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ABSTRACT

The interfacial phase change effect on a thin film flowing down an undulated wall has been investigated in the present study. The study is 
performed for a general periodic undulated bottom of moderate steepness that is long compared to the film thickness, followed by a case 
study over the sinusoidal bottom. The long-wave instabilities of the ununiform film are used by deriving a nonlinear evolution equation in 
the classical long-wave expansion method framework. The one-equation model can track the free surface evolution and involve the bottom 
undulation, viscosity, gravity, surface tension, and phase change (evaporation/condensation) effects. Linear stability analysis shows that the 
bottom steepness f has a dual role. In the downhill region, increasing f destabilizes, whereas increasing f stabilizes in the uphill region. 
Weakly nonlinear waves are studied using the method of multiple scales to obtain the complex Ginzburg–Landau equation. The results show 
that both supercritical and subcritical solutions are possible for evaporating and condensate film. Interestingly, while one subcritical region is 
visible for an evaporating film, two subcritical unstable regions are found for condensate film. The numerical solution of the free-surface 
equation demonstrates the finite-amplitude behavior that tends to dry out for an evaporating film. For condensate film, the thickness 
increases rapidly. The rupture dynamics highly depend on the initial perturbation, and the bottom steepness has a negligible effect on it. 
Kutateladze number has a significant impact on the stability characteristic of the film flow as it represents a sort of efficiency of phase change 
that occurs at the interface.

I. INTRODUCTION

Falling liquid film on an inclined/vertical plane substrate is one
of the most important hydrodynamic problems that exhibit a wide
variety of spatial and temporal structures. It is a convectively unstable
open-flow hydrodynamic system, governed by Navier–Stokes equa-
tions coupled with equation of continuity with appropriate boundary
conditions, except when the Reynolds number and angle of inclination
are small enough and surface tension is large enough and in that case
flow remains parallel, laminar, and unidirectional down the plane sur-
face. The problem is extensively studied experimentally, numerically,
and analytically for a long time. Wave evolution on falling liquid film
has been extensively studied over the last few decades, starting from
the pioneering work by Kapitza and Kapitza.1,2 Where a wide variety
of wavy regimes, like a rolling wave with a capillary hill, a series of
nearly solitary waves or almost harmonic waves of falling liquid films

had been observed. In this situation, the stability and its criteria for
falling films are needed to be understood. Reportedly, the beginning
works in the field of stability analysis or falling films were done by
Benjamin3 and Yih4 who investigated the long-wave instability of fall-
ing film over an inclined plane theoretically. They determined the
phase velocity of the waves and critical Reynolds number for the tran-
sition, respectively. Benny5 derived a wave evolution equation govern-
ing the flow by regular perturbation technique in terms of flow depth
by expanding the variables in powers of the long-wave parameter.
Turkyilmazoglu et al.6,7 recently worked on the absolute and convec-
tive instabilities on boundary layer flow problems. An absolute insta-
bility is appropriate for unstable flow if its response to an impulse in
time and space amplifies unboundedly everywhere in space for a large
time.

A detailed review can be found previous research studies.8–13
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In industrial chemistry, the liquid phase is generated in the form
of a thin layer, and while moving, it comes in the interaction with the
gas flow. Liquid particles in the layer are mixed up substantially,
increasing inter-phasic heat and mass transfer. Films play the role of
activating medium for heat transfer in drip and tower coolers, scrub-
bers and rectifying columns, steam boilers, evaporators, and oil-
refining equipment.

In 1916, Nusselt first analytically investigated the laminar film
condensation on a vertical plate. There are several improvements in
Nusselt’s analysis over the next few years, but until 1970 the stability
analysis of film flow with phase change was never investigated.
Sparrow et al.14 investigated the problem of laminar-film condensation
on a vertical plate by using boundary layer theory. They found a simi-
larity transformation, which reduced the governing partial differential
equation (PDE) to ordinary differential equation (ODE), and con-
cluded that the effect of Prandtl number is significant for its small
values (Pr � 1), that is, when the thermal boundary layer is larger
than the momentum boundary layer, its effect is minimal for large
Prandtl number (Pr � 1). Later, Bankoff,15 Marschall and Lee,16 and
Lin17 successively reported the stability of condensate film flow down
a vertical/inclined plane. €Unsal and Thomas18 presented a linear sta-
bility analysis for condensate film flow considering the effect of mass
transfer at the interface due to phase change. Subsequently, €Unsal and
Thomas19 also published another work addressing the nonlinear sta-
bility of vertical condensate film flow by using the perturbation
method. Spindler20 studied the linear stability of liquid films with
interfacial phase change in a more detailed form and reported that
evaporation has a destabilizing influence while condensation a stabiliz-
ing one. Kocamustafaogullari21 investigated two-fluid model formula-
tions in analyzing the interfacial stability of liquid film flows. The
author claimed that the interfacial stability analysis developed within
the two-fluid model formulation frame is quite accurate as judged by
comparing its results with the available experimental data. Hwang and
Weng22 studied finite-amplitude stability analysis of liquid films down
a vertical flat wall with and without interfacial phase change. By con-
sidering a generalized kinematic equation for the film thickness, the
authors investigated by the method of perturbation. They showed that
mass transfer into (away from) the liquid phase would stabilize (desta-
bilize) the film flow. Joo et al.23 investigated the long-wave instability
of volatile viscous falling film draining down a uniformly heated
inclined plane by deriving an evolution equation for the two-
dimensional disturbances considering the effects of thermocapillary
and evaporation and determines the propensity for dry out of the film.
Gambaryan-Roisman24 studied the influence of non-uniformity of
substrate thermal conductivity on the hydrodynamics and heat trans-
fer in thin liquid films accounting for the effects of surface tension,
thermocapillary, and evaporation. Recently, Abderrahmane25 investi-
gated the stability of evaporating (condensing) liquid film flowing
down an inclined plane using the energy integral method. The author
showed that evaporation (condensation) destabilizes (stabilizes) the
film flow.

The above studies are focused only on the film flow down flat
inclined/vertical substrates, but in most applications, the film does not
flow over a perfectly flat substrate. During the last few decades, many
advancements have been made in renewable energy, for example, solar
energy, wind energy, and waste heat from industrial wastages. Solar
energy is used in solar refrigeration, solar heat storage, or

transportation of heat or cooling over a large distance. The process of
absorption/desorption is widely used. In most cases, the apparatus is
built purposefully with the wavy surface, while in other applications,
the corrugation is unavoidable. Thus, in either case, it is of our interest
to investigate how the alterations from the ideal condition of a flat
inclined affect the gravity-driven film flow with various physical
effects. The hydrodynamics of falling liquid film down an undulated
surface has gained much attentiveness starting from the work of
Pozrikidis26 who have studied the free surface Stokes flow along with a
sinusoidal topography. Later, Wierschem et al.27 studied experimen-
tally the linear stability of the film flow over modulations of moderate
steepness that is long compared to the film thickness. They found that
the critical Reynolds number for the onset of surface waves is higher
than that for the flat bottom. Investigation of the viscous film flowing
down a harmonic vertical substrate is done by Trifonov.28,29 The
author has contemplated the effect of surface tension, viscosity, and
inertia. Tougou30 investigated theoretically the influence of a weakly
wavy bottom on the stability of steady film flow. Mogilevskiy and
Shkadov31 have used the integral boundary layer approach to model
the problem of a thin film flow on a weakly wavy wall. They showed
the topography can both stabilize and destabilize the flow, depending
on the corrugation period and the plane inclination angle. Veremieiev
and Wacks32 have developed the extension of the weighted residual
model proposed by Ruyer-Quil and Manneville33 and D’Alessio
et al.34 and included the third and fourth terms in the long-wavelength
expansion to enlarge a new modeling strategy for flow on an inclined
corrugated substrate. Other researchers, like Trifonov,35 Vlachogiannis
and Bontozoglou,36 Wierschem and Aksel,37 Wierschem et al.,38,39

D�avalos-Orozco,40,41 H€acker and Uecker,42 Heining and Aksel,43,44

Heining et al.,45 etc., have also studied the effect of bottom topography
in the flow of falling films for several physical problems. An excellent
review about the film flow on different topography can be found in a
piece of work by Aksel and Sch€orner.46

This study shall present the analysis of finite-amplitude long-
wave instability to characterize evaporating (condensate) viscous thin
film flowing over inclined wavy bottom incorporating phase change
effect at the interface. It is expected that the undulated bottom topog-
raphy may have a significant impact on the stability characteristic of
the evolution of a non-isothermal film flow undergoing a phase
change (evaporation/condensation) at the interface.

To the best of our knowledge, the study of the hydrodynamics of
falling viscous film through an undulated surface with a phase change
effect has not been studied intensively so far. Our study will help to
explore a broader gateway to handle many industrial and natural
phenomena.

II. FORMULATION OF THE PROBLEM

Let us consider a thin viscous liquid film of density q, dynamic
viscosity l, thermal conductivity kT, and surface tension r flowing
down an inclined wavy bottom b̂. The fluid is assumed to be
Newtonian with constant material properties. When the wavy bottom
surface is heated (cooled) at a fixed constant temperature Tw, which is
higher (lower) than the saturation temperature Ts of the fluid, the
evaporation (condensation) occurs at the liquid–vapor interface. The
layer is evaporating (condensing) so that at the vapor–liquid interface,
there is a mass loss (gain), momentum transfer, and energy consump-
tion (deportation) that can affect the stability of the film flow.47 The



liquid layer is bounded above by its vapor with density qv, and as the
layer is evaporating (condensing), the free surface is unbounded. The
orthogonal Cartesian coordinates system identified by the orthonor-
mal basis fex̂ ; eŷg with O as origin is inclined at an angle b with
respect to the horizontal, and the bottom profile b̂ðx̂Þ is periodic with
wavelength k̂ and amplitude â, where x̂ is in the direction of the main
flow. It is useful and appropriate for an undulated bottom profile to
introduce a local curvilinear coordinate system since the Nusselt solu-
tion is no longer a stationary solution. For the flow of thin films that
are thinner than the radius of curvature of the bottom, the flow (u, v)
is still mainly parallel to the bottom (see Fig. 1). Thus, at every point of
the bottom x̂ex̂ þ b̂ðx̂Þeŷ , a local coordinate system identified by
the orthonormal basis fex; eyg with ex tangential and ey normal to the
bottom is defined. Thus, for an arbitrary point P within the fluid, the
arc length x of the bottom and the distance y along ey to the bottom
are now taken as curvilinear coordinates. So in ex̂ ; eŷ coordinates P
ðx̂ � sin hy; b̂ðx̂Þ þ cos hyÞ, where h ¼ hðx̂Þ ¼ arctanð@b̂ðx̂Þ=@x̂Þ is
the local inclination angle between ex̂ and ex. This relation is always
unique as we considered the film flow over the undulated bottom of
moderate steepness that is long compared to the film thickness. To
transform gradients, we will also need the bottom curvature j, which
is defined by

jðx̂Þ ¼ � @
2b̂ðx̂Þ
@x̂2

1þ @b̂ðx̂Þ
@x̂

� �2
" #�3=2

: (1)

A. Governing equation

The flow field is characterized by balance in mass and momen-
tum, described by the continuity equation and the Navier–Stokes
equations, whereas the temperature field is governed by the equation
of energy as follows:

r � V ¼ 0; (2)

q
@V
@t
þ ðr � VÞV

� �
¼ �rpþ ðq� qvÞg þ lr2V; (3)

@T
@t
þ ðV � rÞT ¼ kcr2T; (4)

where r ¼ 1
1þjy ex

@
@x þ ey @

@y ; V ¼ u ex þ v ey is the liquid velocity, g

is the acceleration due to gravity, and kc is the thermal diffusivity of
the liquid. For detailed derivation of the governing equations, we refer
the reader to the studies by Wierschem et al.27 and Mukhopadhyay
andMukhopadhyay.48

The boundary conditions at the wavy bottom y¼ 0 are the usual
no-slip condition of velocity and a constant wall temperature,

V ¼ 0; T ¼ Tw: (5)

The boundary conditions at the fluid–vapor interface y ¼ hðx; tÞ are
the balance of tangential and normal stresses, the relation of interfacial
energy balances, and the equality of fluid and saturated vapor temper-
atures:18,49 the tangential and normal stress balances are taken as
follows:

n � s � t ¼ 0; (6)

pv þ n � s � n� c� 1
qc

� kT
hfg
ðrTÞ:n

!2

¼ �rr � n; (7)

kT rTð Þ � n� qhfg ht þ V � rðh� yÞ½ � ¼ 0; (8)

T ¼ Ts; (9)

where pv, hfg, and c ¼ qv=q are the vapor pressure, latent heat of
phase change, and ratio of vapor density to liquid density, respectively,
and

n ¼
ey �

1
1þ jh

hxexffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

1þ jh
hx

� �2
s ; t ¼

ex þ
1

1þ jh
hxeyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
1þ jh

hx

� �2
s ; (10)

are the unit normal and tangential vector, respectively. For detailed
derivation of boundary conditions, we refer the reader to the studies
by €Unsal and Thomas,50 Joo et al.,23 and Mukhopadhyay and
Mukhopadhyay.51

The basic velocity ½uðyÞ; 0� in the steady flow down the inclined
flat bottom j¼ 0 is

U ¼ 3
2
hui 1� 1� y

ĥ

� �2
" #

: (11)

To obtain Eq. (11), the no-slip at the bottom uð0Þ ¼ 0 and zero shear
stress at the free surface @u

@y jh ¼ 0 are used. Here, hui is the depth

averaged velocity and ĥ is the averaged thickness of the film, where

hui ¼ ð1� cÞg sinbĥ
2
=3� is the averaged basic velocity.

B. Scaling and non-dimensionalization

Before solving, we rewrite the problem precisely in dimensionless
format. The dimensionless quantities are defined as follows:FIG. 1. Diagrammatic picture.



x� ¼ 2p

k̂
x; y� ¼ 1

ĥ
y; h� ¼ 1

ĥ
h; u� ¼ 1

hui u;

v� ¼ k̂

2pĥhui
v; t� ¼ 2phui

k̂
t; j� ¼ k̂

2

4p2â
j;

p� ¼ 1

qhui2
p; T� ¼ T � Tw

Ts � Tw
; x̂�ðx�Þ ¼ 2p

k̂
x̂ðxÞ;

b̂
�ðx̂�Þ ¼ 1

â
b̂

k̂
2p

x̂�
� �

; h� ¼ arctan f
@b̂
�

@x̂�

 !
;

(12)

where f ¼ 2pâ=k̂ is the bottom steepness and e ¼ 2pĥ=k̂ is the aspect
ratio. Yet, it is noteworthy that to study the effect of bottom undula-
tion on the flow, the thin film flow over a flat bottom as a reference is
used. Thus, the average velocity of the mean flow over flat film, hui,
and the constant film thickness, ĥ, are taken as the characteristic veloc-
ity and length scale along the normal direction of the mean flow,
respectively, whereas k̂ is the characteristic longitudinal length scale
whose order may be considered the same as the wavelength of the free
surface wave, which is very long compared to the film thickness.

Using the dimensionless quantities (12) in the governing equa-
tions (2)–(9)

1
1þ efjy

@u
@x
þ efjv

� �
þ @v
@y
¼ 0; (13)

eRe
@u
@t
þ u

@u
@x
þ v

@u
@y

� �
¼ �eRe

@p
@x
þ 3SSþ @

2u
@y2
þ ejf

@u
@y
þOðe2Þ;

(14)

�eRefju2 ¼ �Re @p
@y
� 3CSþ e

@2v
@y2
þ Oðe2Þ; (15)

eRePr
@T
@t
þ u

@T
@x
þ v

@T
@y

� �
¼ @

2T
@y2
þ efj

@T
@y
þ Oðe2Þ; (16)

where SS ¼ sin ðb�hÞ
sin b and CS ¼ cos ðb�hÞ

sinb

u ¼ 0; v ¼ 0; and T ¼ 0: (17)

At the free surface y ¼ hðx; tÞ,

@u
@y
þ e 2fjh

@u
@y
� fju

� �
þ Oðe2Þ ¼ 0; (18)

pa � pþ 2e
Re

@v
@y
þ @u
@y

hx

� �
þ ðc� 1ÞNdRe�2 @T

@y

� �2

¼ e2Weðhxx � fe�1jþ 2f2j2hÞ; (19)

Ku
ePe

@T
@y
� e2hx

@T
@x

� �
¼ ht þ uhx � v � efjhu

@h
@x
þ Oðe2Þ; (20)

T ¼ 1; (21)

where Reð� huiĥ=�Þ is the Reynolds number, Weð� r=qhui2ĥÞ
is the Weber number, Prð� �=kcÞ is the Prandtl number, and
Pe ¼ RePr is the P�eclet number. Kuð� CpðTs � TwÞ=hfgÞ is the
Kutateladze number, which is reciprocal of Jacob number. Ku
accounts the effect of the phase change. Ku> 0 corresponds to the
condensate film, Ku< 0 to the evaporating film flow, and Ku¼ 0 cor-
responds to the isothermal film. Ndð� Ku2=cPr2Þ is the vapor recoil
number. The effect of Nd has been found to be negligible on stability,18

so Nd=Re2 is assumed as Oðe2Þ.49 That is, the effect of vapor recoil is
assumed to be negligible.24

III. LONG-WAVE APPROXIMATION
AND CONSTRUCTION OF MODEL

We are now interested in yielding a nonlinear evolution equation
in terms of non-dimensional film thickness h(x, t), depending on the
dimensionless spatial and temporal variables x and t.

Since the long-wavelength modes are the most unstable ones for
film flow, expanding the physical quantities u, v, p, and T as a power
series,

u ¼ u0 þ eu1 þ � � � ; v ¼ v0 þ ev1 þ � � � ;
p ¼ p0 þ ep1 þ � � � ; T ¼ T0 þ eT1 þ � � �

(22)

and substituting the above into the governing equations (13)–(16) and
the boundary conditions (17)–(21) and then collecting the coefficients
of like powers of e and solving up to OðeÞ (for details see Appendix A
andMukhopadhyay andMukhopadhyay48,52)

�u0 ¼ SSh2; (23)

T0 ¼
y
h
; (24)

�u1 ¼
6
5
h5ReSS2hx �

5
8
Ku
ePr

SSh2 þ 1
3
e2ReWe

	 4hf2jjx þ hxxx þ e�1fjx þ 2f2j2hx
� �
� h2CShx þ

9
8
h3SSfj; (25)

T1 ¼
1
6
Ku
eh
� 1
5
RePrSSh2hx þ

1
2
fj

� �
y � 1

4
fjy2

	 � 1
6
Ku
eh3
þ 1
2
RePrSShx

� �
y3 � 3

8
RePrSS

h
hxy

4

þ 3
40

RePrSS
h2

hxy
5; (26)

where �u0;1 ¼ ð1=hÞ
Ð h
0 u0;1dy.

Integrating the continuity equation (13) with respect to y from 0 to
h by using Leibniz’s rule and boundary conditions (17) and (20), we have

ht �
Ku
ePe
ðT0z þ eT1zÞ � e2ðT0x þ eT1xÞhx
� �

þ @

@x
ð�u0 þ e�u1Þh½ � þ Oðe2Þ ¼ 0: (27)

Substituting the values of T0, T1, �u0, and �u1 in Eq. (27), we get

ht þ PðhÞ þ AðhÞhx þ eðBðhÞhxx þ e2CðhÞhxxxxÞ
þDðhÞh2x þ EðhÞhxhxxx þ Oðe2Þ ¼ 0; (28)

where

PðhÞ ¼ � Ku
ePe

1� Ku
3

� �
1
h
� 1
2
efj

� �
; (29)

AðhÞ ¼ 3SS� 7
40

KuSS� 15
8
Ku
Pr

SS

� �
h2

þe
3
2
SSfjh3þe2WeRe �fe�1 þ 8

3
jhf2

� �
h2
@j
@x

� �
; (30)



BðhÞ ¼ 6
5
ReSS2h6 � CSh3 þ 1

3
e2WeRef2j2h3; (31)

CðhÞ ¼ 1
3
WeReh3; (32)

DðhÞ ¼ e2PðhÞ þ B0ðhÞ; (33)

EðhÞ ¼ C0ðhÞ: (34)

Here, prime (0) denotes the derivatives of respective quantities with
respect to h.

IV. CASE STUDY

Our aim for this work is to present the entire study for a general
undulated bottom profile b̂. Also, we intend to discuss the results for a
particular case study by choosing a sinusoidal bottom profile as follows:

b̂ðx̂Þ ¼ â cos ð2px̂=k̂Þ; (35)

where k̂ is the wavelength and â is the amplitude of the wavy bottom
profile. The downhill portion is 0 < x̂ < k̂=2 and the uphill portion is
k̂=2 < x̂ < k̂. x̂ ¼ 0 is the crest and x̂ ¼ k̂=2 is the trough. For
graphical understanding, we refer to Fig. 1.

V. STABILITY ANALYSIS

Following Hwang and Weng22 and Uma and Usha,53 the non-
dimensional film thickness for the perturbed state may be expanded in
the following form:

h ¼ 1þ g; (36)

where g is the perturbation of the thickness.18

Substituting (36) in (28) and keeping the terms up to Oðg3Þ and
taking a transformation x! ex; t ! et, the evolution equation for
perturbed state is found as follows:

gt þ P01gþ A1gx þ B1gxx þ C1gxxxxð Þ

	 1
2
P001g

2 þ 1
6
P0001 g3 þ A01gþ

1
2
A001g

2

� �
gx

	 B01gþ
1
2
B001g

2

� �
gxx þ C01gþ

1
2
C001g

2

� �
gxxxx

	 D1 þ D01g
	 


g2x þ E1 þ E01g
	 


gxgxxx þ Oðg4Þ ¼ 0; (37)

where P1, A1, B1, C1, and their corresponding derivatives with
respect to h, which are denoted by primes, are evaluated at h¼ 1
from (29)–(32). The above transformation of coordinates is taken as
the relatively slow spatial and temporal variations of the film thick-
ness h(x, t) justify lubrication-type approximation; as a conse-
quence, it scales back to the original non-dimensional coordinates
(x, y, t).54

It is worth mentioning that Eq. (37) of the disturbance gðx; tÞ is
obtained (i) by neglecting the derivatives of the averaged film thickness
with respect to x in the unsteady equation, which corresponds to par-
allel flow approximation and (ii) by letting ~h ¼ 1 in the unsteady

FIG. 2. Linear temporal growth rate curve (a) and (b) for evaporating film and (c) and (d) for condensate film at a point on the downhill (D, x̂ ¼ 1:57) and point on the uphill
(U, x̂ ¼ 4:71) region for different bottom steepness f, when Re¼ 10, Pr¼ 2.62, and Ka¼ 14 133. f¼ 0 corresponds to a flat bottom. (a) For Ku¼�0.0872, (b) for
Ku¼�0.0872, (c) for Ku¼ 0.0872, and (d) for Ku¼ 0.0872.



equation, which implies that the simplified unsteady equation is only
locally valid.22,53

A. Linear stability analysis

To study the linear response for a sinusoidal perturbation of the
film by assuming the perturbation of the form

gðx; tÞ ¼ C exp iðkx � xtÞ½ � þ c:c;

where C is the amplitude of the disturbance and c.c represents
complex conjugate with real wave number k and complex frequency
x ¼ xr þ ixi of the linearized part of (37), we get the dispersion rela-
tion as follows:

Dispðx; kÞ � �ixþ i A1kþ P01 þ ð�B1k
2 þ C1k

4Þ ¼ 0: (38)

Equating the real and the imaginary parts of (38), we get

xr ¼ A1k and xi ¼ �P01 þ ðB1k
2 � C1k

4Þ: (39)

So, the linear phase velocity is

cr ¼
xr

k
¼ A1; (40)

which is non-dispersive in nature so that the group velocity of the pertur-
bation equals to the phase velocity. The imaginary part of c is given by

ci ¼
xi

k
¼ � P01

k
þ ðB1k� C1k

3Þ: (41)

The flow will be linearly stable, neutral, or unstable if xi<,¼ or > 0
respectively.

xi ¼ 0 implies

k4
KaRe1=3

3

� �
� k2

6
5
Re2SS2 � CSReþ e2

KaRe1=3

3

� �
f2j2

� �

þ Ku
Pr

1� Ku
3

� �
¼ 0; (42)

where Ka ¼ Fii=3 ¼ ð 3r3

q3g�4ð1�cÞ sinbÞ
1=3 is the Kapitza number.

FIG. 3. Marginal stability curve (a) for evaporating film and (b) for condensate film;
at a point on the downhill (D, x̂ ¼ 1:57) and at a point on the uphill (U, x̂ ¼ 4:71)
region for different bottom steepness f, when Pr¼ 2.62 and Ka¼ 14 133. f¼ 0
corresponds to a flat bottom: (a) for Ku¼�0.0872 and (b) for Ku¼ 0.0872.

FIG. 4. Linear temporal growth rate curve for (a) evaporating film and (b) conden-
sate film at a point on the downhill (D, x̂ ¼ 1:57) and at a point on the uphill (U,
x̂ ¼ 4:71) region for f ¼ 0:1p, and different Pr values, when Re¼ 10 and
Ka¼ 14 133. (a) For Ku¼�0.0872 and (b) for Ku¼ 0.0872.



For critical Re, we have

6
5
Re11=6SS2 � CSRe5=6 þ e2Kaf2j2

3

� �
Re1=6

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
3
KaKu
Pr

1� Ku
3

� �s
; (43)

which is in good agreement with the results of Hwang and Weng22

[Eq. (42) of their work] for vertical falling films on a flat plate. Again
for f¼ 0 and Ku¼ 0, we retrieve our standard result Rec ¼ 5

6 cotb.
3,4

1. Results from the case study

The dispersion relation (38) is solved using numerical continua-
tion method55 for a range of k values initiated from k¼ 0. The mesh is
allowed to automatically adapt to the solution to equidistribute the
local discretization error.56 From Ref. 40, we see that the kind of wave
we have for our case is non-dispersive, i.e., all waves of any wavenum-
ber propagate at the same speed and arbitrary disturbances propagate
without change of shape. The nature of the waves in the sense of stabil-
ity is defined by the sign of the imaginary part of xi (or ci). One inter-
esting fact one can notice from this equation is k! 0 implies
ci ! 71 depending on the sign upon the parameter Ku, that is what
we can see from Figs. 2(a) and 2(c). Again from Eq. (39), xi !�P01
as k! 0. This result is confirmed by Figs. 2(b) and 2(d). For both

evaporating and condensing films, the linear growth rate in the uphill
direction is smaller than the downhill direction, which is true for any
moderately small steepness. Now, focusing on the marginal stability
curves shown in Fig. 3, which separates k–Re plane into two regions,
xi < 0 gives a linear stable region as the perturbed small disturbance
decays with the time and xi > 0 gives linear unstable region as the
perturbed small disturbance grows with the time. In both cases of
evaporation [Fig. 3(a)] and condensation [Fig. 3(b)], the stable region
increases for the flow in uphill region for a fixed value of f. One inter-
esting fact is for downhill region, increasing f destabilizes and for
uphill region increasing f stabilizes, i.e., f plays a dual role on stability.
It is also very interesting to observe that, for condensing film, the criti-
cal Reynolds number (Rec), the minimum Re in which instability sets
in, increases in the uphill region than that of in the downhill region for
a fixed bottom steepness parameter f but for evaporating film, it is
always zero confirming that evaporating film is always unstable.

Another interesting fact is that an increase in Prandtl number
plays a dual role in linear stability. From Fig. 4, it is clear that for an
evaporating film (Ku< 0), increasing Pr stabilizes the flow and for
condensate film (Ku> 0) destabilizes the flow, i.e., if we consider the
evaporating film, for instance, when heat diffuses quickly in compari-
son with velocity, the linear growth rate of the perturbation increases.
Also, these results are valid for both the uphill and downhill regions.
This result is consistent with the previous works18,22 for analysis over
flat plates.

FIG. 5. Neutral stability curves for evaporating film for (a) f ¼ 0:1p, downhill, (b) f ¼ 0:1p, uphill, (c) f ¼ 0:02p, downhill, and (d) f ¼ 0:02p, uphill. Curves are plotted for 
Pr ¼ 2.62 and Ka ¼ 14 133, Ku ¼ �0:0872, and for various values of bottom steepness f in downhill (x̂ ¼ 1:57) and uphill (x̂  ¼ 4:71). (a) f ¼ 0.1p, downhill; (b) f ¼ 0.1p, 
uphill; (c) f ¼ 0.02p, downhill; and (d) f ¼ 0.02p, uphill.



B. Weakly nonlinear analysis

The linear stability analysis provides only first-hand information
about the stability mechanism. Since the linear stability analysis is just a
peek into the richness of the dynamics of unstable systems when finite
amplitude effects are considered, to investigate the nonlinear effects on the
stability threshold, a weakly nonlinear study is performed in this section.

Following Lin and Krishna,57 it is almost a routine verification
that Eq. (37) governing the flow can be asymptotically reduce to a
complex Ginzburg–Landau equation in the vicinity of the criticality.
For, introducing stretch time scales t1 ¼ at and t2 ¼ a2t and long
length scale x1 ¼ ax (a is the weakness of nonlinearity), so that the
temporal and spatial derivatives become

@t ! @t þ a@t1 þ a2@t2 and @x ! @x þ a@x1 :

We have also taken the asymptotic expression g ¼ ag1 þ a2g2
þa2g3 þ � � �. Then, Eq. (37) yields

ðL0 þ aL1 þ a2L2 þ � � �Þðag1 þ a2g2 þ a3g3 þ � � �Þ
¼ �a2N2 � a3N3 þ � � � : (44)

The solution of Eq. (44) at the order OðaÞ is obtained by solving
L0g1 ¼ 0 and is in the form g1 ¼ C exp ½iðkx � xrtÞ� þ c:c where
Cðx1; t1; t2Þ is the nonlinear amplitude function and c:c is its complex
conjugate. The solution of the equation L0g2 þ L1g1 ¼ �N1 at the
Oða2Þ is in the form g2 ¼ XC2 exp ½2iðkx � xr tÞ� þ c:c Using the

solutions for g1 and g2 in the Oða3Þ equation given by L0g3 þ L1g2
þL2g1 ¼ �N3, the equation for the perturbation amplitude
Cðx1; t1; t2Þ is obtained as

@C
@t2
þ J1

@2C
@x12

� x0iCþ ðJ2 þ i J4ÞjCj2C ¼ 0; (45)

where

x0i ¼ a�2xi; (46a)

J1 ¼ B1 � 6C1k
2; (46b)

J2 ¼ �A01H1ikþ P001 � 5B01k
2 þ 17C01k

4 þ 4D1k
2 � 10E1k

4
	 


H1r

þ P0001
2
� 3
2
B001k

2þ 3
2
C001k

4 þ D01k
2 � E01k

4

� �
; (46c)

J4¼
1
2
A001kþA01kH1rþ P001 �5B01k

2þ17C01k
4þ4D1k

2�10E1k
4

	 

H1i;

(46d)where

Q1 ¼ �
1
2
P001 � ikA01 þ k2ðB01 � C01k

2 þ D1 � E1k
2Þ; (47a)

H1 ¼ H1r þ iH1i ¼
Q1

4k2ð4C1k2 � B1Þ þ P01
: (47b)

The expressions of L0; L1; L2;N2, and N3 are given in Appendix B.

FIG. 6. Neutral stability curves for condensate film for (a) f ¼ 0:1p, downhill, (b) f ¼ 0:1p, uphill, (c) f ¼ 0:02p, downhill, and (d) f ¼ 0:02p, uphill. Curves are plotted for 
Pr ¼ 2.62 and Ka ¼ 14 133, Ku ¼ 0:0872, and for various values of bottom steepness f in downhill (x̂ ¼ 1:57) and uphill (x̂  ¼ 4:71). (a) f ¼ 0.1p, downhill; (b) f ¼ 0.1p, 
uphill; (c) f ¼ 0.02p, downhill; and (d) f ¼ 0.02p, uphill.



For detailed derivation of Eq. (45), we refer the reader to the
studies by Mukhopadhyay and Haldar,58 Mukhopadhyay and
Mukhopadhyay,48,52 Mukhopadhyay and Dandapat,59 and the cross-
reference therein.

The weakly nonlinear behavior of the flow can be investigated
from Eq. (45). To solve Eq. (45), we assumed that the pertinent wave
is filtered, giving us the freedom to eliminate the diffusion terms as
there is no spatial modulation. With this assumption, the solution of
(45) looks like

C ¼ C0ðt2Þ exp �i bðt2Þt2½ �: (48)

Substituting (48) in Eq. (45), we get

@C0

@t2
¼ a�2xi � J2C

2
0

	 

C0 (49)

and

@ðbðt2Þt2Þ
@t2

¼ J4C
2
0: (50)

The term ðJ2C2
0ÞC0, which is responsible for the acceleration or decel-

eration of the exponential growth of linear disturbance, appears on the
right-hand side of Eq. (49) due to the nonlinearity.

The threshold amplitude of the disturbance is given by

aC0 ¼
xi

J2

� �1
2

; (51)

and the nonlinear wave speed can be found as

Ncr ¼ cr þ ci
J4
J2
: (52)

Contrary to the linear wave speed (which is non-dispersive) discussed
in the earlier in Sec. VA, Eq. (40), the nonlinear wave speed given in
Eq. (52) is dispersive.

The term J2 makes a major contribution in the study of weakly
nonlinear analysis. For J2 ¼ 0, Eq. (49) is a linear differential equation
of the filtered waves. The waves’ amplitude grows and decays expo-
nentially when xi < 0 or xi > 0. For J2 6¼ 0, its sign determines the
ultimate nonlinear behavior of the system. When J2 > 0, the bifurca-
tion is supercritical and when J2 < 0, it is subcritical.

Depending on the sign of J2 and xi, different instability regions
can be found as follows:

• Unconditional stable region: Here, xi < 0 and J2 > 0. In this
region, finite amplitude disturbances are unconditionally stable.

• Subcritical unstable region: Here, xi < 0 and J2 < 0. In the
linear stable region, finite amplitude disturbance can create
instability.

FIG. 7. Threshold amplitude for evaporating film for (a) downhill, subcritical; (b) uphill, subcritical; (c) downhill, supercritical; and (d) uphill, supercritical. Curves are plotted for
Pr ¼ 2.62 and Ka ¼ 14 133, Ku ¼ �0:0872, and for various values of bottom steepness f in downhill (x̂ ¼ 1:57) and uphill (x̂ ¼ 4:71) and for Re ¼ 5. (a) Downhill, subcritical;
(b) uphill, subcritical; (c) downhill, supercritical; and (d) uphill, supercritical.



• Supercritical stable region: Here, xi > 0 and J2 > 0. In this linear
unstable region, subsequent nonlinear growth of disturbance will
configure a new equilibrium state with finite amplitude.

• Explosive region: Here, xi > 0 and J2 < 0. In this region, insta-
bility grows and makes the system unstable.

1. Results from the case study

Figure 5 reviles that, in the k–Re plane, only one subcritical
region is found for evaporating films in contrast to the condensate
film, where two distinct regions of subcritical instability are seen, one
in the upper bound and the other in the lower bound of the linear sta-
bility region, which is shown in Fig. 6. Again, the unconditional stable
region is much smaller for an evaporating film than a condensate film.

Also, it is clear that for flow in the uphill region, explosive zone
decreases, and subcritical, supercritical, and unconditional stable zones
increase significantly for both evaporating and condensate film, which
confirms the stabilizing effect of the uphill region.

The weakly nonlinear stability analysis shows that the system will
be unstable if the initial finite-amplitude disturbance is greater than
the unstable threshold amplitude. Considering Figs. 7 and 8 that show
the threshold amplitude for evaporating (for Re¼ 5) and condensate
(Re¼ 10) film, respectively, in subcritical and supercritical regions, an
interesting fact to be noticed here, in the downhill region, is that the

increase in steepness decreases the threshold amplitude, i.e., giving a
destabilizing effect. Conversely, in the uphill region, the opposite hap-
pens. Increasing the bottom steepness increases the threshold ampli-
tude giving a stabilizing effect.

The wave speed predicted by the linear theory, given in (40), will
not change for all wavenumbers, but the nonlinear wave speed, given
by (52), can be influenced by the wavenumbers, but both of them are
strongly dependent on Ku and other system parameters. The varia-
tions of the nonlinear wave speed with respect to wavenumber and dif-
ferent values of bottom steepness parameter f are shown in Fig. 9
(Fig. 10) for evaporating (condensing) film when Re¼ 5 (Re¼ 10). In
the downhill region, increasing the bottom steepness increases the
nonlinear wave speed, which confirms that bottom steepness gives a
destabilizing effect. In contract to the uphill region, f gives a stabilizing
effect by decreasing the nonlinear speed.

VI. NUMERICAL ANALYSIS

From governing equations and appropriate boundary conditions,
we have derived the model (28), which is a single partial differential
equation of the form

@hðx; tÞ
@t

¼ f hðx; tÞ; @hðx; tÞ
@x

;
@2hðx; tÞ
@x2

;
@3hðx; tÞ
@x3

;…

� �
: (53)

Using the method of line,60 the spatial derivatives are approxi-
mated via the finite differences method, leading to a system of ordinary

FIG. 8. Threshold amplitude for condensate film for (a) downhill, subcritical; (b) uphill, subcritical; (c) downhill, supercritical; and (d) uphill, supercritical. Curves are plotted for
Pr ¼ 2.62 and Ka ¼ 14 133, Ku ¼ 0.0872 and for various values of bottom steepness f in downhill (x̂  ¼ 1:57) and uphill (x̂  ¼ 4:71) and for Re ¼ 10. (a) Downhill, subcritical;
(b) uphill, subcritical; (c) downhill, supercritical; and (d) uphill, supercritical.



differential equations for the discrete h values on an even-spaced 1D
grid. The local time evolution for h at the node i reads now as follows:

@hiðtÞ
@t
¼ F hi�2ðtÞ; hi�1ðtÞ; hiðtÞ; hiþ1; hiþ2ðtÞð Þ: (54)

This dynamical system can then be solved using state-of-the-art ODE
solvers. Initially, we impose a finite amplitude monochromatic distur-
bance as follows:

hðx; 0Þ ¼ 1þ 0:1 cos ð2px=LÞ; (55)

where L ¼ 2p=k is the length of the periodic domain and k is the wave
number and solved Eq. (54) in periodic domain (i.e., assuming peri-
odic boundary conditions).

As our one of the goals is to capture the rupture phenomena, it
is essential to have a solver that will work with a small time step to
be as close to the time where minðhðtÞÞ ! 0. We have chosen a 3/2
adaptive strong stability preserving (SSP) method with five stages
(SSP coefficient 2, free second-order SSP interpolant).61,62 This
method is adaptive and comes with a (free) error estimation. This
error estimation controls the time step during the simulation using a
proportional-integral control algorithm (a PI controller). It also
guarantees an error lower than some (relative or absolute) tolerance,
rejecting any step that does not match these criteria. A relative toler-
ance reltol ¼ 10�6 has been chosen. The numerical scheme has been

validated with previous works48,51 and found to give consistent
results.

As limh! 0 lead to infinite values in the model, it is not possi-
ble to catch the exact moment where the film dry out: we use instead
a linear extrapolation to obtain an approximation of t where
minðhðx; truptÞÞ ¼ 0, and the values for hðx; truptÞ. For the condensa-
tion case, the chosen Reynolds number is moderate (Re¼ 10). Due
to the lack of free variable in the model, it is impossible to deal with
long-running simulations with large fluid velocity. As injecting mass
in the system leads to a thicker film with increased velocity, we have
to end the simulation early. A simple root-finding algorithm is used
to catch the moment where the h average reach a critical �hðxÞ ¼ 1:5.
A more complex model could be used in future work to overcome
this limit.

A. Results from the case study

When Ku< 0, the mass loss due to evaporation is significant,
and the film thickness changes with position and time h ¼ hðx; tÞ.
Figure 11 depicts the evolution of film interface as a function of time. It
reveals that the growth of surface deformations becomes catastrophic
when the wave trough approaches the point of rupture. The gradient of
the film profile gradually increases as the film approaches toward rup-
ture and jumps sharply to vary high values near rupture. This is because

FIG. 9. Nonlinear wave speed for evaporating film for (a) downhill, subcritical; (b) uphill, subcritical; (c) downhill, supercritical; and (d) uphill, supercritical. Curves are plotted for
Pr¼ 2.62 and Ka¼ 14 133, Ku ¼ �0:0872, and for various values of bottom steepness f in downhill (x̂ ¼ 1:57) and uphill (x̂ ¼ 4:71) and for Re¼ 5. (a) Downhill, subcriti-
cal; (b) uphill, subcritical; (c) downhill, supercritical; and (d) uphill, supercritical.



the evolution of evaporating film is characterized by two simultaneous
processes: the decrease in the average film thickness due to evaporation
mass loss and the deformation of the initial flat liquid–vapor interface
due to the flow of the film. The bottom steepness f does not have much
impact on rupture time. Figure 11(d) shows the variation in rupture
time for different Ku values. As Ku increases (�Ku decreases), rupture
time increases, i.e., giving a stabilizing effect.

Similarly, when Ku> 0, the mass gain due to condensation is sig-
nificant. Figure 12 shows the evolution of film interface as a function
of time for various Ku values and for different f. Here, the time to
reach to �hðxÞ ¼ 1:5 increases with decreasing Ku (for a fixed f), i.e.,
Ku is playing a destabilizing effect.

VII. CONCLUSION

Our main emphasis for the current work is to analyze the effect
of bottom topography on the evolution of the film undergoing
interfacial phase change (condensation/evaporation). The formula-
tion of the problem is performed by transforming the governing
equations and the pertinent boundary conditions in the curvilinear
coordinate system. This transformation provides an easy but robust
way to discuss such problems containing a curvy topography. The
film evolution is governed by evaporation (condensation), mass loss
(gain), and subsequent film thinning (thickening). The general
assumptions in this study are that (1) Reynolds and Prandtl

numbers are of order one; (2) slope of the interface is small (long
waves); and (3) finally, the bottom steepness is moderate.48,52

However, the maximum steepness is strongly restricted by the
dependence of the surface on the local inclination angle ðb� hÞ27
for a given inclination angle b. After delicate investigation, we
decided to choose the range of bottom steepness f from 0.0 to 0.4
when the inclination angle b ¼ p=3 to make the model physically
and geometrically consistent.

The classical long-wave expansion method is used to derive a sur-
face evolution equation accounting for fluid’s fundamental physical
properties that are assumed as constant and the topographic nature of
the bottom, and other essential characteristics like mean surface tension,
gravity, etc., in terms of different non-dimensional number. Several
assumptions have been adopted in the present study. The analysis of
the phase change effect is not completely general. The temperature
jump associated with the phase change49 is not considered here.
Generally, in the case of evaporation (condensation) in the liquid film, a
steady uniform basic state is only permitted if it is time-dependent23,49

but in our present study, this property is simplified by assuming
the unperturbed film as steady and the perturbed equations to be
unsteady locally. Our intention behind this is nothing but to simplify
the entire analysis and to reduce the cost of computation so that the
effect of bottom undulation can be easily understood for evaporating
(condensate) film.

FIG. 10. Nonlinear wave speed for condensate film for (a) downhill, subcritical; (b) uphill, subcritical; (c) downhill, supercritical; and (d) uphill, supercritical. Curves are plotted
for Pr¼ 2.62 and Ka¼ 14 133, Ku¼ 0.0872, and for various values of bottom steepness f in downhill (x̂ ¼ 1:57) and uphill (x̂ ¼ 4:71) and for Re¼ 10. (a) Downhill, subcritical;
(b) uphill, subcritical; (c) downhill, supercritical; and (d) uphill, supercritical.



The noticeable interesting results from the case studies are as follows:

• The bottom steepness f gives a dual effect on the uphill and
downhill region for linear and weakly nonlinear analysis. This
kind of behavior is claimed before in our earlier researches for
Newtonian film flow with linear temperature variation48 and for
isothermal non-Newtonian flow52 over the undulated bottom.

• In the downhill region, f destabilizes by decreasing the stable
region area, and in the uphill region, it stabilizes by increasing
the area of the stable region.

• f has no significant effect on the threshold of instability for an
evaporating film but for condensate film, f shows the same dual
effect on Rec as mentioned above.

The weakly nonlinear waves have been investigated by using the
method of multiple scales.

• The supercritical and subcritical solutions are possible for both
evaporating and condensate film.

• Two distinct subcritical unstable zones are found for the conden-
sate film, which brings a contrast to the evaporating film.

• The unconditional stable region is much smaller for an evaporat-
ing film than that of a condensate film.

• In the uphill region, unconditional stable zones are found to
increase significantly for both evaporating and condensate films,
which confirms the uphill region’s stabilizing effect.

• The characteristics of the threshold amplitude and the nonlinear
wave speed are discussed to be confirmed with the fact that f
plays a dual role in the downhill and uphill region for both evap-
orating and condensate film.

The evolution of evaporating (condensing) film is characterized
by two simultaneous processes: the decrease (increase) of average film
thickness due to evaporation (condensation) mass loss (gain) and the
deformation of the initial flat liquid–vapor interface due to the flow of
the film. Studying the time-dependent evolution of the film’s free sur-
face, we can say the following:

• Film rupture happens for the evaporating film due to the mass
loss. The dynamics highly depend on the initial perturbation
because it ruptures before it can be developed into a stationary
film.

• The bottom steepness f has no significant effect on rupture time,
which can be explained as the bottom is heated uniformly.
However, Ku gives a stabilizing effect.

• For condensate film, due to the gain of mass, film thickness
increases rapidly.

Finally, the phase change effect for film flowing down a wavy
inclined bottom has not been studied intensively so far. This paper signif-
icantly steps toward a new direction by identifying the effect of bottom
steepness in phase change for a flowing film. Further improvements in

FIG. 11. Evaporating layers of films for various values of bottom steepness f and evaporation parameter Ku: (a) f ¼ 0, Ku ¼ �0:0872, (b) f ¼ 0:1p; Ku ¼ �0:0872, (c) 
f ¼ 0:1p; Ku ¼ �0:01, and (d) f ¼ 0:1p. The curves are plotted for Pr ¼ 2.62 and We ¼ 45 000, Re ¼ 2. tR indicates the rupture time. The period of the domain is taken as 
100. (a) f ¼ 0, Ku ¼�0.0872; (b) f ¼ 0.1p, Ku ¼�0.0872; (c) f ¼ 0.1p, Ku ¼�0.01; and (d) f ¼ 0.1p.



modeling and numerics are required to understand the mechanism in
more detail. We expect that our initiation will help for developing a rich
understanding of this matter in the near future.
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APPENDIX A: EQUATIONS AND SOLUTIONS
OF LONG-WAVE EXPANSION MODEL

1. Zeroth-order equation

@u0
@x
þ @v0
@y
¼ 0; (A1)

3SSþ @
2u0
@y2
¼ 0; (A2)

�Re @p0
@y
� 3CS ¼ 0; (A3)

@2T0

@y2
¼ 0: (A4)

At y¼ 0

u0 ¼ 0; v0 ¼ 0; T0 ¼ 0: (A5)

At y¼ h

@u0
@y
¼ 0; (A6)

pa � p0 ¼ e2Weðhxx � fe�1jþ 2f2j2hÞ; (A7)

FIG. 12. Condensing layers of films for various values of bottom steepness f and condensation parameter Ku: (a) f ¼ 0, Ku ¼ 0:0872, (b) f ¼ 0:1p; Ku ¼ 0:0872, (c) 
f ¼ 0:1p; Ku ¼ 0:01, and (d) f ¼ 0:1p; Ku ¼ 0:1. The curves are plotted for Pr ¼ 2.62 and We ¼ 45 000, Re ¼ 10. tR indicates the rupture time. The period of the domain 
is taken as 100. (a) f ¼ 0, Ku ¼ 0.0872; (b) f ¼ 0.1p, Ku ¼ 0.0872; (c) f ¼ 0.1p, Ku ¼ 0.01; and (d) f ¼ 0.1p, Ku ¼ 0.1.



@h
@t
¼ Ku

ePe
@T0

@y

� �
� u0hx � v0; (A8)

T0 ¼ 1: (A9)

2. Zeroth-order solution

u0 ¼ �3SS
1
2
y2 � hy

� �
; (A10)

�u0 ¼ SSh2; (A11)

v0 ¼ �3SShx
y2

2
; (A12)

p0 ¼ pa �
3CS
Re

y � hð Þ � e2Weðhxx � fe�1jþ 2f2j2hÞ; (A13)

T0 ¼
y
h
; (A14)

ht ¼ �3SSh2hx þ
Ku
ePe

1
h

� �
: (A15)

3. First-order equation

@u1
@x
þ @v1
@y
þ fjv0 þ fjy

@v0
@y
¼ 0; (A16)

Re
@u0
@t
þ u0

@u0
@x
þ v0

@u0
@y

� �
¼�Re@p0

@x
þ fj

@u0
@y
þ @

2u1
@y2

; (A17)

�Refju02 ¼ �Re
@p1
@y
þ @

2v0
@y2

; (A18)

RePr
@T0

@t
þ u0

@T0

@x
þ v0

@T0

@y

� �
¼ @

2T1

@y2
þ fj

@T0

@y
: (A19)

At y¼ 0

u1 ¼ 0; v1 ¼ 0; T1 ¼ 0: (A20)

At y¼ h

@u1
@y
þ fj 2h

@u0
@y
� u0

� �
¼ 0; (A21)

p1 ¼
2
Re

@v0
@y
þ @u0
@y

hx

� �
; (A22)

T1 ¼ 0: (A23)

4. First-order solution

u1 ¼
1
2
ReSS y3 � 3yh2

	 

ht

þReSS
3
8
SS y3 � 4h3
	 


hy

� �
hx þ Re

y2

2
� hy

� �

	 3CS
Re

hx � e2We hxxx � fe�1
@j
@x
þ 2f2j2hxþ4f2jh

@j
@x

� �� �

þfj SS
1
2
y3 � 3

2
hy2þ3h2y

� �� �
; (A24)

�u1 ¼ �
5
8
ReSSh3ht �

27
40

ReSS2h5hx �
1
3
Reh

	 3CS
Re

hx � e2We hxxx � fe�1
@j
@x
þ 2f2j2hxþ4f2jh

@j
@x

� �� �

þ 9
8
fjSSh3; (A25)

T1 ¼
fj
2

y � y2

h

� �
þ Pe

3
40

SShx
h2

y5 � 3
8
SShx
h

y4� 1
6
y3

h2
ht

�

þ 3
10

SSh2yhx þ
1
6
yht

�
: (A26)

APPENDIX B: EXPRESSIONS

L0 �
@

@t
þ P01 þ A1

@

@x
þ B1

@2

@x2
þ C1

@4

@x4
; (B1a)

L1 �
@

@t1
þ A1

@

@x1
þ 2B1

@2

@x@x1
þ 4C1

@4

@x3@x1
; (B1b)

L2 �
@

@t2
þ B1

@2

@x12
þ 6C1

@4

@x2@x12
; (B1c)

N2 ¼
1
2
P001g

2
1 þ A01g1g1x þ B01g1g1xx þ C01g1xg1xxx

þD1g
2
1x þ E1g1g1xxx; (B2)

N3 ¼ P001g1g2 þ A01 g1ðg2x þ g1x1Þ þ g2g1x
� �

þB01 g1ðg2xx þ 2g1g1xx1Þ þ g2g1xx
� �

þC01 g1ðg2xxxx þ 4g1xxxx1Þ þ g2g1xxxx
� �

þD1 2g1xðg2x þ g1x1Þ
� �

þ E1 g1xðg2xxxþ3g1xxx1Þ
�

þg1xxxðg2x þ g1x1Þ
�

þ 1
2
A001g

2
1g1x þ

1
2
B001g

2
1g1xx þ

1
2
C001g

2
1g1xxxx

þ 1
6
P0001 g31 þ D01g

2
1g1x þ E01g1g1xg1xxx: (B3)
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