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Abstract. Deep learning has resulted in a huge advancement in computer vision. However, 
deep models require an enormous amount of manually annotated data, which is a laborious and 
time-consuming task. Large amounts of images demand the availability of target objects for 
acquisition. This is a kind of luxury we usually do not have in the context of automatic inspection 
of complex mechanical assemblies, such as in the aircraft industry. We focus on using deep 
convolutional neural networks (CNN) for automatic industrial inspection of mechanical assem-
blies, where training images are limited and hard to collect. Computer-aided design model 
(CAD) is a standard way to describe mechanical assemblies; for each assembly part we have 
a three-dimensional CAD model with the real dimensions and geometrical properties. Therefore, 
rendering of CAD models to generate synthetic training data is an attractive approach that comes 
with perfect annotations. Our ultimate goal is to obtain a deep CNN model trained on synthetic 
renders and deployed to recognize the presence of target objects in never-before-seen real images 
collected by commercial RGB cameras. Different approaches are adopted to close the domain 
gap between synthetic and real images. First, the domain randomization technique is applied to 
generate synthetic data for training. Second, domain invariant features are utilized while training, 
allowing to use the trained model directly in the target domain. Finally, we propose a way to 
learn better representative features using augmented autoencoders, getting performance close to 
our baseline models trained with real images. 

1 Introduction
Industrial inspection and quality control are major tasks in modern industries. With more 
complex mechanical systems being developed, automation of the inspection process becomes 
crucial. It helps to increase production speed and decrease human error rates. With the huge 
advancement in computer vision algorithms in recent years, industrial inspection is one of 
the important fields to apply its state-of-the-art methods on, the objective being to automate 
tiresome quality control operations.

Our work is addressing various problems of automating the process of visual industrial 
inspection. We develop algorithms that receive two-dimensional (2D) images and provide a diag-
nostic on the state of mechanical assemblies. Computer-aided design models (CAD) is a standard 
way to describe mechanical assemblies in industrial systems. For each mechanical assembly 
part, there is a 3D CAD model with real dimensions and geometrical properties. Whenever 
available, we exploit the CAD models of the assemblies.
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Particular objective treated in this paper is so called conformity check, i.e., verification of
the presence of assembled parts at the locations predefined by the CAD model of the assembly.
As a use case, we aim to verify the presence of three mechanical supports, shown in Fig. 1.
More precisely, we need to either confirm the presence of a mechanical support (classes 1,
2, or 3 from Fig. 1) or report its absence (defect). Subfigures (d) and (e) in Fig. 1 show two
examples of a background - absent of all three objects of interest.

We perform the control process with a robotic arm equipped with multiple high-quality 2D
cameras. These cameras enable two main functionalities of our system: localization and inspec-
tion. Localization is being performed using the wide field camera. We precisely localize the
effector with respect to the assembly it controls. To do that, we rely on an in-house-developed
CAD-based 2D 3D alignment method. Therefore, we obtain a relative pose of our sensor with
respect to the assembly being inspected (pose estimation). Figure 2 shows an example of a CAD
model (left) and the robot position relative to the CAD model in a simulation environment
(right). Therefore, while operating, our robotic system has information about

which mechanical support is being inspected at each moment. In other words, our system has
information about the part whose presence is being verified from a particular point of view.

After the localization phase, the inspection is done with a high-resolution camera with a
reduced field of view (FOV) that allows to capture the details and to observe the target elements
very finely. Knowing an approximate camera pose and the camera intrinsic parameters, CAD
model can be projected onto the image plane of the camera. This projection of the target object’s
CAD model provides an expected region of interest (ROI) around the target object. Figure 3
shows an example of RGB image captured by the 2D camera from the robot, and the correspond-
ing synthetic image from approximately the same point of view obtained by the CAD model.
Further, ROI of a target part can be observed on both images, in the form of two rectangles.

Starting from a full RGB image and using the ROI obtained by the 3D 2D CAD projection,
we crop a real image containing the area where the inspection item is expected to be found.
This cropped image is then fed to a classifier to output a label for one of our target objects,

Fig. 1 (a) (c) Sample images of the three target objects used in this work, and (d), (e) the back-
ground class.

Fig. 2 (a) Example of a CADmodel for a complex mechanical assembly, (b) the simulation system
where the planned positions of the robot relative to the mechanical assembly are calculated.



or background which represents the fact that none of the known parts (classes) is recognized.
Figure 4 shows the general pipeline of the inspection phase of our approach.

In this work, our goal is to make use of the huge advancement in the field of deep learning.
Particularly, we strive to use state-of-the-art deep convolutional neural networks (CNN) to rec-
ognize the presence/absence of target objects in 2D images. The typical approach to achieve this
goal would be to manually collect and annotate a lot of training data and use it to train state-of-
the-art object detection or classification models (supervised learning approach).

However, in the context of industrial inspection, data collection is challenging for several
reasons. First, the huge number of different objects in mechanical assemblies makes it difficult
to manually collect high quality images for each part. Second, most of the parts are very spe-
cialized for certain mechanical assemblies and industries, which will not be helpful in different
problems in the future, and will require collecting new data for each new case. Third, there is a
class imbalance problem caused by the different number of elements in mechanical assemblies.
For example, screws and clamps are parts that can be found almost everywhere in an airplane
engine, while some other parts may appear only once in the engine. In addition, there is no easy
and practical way to acquire large amounts of images with defects, i.e., when the object is miss-
ing (false classes). Finally, manually annotating and preparing the data for training is a laborious,
time-consuming, and expensive task.

For all these problems, we need to find a way to train CNN models with a small number of
collected images or to find a different approach for data collection or generation. As mentioned,
we have a CAD model for each element in the assembly with the real dimensions and its position
relative to all the other elements in the mechanical system. Thus, trying to use 2D renders of 3D
CADmodels to generate training data is an intuitive approach as it already shares many attributes

Fig. 4 Inspection pipeline based on multiclass classification.

Fig. 3 (a) An example of a real image captured by the robot and (b) the corresponding synthetic
image generated from the reference 3D CAD model using estimated camera pose and intrinsic
parameters. ROI around the target part is indicated with the rectangles in both images.



with real objects. In addition, by rendering training images from a reference 3D model, we 
implicitly obtain perfect annotations for each object in the generated data.

However, using CAD models of mechanical assemblies to generate synthetic data is a chal-
lenging task. The most difficult problem is the domain gap between features learned from 
synthetic data and those extracted from real images. This is a nontrivial problem, and many 
approaches were proposed to overcome this issue by means of domain adaptation, domain ran-
domization, domain generalization, and more.1–6 The problem can be considered as a severe case 
of dataset bias; however, realistic might be the renders, there will still be a difference between 
renders and real photographs, which will affect the learned features and prevent the model from 
generalizing knowledge on real images.

Another challenge is the nature of the provided 3D CAD models. Unlike 3D models for 
artistic scenes, CAD models of mechanical assemblies lack many crucial visual details, such 
as color, texture, material properties, etc. In addition, any deformable or disposable parts such 
as cables or plastic caps will be missing in a CAD model. The simplistic nature of 3D CAD 
models leads to nonrealistic rendering, which widens the domain gap and makes it more 
difficult for deep learning models to generalize the features learned from synthetic data to real 
photographs.

In this work, two approaches are adopted simultaneously to solve the problem of domain gap 
between synthetic and real images. The first approach we call the “data-based approach,” 
i.e., narrowing the domain gap by improving the synthetic data used for training. In Sec. 3, 
we will introduce our rendering pipeline and discuss the details of the domain randomization 
approach,4,7–10 which is a key-stone in our proposed solution.

The second approach is what we call “model-based approach,” i.e., to improve deep CNN 
models and explore different ways for training to learn domain-invariant features that generalize 
well between synthetic and real domains. Section 4 shows the details of training deep image 
classification models with synthetic data and draws some conclusions about the limitations 
of these models. After that, we try to dig more and understand the features learned by our clas-
sification model. This leads to our proposed approach to learn better features representations by 
means of self-supervision, namely, augmented autoencoder (AAE), which helped to achieve 
competitive results to our baseline model trained on real images. Finally, our findings and results 
are discussed in Sec. 5, and the conclusion is given in Sec. 6.

2 Related Work

Our research group is aiming to automate the industrial visual inspection procedures by propos-
ing artificial vision algorithms able to perform such tasks. Our inspection algorithms are exploit-
ing 2D images and 3D point clouds and are running on a robotic platform or on a handheld tablet. 
In previous works, we were dealing with industrial visual inspection challenges by employing 
conventional image processing11,12 and 3D point cloud processing techniques13,14 or recent deep 
learning architectures on 3D point clouds.15,16 In this work, as well as in Ref. 17, we are focusing 
on using deep CNN models on 2D images (both real and synthetic). This paper is an extension of 
our previous paper published in Ref. 18.

Inspection based on 2D image analysis has been of interest in many works. The authors in 
Ref. 19 have presented a CAD-based conformity check of mechanical parts by comparing an 
image generated from a CAD model with an image acquired with a 2D camera, using primitives 
extracted from the contours. The work in Ref. 20 presented a visual detection and verification of 
exterior aircraft elements.

Machine learning modules that perform classification and object detection can be very useful 
bricks to solve various problems in vision-based industrial inspection. The authors in Ref. 21 
presented a method for automatic visual inspection of dirties, scratches, burrs, and wears on 
surface parts. The authors in Refs. 22 and 23 have presented a new approach to detect and inspect 
screws on aircraft fuselage images acquired by an UAV. The work in Ref. 24 has presented a deep 
CNN-based method to identify and classify four types of visible surface defects on semicon-
ductor wafers. Main challenge for deep CNN systems in industrial inspection is lack of data, 
because assemblies are not often available for data acquisition. To the best of our knowledge, 
this challenge is yet to be solved.



2.1 Deep Domain Adaptation
Domain adaptation can be considered as a particular case of transfer learning25 that leverages 
labeled data in a source domain to learn a classifier for unseen or unlabeled data in a target 
domain.1 It is assumed that the task is the same, i.e., class labels are the same in both domains. 
The source domain is assumed to be related to the target domain but with different data dis-
tribution, causing what is called “domain gap” or “domain shift,” which significantly degrades 
performance at test time. Domains can be images from different cameras, images from cameras 
versus sketches, artistic images, and clip arts or images from visible spectrum versus near-infra-
red sensors.26–31

The authors in Refs. 2, 3, and  32 noted that the results obtained with deep convolutional 
activation features even without any adaptation to the target domain are significantly better than 
the results obtained with domain adaptation methods based on handcrafted features. This sug-
gests that deep neural networks learn more abstract and robust representations that are general 
and can decrease the domain bias.1,3,29,32,33

The authors in Ref. 3 utilized deep features directly to train and test a classifier on different 
domains. Comparing the results to state-of-the-art methods using SURF handcrafted features, 
they proved how deep features are more general and can decrease the domain bias without 
explicit adaptation. The work in Ref. 30 proposed a framework for domain adaptation using 
a sparse and hierarchical network. It jointly learns a hierarchy of deep features together with 
transformations that address the mismatch between different domains. The proposed approach 
in Ref. 34 extracted the convolutional activations from a CNN as the tensor representation, then 
performed tensor-aligned invariant subspace learning to realize domain adaptation, outperform-
ing state-of-the-art approaches based on traditional handcrafted features.

Another kind of solution is to embed domain adaptation into the training process to learn a 
deep feature representation that is semantically meaningful and domain invariant. One of the 
intuitive approaches is to combine the source and labeled target data and train the model with 
them. However, when only few labeled data in the target domain are available, this approach 
results in overfitting to the source distribution.33 Another intuitive approach is to pretrain the 
deep network with source data, then fine-tune the network with labeled target data to decrease 
the shift between the two domains. The authors in Refs. 31, 32, and 35 experimented for best 
practices to fine-tune model layers with target domain data. The work in Ref. 36 proposed a two-
stream network for source and target data and considered that the weights in corresponding 
layers are not shared but related by a weight regularizer to account for the differences between 
the two domains.

Autoencoders37 found their way in the application of domain adaptation as means of 
learning shareable deep features.38–40 For example, in Ref. 38 the authors proposed extracting 
a high-level representation based on stacked denoising autoencoders that can represent 
both the source and target domain data. Thus, a linear classifier that is trained on the labeled 
data of the source domain can make predictions on the target domain data with these 
representations.

2.2 Deep Convolutional Neural Networks with Synthetic Data
The use of synthetic data has a long history in computer vision. For example, Refs. 41 and 42 
used 3D models as the primary source of information to build object recognition models. More 
recently, Refs. 43 to 46 used renders of 3D CAD models as a source of labeled data. Usually, they 
were trying to design special features for matching synthetic 3D object models to real image data 
or to use HOG and SIFT features and linear SVMs for classification.

Due to the data-hungry nature of deep CNNs, synthetic renders of 3D models are a very 
attractive source of training data in many applications, such as object recognition, detection, 
instance segmentation, optical flow estimation, action recognition, and more.5,6,31,47–49 

Unfortunately, synthetic rendering pipelines are usually unable to reproduce the statistics of their 
real world counterparts due to the “domain gap” between synthetic and real data, resulting in a 
poor performance as observed in Refs. 4 6 and 31, for example. Existing approaches focus either 
on mapping feature representations from one domain to the other or learning to extract generic



features that are invariant to the domain from which they were extracted. Our work is part of the 
second approach as we try to learn domain-invariant features directly from synthetic data.

One of the intuitive solutions could be to generate very realistic renders so the network is 
confused between rendered and real images.47,50–52 However, this approach is very time-consum-
ing and computationally demanding. Also, it requires full knowledge of the target domain and 
modeling for all the details, such as color, texture, material, lighting, etc., which are not available 
in many applications.4,5 In addition, even when having such expensive realistic renders, trained 
models will still suffer from the domain gap.4,6

Therefore, many approaches were proposed to solve the problem of domain gap with non-
realistic renders using a combination of model-based and data-based approaches. For example, 
the authors in Ref. 5 used synthetic data only to train deep object detection models for Pascal 
VOC classes and investigated the importance of low level cues, such as color, texture, pose, and 
context. In Refs. 50 and 51, the authors tried to have more photorealistic rendering and simulated 
the context using real images as background for their images. Similarly, Refs. 48 and 49 used 
photorealistic renders and tried to place target objects in the right context in real scenes.

The authors in Ref. 6 showed that it is feasible to train modern object detectors with synthetic 
images. Using faster-RCNN,53 they trained the base model with ImageNet, freezed feature 
extraction layers to these generic layers pretrained on real images (ImageNet), and trained only 
the remaining layers of object detector with plain OpenGL rendering. Using this idea, the fea-
tures learned from the target domain (real images) were used to train the model on the source 
domain (synthetic images), which helped them to get competitive results to models trained on 
real images. This trick is tested in our work, as will be discussed in Sec. 4.1.

2.3 Domain Randomization

One of the promising techniques for domain adaptation using the data-based approach is domain 
randomization,4,7–10,31 which is a simple technique for training deep models on synthetic images 
that can transfer to real images directly. This can be achieved by randomizing rendering appear-
ance parameters that describe the objects, such as color, texture, lighting conditions, camera 
positions, and more.4,7,8 With enough variability in the rendered training data, the real world may 
appear to the model as just another variation of what it saw during training, and hence it can be 
considered as a domain generalization technique.4

The authors in Ref. 4 proposed the first successful application for domain randomization that 
was able to train a deep model with simulated synthetic data and test on a real-world situation. 
They trained an object localization model in a robotic simulation environment with nonphotor-
ealistic renders and tested the trained model in a real robot with real objects. This was the first 
trial that closed the domain gap without using any real images during training. The work pub-
lished in Ref. 10 successfully applied a similar technique in a robotic simulation environment 
and tested in real scenes, but they used the weights of models pretrained on real images.

In Ref. 7, the authors further demonstrated this approach by training an object detection 
model to recognize a set of simple geometric shapes (sphere, cylinder, cube, etc.). They proved 
that an object detection model can be trained using a synthetic dataset that is not photorealistic 
and can perform well on real images with completely different appearance. Furthermore, they 
proved that the model trained with synthetic data using domain randomization outperforms the 
model, which is fine-tuned on small domain-specific dataset.

To test the domain randomization idea on nontrivial objects in outdoor scenes with a real-
world environment, the work in Ref. 8 investigated the problem of car detection. They trained an 
object detection model on synthetic data and tested it on KITTI dataset.54 When training only on 
synthetic domain-randomized data, they achieved competitive results on the real world task, but 
it could not be better than training on real images (from KITTI training data). However, fine-
tuning the model trained on synthetic data with real images yields better results than training on 
real KITTI data alone. In this work, they used random textures from real images and added some 
random false objects that they called “flying distractors.” The authors in Ref. 31 applied the same 
ideas for people detection and human pose estimation.

The work in Ref. 9 extended the idea of domain randomization and introduced structured 
domain randomization for object detection. It is simply a variant of domain randomization



that takes into account the context of the scene, unlike normal domain randomization that 
randomizes everything including the position and scale of the object. Structured domain 
randomization places objects and distractors randomly according to probability distributions 
that arise from the specific problem at hand. Therefore, structured domain randomization 
enables the neural network to take the context around an object into consideration during 
detection.9

3 Synthetic Data Generation

As discussed in Sec. 1, we are adopting two approaches for bridging the reality gap between 
synthetic and real domains, namely, (1) model-based approaches and (2) data-based approaches. 
This section discusses the data-based approach by explaining the techniques used to generate the 
synthetic training dataset.

3.1 Rendering Pipeline

We adopt the method of domain randomization,4,7–10,31 which is a simple technique for training 
deep models on synthetic images that can transfer to real images directly. Domain randomization 
is our choice due to its simplicity, generality, and suitability for our problem as we do not have 
texture or material information in the CAD models used. In addition, domain randomization 
achieved state-of-the-art results for object localization and detection when training the models 
completely with synthetic data without freezing weights of pretrained models or further fine-
tuning the trained model with real images.4,9

To apply the domain randomization approach, a rendering pipeline is implemented using 
OpenGL55 that allows to control all variants of rendering parameters, such as color, camera posi-
tion and FOV, lighting condition, object texture, and material modeling (diffuse and specular 
reflection parameters).

OpenGL is a cross-platform library for interfacing with programmable GPUs for the purpose 
of rendering real-time 3D graphics. Its use is common in games, CAD, and data visualization 
applications.55,56 The whole OpenGL rendering process is out of the scope of this paper, but we 
will discuss the appearance parameters we control in the vertex and fragment shaders using the 
OpenGL Shading Language (GLSL).

3.1.1 Randomized model parameters

The reason why materials look the way they do in real life is often the result of very complex 
interactions between light and the microscopic structure the material objects are made of. It 
would be too complicated to simulate these interactions in a computer graphics model, therefore, 
we use mathematical models to approximate them instead. We use low-fidelity rendering, i.e., we 
are not trying to model the material of the rendered objects with many details or generate photo-
realistic renders. Therefore, two simple shading models are used to generate our data, namely, 
Phong shading57 and Cook-Torrance shading58 models.

Phong shading model is an empirical model of the local illumination of points on a surface.57 

It treats reflection as consisting of three components: ambient, diffuse, and specular. The ambient 
component represents light that is assumed to be uniformly incident from the environment and 
that is reflected equally in all directions by the surface. The diffuse and specular components are 
associated with light from specific light sources. The diffuse component represents light that is 
scattered equally in all directions. The specular component represents highlights, light that is 
concentrated around the mirror direction.

The basis of the Cook Torrance model is a reflectance definition that relates the brightness of 
an object to the intensity and size of each light source that illuminates it.58 The model predicts the 
directional distribution and spectral composition of the reflected light. Therefore, this algorithm 
can model metallic materials better than Phong and avoid what the author called “plastic appear-
ance” of the Phong model.58 Figure 5 shows sample output of our objects using both shading 
models.



Using these shading models, we randomize the following parameters in the rendered objects:

• Object color: We sample a color value for each of the RGB channels from a uniform
random distribution. The values of color channels in OpenGL are scaled values (sRGB),
which means the minimum is 0.0 and maximum is 1.0. We use what we call “grayish
color.” To obtain grayish colors, the value of one channel is randomly sampled from the
range of [0.0, 1.0]. Let us call this value R for the red channel. Then, the blue and green
channels values are randomly sampled so they are within a distance of 0.1 from the chosen
R value, i.e., B ¼ Rþ randð−0.1; 0.1Þ, where randð−0.1; 0.1Þ uniformly samples a value
between −0.1 and 0.1. The reason for choosing the colors to be grayish is that our objects
are all metallic objects, and grayish colors represent metallic materials.59,60

• Specular reflection coefficient: This can be described as the ratio of light reflecting from
the surface. For example, metals reflect a higher ratio of incident light than wood, that is
why metals are shiny. Uniform random value is chosen in the range of [0.1, 0.5] for Cook
Torrance model and range of [0.5, 1.0] for Phong model.

• Camera FOV: This value represents the zoom in the camera model. In our application, a
uniform random value is chosen from the interval [20, 35], knowing that higher FOV value
means the object is further (smaller).

• Shininess of the surface: The higher the shininess value of an object, the more it properly
reflects the light instead of scattering it all around, and thus the smaller the highlight
becomes. Uniform random value is chosen from the range of [2.0, 16.0].

• Roughness of the surface: This is used in Cook Torrance model only and sampled from
a range of [0.2, 0.8].

• Fresnel complex coefficients: Light reflecting off metallic surfaces is described by
the Fresnel equations,61,62 which are controlled by the complex index of refraction
η ¼ nþ ik. In the Cook Torrance model, we randomly simulated metallic and nonmetallic
behaviors by controlling the values of n and k. n is randomly sampled from the range
[0.5, 2.0], and k from the range [0.5, 7.0].

3.1.2 Procedural texturing

Textures are a central part in rendering, they can provide a greater level of detail to surfaces. In
computer graphics, textures are 2D images, and the process of texture mapping (or UV mapping)
is to wrap the 2D image to the surface of the 3D model. In our application, no such texture
information is available; hence, we use the approach of generating random procedural textures.

Procedural textures take an entirely different approach than UV mapping. Instead of creating
an image by defining a large, unchanging block of pixels, procedural texturing creates the texture
from the ground up.63 This is where the term “procedural” comes from. The texture is defined

Fig. 5 Sample renders with Phong and Cook Torrance models. (a), (b) Phong model and (c),
(d) Cook Torrance model. We can notice that the effect of the specular component is stronger
in the Cook Torrance model.



only by the mathematical formula (procedure) needed to create it. With this formula, the algo-
rithm is able to create the texture at any scale, in any orientation, and extending as far as needed.
The advantage of this approach is low storage cost, unlimited texture resolution, and easy texture
mapping.63,64 In our application, the procedural function will take a 3D coordinate and give a
color back.63 For each object, we randomly select one of the following textures:

1. 3D Perlin noise (Simplex).65,66

2. Random uniform color disturbance (like salt and pepper noise).
3. No noise (just color, which is by itself randomly selected as mentioned before).

Perlin noise is a procedural texture primitive, a type of gradient noise used by visual effects to
increase the appearance of realism in computer graphics. It is often used in computer graphics to
make computer-generated visual elements (such as object surfaces, fire, smoke, or clouds)
appear more natural, by imitating the controlled random appearance of textures in nature.65–67

The texture of the two middle objects in Fig. 6 is examples of Perlin noise.
In our application, we use the 3D Perlin noise function, which takes the 3D coordinate of

the vertex and returns a color from the procedure. The Perlin noise implementation by Stefan
Gustavson68 was used in this work, as it is written in C, and can be used directly in our GLSL
shader. Inside Perlin functions, scale and orientations are also randomized, and there is
a possibility to have intersection between different scales of noise, so we have a bigger variety
of random textures.

3.1.3 Visibility sphere to sample camera views

Final parameter controlled during rendering is the virtual camera position. In our application, we
simulate the camera movement while assuming the object position is fixed. We aim to perform
robotic-based inspection, where the robot camera pose is known relative to the reference CAD
model, and hence, relative to the real mechanical assembly. To choose the camera positions
during rendering, we simulate the robot camera pose by sampling the camera positions from
a sphere around the target object that we want to render (Fig. 7).

By sampling the spherical coordinates parameters in a certain range and with reasonable step
size, we obtain camera poses that simulate all possible positions of the robot camera. This
approach helps to obtain objects’ viewpoints distributions similar to real images. For example,
it is not possible for the robot to look at some objects from a certain point of view, because there
are other objects that occlude the target object when observed from these views.

In our application, we fix the radius of the sphere to 60 cm, which is the maintained distance
of the robot to the real assembly, and sample the azimuthal and polar angles with certain step
size.69 The range of the angles differs between objects as their default orientations in CADmodel
are different, so these ranges are set manually for each target object. Figure 7 shows a visuali-
zation of the sampled sphere around the CAD model of one sample mechanical assembly. Note
that we are randomizing the FOV values while rendering, so even when using constant radius of
the sphere, objects scales are still randomized in the generated renders.

Fig. 6 (a) (d) Samples of rendered objects after applying domain randomization.



3.2 Synthetic Dataset Generation

After generating the renders of target objects (Fig. 6), we create a dataset to be used in the train-
ing of our classification models. Following, Refs. 6 and 7 we are randomizing the background of
rendered objects by placing our renders on top of randomly selected real images that are related
to some industrial environments. In addition, we tried using the idea of “flying distractors” intro-
duced in Ref. 7. Namely, we randomly position some of the rendered “context objects” around
the rendered target objects. Wewill discuss the effect of adding these context background renders
in Sec. 5. In addition to the classes of target objects, we also generate images for a “back-
ground” class.

The steps to generate our synthetic dataset are shown in Fig. 8, and examples of the generated
synthetic dataset are shown in Fig. 9. Having rendered target objects, and real images as back-
ground, we form our dataset for classification as follows:

1. Randomly rotate the background image, then crop a patch in a randomly selected position,
with random box size. Then, the cropped patch is resized to 1296 × 1024.

2. Randomly place rendered context objects (flying distractors) in the background image.
3. From the background image, randomly crop four patches (from random locations, and

with random scales and aspect ratios). Resize the cropped patches to 500 × 500.
4. Randomly place the renders of target objects on the patches. We add one class to each

crop, in addition to one crop without target objects representing the “background” class
(Fig. 8).

In general, we can generate enormous amount of synthetic images for each object from our
rendering pipelines. However, we have limited time and hardware resources to process the data
and train our models. Therefore, we limited the number of our training images for each object to
the number of real images we have for the real background images. In our experiments, we used
13,680 real background images, each of which was used to generate four patches (three classes,
and background). Therefore, we have a total of 54,720 images for training with perfectly bal-
anced number of images for each class. In our experiments, we call this set of images 55K. For
more experiments, we randomly sampled half the images from our 55K set, and we call it 27K
set. The 27K set has 27,360 images with balanced number of images for each class. Finally,
to have an even smaller set, we randomly sampled 15,000 images from 55K set, and we call

Fig. 7 Example of visibility sphere to sample camera viewpoints during rendering. Green dots are
sampled camera locations, and the red object is the target object to be rendered. While rendering,
the CAD of the target object is loaded and the context (here in gray) is not loaded for rendering.



this set 15K, which also has a balanced number of images for each class. In all our experiments,
we always keep randomly sampled 1000 images as validation set and use the rest for training.

4 Searching for Domain Invariant Features for Domain Generalization

As discussed in Sec. 1, just training the deep models with synthetic data will cause a “domain
gap” between source domain (synthetic images) and target domain (real images). One of the
solutions to tackle this problem is using the domain randomization technique for data generation
as explained in Sec. 2.3. In this section, we try to close the domain gap using the model-based
approach, i.e., searching for techniques to train our image classification model to learn domain
invariant features that can generalize well between the real and synthetic domains.

4.1 Utilizing Target Domain Features

The authors in Ref. 6 showed that it is possible to effectively train modern object detectors
with synthetic images only. Using faster-RCNN, they trained the base model (feature extractor)
with ImageNet, then froze all feature extraction layers to these generic layers pretrained on real
images, and trained only the remaining layers of object detector with plain OpenGL renderings.6

Using this trick, the features learned during pretraining from target domain (real images)
were used as an initialization for training the model on source domain (synthetic images),

Fig. 9 Samples of the synthetic dataset used for training: (a) (c) rendered target objects, and
(d) an example of the “background class” with no target objects.

Fig. 8 Synthetic dataset generation process.



so the detection of objects in target domain is easier as now the features used are from the same 
domain. The mentioned authors obtained results competitive to the models trained on real 
images.6

In our approach, we applied this idea on image classification and evaluated its effectiveness 
for our problem. However, we found that this approach could not solve the domain gap problem 
for our classification model as will be discussed in Sec. 5.3.1. The difference between our 
work and the work in Ref. 6 is that their CAD models contain the colors of the real objects, 
and their objects have different shapes and colors, so they are easier to discriminate than our 
supports which have the same metallic texture and similar geometry. Nevertheless, we did use 
the idea of domain randomization, which helped to overcome the problem of lack of textures and 
colours.

4.2 What Deep Classification Models Really Learn
To find better features as initialization for our model, we need to first understand the features 
learned when pretraining with ImageNet and why such features are not good to represent our 
objects. As deep CNNs are learning their weights directly from the huge amount of data seen 
during training, many researchers tried to understand what these learned features are, through 
different layers. The work in Ref. 70 suggests that along different layers, networks seek to iden-
tify increasingly larger patterns in input image. For example, having a car image, the first layer 
will learn simple edges and contours, then deeper layers learn more complex shapes such as a car 
wheel until the object can be recognized by the final layer.70

Recent works tried to investigate this assumption, especially the work in Ref. 71, which tried 
to answer an important question: how do neural networks classify images: based on shape or 
texture? The authors came up with an interesting experiment. Using style transfer,72 they gen-
erated images with different textures than the object in the image and tested the performance of 
several deep classification models. As an example, when tested on an image of texture of an 
elephant and on an image of a cat, state-of-the-art image classification models are able to 
correctly classify the texture image as “elephant” and the image with the cat as “cat.” However, 
when using the texture of an elephant projected on a cat, all state-of-the-art classifiers recognize 
the image as “elephant,” which clearly shows the bias of deep models towards the texture and 
not toward the shape of objects.71

To overcome this issue, the authors proposed to generate training data with random textures 
for all objects using the style transfer methods. With this idea, they could overcome the issue of 
classifying the objects depending on the texture, in addition to improving the overall accuracy of 
classification when testing with original testing images.71

The work in Ref. 73 proved the findings from Ref. 71 by introducing a deep network that 
has the same idea as bag-of-features and comparing it to state-of-the-art image classification 
models. They found that the network that models a bag of local deep features worked well 
and had comparable results to state-of-the-art classification models trained end-to-end with 
ImageNet. This proved the idea that deep models are not necessarily looking at the global 
shape of the object and using local patches are enough for classification.73 They further proved 
this by testing on a set of scrambled images that are difficult for humans to recognize and found 
that state-of-the-art deep neural networks can still recognize scrambled images very well, which 
further proves the assumption that deep models do not actually recognize objects by their 
shapes.73

4.3 Augmented Autoencoders
Autoencoders are a family of neural networks for which the input is the same as the output. They 
work by compressing the input into a latent-space representation, then reconstructing the output 
from this representation. Therefore, it can be considered as a dimensionality reduction technique 
for high dimensional data.74 Convolutional autoencoder consists of an encoder and a decoder, 
both are CNNs. The loss function is a sum of the pixelwise L2 distance. The goal of using such 
architecture is to learn the latent representation, which is considered as the most important 
feature set that the model can use to reconstruct the image.74



Fig. 10 AAE to learn better geometrical features representation.

Denoising autoencoder75 defines a modified training process. Artificial random noise is 
applied to the input images while the reconstruction target image stays clean. The main 
assumption is that denoising autoencoder produces latent representations which are invariant 
to noise because it facilitates the reconstruction of clean images.76

Using this idea, the authors in Ref. 76 introduced the concept of AAE. Their goal was to learn 
3D orientation of textureless objects for 6D object detection from RGB images. Using synthetic 
rendering and the idea of domain randomization, they generated a high variability of source 
images with extensive augmentation, while keeping the clean image to be reconstructed (clean 
target image). The idea behind this approach is to control what the latent representation encodes 
and which information to be ignored.76 Their goal was to force the model to learn geometrical 
transformation for the rendered objects, then apply it to real images to estimate the orientation of 
objects in real images.

4.4 Learning Better Features Representation by AAE

Inspired by the approach of AAE,76 we try to adapt this idea to our use case of learning geo-
metrical representation of the mechanical parts. Ideally, we hope that latent features learned by 
the autoencoders can model the important geometrical features of the objects. Further, when 
training our classifier, these features will be discriminative enough so the classifier can recognize 
objects in real images depending on their shape and ignore all uninformative cues such as 
texture, color, and background.

Figure 10 shows our training strategy for the AAE. The input images are similar to what was 
used in classification, a rendered object on top of random real background. Output images 
contain only the object centered in the image with black background.

Figure 11 shows some examples of the input images (first row) and output images (second 
row). We note that both input and output images have the same size, and the object can have 
random location and scale in input images, but objects in target images are centered in the middle 
of the images with the maximum possible scale, and without any background (black back-
ground). Figure 12 shows sample input and output images after training our AAE for 15 epochs.

The goal of using AAE is to learn better features representation for our objects. After learning 
such features, we can use the weights of the encoder network as pretrained weights better than 
the weights learned from ImageNet. To do so, we remove the decoder network and replace it with 
a classification layer (softmax layer), then train this model for our classification task. Figure 13 
shows this approach, and the results of this method will be discussed in Sec. 5.4.

The main goal of our approach is to find a domain agnostic features that can be learned from 
the synthetic dataset while training, to help our classification model discriminate between our 
mechanical supports in real images. As mentioned in Sec. 4.1, the deep classification models 
pretrained with ImageNet can be used as a generic feature extractors which belong to the target 
domain (real images), which can close the domain gap between synthetic and real domains. 
However, after testing this approach, we found that these generic ImageNet features are not 
helpful to differentiate between our mechanical objects, and there is still a big domain gap (see 
Sec. 5.3.1). After investigating what deep classification models really learn while training, we 
discovered that all state-of-the-art classification models are looking for the features that make 
their task easier. They are focusing on the texture of objects as the best way to discriminate 
between different classes in ImageNet dataset.



Fig. 12 Examples of reconstructed images using the trained AAE. Input images (top row) are from
the validation set, and bottom row shows the corresponding output images generated by the AAE.

Fig. 13 AAE is trained, then the decoder is replaced by a classification layer, and the weights of
the encoder network are used as initialization for training image classification models.

Fig. 11 Examples of data used to train our AAE: (a) (c) input images and (d) (f) the corresponding
output images to be reconstructed by the autoencoder.



Learning the color and texture features to discriminate between objects can be good for 
certain applications; however, for our application these are the worst features to learn as our 
synthetic renders are missing these cues. Therefore, we introduced the AAE idea as our approach 
to force the model to focus on more helpful features to discriminate between mechanical objects. 
The task and the input and output data fed to the AAE (Figs. 10 and 11) are designed to force the 
AAE to focus on the most discriminative features in our mechanical supports: geometrical fea-
tures. Our AAE is learning good features while trying to perform its task: reconstruct an output 
image containing the object alone, with no background. In addition, the model is forced to ignore 
any features related to the background, the color and the texture of the objects as all these cues 
are rendered with highly randomized variations. Namely, there is almost no two samples with the 
same color or texture or background. Sample output from our AAE model shown in Fig. 12 
demonstrates that our strategy is working as expected. Namely, it can be noted that the objects 
in the output images (second row) do not preserve the color or texture of input objects (first row), 
but the model rather tries to reconstruct the shape of the objects in white and gray colors.

5 Results and Discussion

In this section, we explain all our experiments using the data-based and model-based approaches 
and discuss the results of each experiment. We start by explaining our experimental setup, then 
perform a series of experiments to test some assumptions. For each experiment, we build on the 
conclusion from its results and use the best setup in the following experiments.

5.1 Experimental Setup

5.1.1 Real images for testing

All the tests are done on the same dataset made entirely of real images. In this section, we 
describe this dataset. We collected a set of 179 RGB images, each with an ROI around the target 
object. ROIs are obtained from the reference CAD as explained in Sec. 1. To generate images 
that contain our objects for classification, the ROI boxes were used to crop parts of the images 
that contain the target objects. To increase the number of samples, in addition to the original crop 
of the object, four transformations are applied: horizontal and vertical flip, rotation 90 deg clock-
wise and counterclockwise.

In addition, to make a testing set for the “background” class, a set of seven boxes with ran-
dom positions and sizes are cropped from each image for each object in the image. The positions 
of “background” boxes are selected so they have no overlap with any of the target objects.

Finally, all crops are resized to 500 × 500. The total number of real images for testing is 2148. 
Figure 1 shows samples of the generated test set.

5.1.2 Training and testing setup

For the classification model, InceptionV377 is used as the base model for all the experiments. 
The reason for choosing InceptionV3 is that it is one of the state-of-the-art models for image 
classification, in addition to its reasonable size, allowing for fast training with different configu-
rations. All experiments were done using Keras78 with Tensorflow backend.

Training is done using Nvidia GeForce GTX 1060 with 6 GB of RAM. Unless otherwise 
stated, batch size of 32 images is used when freezing feature extractor layers, and batch of 20 
images when training all layers. Input image size is set to 256 × 256. SGD optimizer was used 
with learning rate of 0.0001 and momentum of 0.9 for all experiments, and training run for 
maximum three epochs. For the learning rate value, we experimented with few different values 
and picked those which gave the best behavior of our models. We used a small learning rate for 
the classifier as our batch size is relatively small. Another reason is preserving the old features 
from the pretrained model while fine-tuning.

For the AAE, we used InceptionV3 as the encoder, while for the decoder we used a simple 
network consisting of successive convolutional and upsampling layers that can reconstruct the 
image with the same input size.



Training data Train/freeze
Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

Real (two splits) Train all 0.9/0.77/0.79 0.87/0.99/0.92 0.87/0.46/0.53 0.99/0.74/0.82 0.86/0.90/0.88

Real (two splits) Freeze all 0.48/0.49/0.45 0.91/0.88/0.89 0.00/0.00/0.00 0.53/0.91/0.67 0.48/0.2/0.23

Note: The bold value represents the best F1-score (higher is better) in the experiment.

Training of the AAE is done using Adam optimizer with learning rate 0.0003, and the train-
ing runs for 15 epochs. For AAE, the learning rate and number of epochs are higher than those 
for the classifier, as the AAE is trained from scratch. Input and output image size is 256 × 256. 
While training, further image augmentation is done for source images, which includes randomly 
changing the brightness, and adding random colored patches on top of the image to introduce 
random occlusion.

To evaluate the classifier quality, we use precision, recall, and F1-score metrics.79 All evalu-
ation results are obtained using the Scikit-Learn Python library.80 To get the average results 
between all classes, results reported in this paper are using “macro” averaging between all 
classes.81 Macroaveraging calculates metrics for each label and finds their unweighted mean, 
which treats all classes equally. For comparison between different methods, we consider 
F1-score, i.e., when stating that method X is better than method Y, we mean that F1-score of 
X is higher than Y.

5.2 Training with Real Images as Baseline

To get baseline results, we first train the model with real images. This will be our reference, and 
all models trained with synthetic data will be compared to it. The training is done on crops of 
real images as discussed in Sec. 5.1.1. For training and testing, the data are split to two parts 
(50% 50% split), training is done with first split and testing with the other and vice versa, then 
the results from the two splits are averaged to get the final baseline results (two-fold cross-
validation).

The InceptionV3 model is pretrained with ImageNet. We test two configurations, one is train-
ing all layers of the InceptionV3 network (initialized with ImageNet pretrained weights), and the 
other is freezing all convolution layers of the network, i.e., utilizing the ImageNet pretrained 
weights, and just letting the final fully connected layers to train. The evaluation metrics used 
are described before (precision/recall/F1-score), and they will be shown in this order in all 
our tests.

Table 1 shows the results when training with real images. It is evident from the table that 
freezing the ImageNet pretrained layers is not helpful relative to training all the layers, especially 
in “class 1" where we obtain 0.0% when freezing all layers. These results are expected, as the 
shape of our mechanical supports are very different from the images in ImageNet dataset, so the 
deep features learned from ImageNet are far from the features needed for our classes. In addition, 
training and testing splits are from the same domain (real images domain). Therefore, allowing 
the model to freely train all its layers gave better results. It is also important to note that “class 1” 
got a low F1-score even when training all layers, which indicates the difficulty of this class. 
As training all layers with real images produced the best results (79% F1-score), we consider 
this model as our baseline and compare all methods to it.

5.3 Utilizing ImageNet Pretrained Features
In this section, we discuss our experiments to test the effectiveness of different configurations to 
apply standard image classification by training with synthetic data. Following Ref. 6, we test the 
effect of freezing different layers of our model and compare it to training all layers. Then, we test 
the effect of changing some parameters in the synthetic data used for training to find the best 
configurations for domain randomization.

Table 1 Results of training InceptionV3 with real images (two splits).



5.3.1 Freezing different layers of feature extractor

Following Ref. 6, we test the effect of freezing and training different stages of the ImageNet
pretrained InceptionV3 network while training with synthetic data. Inception network consists
of a number of “Inception blocks.”77 Here, we test the effect of freezing all layers, freezing all
layers except last Inception block, freezing all layers except last two Inception blocks, and train-
ing all layers. In all cases, the last fully connected layers are trained. We used 55K synthetic
training images rendered using the Phong illumination model.

Table 2 shows the results of these tests and compares it to the baseline model. We can see that
the average F1-score is improving when training more Inception blocks, starting from the worst
when all layers are frozen, then improving a little when training the last Inception block, and
improving by a large margin when the last two blocks are trained. Finally, the best result comes
when all layers are trained allowing the model to adapt all its weights to the training data.

Unlike object detection models shown in Ref. 6, it seems that classification models are
affected less by dataset bias when trained with synthetic data. The results are even improving
as we loosen the constraints in terms of freezing layers. We think that the reasons are twofold.
First, there is a big difference in the shape between our mechanical supports and the objects in
ImageNet dataset, which is not the case in Ref. 6. Another reason could be the domain randomi-
zation strategy used with training data. Therefore, the classification model is learning more dis-
criminating features from synthetic data than the generic ImageNet features, which helped to
better classify the objects in the real testing set. Still, a large domain gap remains: the average
F1-score is 54% for our best model trained on synthetic data versus 79% for the baseline model
trained with real images (Table 2).

5.3.2 Effect of using different shading models for rendering

Here, we test the effect of using different shading models for training data. We test the data
generated using Phong and Cook Torrance shading models, in addition to mixing the data from
both shading models by adding them together, resulting in double the number of images (Mixed
110K set). For all tests, the classifier is initialized with ImageNet pretrained weights, and all
layers are trained.

Table 3 shows the results of these experiments. We notice that the average results from Cook
Torrance rendering are slightly better than Phong, but for some classes Phong is much better,
especially for “class 1.” However, for “class 3" the results of Cook Torrance rendering are
much better than Phong. Mixing the data generated by both shaders did not improve the results,
which is against the intuition that increasing the number of training data for deep learning models
should lead to better results. We believe that doubling the number of images for training in mixed
mode leads to overfitting to the synthetic domain, and hence to worse results on real images. This
assumption will be confirmed in Sec. 5.5.

Training
data Train/freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

Real
(two splits)

Train all 0.9/0.77/0.79 0.87/0.99/0/92 0.87/0.46/0.53 0.99/0.74/0.82 0.86/0.90/0.88

Phong 55K Freeze all 0.42/0.39/0.28 0.99/0.19/0.31 0.11/0.27/0.15 0.43/0.33/0.38 0.16/0.75/0.26

Phong 55K Train last
block

0.45/0.39/0.29 0.98/0.10/0.18 0.07/0.33/0.11 0.57/0.63/0.60 0.19/0.48/0.27

Phong 55K Train last
two blocks

0.51/0.56/0.51 0.95/0.59/0.73 0.16/0.30/0.21 0.62/0.86/0.72 0.31/0.49/0.38

Phong 55K Train all 0.76/0.51/0.54 0.76/0.98/0.86 0.89/0.32/0.47 0.75/0.67/0.71 0.66/0.08/0.15

Note: The bold value represents the best F1-score (higher is better) in the experiment.

Table 2 Results of training different stages of InceptionV3. Training all layers shows the best 
result even with synthetic data, which is the opposite of what was found in Ref. 6 with object 
detection.



5.4 Learning Better Features by Augmented Autoencoder

In this section, we evaluate the effect of using different configurations to train the AAE and use
its weights as initialization to train the image classification model. Once we find the best con-
figuration, we will compare the results to models pretrained with ImageNet and the baseline
model.

5.4.1 Freezing different layers of the AAE pretrained classifier

As mentioned in Sec. 4.4, we train our AAE with synthetic images along with its corresponding
object in black background image. After that, the decoder network is removed, and we use the
encoder only followed by a final softmax layer for classification (Fig. 13). This new classifi-
cation network (encoder plus softmax layer) is trained using our synthetic data for classification.
When we mention the AAE pretrained classifier in the following experiments, we mean this
combination of encoder network plus softmax classification layer.

The goal of the first experiment is analyzing the effect of using different layers of the AAE
pretrained classifier model. In this experiment, the AAE is trained with source images of ren-
dered objects using the Phong model, placed on top of real image crops with no rendered context
in the background. The classifier is trained on images of the Phong model with rendered context
in the background. First, we freeze all layers, including the fully connected layer, which is the
latent representation learned by AAE. This means that we are using the latent features as they are
without any changes and just train the final softmax layer to classify the objects depending on
these features. Then, we try training the last fully connected layer along with the last Inception
block and the last two Inception blocks. Finally, we train the whole network using the weights
from AAE as initialization for all layers.

Table 4 shows the results of these experiments. It is very clear that using the weights of
the pretrained encoder part of AAE by itself is not helpful. However, using these weights as

Training data
Train/
freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

Real
(two splits)

Train all 0.9/0.77/0.79 0.87/0.99/0/92 0.87/0.46/0.53 0.99/0.74/0.82 0.86/0.90/0.88

Phong 55K Train all 0.76/0.51/0.54 0.76/0.98/0.86 0.89/0.32/0.47 0.75/0.67/0.71 0.66/0.08/0.15

Cook
Torrance 55K

Train all 0.78/0.51/0.55 0.78/0.97/0.86 0.93/0.14/0.24 0.69/0.66/0.67 0.72/0.29/0.41

Mixed 110K Train all 0.79/0.49/0.50 0.79/0.97/0.87 0.94/0.16/0.27 0.65/0.74/0.69 0.80/0.09/0.16

Note: The bold values represent the best F1-score (higher is better) in the experiment.

Table 4 Results of training/freezing different layers of InceptionV3 pretrained with AAE. Both AAE
and classifier trained with renders of Phong model.

Training
data Train/freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

Phong 55K Freeze all 0.23/0.25/0.19 0.58/1.00/0.74 0.33/0.01/0.01 0.00/0.00/0.00 0.00/0.00/0.00

Phong 55K Train last
block

0.27/0.25/0.19 0.59/1.00/0.74 0.50/0.01/0.02 0.00/0.00/0.00 0.00/0.00/0.00

Phong 55K Train last
two blocks

0.31/0.25/0.19 0.59/1.00/0.74 0.67/0.01/0.02 0.00/0.00/0.00 0.00/0.00/0.00

Phong 55K Train all 0.65/0.38/0.40 0.70/0.98/0.81 0.43/0.16/0.23 0.51/0.31/0.38 0.95/0.09/0.16

Note: The bold value represents the best F1-score (higher is better) in the experiment.

Table 3 Results of using different illumination models for rendering. Overall, Cook Torrance ren-
dering is better, but for some classes Phong is better. Mixing the data degraded the results.



Pretrain Training data
Train/
freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

AAE (Phong) Phong 55K Train all 0.65/0.38/
0.40

0.70/0.98/
0.81

0.43/0.16/
0.23

0.51/0.31/
0.38

0.95/0.09/
0.16

AAE (Phong) Cook
Torrance 55K

Train all 0.59/0.50/
0.52

0.84/0.95/
0.89

0.17/0.06/
0.08

0.50/0.59/
0.54

0.86/0.40/
0.54

AAE (Phong) Mixed 110K Train all 0.64/0.45/
0.48

0.75/0.97/
0.85

0.38/0.13/
0.19

0.51/0.41/
0.46

0.92/0.29/
0.44

ImageNet Cook
Torrance 55K

Train all 0.78/0.51/
0.55

0.78/0.97/
0.86

0.93/0.14/
0.24

0.69/0.66/
0.67

0.72/0.29/
0.41

Note: The bold value represents the best F1-score (higher is better) in the experiment.

Table 6 Effect of training autoencoder on synthetic data with different rendering methods.

Pretrain Training data
Train/
freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

AAE (Phong) Cook
Torrance 55K

Train all 0.59/0.50/
0.52

0.84/0.95/
0.89

0.17/0.06/
0.08

0.50/0.59/
0.54

0.86/0.40/
0.54

AAE (Cook
Torrance)

Cook
Torrance 55K

Train all 0.43/0.41/
0.38

0.88/0.79/
0.83

0.00/0.00/
0.00

0.40/0.73/
0.51

0.45/0.10/
0.17

Note: The bold value represents the best F1-score (higher is better) in the experiment.

initialization and allowing the classification model to train all layers generated much better 
results (almost double the F1-score). These results share the same trend that we saw in 
Sec. 5.3.1. Knowing this, in next experiments, we will train all layers of the AAE pretrained 
classifiers (using the pretrained encoder part of AAE as initialization).

5.4.2 Training AAE pretrained classifier with different synthetic data

In this section, we try training the AAE pretrained classifier on different synthetic data rendered 
by Phong and Cook Torrance shading models, in addition to the mix of both models. The AAE 
is trained on data from Phong model as explained in Sec. 5.4.1 and the pretrained encoder part is 
used as initialization for training (fine-tuning) all layers of the classifier.

Table 5 shows the results of these experiments. We can see that rendered data of Cook 
Torrance model got the best performance between models pretrained with AAE. The reason 
for getting the best results with Cook Torrance in this experiment and the experiment in 
Sec. 5.3.2 is that this shading model represents the metallic material and its reflections better 
than Phong as discussed in Sec. 3.1.1. Mixing Phong and Cook Torrance data is giving 
better results than using Phong model only, but still worse than Cook Torrance. These results 
share the same trend as observed in Sec. 5.3.2, and it will be discussed in depth in Sec. 5.5. 
Comparing these results to the best model pretrained with ImageNet (last row in the table), 
we can see that pretraining with ImageNet got better performance than any of our models. 
In the next section, we will try to improve the AAE features by trying different shading models 
for training data.

5.4.3 Training AAE with different synthetic data

In this section, we test the effect of training AAE with synthetic data from Phong and Cook 
Torrance models. The AAE pretrained classifier in this experiment is always trained on Cook 
Torrance data as it proved to be the best data for the classifier (Secs. 5.3.2 and 5.4.2). Table 6 
shows these results, which proves that training AAE with images from the Phong model pro-
duced much better features to be used as pretrained weights.

Table 5 Effect of using different shading models in training the AAE pretrained classifier.



Knowing that training AAE with the Phong model has proven to be the best option, we tried
to add random rendered context objects in the background of source images (flying distractors)
then add the rendered object on top of it. This process was explained in Sec. 3. The motivation
for this experiment is to test our assumption that using real images as the background may cause
the AAE to ignore any features from the real images domain (background) and focus only on the
rendered object. In fact, the whole idea of AAE is to ignore anything but the rendered object to be
able to reconstruct it again, but when adding random rendered context in the background, the
model learns to ignore background that belongs to both domains, the real and synthetic, which
will hopefully improve the performance. Table 7 shows that this intuition was correct, and ran-
domly adding context objects in the background improved the F1-score to 61%, which is better
than pretraining on ImageNet by 6%.

5.5 Effect of the Number of Training Images

As we are controlling the whole process of data generation, we can theoretically generate an
infinite number of synthetic images for training. However, this is not practical as the data gen-
eration process takes time for rendering, and using more data than actually needed can cause
overfitting to the synthetic data which may increase the domain gap. This was noticed in
Secs. 5.3.2 and 5.4.2, as the results of using 110K images by adding together data generated
by both shading models, were consistently worse than using Cook Torrance data only (55K
images). In this section, we prove our assumption that using too much data can cause overfitting
to the synthetic domain and try to find the sweet spot for the best number of images for training
our classifier.

In this section, we test this assumption on the classification models pretrained on ImageNet
and AAE. We trained all models for 1 epoch, with 55K, 27K, and 15K images. The results of
these experiments are shown in Table 8. From the results we can see that the models pretrained
with ImageNet are not affected by the number of images. However, AAE pretrained models
showed a big improvement when decreasing the number of training data. Our AAE pretrained
classifier trained on 15K synthetic images achieved 70% F1-score, which is 9% higher than the
AAE pretrained model trained on 55K images and 15% higher than ImageNet pretrained model.

Since the performance of the models pretrained with AAE outperformed the model pre-
trained on ImageNet, we can conclude that the weights learned by AAE are representing our
mechanical objects better than the generic features learned from ImageNet. However, training
with too much data (or for too many epochs) will cause the model to overfit to the synthetic
domain, which increases the domain gap and hurts the overall performance. In other words,
we proved that using more synthetic data will not always lead to better results, as the models
can overfit to the synthetic domain.

5.6 Overall Results

Finally, here we summarize the best classification results from all our experiments. Table 9
shows our baseline results versus the best ImageNet pretrained model and the best AAE

Table 7 Training AAE on renders of Phong with rendered context objects in the background.

Pretrain Training data
Train/
freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

ImageNet Cook Torrance 55K Train all 0.78/0.51/
0.55

0.78/0.97/
0.86

0.93/0.14/
0.24

0.69/0.66/
0.67

0.72/0.29/
0.41

AAE (Phong) Cook Torrance 55K Train all 0.59/0.50/
0.52

0.84/0.95/
0.89

0.17/0.06/
0.08

0.50/0.59/
0.54

0.86/0.40/
0.54

AAE
(Phong+cntxt)

Cook Torrance 55K Train all 0.79/0.56/
0.61

0.77/0.98/
0.86

0.62/0.17/
0.26

0.82/0.67/
0.74

0.95/0.42/
0.58

Note: The bold value represents the best F1-score (higher is better) in the experiment.



pretrained model trained with synthetic images. It is clear how pretraining with AAE improved
the classification results when using synthetic data only.

It is interesting to note that AAE itself is trained completely with synthetic images, then using
its features as a weights initialization, the classifier is also trained on synthetic images. Our best
AAE pretrained multiclass classification model achieved 70% F1-score which is 9% lower
than the baseline model trained with real images. However, our best model trained on synthetic
data outperformed the baseline model trained with real image in class “class 2" as shown in
Table 9.

A final trick to further improve our results is to train binary classifiers for each support
against the background class. As explained in Sec. 1, our system aims to verify the existence
of each object in its expected position. Therefore, there is no reason to train a multiclass clas-
sifier, as in each run the system will search for the particular object (support) that matches the
reference CAD model. Then, we can solve the problem via a binary classifier for this particular
object. Therefore, the two classes for our first binary classifier would be: “class 1” versus “back-
ground.” Further, the two classes for our second binary classifier would be: “class 2” versus
“background,” etc.

Table 10 shows the results of training the binary classification models, which improved the
overall performance. Our binary classifiers pretrained with AAE and trained with synthetic
images outperformed the baseline model trained with real images in two out of three classes.
This is expected as now there is less confusion between similar classes.

Table 9 Comparison between the baseline models trained on real images, and models trained on
synthetic data with different pretraining strategies.

Pretrain Training data
Train/
freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

ImageNet Real (two splits) Train all 0.9/0.77/
0.79

0.87/0.99/
0/92

0.87/0.46/
0.53

0.99/0.74/
0.82

0.86/0.90/
0.88

ImageNet Cook Torrance 55K Train all 0.78/0.51/
0.55

0.78/0.97/
0.86

0.93/0.14/
0.24

0.69/0.66/
0.67

0.72/0.29/
0.41

AAE
(Phong+cntxt)

Cook Torrance 15K Train all 0.79/0.66/
0.70

0.83/0.94/
0.88

0.62/0.28/
0.38

0.84/0.86/
0.85

0.85/0.59/
0.70

Note: The bold value represents the best F1-score (higher is better) in the experiment.

Table 8 Training the classifier with different numbers of synthetic images.

Pretrain Training data
Train/
freeze

Avg results
(P/R/F1) Background Class 1 Class 2 Class 3

ImageNet Cook Torrance 55K Train all 0.78/0.51/
0.55

0.78/0.97/
0.86

0.93/0.14/
0.24

0.69/0.66/
0.67

0.72/0.29/
0.41

ImageNet Cook Torrance 27K Train all 0.74/0.54/
0.54

0.87/0.95/
0.91

0.85/0.06/
0.11

0.63/0.85/
0.73

0.61/0.30/
0.40

ImageNet Cook Torrance 15K Train all 0.67/0.52/
0.55

0.81/0.94/
0.87

0.77/0.27/
0.40

0.62/0.69/
0.65

0.47/0.20/
0.28

AAE
(Phong+cntxt)

Cook-Torrance 55K Train all 0.79/0.56/
0.61

0.77/0.98/
0.86

0.62/0.17/
0.26

0.82/0.67/
0.74

0.95/0.42/
0.58

AAE
(Phong+cntxt)

Cook Torrance 27K Train all 0.80/0.60/
0.65

0.80/0.96/
0.87

0.66/0.21/
0.31

0.80/0.77/
0.79

0.96/0.47/
0.63

AAE
(Phong+cntxt)

Cook Torrance 15K Train all 0.79/0.66/
0.70

0.83/0.94/
0.88

0.62/0.28/
0.38

0.84/0.86/
0.85

0.85/0.59/
0.70

Note: The bold value represents the best F1-score (higher is better) in the experiment.



6 Conclusion

In this work, we proposed an original solution for an automatic vision-based conformity check
(presence/absence of elements) for parts in a mechanical assembly. We opted for leveraging the
efficiency and robustness of deep CNN. More precisely, we train and evaluate deep CNN clas-
sification models of both multiclass and binary type. The main difficulty in training such models
for industries is lack of real images. This is due to various reasons, such as unavailability of the
assemblies for extensive data acquisition campaigns. To overcome this, we exploit available
CAD model to generate a large number of synthetic 2D images. The ultimate goal is to train
models entirely on synthetic data and to achieve results comparable to the baseline model trained
on real images.

Using data from different domains for training and testing produces another problem called
domain gap. To deal with the domain gap, we adopt a two-step approach: data-based approach
and model-based approach. First, we propose an OpenGL rendering pipeline for 2D images from
simplified 3D CAD. The pipeline is designed to randomize appearance features of rendered
objects, to decrease the domain gap. Those features are color, textures, material properties, back-
ground, in addition to orientation, scale, and position of the rendered objects. The second step of
the approach is our method based on selfsupervised learning that enables better learning of fea-
tures representation for the objects whose presence we need to verify. Relying on the concept of
AAE, our trained models can focus on the most important, geometrical features to represent
target objects, while ignoring irrelevant information such as texture, color, or background.

We evaluate our method on a real use case from an industrial context, namely on a complex
structure of an airplane engine. We train the models on synthetic data without using a single real
image that contains a target object. We test the models on real images. We achieve an F1-score
comparable to the baseline model trained on real images. Moreover, when we simplify the prob-
lem from multiclass to a binary classification, the model trained on synthetic images outper-
formed the baseline model trained on real images by 3%.
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