
HAL Id: hal-03712960
https://imt-mines-albi.hal.science/hal-03712960

Submitted on 5 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning deep domain-agnostic features from synthetic
renders for industrial visual inspection

Abdelrahman Abubakr, Igor Jovančević, Nour Islam Mokhtari, Hamdi Ben
Abdallah, Jean-José Orteu

To cite this version:
Abdelrahman Abubakr, Igor Jovančević, Nour Islam Mokhtari, Hamdi Ben Abdallah, Jean-José Orteu.
Learning deep domain-agnostic features from synthetic renders for industrial visual inspection. Journal
of Electronic Imaging, 2022, 31 (05), pp.051604. �10.1117/1.JEI.31.5.051604�. �hal-03712960�

https://imt-mines-albi.hal.science/hal-03712960
https://hal.archives-ouvertes.fr

Learning deep domain-agnostic features from
synthetic renders for industrial visual inspection

Abdelrahman G. Abubakr,a Igor Jovančević ,a,b,* Nour Islam Mokhtari,a,c

Hamdi Ben Abdallah ,c and Jean-José Orteu c

aDiota, Labège, France
bUniversity of Montenegro, Faculty of Natural Sciences and Mathematics, Podgorica,

Montenegro
cUniversité de Toulouse, Institut Clément Ader, CNRS, IMT Mines Albi, INSA, UPS, ISAE,

Albi, France

Abstract. Deep learning has resulted in a huge advancement in computer vision. However,
deep models require an enormous amount of manually annotated data, which is a laborious and
time-consuming task. Large amounts of images demand the availability of target objects for
acquisition. This is a kind of luxury we usually do not have in the context of automatic inspection
of complex mechanical assemblies, such as in the aircraft industry. We focus on using deep
convolutional neural networks (CNN) for automatic industrial inspection of mechanical assem-
blies, where training images are limited and hard to collect. Computer-aided design model
(CAD) is a standard way to describe mechanical assemblies; for each assembly part we have
a three-dimensional CAD model with the real dimensions and geometrical properties. Therefore,
rendering of CAD models to generate synthetic training data is an attractive approach that comes
with perfect annotations. Our ultimate goal is to obtain a deep CNN model trained on synthetic
renders and deployed to recognize the presence of target objects in never-before-seen real images
collected by commercial RGB cameras. Different approaches are adopted to close the domain
gap between synthetic and real images. First, the domain randomization technique is applied to
generate synthetic data for training. Second, domain invariant features are utilized while training,
allowing to use the trained model directly in the target domain. Finally, we propose a way to
learn better representative features using augmented autoencoders, getting performance close to
our baseline models trained with real images.

1 Introduction
Industrial inspection and quality control are major tasks in modern industries. With more
complex mechanical systems being developed, automation of the inspection process becomes
crucial. It helps to increase production speed and decrease human error rates. With the huge
advancement in computer vision algorithms in recent years, industrial inspection is one of
the important fields to apply its state-of-the-art methods on, the objective being to automate
tiresome quality control operations.

Our work is addressing various problems of automating the process of visual industrial
inspection. We develop algorithms that receive two-dimensional (2D) images and provide a diag-
nostic on the state of mechanical assemblies. Computer-aided design models (CAD) is a standard
way to describe mechanical assemblies in industrial systems. For each mechanical assembly
part, there is a 3D CAD model with real dimensions and geometrical properties. Whenever
available, we exploit the CAD models of the assemblies.

*Address all correspondence to Igor Jovančević, igorjovan@gmail.com

https://orcid.org/0000-0002-7627-0205
https://orcid.org/0000-0002-0054-9162
https://orcid.org/0000-0003-1585-9507
mailto:igorjovan@gmail.com
mailto:igorjovan@gmail.com

Particular objective treated in this paper is so called conformity check, i.e., verification of
the presence of assembled parts at the locations predefined by the CAD model of the assembly.
As a use case, we aim to verify the presence of three mechanical supports, shown in Fig. 1.
More precisely, we need to either confirm the presence of a mechanical support (classes 1,
2, or 3 from Fig. 1) or report its absence (defect). Subfigures (d) and (e) in Fig. 1 show two
examples of a background - absent of all three objects of interest.

We perform the control process with a robotic arm equipped with multiple high-quality 2D
cameras. These cameras enable two main functionalities of our system: localization and inspec-
tion. Localization is being performed using the wide field camera. We precisely localize the
effector with respect to the assembly it controls. To do that, we rely on an in-house-developed
CAD-based 2D 3D alignment method. Therefore, we obtain a relative pose of our sensor with
respect to the assembly being inspected (pose estimation). Figure 2 shows an example of a CAD
model (left) and the robot position relative to the CAD model in a simulation environment
(right). Therefore, while operating, our robotic system has information about

which mechanical support is being inspected at each moment. In other words, our system has
information about the part whose presence is being verified from a particular point of view.

After the localization phase, the inspection is done with a high-resolution camera with a
reduced field of view (FOV) that allows to capture the details and to observe the target elements
very finely. Knowing an approximate camera pose and the camera intrinsic parameters, CAD
model can be projected onto the image plane of the camera. This projection of the target object’s
CAD model provides an expected region of interest (ROI) around the target object. Figure 3
shows an example of RGB image captured by the 2D camera from the robot, and the correspond-
ing synthetic image from approximately the same point of view obtained by the CAD model.
Further, ROI of a target part can be observed on both images, in the form of two rectangles.

Starting from a full RGB image and using the ROI obtained by the 3D 2D CAD projection,
we crop a real image containing the area where the inspection item is expected to be found.
This cropped image is then fed to a classifier to output a label for one of our target objects,

Fig. 1 (a) (c) Sample images of the three target objects used in this work, and (d), (e) the back-
ground class.

Fig. 2 (a) Example of a CADmodel for a complex mechanical assembly, (b) the simulation system
where the planned positions of the robot relative to the mechanical assembly are calculated.

or background which represents the fact that none of the known parts (classes) is recognized.
Figure 4 shows the general pipeline of the inspection phase of our approach.

In this work, our goal is to make use of the huge advancement in the field of deep learning.
Particularly, we strive to use state-of-the-art deep convolutional neural networks (CNN) to rec-
ognize the presence/absence of target objects in 2D images. The typical approach to achieve this
goal would be to manually collect and annotate a lot of training data and use it to train state-of-
the-art object detection or classification models (supervised learning approach).

However, in the context of industrial inspection, data collection is challenging for several
reasons. First, the huge number of different objects in mechanical assemblies makes it difficult
to manually collect high quality images for each part. Second, most of the parts are very spe-
cialized for certain mechanical assemblies and industries, which will not be helpful in different
problems in the future, and will require collecting new data for each new case. Third, there is a
class imbalance problem caused by the different number of elements in mechanical assemblies.
For example, screws and clamps are parts that can be found almost everywhere in an airplane
engine, while some other parts may appear only once in the engine. In addition, there is no easy
and practical way to acquire large amounts of images with defects, i.e., when the object is miss-
ing (false classes). Finally, manually annotating and preparing the data for training is a laborious,
time-consuming, and expensive task.

For all these problems, we need to find a way to train CNN models with a small number of
collected images or to find a different approach for data collection or generation. As mentioned,
we have a CAD model for each element in the assembly with the real dimensions and its position
relative to all the other elements in the mechanical system. Thus, trying to use 2D renders of 3D
CADmodels to generate training data is an intuitive approach as it already shares many attributes

Fig. 4 Inspection pipeline based on multiclass classification.

Fig. 3 (a) An example of a real image captured by the robot and (b) the corresponding synthetic
image generated from the reference 3D CAD model using estimated camera pose and intrinsic
parameters. ROI around the target part is indicated with the rectangles in both images.

with real objects. In addition, by rendering training images from a reference 3D model, we
implicitly obtain perfect annotations for each object in the generated data.

However, using CAD models of mechanical assemblies to generate synthetic data is a chal-
lenging task. The most difficult problem is the domain gap between features learned from
synthetic data and those extracted from real images. This is a nontrivial problem, and many
approaches were proposed to overcome this issue by means of domain adaptation, domain ran-
domization, domain generalization, and more.1–6 The problem can be considered as a severe case
of dataset bias; however, realistic might be the renders, there will still be a difference between
renders and real photographs, which will affect the learned features and prevent the model from
generalizing knowledge on real images.

Another challenge is the nature of the provided 3D CAD models. Unlike 3D models for
artistic scenes, CAD models of mechanical assemblies lack many crucial visual details, such
as color, texture, material properties, etc. In addition, any deformable or disposable parts such
as cables or plastic caps will be missing in a CAD model. The simplistic nature of 3D CAD
models leads to nonrealistic rendering, which widens the domain gap and makes it more
difficult for deep learning models to generalize the features learned from synthetic data to real
photographs.

In this work, two approaches are adopted simultaneously to solve the problem of domain gap
between synthetic and real images. The first approach we call the “data-based approach,”
i.e., narrowing the domain gap by improving the synthetic data used for training. In Sec. 3,
we will introduce our rendering pipeline and discuss the details of the domain randomization
approach,4,7–10 which is a key-stone in our proposed solution.

The second approach is what we call “model-based approach,” i.e., to improve deep CNN
models and explore different ways for training to learn domain-invariant features that generalize
well between synthetic and real domains. Section 4 shows the details of training deep image
classification models with synthetic data and draws some conclusions about the limitations
of these models. After that, we try to dig more and understand the features learned by our clas-
sification model. This leads to our proposed approach to learn better features representations by
means of self-supervision, namely, augmented autoencoder (AAE), which helped to achieve
competitive results to our baseline model trained on real images. Finally, our findings and results
are discussed in Sec. 5, and the conclusion is given in Sec. 6.

2 Related Work

Our research group is aiming to automate the industrial visual inspection procedures by propos-
ing artificial vision algorithms able to perform such tasks. Our inspection algorithms are exploit-
ing 2D images and 3D point clouds and are running on a robotic platform or on a handheld tablet.
In previous works, we were dealing with industrial visual inspection challenges by employing
conventional image processing11,12 and 3D point cloud processing techniques13,14 or recent deep
learning architectures on 3D point clouds.15,16 In this work, as well as in Ref. 17, we are focusing
on using deep CNN models on 2D images (both real and synthetic). This paper is an extension of
our previous paper published in Ref. 18.

Inspection based on 2D image analysis has been of interest in many works. The authors in
Ref. 19 have presented a CAD-based conformity check of mechanical parts by comparing an
image generated from a CAD model with an image acquired with a 2D camera, using primitives
extracted from the contours. The work in Ref. 20 presented a visual detection and verification of
exterior aircraft elements.

Machine learning modules that perform classification and object detection can be very useful
bricks to solve various problems in vision-based industrial inspection. The authors in Ref. 21
presented a method for automatic visual inspection of dirties, scratches, burrs, and wears on
surface parts. The authors in Refs. 22 and 23 have presented a new approach to detect and inspect
screws on aircraft fuselage images acquired by an UAV. The work in Ref. 24 has presented a deep
CNN-based method to identify and classify four types of visible surface defects on semicon-
ductor wafers. Main challenge for deep CNN systems in industrial inspection is lack of data,
because assemblies are not often available for data acquisition. To the best of our knowledge,
this challenge is yet to be solved.

2.1 Deep Domain Adaptation
Domain adaptation can be considered as a particular case of transfer learning25 that leverages
labeled data in a source domain to learn a classifier for unseen or unlabeled data in a target
domain.1 It is assumed that the task is the same, i.e., class labels are the same in both domains.
The source domain is assumed to be related to the target domain but with different data dis-
tribution, causing what is called “domain gap” or “domain shift,” which significantly degrades
performance at test time. Domains can be images from different cameras, images from cameras
versus sketches, artistic images, and clip arts or images from visible spectrum versus near-infra-
red sensors.26–31

The authors in Refs. 2, 3, and 32 noted that the results obtained with deep convolutional
activation features even without any adaptation to the target domain are significantly better than
the results obtained with domain adaptation methods based on handcrafted features. This sug-
gests that deep neural networks learn more abstract and robust representations that are general
and can decrease the domain bias.1,3,29,32,33

The authors in Ref. 3 utilized deep features directly to train and test a classifier on different
domains. Comparing the results to state-of-the-art methods using SURF handcrafted features,
they proved how deep features are more general and can decrease the domain bias without
explicit adaptation. The work in Ref. 30 proposed a framework for domain adaptation using
a sparse and hierarchical network. It jointly learns a hierarchy of deep features together with
transformations that address the mismatch between different domains. The proposed approach
in Ref. 34 extracted the convolutional activations from a CNN as the tensor representation, then
performed tensor-aligned invariant subspace learning to realize domain adaptation, outperform-
ing state-of-the-art approaches based on traditional handcrafted features.

Another kind of solution is to embed domain adaptation into the training process to learn a
deep feature representation that is semantically meaningful and domain invariant. One of the
intuitive approaches is to combine the source and labeled target data and train the model with
them. However, when only few labeled data in the target domain are available, this approach
results in overfitting to the source distribution.33 Another intuitive approach is to pretrain the
deep network with source data, then fine-tune the network with labeled target data to decrease
the shift between the two domains. The authors in Refs. 31, 32, and 35 experimented for best
practices to fine-tune model layers with target domain data. The work in Ref. 36 proposed a two-
stream network for source and target data and considered that the weights in corresponding
layers are not shared but related by a weight regularizer to account for the differences between
the two domains.

Autoencoders37 found their way in the application of domain adaptation as means of
learning shareable deep features.38–40 For example, in Ref. 38 the authors proposed extracting
a high-level representation based on stacked denoising autoencoders that can represent
both the source and target domain data. Thus, a linear classifier that is trained on the labeled
data of the source domain can make predictions on the target domain data with these
representations.

2.2 Deep Convolutional Neural Networks with Synthetic Data
The use of synthetic data has a long history in computer vision. For example, Refs. 41 and 42
used 3D models as the primary source of information to build object recognition models. More
recently, Refs. 43 to 46 used renders of 3D CAD models as a source of labeled data. Usually, they
were trying to design special features for matching synthetic 3D object models to real image data
or to use HOG and SIFT features and linear SVMs for classification.

Due to the data-hungry nature of deep CNNs, synthetic renders of 3D models are a very
attractive source of training data in many applications, such as object recognition, detection,
instance segmentation, optical flow estimation, action recognition, and more.5,6,31,47–49

Unfortunately, synthetic rendering pipelines are usually unable to reproduce the statistics of their
real world counterparts due to the “domain gap” between synthetic and real data, resulting in a
poor performance as observed in Refs. 4 6 and 31, for example. Existing approaches focus either
on mapping feature representations from one domain to the other or learning to extract generic

features that are invariant to the domain from which they were extracted. Our work is part of the
second approach as we try to learn domain-invariant features directly from synthetic data.

One of the intuitive solutions could be to generate very realistic renders so the network is
confused between rendered and real images.47,50–52 However, this approach is very time-consum-
ing and computationally demanding. Also, it requires full knowledge of the target domain and
modeling for all the details, such as color, texture, material, lighting, etc., which are not available
in many applications.4,5 In addition, even when having such expensive realistic renders, trained
models will still suffer from the domain gap.4,6

Therefore, many approaches were proposed to solve the problem of domain gap with non-
realistic renders using a combination of model-based and data-based approaches. For example,
the authors in Ref. 5 used synthetic data only to train deep object detection models for Pascal
VOC classes and investigated the importance of low level cues, such as color, texture, pose, and
context. In Refs. 50 and 51, the authors tried to have more photorealistic rendering and simulated
the context using real images as background for their images. Similarly, Refs. 48 and 49 used
photorealistic renders and tried to place target objects in the right context in real scenes.

The authors in Ref. 6 showed that it is feasible to train modern object detectors with synthetic
images. Using faster-RCNN,53 they trained the base model with ImageNet, freezed feature
extraction layers to these generic layers pretrained on real images (ImageNet), and trained only
the remaining layers of object detector with plain OpenGL rendering. Using this idea, the fea-
tures learned from the target domain (real images) were used to train the model on the source
domain (synthetic images), which helped them to get competitive results to models trained on
real images. This trick is tested in our work, as will be discussed in Sec. 4.1.

2.3 Domain Randomization

One of the promising techniques for domain adaptation using the data-based approach is domain
randomization,4,7–10,31 which is a simple technique for training deep models on synthetic images
that can transfer to real images directly. This can be achieved by randomizing rendering appear-
ance parameters that describe the objects, such as color, texture, lighting conditions, camera
positions, and more.4,7,8 With enough variability in the rendered training data, the real world may
appear to the model as just another variation of what it saw during training, and hence it can be
considered as a domain generalization technique.4

The authors in Ref. 4 proposed the first successful application for domain randomization that
was able to train a deep model with simulated synthetic data and test on a real-world situation.
They trained an object localization model in a robotic simulation environment with nonphotor-
ealistic renders and tested the trained model in a real robot with real objects. This was the first
trial that closed the domain gap without using any real images during training. The work pub-
lished in Ref. 10 successfully applied a similar technique in a robotic simulation environment
and tested in real scenes, but they used the weights of models pretrained on real images.

In Ref. 7, the authors further demonstrated this approach by training an object detection
model to recognize a set of simple geometric shapes (sphere, cylinder, cube, etc.). They proved
that an object detection model can be trained using a synthetic dataset that is not photorealistic
and can perform well on real images with completely different appearance. Furthermore, they
proved that the model trained with synthetic data using domain randomization outperforms the
model, which is fine-tuned on small domain-specific dataset.

To test the domain randomization idea on nontrivial objects in outdoor scenes with a real-
world environment, the work in Ref. 8 investigated the problem of car detection. They trained an
object detection model on synthetic data and tested it on KITTI dataset.54 When training only on
synthetic domain-randomized data, they achieved competitive results on the real world task, but
it could not be better than training on real images (from KITTI training data). However, fine-
tuning the model trained on synthetic data with real images yields better results than training on
real KITTI data alone. In this work, they used random textures from real images and added some
random false objects that they called “flying distractors.” The authors in Ref. 31 applied the same
ideas for people detection and human pose estimation.

The work in Ref. 9 extended the idea of domain randomization and introduced structured
domain randomization for object detection. It is simply a variant of domain randomization

that takes into account the context of the scene, unlike normal domain randomization that
randomizes everything including the position and scale of the object. Structured domain
randomization places objects and distractors randomly according to probability distributions
that arise from the specific problem at hand. Therefore, structured domain randomization
enables the neural network to take the context around an object into consideration during
detection.9

3 Synthetic Data Generation

As discussed in Sec. 1, we are adopting two approaches for bridging the reality gap between
synthetic and real domains, namely, (1) model-based approaches and (2) data-based approaches.
This section discusses the data-based approach by explaining the techniques used to generate the
synthetic training dataset.

3.1 Rendering Pipeline

We adopt the method of domain randomization,4,7–10,31 which is a simple technique for training
deep models on synthetic images that can transfer to real images directly. Domain randomization
is our choice due to its simplicity, generality, and suitability for our problem as we do not have
texture or material information in the CAD models used. In addition, domain randomization
achieved state-of-the-art results for object localization and detection when training the models
completely with synthetic data without freezing weights of pretrained models or further fine-
tuning the trained model with real images.4,9

To apply the domain randomization approach, a rendering pipeline is implemented using
OpenGL55 that allows to control all variants of rendering parameters, such as color, camera posi-
tion and FOV, lighting condition, object texture, and material modeling (diffuse and specular
reflection parameters).

OpenGL is a cross-platform library for interfacing with programmable GPUs for the purpose
of rendering real-time 3D graphics. Its use is common in games, CAD, and data visualization
applications.55,56 The whole OpenGL rendering process is out of the scope of this paper, but we
will discuss the appearance parameters we control in the vertex and fragment shaders using the
OpenGL Shading Language (GLSL).

3.1.1 Randomized model parameters

The reason why materials look the way they do in real life is often the result of very complex
interactions between light and the microscopic structure the material objects are made of. It
would be too complicated to simulate these interactions in a computer graphics model, therefore,
we use mathematical models to approximate them instead. We use low-fidelity rendering, i.e., we
are not trying to model the material of the rendered objects with many details or generate photo-
realistic renders. Therefore, two simple shading models are used to generate our data, namely,
Phong shading57 and Cook-Torrance shading58 models.

Phong shading model is an empirical model of the local illumination of points on a surface.57

It treats reflection as consisting of three components: ambient, diffuse, and specular. The ambient
component represents light that is assumed to be uniformly incident from the environment and
that is reflected equally in all directions by the surface. The diffuse and specular components are
associated with light from specific light sources. The diffuse component represents light that is
scattered equally in all directions. The specular component represents highlights, light that is
concentrated around the mirror direction.

The basis of the Cook Torrance model is a reflectance definition that relates the brightness of
an object to the intensity and size of each light source that illuminates it.58 The model predicts the
directional distribution and spectral composition of the reflected light. Therefore, this algorithm
can model metallic materials better than Phong and avoid what the author called “plastic appear-
ance” of the Phong model.58 Figure 5 shows sample output of our objects using both shading
models.

Using these shading models, we randomize the following parameters in the rendered objects:

• Object color: We sample a color value for each of the RGB channels from a uniform
random distribution. The values of color channels in OpenGL are scaled values (sRGB),
which means the minimum is 0.0 and maximum is 1.0. We use what we call “grayish
color.” To obtain grayish colors, the value of one channel is randomly sampled from the
range of [0.0, 1.0]. Let us call this value R for the red channel. Then, the blue and green
channels values are randomly sampled so they are within a distance of 0.1 from the chosen
R value, i.e., B ¼ Rþ randð−0.1; 0.1Þ, where randð−0.1; 0.1Þ uniformly samples a value
between −0.1 and 0.1. The reason for choosing the colors to be grayish is that our objects
are all metallic objects, and grayish colors represent metallic materials.59,60

• Specular reflection coefficient: This can be described as the ratio of light reflecting from
the surface. For example, metals reflect a higher ratio of incident light than wood, that is
why metals are shiny. Uniform random value is chosen in the range of [0.1, 0.5] for Cook
Torrance model and range of [0.5, 1.0] for Phong model.

• Camera FOV: This value represents the zoom in the camera model. In our application, a
uniform random value is chosen from the interval [20, 35], knowing that higher FOV value
means the object is further (smaller).

• Shininess of the surface: The higher the shininess value of an object, the more it properly
reflects the light instead of scattering it all around, and thus the smaller the highlight
becomes. Uniform random value is chosen from the range of [2.0, 16.0].

• Roughness of the surface: This is used in Cook Torrance model only and sampled from
a range of [0.2, 0.8].

• Fresnel complex coefficients: Light reflecting off metallic surfaces is described by
the Fresnel equations,61,62 which are controlled by the complex index of refraction
η ¼ nþ ik. In the Cook Torrance model, we randomly simulated metallic and nonmetallic
behaviors by controlling the values of n and k. n is randomly sampled from the range
[0.5, 2.0], and k from the range [0.5, 7.0].

3.1.2 Procedural texturing

Textures are a central part in rendering, they can provide a greater level of detail to surfaces. In
computer graphics, textures are 2D images, and the process of texture mapping (or UV mapping)
is to wrap the 2D image to the surface of the 3D model. In our application, no such texture
information is available; hence, we use the approach of generating random procedural textures.

Procedural textures take an entirely different approach than UV mapping. Instead of creating
an image by defining a large, unchanging block of pixels, procedural texturing creates the texture
from the ground up.63 This is where the term “procedural” comes from. The texture is defined

Fig. 5 Sample renders with Phong and Cook Torrance models. (a), (b) Phong model and (c),
(d) Cook Torrance model. We can notice that the effect of the specular component is stronger
in the Cook Torrance model.

only by the mathematical formula (procedure) needed to create it. With this formula, the algo-
rithm is able to create the texture at any scale, in any orientation, and extending as far as needed.
The advantage of this approach is low storage cost, unlimited texture resolution, and easy texture
mapping.63,64 In our application, the procedural function will take a 3D coordinate and give a
color back.63 For each object, we randomly select one of the following textures:

1. 3D Perlin noise (Simplex).65,66

2. Random uniform color disturbance (like salt and pepper noise).
3. No noise (just color, which is by itself randomly selected as mentioned before).

Perlin noise is a procedural texture primitive, a type of gradient noise used by visual effects to
increase the appearance of realism in computer graphics. It is often used in computer graphics to
make computer-generated visual elements (such as object surfaces, fire, smoke, or clouds)
appear more natural, by imitating the controlled random appearance of textures in nature.65–67

The texture of the two middle objects in Fig. 6 is examples of Perlin noise.
In our application, we use the 3D Perlin noise function, which takes the 3D coordinate of

the vertex and returns a color from the procedure. The Perlin noise implementation by Stefan
Gustavson68 was used in this work, as it is written in C, and can be used directly in our GLSL
shader. Inside Perlin functions, scale and orientations are also randomized, and there is
a possibility to have intersection between different scales of noise, so we have a bigger variety
of random textures.

3.1.3 Visibility sphere to sample camera views

Final parameter controlled during rendering is the virtual camera position. In our application, we
simulate the camera movement while assuming the object position is fixed. We aim to perform
robotic-based inspection, where the robot camera pose is known relative to the reference CAD
model, and hence, relative to the real mechanical assembly. To choose the camera positions
during rendering, we simulate the robot camera pose by sampling the camera positions from
a sphere around the target object that we want to render (Fig. 7).

By sampling the spherical coordinates parameters in a certain range and with reasonable step
size, we obtain camera poses that simulate all possible positions of the robot camera. This
approach helps to obtain objects’ viewpoints distributions similar to real images. For example,
it is not possible for the robot to look at some objects from a certain point of view, because there
are other objects that occlude the target object when observed from these views.

In our application, we fix the radius of the sphere to 60 cm, which is the maintained distance
of the robot to the real assembly, and sample the azimuthal and polar angles with certain step
size.69 The range of the angles differs between objects as their default orientations in CADmodel
are different, so these ranges are set manually for each target object. Figure 7 shows a visuali-
zation of the sampled sphere around the CAD model of one sample mechanical assembly. Note
that we are randomizing the FOV values while rendering, so even when using constant radius of
the sphere, objects scales are still randomized in the generated renders.

Fig. 6 (a) (d) Samples of rendered objects after applying domain randomization.

3.2 Synthetic Dataset Generation

After generating the renders of target objects (Fig. 6), we create a dataset to be used in the train-
ing of our classification models. Following, Refs. 6 and 7 we are randomizing the background of
rendered objects by placing our renders on top of randomly selected real images that are related
to some industrial environments. In addition, we tried using the idea of “flying distractors” intro-
duced in Ref. 7. Namely, we randomly position some of the rendered “context objects” around
the rendered target objects. Wewill discuss the effect of adding these context background renders
in Sec. 5. In addition to the classes of target objects, we also generate images for a “back-
ground” class.

The steps to generate our synthetic dataset are shown in Fig. 8, and examples of the generated
synthetic dataset are shown in Fig. 9. Having rendered target objects, and real images as back-
ground, we form our dataset for classification as follows:

1. Randomly rotate the background image, then crop a patch in a randomly selected position,
with random box size. Then, the cropped patch is resized to 1296 × 1024.

2. Randomly place rendered context objects (flying distractors) in the background image.
3. From the background image, randomly crop four patches (from random locations, and

with random scales and aspect ratios). Resize the cropped patches to 500 × 500.
4. Randomly place the renders of target objects on the patches. We add one class to each

crop, in addition to one crop without target objects representing the “background” class
(Fig. 8).

In general, we can generate enormous amount of synthetic images for each object from our
rendering pipelines. However, we have limited time and hardware resources to process the data
and train our models. Therefore, we limited the number of our training images for each object to
the number of real images we have for the real background images. In our experiments, we used
13,680 real background images, each of which was used to generate four patches (three classes,
and background). Therefore, we have a total of 54,720 images for training with perfectly bal-
anced number of images for each class. In our experiments, we call this set of images 55K. For
more experiments, we randomly sampled half the images from our 55K set, and we call it 27K
set. The 27K set has 27,360 images with balanced number of images for each class. Finally,
to have an even smaller set, we randomly sampled 15,000 images from 55K set, and we call

Fig. 7 Example of visibility sphere to sample camera viewpoints during rendering. Green dots are
sampled camera locations, and the red object is the target object to be rendered. While rendering,
the CAD of the target object is loaded and the context (here in gray) is not loaded for rendering.

this set 15K, which also has a balanced number of images for each class. In all our experiments,
we always keep randomly sampled 1000 images as validation set and use the rest for training.

4 Searching for Domain Invariant Features for Domain Generalization

As discussed in Sec. 1, just training the deep models with synthetic data will cause a “domain
gap” between source domain (synthetic images) and target domain (real images). One of the
solutions to tackle this problem is using the domain randomization technique for data generation
as explained in Sec. 2.3. In this section, we try to close the domain gap using the model-based
approach, i.e., searching for techniques to train our image classification model to learn domain
invariant features that can generalize well between the real and synthetic domains.

4.1 Utilizing Target Domain Features

The authors in Ref. 6 showed that it is possible to effectively train modern object detectors
with synthetic images only. Using faster-RCNN, they trained the base model (feature extractor)
with ImageNet, then froze all feature extraction layers to these generic layers pretrained on real
images, and trained only the remaining layers of object detector with plain OpenGL renderings.6

Using this trick, the features learned during pretraining from target domain (real images)
were used as an initialization for training the model on source domain (synthetic images),

Fig. 9 Samples of the synthetic dataset used for training: (a) (c) rendered target objects, and
(d) an example of the “background class” with no target objects.

Fig. 8 Synthetic dataset generation process.

so the detection of objects in target domain is easier as now the features used are from the same
domain. The mentioned authors obtained results competitive to the models trained on real
images.6

In our approach, we applied this idea on image classification and evaluated its effectiveness
for our problem. However, we found that this approach could not solve the domain gap problem
for our classification model as will be discussed in Sec. 5.3.1. The difference between our
work and the work in Ref. 6 is that their CAD models contain the colors of the real objects,
and their objects have different shapes and colors, so they are easier to discriminate than our
supports which have the same metallic texture and similar geometry. Nevertheless, we did use
the idea of domain randomization, which helped to overcome the problem of lack of textures and
colours.

4.2 What Deep Classification Models Really Learn
To find better features as initialization for our model, we need to first understand the features
learned when pretraining with ImageNet and why such features are not good to represent our
objects. As deep CNNs are learning their weights directly from the huge amount of data seen
during training, many researchers tried to understand what these learned features are, through
different layers. The work in Ref. 70 suggests that along different layers, networks seek to iden-
tify increasingly larger patterns in input image. For example, having a car image, the first layer
will learn simple edges and contours, then deeper layers learn more complex shapes such as a car
wheel until the object can be recognized by the final layer.70

Recent works tried to investigate this assumption, especially the work in Ref. 71, which tried
to answer an important question: how do neural networks classify images: based on shape or
texture? The authors came up with an interesting experiment. Using style transfer,72 they gen-
erated images with different textures than the object in the image and tested the performance of
several deep classification models. As an example, when tested on an image of texture of an
elephant and on an image of a cat, state-of-the-art image classification models are able to
correctly classify the texture image as “elephant” and the image with the cat as “cat.” However,
when using the texture of an elephant projected on a cat, all state-of-the-art classifiers recognize
the image as “elephant,” which clearly shows the bias of deep models towards the texture and
not toward the shape of objects.71

To overcome this issue, the authors proposed to generate training data with random textures
for all objects using the style transfer methods. With this idea, they could overcome the issue of
classifying the objects depending on the texture, in addition to improving the overall accuracy of
classification when testing with original testing images.71

The work in Ref. 73 proved the findings from Ref. 71 by introducing a deep network that
has the same idea as bag-of-features and comparing it to state-of-the-art image classification
models. They found that the network that models a bag of local deep features worked well
and had comparable results to state-of-the-art classification models trained end-to-end with
ImageNet. This proved the idea that deep models are not necessarily looking at the global
shape of the object and using local patches are enough for classification.73 They further proved
this by testing on a set of scrambled images that are difficult for humans to recognize and found
that state-of-the-art deep neural networks can still recognize scrambled images very well, which
further proves the assumption that deep models do not actually recognize objects by their
shapes.73

4.3 Augmented Autoencoders
Autoencoders are a family of neural networks for which the input is the same as the output. They
work by compressing the input into a latent-space representation, then reconstructing the output
from this representation. Therefore, it can be considered as a dimensionality reduction technique
for high dimensional data.74 Convolutional autoencoder consists of an encoder and a decoder,
both are CNNs. The loss function is a sum of the pixelwise L2 distance. The goal of using such
architecture is to learn the latent representation, which is considered as the most important
feature set that the model can use to reconstruct the image.74

Fig. 10 AAE to learn better geometrical features representation.

Denoising autoencoder75 defines a modified training process. Artificial random noise is
applied to the input images while the reconstruction target image stays clean. The main
assumption is that denoising autoencoder produces latent representations which are invariant
to noise because it facilitates the reconstruction of clean images.76

Using this idea, the authors in Ref. 76 introduced the concept of AAE. Their goal was to learn
3D orientation of textureless objects for 6D object detection from RGB images. Using synthetic
rendering and the idea of domain randomization, they generated a high variability of source
images with extensive augmentation, while keeping the clean image to be reconstructed (clean
target image). The idea behind this approach is to control what the latent representation encodes
and which information to be ignored.76 Their goal was to force the model to learn geometrical
transformation for the rendered objects, then apply it to real images to estimate the orientation of
objects in real images.

4.4 Learning Better Features Representation by AAE

Inspired by the approach of AAE,76 we try to adapt this idea to our use case of learning geo-
metrical representation of the mechanical parts. Ideally, we hope that latent features learned by
the autoencoders can model the important geometrical features of the objects. Further, when
training our classifier, these features will be discriminative enough so the classifier can recognize
objects in real images depending on their shape and ignore all uninformative cues such as
texture, color, and background.

Figure 10 shows our training strategy for the AAE. The input images are similar to what was
used in classification, a rendered object on top of random real background. Output images
contain only the object centered in the image with black background.

Figure 11 shows some examples of the input images (first row) and output images (second
row). We note that both input and output images have the same size, and the object can have
random location and scale in input images, but objects in target images are centered in the middle
of the images with the maximum possible scale, and without any background (black back-
ground). Figure 12 shows sample input and output images after training our AAE for 15 epochs.

The goal of using AAE is to learn better features representation for our objects. After learning
such features, we can use the weights of the encoder network as pretrained weights better than
the weights learned from ImageNet. To do so, we remove the decoder network and replace it with
a classification layer (softmax layer), then train this model for our classification task. Figure 13
shows this approach, and the results of this method will be discussed in Sec. 5.4.

The main goal of our approach is to find a domain agnostic features that can be learned from
the synthetic dataset while training, to help our classification model discriminate between our
mechanical supports in real images. As mentioned in Sec. 4.1, the deep classification models
pretrained with ImageNet can be used as a generic feature extractors which belong to the target
domain (real images), which can close the domain gap between synthetic and real domains.
However, after testing this approach, we found that these generic ImageNet features are not
helpful to differentiate between our mechanical objects, and there is still a big domain gap (see
Sec. 5.3.1). After investigating what deep classification models really learn while training, we
discovered that all state-of-the-art classification models are looking for the features that make
their task easier. They are focusing on the texture of objects as the best way to discriminate
between different classes in ImageNet dataset.

Fig. 12 Examples of reconstructed images using the trained AAE. Input images (top row) are from
the validation set, and bottom row shows the corresponding output images generated by the AAE.

Fig. 13 AAE is trained, then the decoder is replaced by a classification layer, and the weights of
the encoder network are used as initialization for training image classification models.

Fig. 11 Examples of data used to train our AAE: (a) (c) input images and (d) (f) the corresponding
output images to be reconstructed by the autoencoder.

Learning the color and texture features to discriminate between objects can be good for
certain applications; however, for our application these are the worst features to learn as our
synthetic renders are missing these cues. Therefore, we introduced the AAE idea as our approach
to force the model to focus on more helpful features to discriminate between mechanical objects.
The task and the input and output data fed to the AAE (Figs. 10 and 11) are designed to force the
AAE to focus on the most discriminative features in our mechanical supports: geometrical fea-
tures. Our AAE is learning good features while trying to perform its task: reconstruct an output
image containing the object alone, with no background. In addition, the model is forced to ignore
any features related to the background, the color and the texture of the objects as all these cues
are rendered with highly randomized variations. Namely, there is almost no two samples with the
same color or texture or background. Sample output from our AAE model shown in Fig. 12
demonstrates that our strategy is working as expected. Namely, it can be noted that the objects
in the output images (second row) do not preserve the color or texture of input objects (first row),
but the model rather tries to reconstruct the shape of the objects in white and gray colors.

5 Results and Discussion

In this section, we explain all our experiments using the data-based and model-based approaches
and discuss the results of each experiment. We start by explaining our experimental setup, then
perform a series of experiments to test some assumptions. For each experiment, we build on the
conclusion from its results and use the best setup in the following experiments.

5.1 Experimental Setup

5.1.1 Real images for testing

All the tests are done on the same dataset made entirely of real images. In this section, we
describe this dataset. We collected a set of 179 RGB images, each with an ROI around the target
object. ROIs are obtained from the reference CAD as explained in Sec. 1. To generate images
that contain our objects for classification, the ROI boxes were used to crop parts of the images
that contain the target objects. To increase the number of samples, in addition to the original crop
of the object, four transformations are applied: horizontal and vertical flip, rotation 90 deg clock-
wise and counterclockwise.

In addition, to make a testing set for the “background” class, a set of seven boxes with ran-
dom positions and sizes are cropped from each image for each object in the image. The positions
of “background” boxes are selected so they have no overlap with any of the target objects.

Finally, all crops are resized to 500 × 500. The total number of real images for testing is 2148.
Figure 1 shows samples of the generated test set.

5.1.2 Training and testing setup

For the classification model, InceptionV377 is used as the base model for all the experiments.
The reason for choosing InceptionV3 is that it is one of the state-of-the-art models for image
classification, in addition to its reasonable size, allowing for fast training with different configu-
rations. All experiments were done using Keras78 with Tensorflow backend.

Training is done using Nvidia GeForce GTX 1060 with 6 GB of RAM. Unless otherwise
stated, batch size of 32 images is used when freezing feature extractor layers, and batch of 20
images when training all layers. Input image size is set to 256 × 256. SGD optimizer was used
with learning rate of 0.0001 and momentum of 0.9 for all experiments, and training run for
maximum three epochs. For the learning rate value, we experimented with few different values
and picked those which gave the best behavior of our models. We used a small learning rate for
the classifier as our batch size is relatively small. Another reason is preserving the old features
from the pretrained model while fine-tuning.

For the AAE, we used InceptionV3 as the encoder, while for the decoder we used a simple
network consisting of successive convolutional and upsampling layers that can reconstruct the
image with the same input size.

Training data Train/freeze
Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

Real (two splits) Train all 0.9/0.77/0.79 0.87/0.99/0.92 0.87/0.46/0.53 0.99/0.74/0.82 0.86/0.90/0.88

Real (two splits) Freeze all 0.48/0.49/0.45 0.91/0.88/0.89 0.00/0.00/0.00 0.53/0.91/0.67 0.48/0.2/0.23

Note: The bold value represents the best F1-score (higher is better) in the experiment.

Training of the AAE is done using Adam optimizer with learning rate 0.0003, and the train-
ing runs for 15 epochs. For AAE, the learning rate and number of epochs are higher than those
for the classifier, as the AAE is trained from scratch. Input and output image size is 256 × 256.
While training, further image augmentation is done for source images, which includes randomly
changing the brightness, and adding random colored patches on top of the image to introduce
random occlusion.

To evaluate the classifier quality, we use precision, recall, and F1-score metrics.79 All evalu-
ation results are obtained using the Scikit-Learn Python library.80 To get the average results
between all classes, results reported in this paper are using “macro” averaging between all
classes.81 Macroaveraging calculates metrics for each label and finds their unweighted mean,
which treats all classes equally. For comparison between different methods, we consider
F1-score, i.e., when stating that method X is better than method Y, we mean that F1-score of
X is higher than Y.

5.2 Training with Real Images as Baseline

To get baseline results, we first train the model with real images. This will be our reference, and
all models trained with synthetic data will be compared to it. The training is done on crops of
real images as discussed in Sec. 5.1.1. For training and testing, the data are split to two parts
(50% 50% split), training is done with first split and testing with the other and vice versa, then
the results from the two splits are averaged to get the final baseline results (two-fold cross-
validation).

The InceptionV3 model is pretrained with ImageNet. We test two configurations, one is train-
ing all layers of the InceptionV3 network (initialized with ImageNet pretrained weights), and the
other is freezing all convolution layers of the network, i.e., utilizing the ImageNet pretrained
weights, and just letting the final fully connected layers to train. The evaluation metrics used
are described before (precision/recall/F1-score), and they will be shown in this order in all
our tests.

Table 1 shows the results when training with real images. It is evident from the table that
freezing the ImageNet pretrained layers is not helpful relative to training all the layers, especially
in “class 1" where we obtain 0.0% when freezing all layers. These results are expected, as the
shape of our mechanical supports are very different from the images in ImageNet dataset, so the
deep features learned from ImageNet are far from the features needed for our classes. In addition,
training and testing splits are from the same domain (real images domain). Therefore, allowing
the model to freely train all its layers gave better results. It is also important to note that “class 1”
got a low F1-score even when training all layers, which indicates the difficulty of this class.
As training all layers with real images produced the best results (79% F1-score), we consider
this model as our baseline and compare all methods to it.

5.3 Utilizing ImageNet Pretrained Features
In this section, we discuss our experiments to test the effectiveness of different configurations to
apply standard image classification by training with synthetic data. Following Ref. 6, we test the
effect of freezing different layers of our model and compare it to training all layers. Then, we test
the effect of changing some parameters in the synthetic data used for training to find the best
configurations for domain randomization.

Table 1 Results of training InceptionV3 with real images (two splits).

5.3.1 Freezing different layers of feature extractor

Following Ref. 6, we test the effect of freezing and training different stages of the ImageNet
pretrained InceptionV3 network while training with synthetic data. Inception network consists
of a number of “Inception blocks.”77 Here, we test the effect of freezing all layers, freezing all
layers except last Inception block, freezing all layers except last two Inception blocks, and train-
ing all layers. In all cases, the last fully connected layers are trained. We used 55K synthetic
training images rendered using the Phong illumination model.

Table 2 shows the results of these tests and compares it to the baseline model. We can see that
the average F1-score is improving when training more Inception blocks, starting from the worst
when all layers are frozen, then improving a little when training the last Inception block, and
improving by a large margin when the last two blocks are trained. Finally, the best result comes
when all layers are trained allowing the model to adapt all its weights to the training data.

Unlike object detection models shown in Ref. 6, it seems that classification models are
affected less by dataset bias when trained with synthetic data. The results are even improving
as we loosen the constraints in terms of freezing layers. We think that the reasons are twofold.
First, there is a big difference in the shape between our mechanical supports and the objects in
ImageNet dataset, which is not the case in Ref. 6. Another reason could be the domain randomi-
zation strategy used with training data. Therefore, the classification model is learning more dis-
criminating features from synthetic data than the generic ImageNet features, which helped to
better classify the objects in the real testing set. Still, a large domain gap remains: the average
F1-score is 54% for our best model trained on synthetic data versus 79% for the baseline model
trained with real images (Table 2).

5.3.2 Effect of using different shading models for rendering

Here, we test the effect of using different shading models for training data. We test the data
generated using Phong and Cook Torrance shading models, in addition to mixing the data from
both shading models by adding them together, resulting in double the number of images (Mixed
110K set). For all tests, the classifier is initialized with ImageNet pretrained weights, and all
layers are trained.

Table 3 shows the results of these experiments. We notice that the average results from Cook
Torrance rendering are slightly better than Phong, but for some classes Phong is much better,
especially for “class 1.” However, for “class 3" the results of Cook Torrance rendering are
much better than Phong. Mixing the data generated by both shaders did not improve the results,
which is against the intuition that increasing the number of training data for deep learning models
should lead to better results. We believe that doubling the number of images for training in mixed
mode leads to overfitting to the synthetic domain, and hence to worse results on real images. This
assumption will be confirmed in Sec. 5.5.

Training
data Train/freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

Real
(two splits)

Train all 0.9/0.77/0.79 0.87/0.99/0/92 0.87/0.46/0.53 0.99/0.74/0.82 0.86/0.90/0.88

Phong 55K Freeze all 0.42/0.39/0.28 0.99/0.19/0.31 0.11/0.27/0.15 0.43/0.33/0.38 0.16/0.75/0.26

Phong 55K Train last
block

0.45/0.39/0.29 0.98/0.10/0.18 0.07/0.33/0.11 0.57/0.63/0.60 0.19/0.48/0.27

Phong 55K Train last
two blocks

0.51/0.56/0.51 0.95/0.59/0.73 0.16/0.30/0.21 0.62/0.86/0.72 0.31/0.49/0.38

Phong 55K Train all 0.76/0.51/0.54 0.76/0.98/0.86 0.89/0.32/0.47 0.75/0.67/0.71 0.66/0.08/0.15

Note: The bold value represents the best F1-score (higher is better) in the experiment.

Table 2 Results of training different stages of InceptionV3. Training all layers shows the best
result even with synthetic data, which is the opposite of what was found in Ref. 6 with object
detection.

5.4 Learning Better Features by Augmented Autoencoder

In this section, we evaluate the effect of using different configurations to train the AAE and use
its weights as initialization to train the image classification model. Once we find the best con-
figuration, we will compare the results to models pretrained with ImageNet and the baseline
model.

5.4.1 Freezing different layers of the AAE pretrained classifier

As mentioned in Sec. 4.4, we train our AAE with synthetic images along with its corresponding
object in black background image. After that, the decoder network is removed, and we use the
encoder only followed by a final softmax layer for classification (Fig. 13). This new classifi-
cation network (encoder plus softmax layer) is trained using our synthetic data for classification.
When we mention the AAE pretrained classifier in the following experiments, we mean this
combination of encoder network plus softmax classification layer.

The goal of the first experiment is analyzing the effect of using different layers of the AAE
pretrained classifier model. In this experiment, the AAE is trained with source images of ren-
dered objects using the Phong model, placed on top of real image crops with no rendered context
in the background. The classifier is trained on images of the Phong model with rendered context
in the background. First, we freeze all layers, including the fully connected layer, which is the
latent representation learned by AAE. This means that we are using the latent features as they are
without any changes and just train the final softmax layer to classify the objects depending on
these features. Then, we try training the last fully connected layer along with the last Inception
block and the last two Inception blocks. Finally, we train the whole network using the weights
from AAE as initialization for all layers.

Table 4 shows the results of these experiments. It is very clear that using the weights of
the pretrained encoder part of AAE by itself is not helpful. However, using these weights as

Training data
Train/
freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

Real
(two splits)

Train all 0.9/0.77/0.79 0.87/0.99/0/92 0.87/0.46/0.53 0.99/0.74/0.82 0.86/0.90/0.88

Phong 55K Train all 0.76/0.51/0.54 0.76/0.98/0.86 0.89/0.32/0.47 0.75/0.67/0.71 0.66/0.08/0.15

Cook
Torrance 55K

Train all 0.78/0.51/0.55 0.78/0.97/0.86 0.93/0.14/0.24 0.69/0.66/0.67 0.72/0.29/0.41

Mixed 110K Train all 0.79/0.49/0.50 0.79/0.97/0.87 0.94/0.16/0.27 0.65/0.74/0.69 0.80/0.09/0.16

Note: The bold values represent the best F1-score (higher is better) in the experiment.

Table 4 Results of training/freezing different layers of InceptionV3 pretrained with AAE. Both AAE
and classifier trained with renders of Phong model.

Training
data Train/freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

Phong 55K Freeze all 0.23/0.25/0.19 0.58/1.00/0.74 0.33/0.01/0.01 0.00/0.00/0.00 0.00/0.00/0.00

Phong 55K Train last
block

0.27/0.25/0.19 0.59/1.00/0.74 0.50/0.01/0.02 0.00/0.00/0.00 0.00/0.00/0.00

Phong 55K Train last
two blocks

0.31/0.25/0.19 0.59/1.00/0.74 0.67/0.01/0.02 0.00/0.00/0.00 0.00/0.00/0.00

Phong 55K Train all 0.65/0.38/0.40 0.70/0.98/0.81 0.43/0.16/0.23 0.51/0.31/0.38 0.95/0.09/0.16

Note: The bold value represents the best F1-score (higher is better) in the experiment.

Table 3 Results of using different illumination models for rendering. Overall, Cook Torrance ren-
dering is better, but for some classes Phong is better. Mixing the data degraded the results.

Pretrain Training data
Train/
freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

AAE (Phong) Phong 55K Train all 0.65/0.38/
0.40

0.70/0.98/
0.81

0.43/0.16/
0.23

0.51/0.31/
0.38

0.95/0.09/
0.16

AAE (Phong) Cook
Torrance 55K

Train all 0.59/0.50/
0.52

0.84/0.95/
0.89

0.17/0.06/
0.08

0.50/0.59/
0.54

0.86/0.40/
0.54

AAE (Phong) Mixed 110K Train all 0.64/0.45/
0.48

0.75/0.97/
0.85

0.38/0.13/
0.19

0.51/0.41/
0.46

0.92/0.29/
0.44

ImageNet Cook
Torrance 55K

Train all 0.78/0.51/
0.55

0.78/0.97/
0.86

0.93/0.14/
0.24

0.69/0.66/
0.67

0.72/0.29/
0.41

Note: The bold value represents the best F1-score (higher is better) in the experiment.

Table 6 Effect of training autoencoder on synthetic data with different rendering methods.

Pretrain Training data
Train/
freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

AAE (Phong) Cook
Torrance 55K

Train all 0.59/0.50/
0.52

0.84/0.95/
0.89

0.17/0.06/
0.08

0.50/0.59/
0.54

0.86/0.40/
0.54

AAE (Cook
Torrance)

Cook
Torrance 55K

Train all 0.43/0.41/
0.38

0.88/0.79/
0.83

0.00/0.00/
0.00

0.40/0.73/
0.51

0.45/0.10/
0.17

Note: The bold value represents the best F1-score (higher is better) in the experiment.

initialization and allowing the classification model to train all layers generated much better
results (almost double the F1-score). These results share the same trend that we saw in
Sec. 5.3.1. Knowing this, in next experiments, we will train all layers of the AAE pretrained
classifiers (using the pretrained encoder part of AAE as initialization).

5.4.2 Training AAE pretrained classifier with different synthetic data

In this section, we try training the AAE pretrained classifier on different synthetic data rendered
by Phong and Cook Torrance shading models, in addition to the mix of both models. The AAE
is trained on data from Phong model as explained in Sec. 5.4.1 and the pretrained encoder part is
used as initialization for training (fine-tuning) all layers of the classifier.

Table 5 shows the results of these experiments. We can see that rendered data of Cook
Torrance model got the best performance between models pretrained with AAE. The reason
for getting the best results with Cook Torrance in this experiment and the experiment in
Sec. 5.3.2 is that this shading model represents the metallic material and its reflections better
than Phong as discussed in Sec. 3.1.1. Mixing Phong and Cook Torrance data is giving
better results than using Phong model only, but still worse than Cook Torrance. These results
share the same trend as observed in Sec. 5.3.2, and it will be discussed in depth in Sec. 5.5.
Comparing these results to the best model pretrained with ImageNet (last row in the table),
we can see that pretraining with ImageNet got better performance than any of our models.
In the next section, we will try to improve the AAE features by trying different shading models
for training data.

5.4.3 Training AAE with different synthetic data

In this section, we test the effect of training AAE with synthetic data from Phong and Cook
Torrance models. The AAE pretrained classifier in this experiment is always trained on Cook
Torrance data as it proved to be the best data for the classifier (Secs. 5.3.2 and 5.4.2). Table 6
shows these results, which proves that training AAE with images from the Phong model pro-
duced much better features to be used as pretrained weights.

Table 5 Effect of using different shading models in training the AAE pretrained classifier.

Knowing that training AAE with the Phong model has proven to be the best option, we tried
to add random rendered context objects in the background of source images (flying distractors)
then add the rendered object on top of it. This process was explained in Sec. 3. The motivation
for this experiment is to test our assumption that using real images as the background may cause
the AAE to ignore any features from the real images domain (background) and focus only on the
rendered object. In fact, the whole idea of AAE is to ignore anything but the rendered object to be
able to reconstruct it again, but when adding random rendered context in the background, the
model learns to ignore background that belongs to both domains, the real and synthetic, which
will hopefully improve the performance. Table 7 shows that this intuition was correct, and ran-
domly adding context objects in the background improved the F1-score to 61%, which is better
than pretraining on ImageNet by 6%.

5.5 Effect of the Number of Training Images

As we are controlling the whole process of data generation, we can theoretically generate an
infinite number of synthetic images for training. However, this is not practical as the data gen-
eration process takes time for rendering, and using more data than actually needed can cause
overfitting to the synthetic data which may increase the domain gap. This was noticed in
Secs. 5.3.2 and 5.4.2, as the results of using 110K images by adding together data generated
by both shading models, were consistently worse than using Cook Torrance data only (55K
images). In this section, we prove our assumption that using too much data can cause overfitting
to the synthetic domain and try to find the sweet spot for the best number of images for training
our classifier.

In this section, we test this assumption on the classification models pretrained on ImageNet
and AAE. We trained all models for 1 epoch, with 55K, 27K, and 15K images. The results of
these experiments are shown in Table 8. From the results we can see that the models pretrained
with ImageNet are not affected by the number of images. However, AAE pretrained models
showed a big improvement when decreasing the number of training data. Our AAE pretrained
classifier trained on 15K synthetic images achieved 70% F1-score, which is 9% higher than the
AAE pretrained model trained on 55K images and 15% higher than ImageNet pretrained model.

Since the performance of the models pretrained with AAE outperformed the model pre-
trained on ImageNet, we can conclude that the weights learned by AAE are representing our
mechanical objects better than the generic features learned from ImageNet. However, training
with too much data (or for too many epochs) will cause the model to overfit to the synthetic
domain, which increases the domain gap and hurts the overall performance. In other words,
we proved that using more synthetic data will not always lead to better results, as the models
can overfit to the synthetic domain.

5.6 Overall Results

Finally, here we summarize the best classification results from all our experiments. Table 9
shows our baseline results versus the best ImageNet pretrained model and the best AAE

Table 7 Training AAE on renders of Phong with rendered context objects in the background.

Pretrain Training data
Train/
freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

ImageNet Cook Torrance 55K Train all 0.78/0.51/
0.55

0.78/0.97/
0.86

0.93/0.14/
0.24

0.69/0.66/
0.67

0.72/0.29/
0.41

AAE (Phong) Cook Torrance 55K Train all 0.59/0.50/
0.52

0.84/0.95/
0.89

0.17/0.06/
0.08

0.50/0.59/
0.54

0.86/0.40/
0.54

AAE
(Phong+cntxt)

Cook Torrance 55K Train all 0.79/0.56/
0.61

0.77/0.98/
0.86

0.62/0.17/
0.26

0.82/0.67/
0.74

0.95/0.42/
0.58

Note: The bold value represents the best F1-score (higher is better) in the experiment.

pretrained model trained with synthetic images. It is clear how pretraining with AAE improved
the classification results when using synthetic data only.

It is interesting to note that AAE itself is trained completely with synthetic images, then using
its features as a weights initialization, the classifier is also trained on synthetic images. Our best
AAE pretrained multiclass classification model achieved 70% F1-score which is 9% lower
than the baseline model trained with real images. However, our best model trained on synthetic
data outperformed the baseline model trained with real image in class “class 2" as shown in
Table 9.

A final trick to further improve our results is to train binary classifiers for each support
against the background class. As explained in Sec. 1, our system aims to verify the existence
of each object in its expected position. Therefore, there is no reason to train a multiclass clas-
sifier, as in each run the system will search for the particular object (support) that matches the
reference CAD model. Then, we can solve the problem via a binary classifier for this particular
object. Therefore, the two classes for our first binary classifier would be: “class 1” versus “back-
ground.” Further, the two classes for our second binary classifier would be: “class 2” versus
“background,” etc.

Table 10 shows the results of training the binary classification models, which improved the
overall performance. Our binary classifiers pretrained with AAE and trained with synthetic
images outperformed the baseline model trained with real images in two out of three classes.
This is expected as now there is less confusion between similar classes.

Table 9 Comparison between the baseline models trained on real images, and models trained on
synthetic data with different pretraining strategies.

Pretrain Training data
Train/
freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

ImageNet Real (two splits) Train all 0.9/0.77/
0.79

0.87/0.99/
0/92

0.87/0.46/
0.53

0.99/0.74/
0.82

0.86/0.90/
0.88

ImageNet Cook Torrance 55K Train all 0.78/0.51/
0.55

0.78/0.97/
0.86

0.93/0.14/
0.24

0.69/0.66/
0.67

0.72/0.29/
0.41

AAE
(Phong+cntxt)

Cook Torrance 15K Train all 0.79/0.66/
0.70

0.83/0.94/
0.88

0.62/0.28/
0.38

0.84/0.86/
0.85

0.85/0.59/
0.70

Note: The bold value represents the best F1-score (higher is better) in the experiment.

Table 8 Training the classifier with different numbers of synthetic images.

Pretrain Training data
Train/
freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

ImageNet Cook Torrance 55K Train all 0.78/0.51/
0.55

0.78/0.97/
0.86

0.93/0.14/
0.24

0.69/0.66/
0.67

0.72/0.29/
0.41

ImageNet Cook Torrance 27K Train all 0.74/0.54/
0.54

0.87/0.95/
0.91

0.85/0.06/
0.11

0.63/0.85/
0.73

0.61/0.30/
0.40

ImageNet Cook Torrance 15K Train all 0.67/0.52/
0.55

0.81/0.94/
0.87

0.77/0.27/
0.40

0.62/0.69/
0.65

0.47/0.20/
0.28

AAE
(Phong+cntxt)

Cook-Torrance 55K Train all 0.79/0.56/
0.61

0.77/0.98/
0.86

0.62/0.17/
0.26

0.82/0.67/
0.74

0.95/0.42/
0.58

AAE
(Phong+cntxt)

Cook Torrance 27K Train all 0.80/0.60/
0.65

0.80/0.96/
0.87

0.66/0.21/
0.31

0.80/0.77/
0.79

0.96/0.47/
0.63

AAE
(Phong+cntxt)

Cook Torrance 15K Train all 0.79/0.66/
0.70

0.83/0.94/
0.88

0.62/0.28/
0.38

0.84/0.86/
0.85

0.85/0.59/
0.70

Note: The bold value represents the best F1-score (higher is better) in the experiment.

6 Conclusion

In this work, we proposed an original solution for an automatic vision-based conformity check
(presence/absence of elements) for parts in a mechanical assembly. We opted for leveraging the
efficiency and robustness of deep CNN. More precisely, we train and evaluate deep CNN clas-
sification models of both multiclass and binary type. The main difficulty in training such models
for industries is lack of real images. This is due to various reasons, such as unavailability of the
assemblies for extensive data acquisition campaigns. To overcome this, we exploit available
CAD model to generate a large number of synthetic 2D images. The ultimate goal is to train
models entirely on synthetic data and to achieve results comparable to the baseline model trained
on real images.

Using data from different domains for training and testing produces another problem called
domain gap. To deal with the domain gap, we adopt a two-step approach: data-based approach
and model-based approach. First, we propose an OpenGL rendering pipeline for 2D images from
simplified 3D CAD. The pipeline is designed to randomize appearance features of rendered
objects, to decrease the domain gap. Those features are color, textures, material properties, back-
ground, in addition to orientation, scale, and position of the rendered objects. The second step of
the approach is our method based on selfsupervised learning that enables better learning of fea-
tures representation for the objects whose presence we need to verify. Relying on the concept of
AAE, our trained models can focus on the most important, geometrical features to represent
target objects, while ignoring irrelevant information such as texture, color, or background.

We evaluate our method on a real use case from an industrial context, namely on a complex
structure of an airplane engine. We train the models on synthetic data without using a single real
image that contains a target object. We test the models on real images. We achieve an F1-score
comparable to the baseline model trained on real images. Moreover, when we simplify the prob-
lem from multiclass to a binary classification, the model trained on synthetic images outper-
formed the baseline model trained on real images by 3%.

References

1. G. Csurka, “Domain adaptation for visual applications: a comprehensive survey,” https://
arxiv.org/abs/1702.05374 (2017).

2. B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain adaptation,” in
Thirtieth AAAI Conf. Artif. Intell. (2016).

3. J. Donahue et al., “Decaf: a deep convolutional activation feature for generic visual recog-
nition,” in Int. Conf. Mach. Learn., pp. 647 655 (2014).

4. J. Tobin et al., “Domain randomization for transferring deep neural networks from simu-
lation to the real world,” in IEEE/RSJ Int. Conf. Intell. Rob. and Syst. (IROS), IEEE, pp. 23
30 (2017).

5. X. Peng et al., “Learning deep object detectors from 3D models,” in Proc. IEEE Int. Conf.
Comput. Vision, pp. 1278 1286 (2015).

Pretrain Training data
Train/
freeze Class 1 Class 2 Class 3 Overall

ImageNet Real (two splits) Train all 0.94/0.55/
0.56

0.95/0.87/
0.89

0.99/0.97/
0.98

0.96/0.80/
0.81

ImageNet Cook Torrance 27K Train all 0.76/0.62/
0.65

0.89/0.85/
0.87

0.82/0.72/
0.76

0.82/0.73/
0.76

AAE
(Phong+cntxt)

Cook Torrance 27K Train all 0.77/0.69/
0.72

0.90/0.92/
0.91

0.91/0.85/
0.88

0.86/0.82/
0.84

Note: The bold value represents the best F1-score (higher is better) in the experiment.

Table 10 Results of training binary classifiers with synthetic images. The training of each clas-
sifier is done with class versus background images.

https://arxiv.org/abs/1702.05374
https://arxiv.org/abs/1702.05374
https://arxiv.org/abs/1702.05374
https://arxiv.org/abs/1702.05374
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/ICCV.2015.151
https://doi.org/10.1109/ICCV.2015.151

6. S. Hinterstoisser et al., “On pre-trained image features and synthetic images for deep learn-
ing,” in Proc. Eur. Conf. Comput. Vision (ECCV) (2018).

7. J. Borrego et al., “Applying domain randomization to synthetic data for object category
detection,” https://arxiv.org/abs/1807.09834 (2018).

8. J. Tremblay et al., “Training deep networks with synthetic data: bridging the reality gap by
domain randomization,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit.
Workshops, pp. 969 977 (2018).

9. A. Prakash et al., “Structured domain randomization: bridging the reality gap by context-
aware synthetic data,” https://arxiv.org/abs/1810.10093 (2018).

10. F. Sadeghi and S. Levine, “Cad2rl: real single-image flight without a single real image,”
https://arxiv.org/abs/1611.04201 (2016).

11. I. Jovančević et al., “Automated exterior inspection of an aircraft with a pan-tilt-zoom
camera mounted on a mobile robot,” J. Electron. Imaging 24(6), 061110 (2015).

12. H. Ben Abdallah et al., “Automatic inspection of aeronautical mechanical assemblies by
matching the 3D CAD model and real 2D images,” J. Imaging 5, 81 108 (2019).

13. I. Jovančević et al., “3D point cloud analysis for detection and characterization of defects on
airplane exterior surface,” J. Non Destruct. Eval. 36, 74 (2017).

14. H. Ben Abdallah et al., “3D point cloud analysis for automatic inspection of complex aero-
nautical mechanical assemblies,” J. Electron. Imaging 29(4), 041012 (2020).

15. I. Mikhailov et al., “Classification using a three-dimensional sensor in a structured industrial
environment,” J. Electron. Imaging 29(4), 041008 (2020).

16. A. Boughrara et al., “Inspection of mechanical assemblies based on 3D deep learning
approaches,” Proc. SPIE 11794, 1179407 (2021).

17. P. Ghimire, I. Jovančević, and J.-J. Orteu, “Learning local descriptor for comparing renders
with real images,” Appl. Sci. 11(8), 3301 (2021).

18. A. G. Abubakr et al., “On learning deep domain-invariant features from 2D synthetic images
for industrial visual inspection,” Proc. SPIE 11794, 1179418 (2021).

19. I. Viana et al., “Inspection of aeronautical mechanical parts with a pan-tilt-zoom camera: an
approach guided by the computer-aided design model,” J. Electron. Imaging 24, 061118
(2015).

20. J. Leiva et al., “Automatic visual detection and verification of exterior aircraft elements,” in
IEEE Int. Workshop of Electron., Control, Meas., Signals and Their Appl. to Mechatron.
(ECMSM), IEEE, pp. 1 5 (2017).

21. J.-K. Park et al., “Machine learning-based imaging system for surface defect inspection,”
Int. J. Precis. Eng. and Manuf.-Green Technol. 3, 303 310 (2016).

22. J. Miranda et al., “Machine learning approaches for defect classification on aircraft fuselage
images aquired by an UAV,” Proc. SPIE 11172, 1117208 (2019).

23. J. Miranda et al., “UAV-based inspection of airplane exterior screws with computer vision,”
in 14h Int. Joint Conf. Comput. Vision, Imaging and Comput. Graphics Theory and Appl.,
Prague, pp. 421 427 (2019).

24. J.-C. Chien, M.-T. Wu, and J.-D. Lee, “Inspection and classification of semiconductor
wafer surface defects using CNN deep learning networks,” Appl. Sci. 10(15), 5340 (2020).

25. S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng.
22(10), 1345 1359 (2009).

26. Y. Aytar et al., “Cross-modal scene networks,” IEEE Trans. Pattern Anal. Mach. Intell.
40(10), 2303 2314 (2016).

27. L. Castrejon et al., “Learning aligned cross-modal representations from weakly aligned
data,” in IEEE Conf. Comput. Vision and Pattern Recognit. (CVPR), IEEE (2016).

28. H. Venkateswara et al., “Deep hashing network for unsupervised domain adaptation,” in
(IEEE) Conf. Comput. Vision and Pattern Recognit. (CVPR) (2017).

29. S. Saxena and J. Verbeek, “Heterogeneous face recognition with CNNs,” Lect. Notes
Comput. Sci. 9915, 483 491 (2016).

30. H. V. Nguyen et al., “DASH-N: joint hierarchical domain adaptation and feature learning,”
IEEE Trans. Image Process. 24(12), 5479 5491 (2015).

31. S. E. Ebadi et al., “PeopleSansPeople: a synthetic data generator for human-centric com-
puter vision,” https://arxiv.org/abs/2112.09290 (2021).

https://arxiv.org/abs/1807.09834
https://arxiv.org/abs/1807.09834
https://arxiv.org/abs/1807.09834
https://arxiv.org/abs/1810.10093
https://arxiv.org/abs/1810.10093
https://arxiv.org/abs/1810.10093
https://arxiv.org/abs/1611.04201
https://arxiv.org/abs/1611.04201
https://arxiv.org/abs/1611.04201
https://doi.org/10.1117/1.JEI.24.6.061110
https://doi.org/10.3390/jimaging5100081
https://doi.org/10.1007/s10921-017-0453-1
https://doi.org/10.1117/1.JEI.29.4.041012
https://doi.org/10.1117/1.JEI.29.4.041008
https://doi.org/10.1117/12.2588986
https://doi.org/10.3390/app11083301
https://doi.org/10.1117/12.2589040
https://doi.org/10.1117/1.JEI.24.6.061118
https://doi.org/10.1109/ECMSM.2017.7945885
https://doi.org/10.1109/ECMSM.2017.7945885
https://doi.org/10.1007/s40684-016-0039-x
https://doi.org/10.1117/12.2520567
https://doi.org/10.3390/app10155340
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TPAMI.2017.2753232
https://doi.org/10.1007/978-3-319-49409-8_40
https://doi.org/10.1007/978-3-319-49409-8_40
https://doi.org/10.1109/TIP.2015.2479405
https://arxiv.org/abs/2112.09290
https://arxiv.org/abs/2112.09290
https://arxiv.org/abs/2112.09290

32. J. Yosinski et al., “How transferable are features in deep neural networks?” in Adv. Neural
Inf. Process. Syst., pp. 3320 3328 (2014).

33. M. Wang and W. Deng, “Deep visual domain adaptation: a survey,” Neurocomputing 312,
135 153 (2018).

34. H. Lu et al., “When unsupervised domain adaptation meets tensor representations,” in
Proc. IEEE Intl. Conf. Comput. Vision, pp. 599 608 (2017).

35. B. Chu et al., “Best practices for fine-tuning visual classifiers to new domains,” Lect. Notes
Comput. Sci. 9915, 435 442 (2016).

36. A. Rozantsev, M. Salzmann, and P. Fua, “Beyond sharing weights for deep domain adap-
tation,” IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 801 814 (2019).

37. Y. Bengio et al., “Learning deep architectures for AI,” Found. Trends Mach. Learn. 2(1),
1 127 (2009).

38. X. Glorot, A. Bordes, and Y. Bengio, “Domain adaptation for large-scale sentiment
classification: a deep learning approach,” in Proc. 28th Int. Conf. Mach. Learn. (ICML-11),
pp. 513 520 (2011).

39. M. Ghifary et al., “Deep reconstruction-classification networks for unsupervised domain
adaptation,” Lect. Notes Comput. Sci. 9908, 597 613 (2016).

40. K. Bousmalis et al., “Domain separation networks,” in Adv. Neural Inf. Process. Syst.,
pp. 343 351 (2016).

41. R. Nevatia and T. O. Binford, “Description and recognition of curved objects,” Artif. Intell.
8(1), 77 98 (1977).

42. D. G. Lowe, “Three-dimensional object recognition from single two-dimensional images,”
Artif. Intell. 31(3), 355 395 (1987).

43. J. Liebelt and C. Schmid, “Multi-view object class detection with a 3D geometric model,” in
IEEE Comput. Soc. Conf. Comput. Vision and Pattern Recognit., IEEE, pp. 1688 1695
(2010).

44. J. Liebelt, C. Schmid, and K. Schertler, “Viewpoint-independent object class detection using
3D feature maps,” in IEEE Conf. Comput. Vision and Pattern Recognit., IEEE, pp. 1 8 (2008).

45. M. Stark, M. Goesele, and B. Schiele, “Back to the future: learning shape models from
3D CAD data,” in Proc. BMVC, pp. 106.1 106.11 (2010).

46. M. Sun et al., “A multi-view probabilistic model for 3D object classes,” in IEEE Conf.
Comput. Vision and Pattern Recognit., IEEE, pp. 1247 1254 (2009).

47. H. A. Alhaija et al., “Augmented reality meets deep learning for car instance segmentation in
urban scenes,” in Proc. British Mach. Vision Conf. (2017).

48. G. Varol et al., “Learning from synthetic humans,” in Proc. IEEE Conf. Comput. Vision and
Pattern Recognit., pp. 109 117 (2017).

49. G. Georgakis et al., “Synthesizing training data for object detection in indoor scenes,”
https://arxiv.org/abs/1702.07836 (2017).

50. Y. Movshovitz-Attias, T. Kanade, and Y. Sheikh, “How useful is photo-realistic rendering
for visual learning?” Lect. Notes Comput. Sci. 9915, 202 217 (2016).

51. A. Gupta, A. Vedaldi, and A. Zisserman, “Synthetic data for text localisation in natural
images,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit., pp. 2315 2324 (2016).

52. B. Planche et al., “DepthSynth: real-time realistic synthetic data generation from CAD
models for 2.5D recognition,” in Int. Conf. 3D Vision (3DV), IEEE, pp. 1 10 (2017).

53. S. Ren et al., “Faster R-CNN: towards real-time object detection with region proposal net-
works,” in Adv. Neural Inf. Process. Syst., pp. 91 99 (2015).

54. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI
vision benchmark suite,” in IEEE Conf. Comput. Vision and Pattern Recognit., IEEE,
pp. 3354 3361 (2012).

55. OpenGL, “OpenGL website,” https://www.opengl.org/ (accessed 1 June 2022).
56. J. Groff, “An intro to modern OpenGL,” 2010, http://duriansoftware.com/joe/An-intro-to-

modern-OpenGL.-Table-of-Contents.html (accessed 1 June 2022).
57. B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18(6), 311

317 (1975).
58. R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM

Siggraph Comput. Graphics 15(3), 307 316 (1981).

https://doi.org/10.1016/j.neucom.2018.05.083
https://doi.org/10.1109/ICCV.2017.72
https://doi.org/10.1007/978-3-319-49409-8_34
https://doi.org/10.1007/978-3-319-49409-8_34
https://doi.org/10.1109/TPAMI.2018.2814042
https://doi.org/10.1561/2200000006
https://doi.org/10.1007/978-3-319-46493-0_36
https://doi.org/10.1016/0004-3702(77)90006-6
https://doi.org/10.1016/0004-3702(87)90070-1
https://doi.org/10.1109/CVPR.2010.5539836
https://doi.org/10.1109/CVPR.2008.4587614
https://doi.org/10.1109/CVPR.2009.5206723
https://doi.org/10.1109/CVPR.2009.5206723
https://arxiv.org/abs/1702.07836
https://arxiv.org/abs/1702.07836
https://arxiv.org/abs/1702.07836
https://doi.org/10.1007/978-3-319-49409-8_18
https://doi.org/10.1109/3DV.2017.00011
https://doi.org/10.1109/CVPR.2012.6248074
https://www.opengl.org/
https://www.opengl.org/
https://www.opengl.org/
http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Table-of-Contents.html
http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Table-of-Contents.html
http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Table-of-Contents.html
http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Table-of-Contents.html
http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Table-of-Contents.html
https://doi.org/10.1145/360825.360839
https://doi.org/10.1145/965161.806819
https://doi.org/10.1145/965161.806819

59. “OpenGL material,” 1994, http://devernay.free.fr/cours/opengl/materials.html (accessed 1
June 2022).

60. B. Stenseth, “OpenGL Light and materials,” http://www.it.hiof.no/~borres/j3d/explain/light/
p-materials.html (accessed 1 June 2022).

61. M. Born and E. Wolf, Principles of Optics, 7th ed., Cambridge University Press (1999).
62. O. Gulbrandsen, “Artist friendly metallic Fresnel,” J. Comput. Graphics Tech. 3(4), 64 72

(2014).
63. Shea McCombs, “Intro to Procedural Textures,” http://www.upvector.com/?section=

Tutorials&subsection=Intro%20to%20Procedural%20Textures (accessed 1 June 2022).
64. Scratchapixel 2.0, “Introduction to Shading,” https://www.scratchapixel.com/lessons/3d-basic-

rendering/introduction-to-shading/procedural-texturing (accessed 1 June 2022).
65. K. Perlin, “An image synthesizer,” SIGGRAPH Comput. Graph. 19, 287 296 (1985).
66. K. Perlin, “Improving noise,” in Proc. 29th Annu. Conf. Comput. Graphics and Interact.

Tech., SIGGRAPH ’02, ACM, New York, pp. 681 682 (2002).
67. S. Gustavson, “Perlin noise,” https://en.wikipedia.org/wiki/Perlin noise (accessed 1 June

2022).
68. “Perlin noise code,” https://github.com/stegu/perlin-noise (accessed 1 June 2022).
69. E. W. Weisstein, “Spherical coordinates,” https://mathworld.wolfram.com/Spherical

Coordinates.html (accessed 1 June 2022).
70. M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” Lect.

Notes Comput. Sci. 8689, 818 833 (2014).
71. R. Geirhos et al., “Imagenet-trained CNNs are biased towards texture; increasing shape bias

improves accuracy and robustness,” https://arxiv.org/abs/1811.12231 (2018).
72. L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using convolutional neural

networks,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit., pp. 2414 2423
(2016).

73. W. Brendel and M. Bethge, “Approximating CNNs with bag-of-local-features models works
surprisingly well on imagenet,” https://arxiv.org/abs/1904.00760 (2019).

74. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by
error propagation,” Technical report, California Univ. San Diego La Jolla Inst. for Cognitive
Science (1985).

75. P. Vincent et al., “Stacked denoising autoencoders: learning useful representations in a deep
network with a local denoising criterion,” J. Mach. Learn. Res. 11(110), 3371 3408 (2010).

76. M. Sundermeyer et al., “Implicit 3D orientation learning for 6D object detection from RGB
images,” in Eur. Conf. Comput. Vision (ECCV) (2018).

77. C. Szegedy et al., “Rethinking the inception architecture for computer vision,” in Proc.
IEEE Conf. Comput. Vision and Pattern Recognit., pp. 2818 2826 (2016).

78. Keras, “Keras applications,” https://keras.io/applications/ (accessed 1 June 2022).
79. scikit-Learn, “Precision, recall and F1-score,” https://scikit-learn.org/stable/auto examples/

model selec-tion/plot precision recall.html (accessed 1 June 2022).
80. “Scikit-learn,” https://scikit-learn.org (accessed 1 June 2022).
81. scikit-Learn, “Precision recall supports,” https://scikit-learn.org/stable/modules/generated/

sklearn.metrics-.precision recall fscore support.html#sklearn.metrics.precision recall
fscore support (accessed 1 June 2022).

Abdelrahman G. Abubakr graduated with an engineering degree in electrical engineering from
Alexandria University, Egypt, in 2016. He received his master’s degree in computer science
from the National School of Computer Science and Applied Mathematics of Grenoble, France,
in 2019. The work in this paper was done during his master’s thesis internship with Diota. He
worked for several companies as a computer vision engineer. He is currently working at NVISO,
and focusing on developing efficient deep learning models for edge devices for automotive and
robotics applications.

Igor Jovančević graduated in 2008 from Faculty of Natural Science and Mathematics within
University of Montenegro with a mathematics degree (spec. computer science). He graduated in
2011 from joint Erasmus Mundus Master program in computer vision and robotics (VIBOT)
organized by the University of Burgundy (Le Creusot, France), University of Girona

http://devernay.free.fr/cours/opengl/materials.html
http://devernay.free.fr/cours/opengl/materials.html
http://devernay.free.fr/cours/opengl/materials.html
http://devernay.free.fr/cours/opengl/materials.html
http://www.it.hiof.no/~borres/j3d/explain/light/p-materials.html
http://www.it.hiof.no/~borres/j3d/explain/light/p-materials.html
http://www.it.hiof.no/~borres/j3d/explain/light/p-materials.html
http://www.it.hiof.no/~borres/j3d/explain/light/p-materials.html
http://www.it.hiof.no/~borres/j3d/explain/light/p-materials.html
http://www.it.hiof.no/~borres/j3d/explain/light/p-materials.html
http://www.upvector.com/?section=Tutorials&subsection=Intro%20to%20Procedural%20Textures
http://www.upvector.com/?section=Tutorials&subsection=Intro%20to%20Procedural%20Textures
http://www.upvector.com/?section=Tutorials&subsection=Intro%20to%20Procedural%20Textures
http://www.upvector.com/?section=Tutorials&subsection=Intro%20to%20Procedural%20Textures
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/procedural-texturing
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/procedural-texturing
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/procedural-texturing
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/procedural-texturing
https://doi.org/10.1145/325165.325247
https://en.wikipedia.org/wiki/Perlin_noise
https://en.wikipedia.org/wiki/Perlin_noise
https://en.wikipedia.org/wiki/Perlin_noise
https://github.com/stegu/perlin-noise
https://github.com/stegu/perlin-noise
https://mathworld.wolfram.com/SphericalCoordinates.html
https://mathworld.wolfram.com/SphericalCoordinates.html
https://mathworld.wolfram.com/SphericalCoordinates.html
https://mathworld.wolfram.com/SphericalCoordinates.html
https://mathworld.wolfram.com/SphericalCoordinates.html
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://arxiv.org/abs/1811.12231
https://arxiv.org/abs/1811.12231
https://arxiv.org/abs/1811.12231
https://doi.org/10.1109/CVPR.2016.265
https://arxiv.org/abs/1904.00760
https://arxiv.org/abs/1904.00760
https://arxiv.org/abs/1904.00760
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://keras.io/applications/
https://keras.io/applications/
https://scikit-learn.org/stable/auto_examples/model_selec-tion/plot_precision_recall.html
https://scikit-learn.org/stable/auto_examples/model_selec-tion/plot_precision_recall.html
https://scikit-learn.org/stable/auto_examples/model_selec-tion/plot_precision_recall.html
https://scikit-learn.org/stable/auto_examples/model_selec-tion/plot_precision_recall.html
https://scikit-learn.org
https://scikit-learn.org
https://scikit-learn.org/stable/modules/generated/sklearn.metrics-.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/generated/sklearn.metrics-.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/generated/sklearn.metrics-.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/generated/sklearn.metrics-.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/generated/sklearn.metrics-.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/generated/sklearn.metrics-.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/generated/sklearn.metrics-.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/generated/sklearn.metrics-.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support
https://scikit-learn.org/stable/modules/generated/sklearn.metrics-.precision_recall_fscore_support.html#sklearn.metrics.precision_recall_fscore_support

(Girona, Spain), and Heriot Watt University (Edinburgh, United Kingdom). He received his PhD
in computer vision in 2016 from IMT Mines Albi (Albi, France), a French ”Grande Ecole”
specialized in process engineering. He worked for more than 4 years at Diota, Toulouse, as
a research engineer focusing on computer vision applications on the problems of inspection and
manufacturing process monitoring. He is currently carrying out his research work in the same
domain at the University of Montenegro.

Nour Islam Mokhtari graduated with an engineering degree in control and automation from
Ecole Nationale Polytechnique of Algiers, Algeria, in 2016. He also graduated with a master’s
degree in computer vision from the University of Burgundy in France in 2018. He worked in
several companies as a machine learning engineer with a focus on computer vision applications.
He is currently working as a machine learning engineer at Orpalis, a company that builds docu-
ment imaging systems.

Hamdi Ben Abdallah graduated with an engineering degree in electronics and industrial control
from the National Engineering School of Sousse, Tunisia, in 2016. He received his PhD in com-
puter vision in 2020 from IMT Mines Albi (Albi, France), a French “Grande Ecole” specialized
in process engineering. Currently, he is working at Institut Clément Ader, Albi, as a research
engineer focusing on computer vision applications on the problems of inspection and manufac-
turing process monitoring.

Jean-José Orteu graduated in 1987 from a French “Grande Ecole” (ENSEIRB, Bordeaux,
France) with an engineering degree in electrical and software engineering and a master’s thesis
in automatic control. He received his PhD in computer vision in 1991 from the Université Paul
Sabatier (Toulouse, France). Currently, he is a full professor at IMT Mines Albi (Albi, France),
a French “Grande Ecole” specialized in process engineering. He carries out his research work in
the Institut Clément Ader (ICA) laboratory (200 people). For more than 15 years, he has
developed computer-vision-based solutions for 3-D measurements in experimental mechanics
(PhotoMechanics) and, since 2010, he is more specifically involved in the application of com-
puter vision to NDE, inspection, and manufacturing process monitoring.

