
Min inventory Iy 50 Holding h¢ (0.5,1.5)

a: Constant quantity=1200, 5: Constant cost=1600

1 shows the CLSP problem solving time by the CP opti-
mizer and our top-down approach to find a set of optimal
solutions. we implemented our CLSP model and solved it
with Cplex for the existence of the optimal solution for
this data generated, and we generated an experimental
design of 70 tests. It can be observed (see in table 2)
that the time (CPU) of both methods are sensitive to the

Walid Khellaf et al. / IFAC PapersOnLine 55-10 (2022) 2024-2029

number of periods T', and the growth rate of our approach
is lower. This method allows a huge time saving when
the number of periods is large. It has a number of nodes
Ez;l(min{Df, D!} +2). Thus his limitation is on the size
of the memory.

Table 2. Comparison of average offline resolu-
tion time (seconds) with A =0

Period T=6 T=12 T=24 T=48
CLSP2CostM  0.28 1.5 2.01 4.1
CP Optimiser 4.12 7.34 13.78 18.02

The following figure 3 demonstrates how much time it
takes to find plans with an equivalent cost to the differ-
ent A parameters. We can see clearly the advantage of
choosing a compiled Cost M which stays constant (because
the search is limited in the decision diagram) in time over
all other options which increase at a rate that is approxi-
mately related to the cost. We also tested the time required

D} =50 and T=48

*
225
200 { = == — = —
W
g 175
§ QOption
5 1s0 P
E B CostM
S 125 T
& T
100 = !
| I
T T T T T
20 40 [71] 8D 100
Costof A
Fig. 3. Time required to resolve a CLSP problem online

with conditioning on the cost function

when a user simply prefers to assign a very large number
of potential decisions to a variable and to determine the
set of feasibility’s for their problem as rapidly.

we randomly generated without replacement a list (Q; =
{Qi1K ) containing a number of K values from the set
of D¥. QF representing the allowed assignments to the
variable production quantities at period . We compare
our CostM approach, with these two different solving
strategies:

e S1: Compiling CLSP with queries in CLSP2CostM.
e S2: Compiling CLSP without the queries then apply-
ing algorithm 2 in CostM

The figure 4 shows the time versus the number of queries,
especially the horizontal line where a change of strategies
is "recommended”. e.g: For more than 200 queries, the
use of CostM is more advantageous in time compared to
including these queries in the initial CLSP problem. So, in
CLSP, containing a small number of queries needs fewer
edges to build in the costM but otherwise, the deletion of
edges is very fast.

Therefore, the results in figures (4 and 3) show that
the interactive resolution based on the CostM reduces



Walid Khellaf et al. / IFAC PapersOnLine 55-10 (2022) 2024-2029

D} =50 and T=48

;4 T,
13‘91-5'1'

81 Stratégies J
~ $1 With TD "
Em 52 In CostM ‘
= 6 1 j :
1 |
[=
§ |
2 4 |
p :
E | #
= 31
= |
(=%
o
|
I

L $

vk e = W &
: * L ‘ &

k=100 K=200 K=300 K=400 K=500 K=800 K=900 K=1000
Number of values assigned to the production quantity

Fig. 4. Determination of the switching point of strategy

the time significantly when considering the two types of
proposed queries.

8. CONCLUSION

This paper proposes a compilation data structure Cost M
for a lot sizing problem. It allows efficient management of
the CLSP solution space once compiled. Moreover, it helps
the decider by propagating the consequences of his choices
i.e. values he sets to the decision variables or to the cost
function.

We have presented the two types of efficient algorithms:
a knowledge compiler that generates a knowledge graph
representing the solution space; 2 querying algorithms that
compute the impact of queries on the reduction of the
knowledge graph. On a set of randomly generated data,
the interest in computation time of this approach has been
validated when compared to solvers resolution time (CP).

In our current and future work, we aim to focus mainly
on two industrial and engineering axes: First, to use that
approach for supporting the negociation between a factory
and a distribution center; Also, to extend the structure
of the compile CostM for considering multi-product lot
sizing, and the addition of other parameters such as the
backorder. Second, it is a question of implementing the full
tool via these two algorithms and making it available for
inputs in format xcsp.

ACKNOWLEDGEMENTS

The authors would like to thank the ANR for funding
the CAASC project. They also thank the members of the
AT Interdisciplinary AI Interdisciplinary Institute ANITI
Grant no. ANR-19-PI3A-0004.

REFERENCES

ADrexl, A. (1997). Lot sizing and scheduling survey and
extensions. Furopean Journal of Operational Research,
99(2), 221-235.

Alessandro, Z. and Gilles P, M.M. (2006). Planning with
soft regular constraints. Workshop on Preferences and
Soft Constraints in Planning, T7-78.

Alexander N, R.F. (2005). Constraints and ai planning.
Intelligent Systems, IEEE, 69-70.

2029

Alexandre N, H.F. (2010). Knowledge compilation using
interval automata and applications to planning. ECAI,
459-464.

Amilhastre J, F.H. (2002). Consistency restoration and
explanations in dynamic csps-application to configura-
tion. Artificial Intelligence, 199-234.

Bart Selman, HK. (1996). Knowledge compilation and
theory approximation. Journal of the ACM, 43(2), 193~
224.

Bergman D, A.A.J. (2016). Decision diagrams for op-
timization. arti intelligence: Foundations, theory, and
algorithms. Springer.

Cadoli, M.D. (1997). A survey on knowledge compilation.
AT Communications, 137-150.

Chung, C.S., Flynn, J., and Lin, C.H.M. (1994). An effec-
tive algorithm for the capacitated single item lot size
problem. FEuropean Journal of Operational Research,
75(2), 427-440.

Darwiche A, P.M. (2002). A knowledge compilation map.
Journal of Artificial Intelligence Research, 17, 229-264.

Degraeve, R. (2007). Meta-heuristics for dynamic lot
sizing: A review and comparison of solution approaches.
European Journal of Operational Research, 177(3),
1855-1875.

Fargier H, M.P. (2014). Compacité pratique des dia-
grammes de décision valués normalisation, heuristiques
et expérimentation. Artificial Intelligence, 571-592.

Henrik Reif Andersen, T.H. (2010). interactive cost con-
figuration over decision diagrams. Artificial Intelligence
Research, 37, 99-139.

Hooker, J.N. (2013). Decision diagrams and dynamic
programming. InInternational Conference on Al and
OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems, 94-110.

J.R. Hardin, G.N. (2005). Analysis of bounds for a
capacitated single-item lot-sizing problem. Computers
and Operations Research.

Klein., M.F. (1971). Deterministic production planning
with concave costs and capacity constraints. Manage-
ment Science, 18(1), 12-20.

Koriche, F., Lagniez, J.M., and Marquis, P. (2015). Com-
piling constraint networks into multivalued decompos-
able decision graphs. 24th International Joint Confer-
ence on Artificial Intelligence (IJCAI’15), 332-338.

Lotfi, V. and Yoon, Y.S. (1994). An algorithm for the
single-item capacitated lot-sizing problem with concave
production and holding costs. Operational Research
Society, 45(8), 934-941.

Manne, A. (1958). Programming of economic lot-sizes.
Management Science, 4(2), 115-135.

N.Brahimi, S.D.P. (2006). Single item lot sizing problems.
European Journal of Operational Research, 168, 1-16.
R.K. Ahuja, T. Magnanti, J.O. (1993). Network Flows:
Theory, Algorithms and Applications. Prentice-Hall,

Englewood Cliffs, NJ.

Wagner, H.M. and Whitin, T.M. (1958). Dynamic version
of the economic lot size model. Management Science,
5(12), 89-96.

Yanasse, G. (1982). Computational complexity of the
capacitated lot size problem. Management Science,
28(10), 1174-1186.



