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Multi-criteria performance analysis based on
Physics of Decision — Application to COVID-19

and future pandemics
Nafe Moradkhani, Frederick Benaben, Benoit Montreuil, Matthieu Lauras, Julien Jeany, and Louis Faugère

Abstract—The purpose of this study is to present a novel perspective on decision support based on the conventional SEIR pandemic 
model paradigm considering the risks and opportunities as physical forces deviating the expected performance trajectory of a system. 
The impact of a pandemic is measured by the deviation of the social system’s performance trajectory within the geometrical framework 
of its Key Performance Indicators (KPIs). According to the overall premise of utilizing Ordinary Differential Equations to simulate 
epidemics, the deviations are connected to several alternative interventions. The model is essentially built on two sets of parameters: (i) 
social system parameters and (ii) pandemic parameters. The ultimate objective is to propose a multi-criteria performance framework to 
control pandemics that includes a combination of timely measures. On the one hand, the current study optimizes prospective strategies 
to manage the potential future pandemic, while on the other hand, it explores the COVID-19 epidemic in the state of Georgia (USA).

1 INTRODUCTION

T RANSMISSION of infectious diseases has long been a
cause of worry and a hazard to public health. It has

presented severe risks to the survival of humans and so-
cial development. Following pandemic crises such as the
Cholera (1817-1923), Spanish Flu (1918-1919), COVID-19
(2019-present), and others [1], [2], implementing pandemic
preparedness measures has become a top concern for world-
wide public health. Pandemic prevention and containment
techniques fall into three major categories: antiviral (chiefly
a drug or treatment effective against viruses), vaccination
(treatment with a vaccine to produce immunity against
disease), and non-pharmaceutical (isolation of the infected
cases, quarantine, closure of school and workplaces, and
travel restrictions) [3]. A critical step in controlling a ”non-
pharmaceutical” infectious disease outbreak is attempting
to reduce the epidemic peak, which reduces the danger
of overburdening healthcare systems and allows for more
time for the development of a vaccine and treatment [4].
A thorough assessment of the pandemic-contaminated area
and the pandemic itself can provide insight into the scope
of the pandemic threat and potential control strategies. The
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proposed study considers a pandemic-contaminated region
as a system and a pandemic as a potential that may affect
system KPIs in a multi-dimensional performance space. The
Physics-of-Decision (POD) paradigm proposed in [5] is used
in this study. Risks and opportunities, according to the
original POD framework, may be viewed as physical forces
applied to the system trajectory that could push or pull it in
its performance space by varying the system’s KPIs [6].

The primary goal of this study is to present a tentative
Decision Support System (DSS) by tuning a well-known
Susceptible-Exposed-Infected-Recovered (SEIR) pandemic
model to the POD framework through Ordinary Differential
Equations (ODEs). To this aim, by putting the POD princi-
ples into practice, researchers may be able to study various
strategies that might impact the performance of the consid-
ered system and assist them in successfully intervening in
the control of future pandemics.

The paper is structured as follows. Section 2 focuses
on current research efforts and scientific contributions that
are related to the topic at hand. Section 3 first introduces
the pandemic modeling through ODEs then tunes the pre-
sented model into the POD framework. Section 4 provides
a specific POD framework process for a Decision Support
System. Section 5 shows the value of the POD as a strategies
management framework for the COVID-19 pandemic in
the State of Georgia (USA) and to control potential future
pandemics efficiently. Finally, section 6 provides conclusive
remarks and proposes areas for further research.

2 BACKGROUND AND RELATED WORKS

Effective management of emerging pandemic infectious
disease issues in the absence of treatment or vaccine is
primarily dependent on government preventive strategies
[7]. Scientific understanding is scarce regarding these



strategies in the field of infectious disease control.
There is also little information on whether theories
and measurements created for risk perception studies on
chronic diseases, for example, can be used for infectious
diseases [8]. Such information, however, is critical for the
successful management of newly developing infectious
illnesses, because the capacity to promote health-protective
behavioral change is conditional on the understanding
of major drivers of such behavior [9]. In recent years,
epidemiological models have been the subject of significant
research. Compartmental models, such as the SEIR model
(see subsection 3.2), have been utilized often for epidemic
analysis among the many models. The early dynamics of
disease transmission, from initial infected cases through the
potential of the intervention to limit disease spread, are the
primary focus of epidemic modeling approaches [10].

This study looks at a simplified version of the SEIR
pandemics model implemented through ODEs in which no
one has preexisting immunity, and every infected one has
immunity after recovery. The objective is to characterize the
pandemic model to investigate the possible interventions
to control the outbreak through finding the most desirable
solutions considering the limits of their execution. Interna-
tional travel restrictions [11], contact reduction [12], isolation
of sick persons from the outset [13], and the use of masks
[14] are some of the most common measures for control-
ling a non-pharmaceutical pandemic. The current research
delves into the SEIR model to distinguish the model’s inputs
from its outputs, and it looks at the mentioned pandemic
control strategies with the assumption that changes in sys-
tem inputs generate changes in its outputs. Some modified
SEIR models such as [15], [16], and [17] attempt to thor-
oughly assess various intervention techniques. The inputs of
the pandemic model are divided into two categories: virus
and society. The influence of virus-related elements and the
characteristics of the pandemic-affected region as a society
on the epidemic, are examined in this study. To investigate
a behavioral dynamic epidemic model for multidimensional
policy analysis that includes endogenous viral transmission,
various simulation-based assessments of outbreak reactions
and tactics are established [18]. Understanding the inter-
action between factors in nonlinear systems attempts to
investigate ”what-if” possibilities based on the community
and region’s capabilities. The wearing masks as an example
among the non-pharmaceutical intervention measures has
been studied in [19] for the COVID-19 epidemic. In the SEIR
model, population transmission through dynamic flows has
been established using various ODEs. Various pandemics
are represented by different input values for the equations,
as mentioned in [20].

The foundation of system diagnostics is the charac-
terization of the system and the relationship between its
parameters. Controlling the system, necessitates the iden-
tification of such linkages and their impact on the system’s
performance. The varied circumstances of the system across
time are defined by system states [21]. Over the last few
decades, the field of risk management has produced a
number of acknowledged outcomes that are now regarded
as reliable contributions [5]. According to [22], risk is de-
fined as a mix of the severity of the system’s consequences

on the one hand and the likelihood of occurrence on the
other. The Physics of Decision (POD), which is based on
physical principles and mathematical equations, is a novel
performance management technique in the field of risk
management [5]. The POD framework is a multi-criteria,
time-dependent approach for performance analysis that
quantifies the impact of various pandemic control methods.
When compared to earlier researches, the innovation of
this approach is the ability to measure the influence of
multiple strategies (simultaneously) on system performance
in a multi-dimensional framework and then determine the
optimum strategies while keeping the execution restrictions
in mind.

3 PHYSICS-BASED DECISION SUPPORT SYSTEM

The term ”Risk” is used in many ways and is given different
definitions depending on the field and context. Common
to most definitions of risk is uncertainty and undesirable
outcomes. From a reciprocal perspective, those uncertainties
that could bring benefits if they were to occur are known
as “Opportunities” [23]. The definition of opportunity is:
“an uncertainty that could have a positive effect leading to
benefits or rewards”. The opportunity could be seen as just
another form of risk: a risk with negative impacts is a threat,
whereas a risk with a positive impact is an opportunity [24].

Decision Support Systems (DSSs) are at the heart of
risk/opportunity management projects [25]. The necessity
of such systems is critical to deal with the complexities due
to massive data and interconnectivity between the system’s
components and its environment [26].

In this section, the Physics Of Decisions (POD) is pre-
sented and illustrated as an innovative approach for deci-
sion support in context of instability and uncertainty. POD
considers that risks and opportunities can be created by
spontaneous or intentional changes in the system’s param-
eters or in its environment parameters. These changes may
push or pull the system in its performance space by varying
system’s KPIs. Essentially, these variations’ consequences
are observed through the deviation of the system ”trajec-
tory” within the multidimensional performance space of
its KPIs.

3.1 Preliminaries, Basic Concepts, and Notation
System characterization and identification are fundamental
problems in systems theory. The problem of characterization
is concerned with the mathematical representation of a
system. A model of a system can be expressed as a function
F from an input space U into an output space Y [27].
The function F is defined implicitly by the specified input-
output pairs. The method of representing time-depended
systems by vector differential or differential equations is
well established in systems theory and applies to a fairly
large class of systems [28]. For example, the differential
equation

dx(t)

dt
, ẋ(t) = Φ[x(t), u(t)], t ∈ R+

y(t) = Ψ[x(t)].
(1)
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Fig. 1. Mathematical representation of input-state-output of a system

Where u(t) , [u1(t), u2(t), · · · , up(t)]T ,
x(t) = [x1(t), x2(t), · · · , xn(t)]T , and y(t) =
[y1(t), y2(t), · · · , ym(t)]T , represents a p input, m output
system of order n with ui(t) representing the inputs,
xi(t) the state variables, and yi(t) the outputs of the
system. Φ and Ψ are static nonlinear maps defined as
Φ : Rn × Rp → R

n and Ψ : Rn → R
m. The vector x(t)

denotes the state of the system at time t and is determined
by the state at time t0 < t and the input u defined over the
interval [t0, t). The output y(t) is determined by the state
of the system at time t. Equation (1) is referred to as the
input-state-output representation of the system [27], [28].
This paper is concerned with discrete-time systems which
can be represented by differential equations corresponding
to the differential equation given in (1). These take the form

x(k + 1) = Φ[x(k), u(k)],

y(k) = Ψ[x(k)].
(2)

where u(.), x(.), and y(.) are discrete-time sequences. Fig. 1
illustrates a time-dependent input-states-output system.

3.2 Pandemic modeling through Ordinary Differential
Equations

Quantitative studies on mechanisms of disease
transmissions provide a foundation for pandemic
prevention and control. The Epidemic Dynamics
formulates mathematical models based on the occurrence
and progressions of diseases to its surroundings to
characterizing the infectious agents, describing the
transmission processes, analyzing origins of the diseases
and factors involved in the transmissions, and predicting
the prevalence of the diseases and their patterns [10].
Dynamic models for infectious diseases are mostly based
on compartment structures [10]. To formulate a dynamic
model for the transmission of an epidemic disease, the
population in a given region is often divided into several
different groups or compartments. Such models describing
the dynamic relations among these compartments are
called compartment models. The population is assigned
to compartments with labels – for example, S, I, or R,

(Susceptible, Infectious, or Recovered). The population
may progress between compartments. The order of the
labels usually shows the flow patterns between the
compartments; for example, SEIS means Susceptible,
Exposed, Infectious, then Susceptible again. The numbers
of individuals are presented in the compartments S, E, I, and
R, at time t, as S(t), E(t), I(t), and R(t), respectively [29]. This
section introduces the generic version of pandemics model
including Susceptible, Exposed, Hospitalized, Recovered,
and Dead as common compartments of different pandemics
shown in Fig. 2.
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Fig. 2. Flow chart of the SEIR model

This model postulates rules on how populations in each
category move to the next categories. Based on Fig. 2, the
transitions of the population through the flows from left to
right are as follows:

(i) Exposing flow ⇒ The individuals move from S to
E through this flow (Fig. 2) at the exposure rate, i.e., the
population in category S decreases concerning time t and
the population in E correspondingly increases at the same
rate. The exposure rate grows with I, the number of infected
individuals. A standard hypothesis is that exposure rate is
the product of the transmission rate (or contact rate (cr))
and the probability of infection given that contact occurred



(infectious rate (ir)) divide by latency due to infectious duration
(id) [30].

Exposing flow =
ir × cr
id

S × I. (3)

(ii) Infecting flow ⇒ The Exposed individuals progress to
the Infected category through this flow after the latent period
(lp), the period at which exposed hosts become infected [30].

Infecting flow =
E

lp
. (4)

(iii) Hospitalizing flow ⇒ The individuals with lower
immunity in case of virus infection, called severe infected
group, progress to the Hospitalized compartment with the
rate of fraction hospitalized (fh).

Hospitalizing flow = fh× I. (5)

(iv) Recovering 1 flow ⇒ The lightly Infected individuals
(non-severe cases), those who don’t need to be Hospitalized,
progress to the Recovery compartment directly after the
infectious duration (id).

Recovery 1 flow =
1− fh
id

I. (6)

(v) Recovering 2 and Dying flows ⇒ The Hospitalized indi-
viduals, depending on the fatality rate (fr) of the virus, either
recover (Recovering 2 flow) or die after infectious duration
(Dying flow). The hospitalized fatality rate (hfr) is calculated
by dividing the fatality rate (fr) of the virus by the fraction
hospitalized (fh), hfr=(fr)/(fh).

Recovery 2 flow =
1− hfr
id

H,

Dying flow =
hfr

id
H.

(7)

The basic reproductive number (denoted R0), in epidemio-
logical modeling, is the expected number of cases directly
caused by one case in a community where everyone is sus-
ceptible. In the majority of commonly used epidemic mod-
els, a pandemic can spread in a population if R0 > 1, but
not if R0 < 1. The basic reproductive number for the SEIR
model is shown in equation 8, assuming that the latency
period is a random variable with exponential distribution
with parameter α (i.e., the average latency period is α−1,
or lp−1), β, γ, and µ are the rates of infection (the number
of contacts per person per time (cr/id), multiplied by the
probability of disease transmission in a contact between
a susceptible and an infectious subject (ir)), recovery, and
mortality, respectively [30].

R0 =
α

µ+ α

β

µ+ γ
(8)

Since the natural mortality rate is not included in the
presented SEIR model in Fig. 2 (µ = 0). According to the
”Recovery 1” and ”Recovery 2” flows in Fig. 2 and equations
6 and 7, the γ is obtained using equation 9.

γ =
1− fh
id

+
1− hfr
id

=
2− (fh+ hfr)

id
(9)

Finally, the reproductive number of the presented model is
obtained through equation 10.

R0 =
β

γ
=

(cr/id)× ir
(2− (fh+ hfr)/id

=
cr × ir

2− (fh+ hfr)
(10)

Given that the disease spreads in a closed environment;
the paper considers there is no emigration nor immigration
and neither birth nor death in the population so that the
total population remains a constant N for all t, that is:

S(t) + E(t) + I(t) +H(t) +R(t) +D(t) = N (11)

Instead of establishing the system for a specific total
number of the population, the paper simplifies the equation
11 by dividing the sides of the equation by total population
N to be efficient for any population size. Therefore, the
following proportions are obtained.

s(t) =
S(t)

N
, e(t) =

E(t)

N
, i(t) =

I(t)

N
,

h(t) =
H(t)

N
, r(t) =

R(t)

N
, d(t) =

D(t)

N
,

s(t) + e(t) + i(t) + h(t) + r(t) + d(t) = 1

(12)

Based on Fig. 2 and equations (3) - (7), there are six
parameters involved in the flows. The vector u presents
those parameters as inputs for derived equations.

u = [lp, id, fr, ir, cr, fh]T = [u1, u2, u3, u4, u5, u6]T (13)

The rate of change in the compartments in Fig. 2 from
left to right according to the transmission of individuals are
represented in equation 14 through Ordinary Differential
Equations (ODEs) based on equations and the input vector
u (13).

ds

dt
= −u4u5

u2
si,

de

dt
=
u4u5
u2

si− e

u1
,

di

dt
=

e

u1
− (1− u6)

u2
i− u6i,

dh

dt
= u6i−

(1− u3

u6
)

u2
h− h

u2
× u3
u6
,

dr

dt
=

(1− u3

u6
)

u2
h+

(1− u6)

u2
i,

dd

dt
=

h

u2
× u3
u6
.

(14)

The ordinary differential equations (ODEs) system in
equation 14, together with some initial conditions (values
of the input variables of the model (vector u) at initial
starting time t0 = 0), make up an Initial Value Problem,
or IVP. IVPs are ubiquitous in modeling systems that evolve
in time. They encapsulate how a future state of a system
is determined by the present state (the initial data) plus
certain rules on how quantities evolve (the ODEs) [31]. As
soon as the preliminary infected (or exposed) cases appear



in the region, the pandemic starts to spread. The ODEs in
equation 14 are supplemented with some initial conditions.
For example, some percentage of the whole population (α)
is infected (or exposed) and the rest are susceptible to be
infected.

s(0) = 1− α, e(0) = 0, i(0) = α,

h(0) = 0, r(0) = 0, d(0) = 0.
(15)

The modeling through ODEs has been completed. The
following are some remarks on specific hypotheses.
(i) The simple version of the presented SEIR model in
this section considers that the recovered individuals gain
permanent immunity. However, for bacterial diseases, such
as encephalitis, and gonorrhea, the recovered individuals
don’t gain permanent immunity and can be reinfected [10].
(ii) The paper considers there is not an emigration or immi-
gration, and neither birth nor death in the population and
the population size remains a constant N for all t.
(iii) The presented model considers all the individuals are
susceptible to be infected. It might be a portion of the
population is immune to the virus and so not susceptible
to it. Besides, depending on the type of the virus, due to
the sensitivity of the virus to some parameters such as age
category, the health status of the population in the region;
some individuals might be more susceptible and some not.
(iv) The exposed compartment could be distinguished to
individuals with and without symptoms and the Infected
group, in addition to the light and severe groups, could
include infected individuals that don’t carry the virus.
(v) The severely infected individuals could be hospitalized
and ICU sections. The model doesn’t consider differentia-
tion between these two groups, while it might be the limit
capacity for the ICU bed in hospitals.

In addition to the above remarks, there may be other
hypotheses for the epidemic model that are not considered
in this study. This paper considers one of the simplest cases
that is common to most epidemics. It’s important to point
out that the paper does not cover all the possible versions
of epidemics models. This is mostly due to the fact that the
study’s focus is on the model’s application rather than its
relevance.

3.3 Physics of Decision theory and its tuning to pan-
demic performance management

The Physics Of Decision (POD) framework introduced in
section 2 is a mathematical representation of a system con-
sidering internal system connections and communication of
the system with its environment. The next step after char-
acterization and identification of the system is to evaluate
the system performance. The three modes are considered
to assess the system performance: (i) Inertia mode: The
performance could change due to its normal behavior and
the associated consumption. In this mode, the system is
not facing any perturbation. (ii) Passive mode: In addition
to the performance changes of Inertia, the performance
might change because there is (are) perturbation(s) in the
system or its environment, (iii) Active mode: In addition to
the performance changes of Inertia, the performance could
change because the system is facing some perturbations

(passive changes) and also because of some taken decisions
to manage the consequences of those perturbations. In the
case of a pandemic crisis, the change of population size due
to migration, or natural birth/death is considered Inertia, the
sudden change of the population because of the pandemic
issues is considered Passive, and the change of the popula-
tion due to some intervention in comparison to the Passive
mode is considered as Active mode. The POD framework
defines two spaces in which a system can be positioned.

The Description Space describes the parameters of the
system and the scope of their variation. The p-input vector
u(t) represents the input system parameters (subsection 3.1).
Description Space generally refers to what is happening in
and around the monitored system. The parameters of the
Description Space refer to the ”System” and are known as
”Attributes”. A monitored system with particular attributes
could be affected by several circumstances. These circum-
stances are known as ”Potentials”. A potential could have
positive or negative impacts on the system (Risks and
Opportunities). The parameters of systems’ potentials are
known as ”Characteristics”. State variable x(t) is one set of
input parameters including Attributes (system’s parameters)
and Characteristics (potentials’ parameters) that describes the
mathematical “states” of a system under function Φ (See
Fig. 3 and equation 2).

The Performance Space under function Ψ describes the
system performance with an m-output vector y(t). The
output vector y(t) is determined by the system state in the
Description Space (vector x(t)) at time t.

The relationship between the two spaces is determined
by the map function Ψ of the state variables, x(t) (one set of
input parameters including Attributes and Characteristics)
to the outputs, y(t). This map function could be known
(e.g., is formulated with equations from inputs to outputs),
or it could be unknown but estimable (e.g., through sim-
ulation analysis, approximation function, Neural Network,
etc.).

The Description Space in Fig. 3 represents a system with a
p-input vector composed by one vector of Attribute (system)
and r vector of potentials (system’s environment). The vec-
tor of each potential is represented with its characteristics:

(i) θi characteristics for potential Pi (on-axis) and the δi
possible state variables for each Pi at specific time t
shown with colored points in Fig. 3 (oval marked with
”Environment”),

(ii) θ Attributes (on-axis) of the system S and δ possible
state variables for these Attributes at specific time t
shown with colored points in Fig. 3 (oval marked with
”System”).

Equation 16 presents the number of inputs p of the input
vector u and the number of possible system states n for the
generic version of the POD framework presented in Fig. 3.

|p| =
r∑

i=0

θi + θ,

|n| =
r∏

i=1

δi × δ.
(16)

According to the state variables of Attributes and Char-
acteristics, δ and

∏r
i=1 δi respectively, n possible initial



Fig. 3. Description and Performance Spaces of POD framework

system states exist at time t in the Description Space (x(t) =
[x1(t), x2(t), · · · , xn(t)]).

The Performance Space, according to Fig. 3, describes:
(i) on the top, in the case of ”no perturbation”, the ”Inertia”
trajectory is shown in green. Besides, the n possible passive
trajectories have been depicted according to n possible
initial system states in the Description Space. In this case, the
system goes through its own “passive” trajectories in the
system’s KPIs space according to the δ given colored points
for the Attributes of the system S and δi given colored point
of Characteristics for each potential Pi,
(ii) on the bottom, “active” trajectory, in the sense that one
movement at specific time ti from one colored point to
another one has been made through green edge in order
to deviate the passive trajectory (blue trajectory as one of
possible n passive trajectories). The same process continues
at tj(j > i) from the new state of the system to another
state through another edge (e.g., purple edge).

The system might be destabilized by unforeseen
changes. These changes are due to the existence of
perturbations that create a passive trajectory. The passive
trajectory is determined by the instance in question, with
the most likely case being chosen. The changes related to
decisions mainly refer to the varying of system parameters
including Attributes and Characteristics (changing the system
state by moving the colored points through edges) and
consequently, deviation from the system’s passive trajectory.
Any deviation from that trajectory is considered an active
one for the system.

Subsection 3.2 presented the ODEs modeling for the pan-
demic that disease spread in a closed environment. In the

perspective of the presented POD framework in this section,
the system is the ”region” contaminated by a ”pandemic”.
The ”Attributes” are related to the parameters of the region
and there is only one ”Potential” which is a pandemic and
means, r = 1 in equation 15 (at the same period, the
potentials except pandemic could be other similar negative
potentials (risks) such as hurricanes, earthquakes, etc., or
positive potentials (opportunities) such as the development
of agriculture and industry, increasing social security, im-
proving the standard of living acts, etc.).

According to Fig. 2 (or equation 13), all the compart-
ments (or left sides of ODEs) could be a KPI in the POD
performance space (m = 6). Besides, the system’s inputs,
represented in vector u (equation 12), are parameters of the:

(i) Potential⇒ pandemic, including the following Charac-
teristics: latent period, infectious duration, fatality rate,
and infectious rate of the virus,

P1 = [C1
1 , C

1
2 , C

1
3 , C

1
4 ] = [u1, u2, u3, u4].

(17)
(ii) System⇒ region, including contact rate and hospital-

ized fraction as attributes

S = [A1, A2] = [u5, u6] (18)

In other words, in the POD framework for the presented
ODEs of pandemic, r = 1, θ1 = 4, and θ = 2 (see
equation 16).

4 PHYSICS OF DECISION METHODOLOGY

In the perspective of the POD framework, deviations from
the system passive trajectory happen due to changes in the



TABLE 1
Physics of Decision process applied on the pandemic model presented in section 3.2

Input u Vector Variation (Min, Avg, Max) Movement Type Consequence Type Considered Potentiality

Latent Period u1 P1 (3, 7, 11) [days] [20], [32], [33] Elusive Inflicted Mutation

Infectious Duration u2 P1 (7, 12, 17) [days] [20], [32], [33] Elusive Inflicted Mutation

Fatality Rate u3 P1 (1, 5, 9) [percent] [20], [32], [33] Elusive Inflicted Mutation

Infectious Rate u4 P1 (40, 60, 80) [percent] [32], [33] Elusive Managed Mask/Social Distance

Contact Rate u5 S (5, 10, 15) [person/day] Driver Managed Lockdown/Curfew

Fraction Hospitalized u6 S (5, 10, 15) [percent] [20], [33] Driver Managed Partial Lockdown

system state in the Description Space (moving the colored
point in Fig. 3). A movement of a colored point is considered
a ”strategy”. According to the performance space in Fig. 3,
the passive trajectory is formed by inputs of the pandemic
(vector P1 in equation 17) and inputs of the region (vector
S in equation 18).

The key objective of the POD management theory is to
use the results of a model-based system on the paradigm
of input-states-output to develop a management strategy.
The main expected benefit of this vision is to enable
decision-makers to manage the performance trajectory of a
considered system by visualizing and combining the impact
of risks and opportunities. This section develops an original
process of the presented approach on a considered system
that might face instabilities (Risks and Opportunities). This
POD process is applied to the considered problem in the
sequential steps presented as follows.

4.1 System Establishment
The first step of the POD process is understanding the
observed system and its environment. First, the system
which is supposed to be studied is determined; The bound-
aries of the system in terms of precise study must be
clear. The environment of the selected system refers to its
potentials (Risks and Opportunities). Once the system and
its potentials are determined, the associate parameters of
the system to the considered potentials must be appointed
(i.e., characterizing the θ inputs of the system). Similarly,
the inputs of the system’s potentials have to be specified
(i.e., characterizing the Ci

j|{i ∈ [1, r] ∧ j ∈ [1, θr]}).
Subsection 3.2 is dedicated to performing this step for the
pandemic (potential) in a closed environment (system).

4.2 System Characterization
The established system includes the inputs of the system
(Attributes) and its potentials (Characteristics). These inputs
could be categorized into two groups in terms of their
movement in the Description Space.

(i) The changes (i.e., movements in the Description Space)
of inputs more related to the potential are known as ”elu-
sive” changes. The elusive changes are considered out of
control changes (or at least hard to perform). Table. 1 shows
that the inputs u1 to u4 are connected to the virus’s features
(potential), and it is impossible to change them unless the
virus itself has a mutation (e.g., fatality rate of the COVID-
19 (1%-3.4%) is different from Ebola (50%) [34]). Roughly

speaking, elusive changes look like impossible (or hard)
strategies. The consequences resulted from elusive move-
ments could be in two categories, (i) Inflicted consequences
that are imposed on the system’s outputs and unmanage-
able, (ii) Managed consequences that might be controlled
through some potentialities (e.g., the infectious rate, u4, is
related to the nature of the virus while the Mask and Social
Distance potentialities could reduce it).

(ii) The changes more related to the system are known as
”driver” changes. The driver changes (more possible strate-
gies) mainly create deviations in the passive trajectories. In
other words, driver changes (and also the elusive changes
with ”Managed” consequence) make the active trajectories
(Fig. 3). The consequences of the driver changes are mainly
managed consequences but are essentially related to the
limits of the system (see section 4.3).

4.3 System Intending
The consequences of elusive and driver movements in the
Description Space appear as a deviation in the trajectory of
the system in the Performance Space. This step is related to
(i) Which outputs (KPIs) the system manager is looking for
to study (e.g., the number of Hospitalized and Dead cases
in the SEIR model), (ii) What constraints might exist for
the movement in the Description Space; In cases where the
system must not be positioned in some states xi forever
or for a specific period in the Description Space (e.g., the
region allowed to be in confinement only for one month, i.e.,
the (cr) value can’t be close to zero more than one month),
(iii) Which movement is preferable to the other if there is
any specific priority and/or preference (e.g., wearing mask
potentiality to reduce infectious rate is more feasible than
confinement potentiality to reduce contact rate), and (iv)
The onset of changes and periods that the system stays
after the changes until the next change (e.g., the region
can’t be quarantined until two months after the onset of
the pandemic and must return to no-quarantine status after
one month).

4.4 Strategy Exploration
When the relationship between inputs in the Description
Space and outputs in the Performance Space is specified
(either formulated or estimated), this step would be the
final step in the POD process. The last step of the POD
process is dedicated to exploring all possible movements
in the Description Space through experiment analysis to find
the most desirable ones to be as close as possible to the



optimum outputs. This is necessarily dependent on clear
information about the following elements presented in the
previous steps. (i) Inputs (what are they, which type they
have, and which type of consequences might they have in
terms of movement in the Description Space), (ii) Outputs
(which ones are considered to study and which one is more
important to optimize), and (iii) The constraints (the limits
of movements, their preferences, onset and period of the
movements).

Table 1 presents the POD process (the first and second
steps) for the presented model in subsections 3.2 and 3.3.
Table 1 presents an overview of the system and possible
potentialities for system management. The managers of
the system identify the ”Managed” consequences and
adopt strategies that are related to the inputs that their
movement in the Description Space lead to this group
of consequences. The highlighted rows in Table 1 refer to
such inputs with such properties for the pandemic model.
The third and fourth steps of the POD process for the
presented pandemic model is more investigated in section
5. In the POD approach, the key point is to locate the
system (region) and the faced potential (pandemic) within
the Description Space in order to parametrize and initialize
the Decision Support System. The approach addresses the
identified system with all of its constraints and the possible
strategies to explore when it comes to automated function-
ing. Finally, following the strategy exploration (4.4), the best-
fit strategies to execute will be offered automatically.

5 EXPERIMENTS AND RESULTS

The main experiments are centered on strategy exploration
to find the most desirable outcomes to the objectives of the
system. The exploration in this context is to study the possi-
ble movements in the Description Space and finally propose
the best ones at any time t that divert the passive trajectory
toward the objective of the system in the Performance Space.

The input vector for the presented well-known SEIR
model in subsection 3.2 includes the ”Attribute”, the
parameters of the system, and ”Characteristics”, the
parameters of the system’s potential. The ”Attributes” and
”Characteristics” refer to region and pandemic respectively.

The Description Space U for the presented SEIR model
includes the inputs of the pandemic and the region with
vectors P (t) and S(t) respectively.

u(t) = [P1(t), P2(t), · · · , Pr(t)︸ ︷︷ ︸
Potential

, S(t)︸ ︷︷ ︸
System

]T ,

u(t) = [u1, u2, u3, u4︸ ︷︷ ︸
Pandemic

, u5, u6︸ ︷︷ ︸
Region

]T .
(19)

The given vector u(t) illustrates the state x(t) of the system
and its potentials in the specific time t through function Φ.

The Performance Space Yfor the presented SEIR model
indicates by vector y(t) in a given x(t) through function
Ψ. This vector includes some notable KPIs.

y(t) = [s(t), e(t), i(t), h(t), r(t), d(t)]T (20)

The vector y(t) presents the current position of the
system at time t in its multi-dimensional KPI space
(Performance Space). Different perspectives might be
considered for the strategy exploration step of a specific
system. Which KPIs are considered to study (it could be all
of them at the same time) and which one between selected
ones is prior to another one to optimize (they may not have
priority): These are two essential questions that must be
answered before strategy exploration.

Sensitivity analysis of the inputs and outputs depicted in
Fig. 4, (e.g., through simulation campaign) presents the cor-
relation between them. This analysis proposes the priority
for the movements in the Description Space. The inputs with
”Managed” consequences (See Table. 1) are highlighted in
blue frame in Fig. 4. The correlation between inputs (u(t))
and the outputs (KPIs presented with y(t) vector) are as
follows: on average 0.035, 0.012, and 0.0036 for the contact
rate (cr), infectious rate (ir), and fraction hospitalized (fh)
respectively.

According to these values, the impact of ”contact rate” is
more than the impact of ”infectious rate”, which is greater
than the impact of ”hospitalized fraction”. In other words,
potentialities are equally important as following commands,
according to the ”Considered Potentiality” column in Table.
1; Lockdown/Curfew comes first, followed by Mask/Social
Distance, and then Partial Lockdown.

Fig. 4. Input-Output correlations of the presented SEIR model in section
3.2

To examine the POD framework, the three most
dominant KPIs in terms of management, including I , H ,
and D compartments (Infected, Hospitalized, and Dead)
are selected to study the possible movements (strategies)
through potentialities, considering the onset and period
of the strategies in the 3D performance space. The POD
perspective for the selected KPIs is to minimize them as
much as possible without any preferences between them.
The rest of this section is centered on this objective.
According to this objective, the foremost objective is the
minimum value for each KPI at any time t. In the 3D
Performance Space, the reference to study different possible
movements (strategies) would be the origin of the space,
the (0, 0, 0) coordinates for each axis.



Fig. 5. Pandemic positioning results for its inputs and their distances from the system objective, (0,0,0) coordinates

According to Table. 1, on the one hand, the linked
potentiality to vector P ’s inputs (pandemic), involves
wearing masks or keeping a safe distance from other
people in the community (social distance), both of which
might lower the infectious rate (ir). Lockdown and/or
Curfew to minimize contact rate (cr) or Partial lockdown
of the fragile group to receive the virus, to lower the
fraction hospitalized (fh), on the other hand, are associated
potentialities to the inputs of vector S (region). These
strategies are applied to the ODEs of the presented SEIR
model which is equivalent to changing the system states
in the Description Space through the movements (See
subsection 5.2).

The POD will be ready to investigate strategies once the
possible potentialities and their implementation limits, such
as their start time and duration, have been defined.

5.1 Potential positioning

Understanding the possible effects of potential on the sys-
tem trajectory in the Performance Space is the first step in
the experiment analysis. Various viruses may have different
parameters as inputs in vector u [2], [20]. According to
column ”Variation” in Table. 1, considering that 1% of the
total population is infected at first (α = 0.01 in equation
15), the Fig. 5 presents the different trajectories of Minimum,
Average, and Maximum values for the u1(t), u2(t), u3(t),
and u4(t) in purple, yellow, and black colors respectively.

The values for non-varying inputs of ”Potential” (e.g., in the
case of u1 trajectories in Fig. 5, the u2, u3, and u4) as well as
the ”System” inputs are considered on ”Average” in Table.
1.

The inverse impact of u1 and proportionate impact of
u2, u3, and u4 on the selected KPIs (I, H, and D) are shown
in Fig. 5 (In the proportional impact, the distance between
the points and the origin (0,0,0) grows as the value of input
grows, and vise versa for the inverse impact). In addition,
Table 2 shows that u2 and u4 have bigger fluctuations on
the KPIs than u1 and u3.

TABLE 2
Pandemic positioning results for its inputs and the sum of distance from

the system objective, (0,0,0) coordinates

Input u Min Avg Max

Latent Period u1 8.82 8.62 8.50

Infectious Duration u2 5.34 8.62 11.48

Fatality Rate u3 8.62 8.62 8.63

Infectious Rate u4 6.99 8.62 9.17

Table. 2 presents an overview of the potential impacts on
the selected KPIs (I, H, and D). Except the ”infectious rate”
row, the value of other rows would be on average for the
system positioning (subsection 5.2). Because this parameter
is the only potential parameter that could have ”Managed”
consequence in terms of movement in the Description Space



(i.e., between the ”Elusive” inputs, there is only ”feasible
potentiality” for infectious rate which could be wearing
mask and social distance potentialities).

The experiments cover the period from the initial
observation of infected cases to 180 days (six months)
afterwards. In other words, each point of the given curves
in Fig. 5 represents the values for one day of the selected
KPIs (daily cases), and the results in Table. 2 are the total
sum of the distance between the point (0,0,0) and the 180
points of the curves.

The results presented in Fig. 5 show the system passive
trajectories of daily KPIs. In this case, the initial position
of the system (region, on the average value) and potential
(pandemic) remain constant for the period of study (180
days).

x(t1) = x(t2) = · · · = x(t180) (21)

5.2 System positioning
The impact of potential inputs on KPIs is discussed in
the preceding section in the absence of any strategy
(no movement on the axis related to the system in the
Description Space has been taken). This section investigates
the active trajectory by examining the results of several
possible movements in the Description Space of the COVID-
19 (potential) for the state of Georgia (region) as alternative
strategies that the system manager could take to control the
system’s trajectory in the Performance Space based on the
selected system objectives.

The average considered value of the ”latent period” and
”infectious duration” for the COVID-19 are 6 days and 12
days respectively [19] (these values could vary, for example,
the infectious duration is shorter when children or less
severe cases are involved [32]). The study uses real data

Fig. 6. Fraction Hospitalized and Fatality Rate of the COVID-19 in the
State of Georgia

from the COVID-19 virus in the state of Georgia between
July 2020 and April 2021 to obtain the values of ”fatality
rate” and ”fraction hospitalized” experimentally [35], [36].

The average value for the fatality rate (fr) indicated in the
red plot in Fig. 6, is 2%. Also indicated in blue is the fraction

hospitalized (fh), which is 10% on average. In equation 7, the
”hospitalized fatality rate” (hfr) is calculated by dividing
the (fr) by (fh), as illustrated in the black plot. Based on
what has been mentioned so far, the input vector of the
Covid-19 potential in the state of Georgia is as follows (see
Table. 1 for the units of input vector).

u = [u1, u2, u3, u4, u5, u6]T = [6, 12, 2, u4, u5, 10]T

(22)
The three highlighted inputs with ”Managed”

consequences of vector u are presented in Table. 1.
The wearing mask potentiality, to reduce ”infectious rate”
(u4) and the lockdown potentiality, to reduce ”contact rate”
(u5) are considered to study the active trajectories through
these two potentialities.

The three related alternatives to these potentialities
are being investigated to determine the ideal timing for
movements equivalent to the considered potentialities in
the Description Space of the COVID-19 (Potential) in the state
of Georgia (System).

(i) The two-week lockdown potentiality from week i-th to
two weeks after (6 months contains 24 weeks starting
at the first day after week-first),

(ii) The wearing mask obligation starting from week i-th
until the end of the study (6 months),

(iii) The two potentialities (i) and (ii) simultaneously.

The results are presented assuming that the managers
can only carry out the potentialities (changing the colored
point(s) in the Description Space) on the first day of the week
for the pandemic-affected region. In other words, the state
of the system is altered at the following set.

x(t7i)|i ∈ {1, 2, · · · , 24} (23)

The passive trajectory of the COVID-19 in the state of
Georgia is shown in blue in Fig. 7. This trajectory is the
result of the ”potential positioning” presented in subsection
5.1 and the reference to examine specified alternatives. The
active trajectories in Fig. 7 are related to alternatives (i), (ii),
and (iii) of daily KPIs depicted in brown, yellow, and red
respectively. It’s important to note that these alternatives
may have an influence on potential (virus) and system
inputs, which isn’t reflected in the results (e.g., lockdown
and wearing mask potentialities may reduce the fatality
rate and fraction hospitalized).

The system positioning related to alternatives of week 2,
week 3, week 5, and week 10 after week-first of outset (t1
to t7) is presented in Fig. 7. The following are some related
observations.

(i) The active trajectories correspond to the passive trajec-
tory (blue) until the moment of activation, t21, t28, t42,
and t77 linked to the specified weeks,

(ii) The deviations of the active trajectories related to the
”wearing mask” potentiality from the moment of exe-
cution to the end of the path are smooth,

(iii) In the early weeks, the deviations of the active trajec-
tories associated with the ”lockdown” potentiality are



Fig. 7. Region positioning results for its inputs and their distances from the system objective, (0,0,0) coordinates

like a forth and back break (deviation), and as we move
away from the early weeks, these deviations become
smoother,

(iv) The later the movement of colored points in the De-
scription Space (taking the strategies), the closer the
active trajectories are to the passive trajectory.

Fig. 8. The considered potentialities for the COVID-19 in the State of
Georgia and the sum of the distances from system objective for given
potentiality in the 3D framework during 6 months (week 1 to week 24).

Fig. 8 shows the final results of the study for the considered
potential strategies for the state of Georgia to containment
the COVID-19 in this region. Since the less the sum of the

distances from the origin, the better the movement in the
Description Space, the following results can be deduced from
Fig. 8.

(i) Week 5th is the ideal time for movement on the ”cr”
axis, which is the lockdown strategy (starting lock-
down after two months),

(ii) The sooner the ”wearing mask obligation” strategy
(movement on the ”ir” axis) is implemented, the better.
Over the weeks, the total distance from the target,
(0,0,0) has increased,

(iii) The best time to implement two strategies simultane-
ously is the 4th week,

(iv) From about the 11th week onwards, the implementa-
tion of strategies has very little influence on pandemic
control (the sum of the distances is approximately
equal to the passive mode).

6 CONCLUSION AND PERSPECTIVES

In this paper, a simplified version of the SEIR model for
pandemic spread through Ordinary Differential Equation
(ODEs) has been introduced to support a wide range
of instances of viruses and populations. The considered
parameters allow covering a wide range of scenarios by
assessing the consequence of an observed pandemic on
the KPIs of a given population. The POD vision has been
established to examine the influence of mitigation measures
on the evaluation of these KPIs to control COVID-19 in the
state of Georgia (USA) and a potential future pandemic.



Within the system KPIs framework, this prediction may be
visually displayed as a performance trajectory. Furthermore,
decisions may be represented as ”what if” scenarios, and
their influence, as well as the deviation of the performance
trajectory, can be predicted. The next stage in this research is
first, to look at the addition vector of the impacts of several
simultaneous actions on the performance trajectory in the
performance space, and second, to employ this pandemic
model as a data supplier for neural network systems. The
primary idea is to perform large-scale combinatory simula-
tion campaigns to collect big datasets concerning the general
situation of a pandemic-affected social system. Using this
data to train neural network systems will allow us to create
a formal system capable of simulating any social system
affected by a pandemic and implementing any mitigation
actions. Optimization algorithms may be used with these
tools to determine the best set of actions to do in each
given situation (whatever social system is hit by any virus).
Finally, the ultimate goal is to develop a modeling system
that can characterize the population affected by a specific
virus and suggest a combination of timed measures, which
can be viewed as physical forces pushing or pulling the
observed system’s performance trajectory within the perfor-
mance framework, to optimize its response to the looming
pandemic.
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