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Abstract: Green Chemistry has become in the last two decades an increasing part of research
interest. Nonconventional «green» sources for chemical reactions include micro-wave, mechanical
mixing, visible light and ultrasound. 1,2,3-triazoles have important applications in pharmaceutical
chemistry while their 1,2,4 counterparts are developed to a lesser extent. In the review presented
here we will focus on synthesis of 1,2,3 and 1,2,4-triazole systems by means of classical and « green
chemistry » conditions involving ultrasound chemistry and mechanochemistry. The focus will
be on compounds/scaffolds that possess biological/pharmacophoric properties. Finally, we will
also present the formal cycloreversion of 1,2,3-triazole compounds under mechanical forces and its
potential use in biological systems.

Keywords: 1,2,3-triazoles; 1,2,4-triazoles; ultrasound; medicinal chemistry; green chemistry;
mechanochemistry; biological properties

1. Introduction

One of the main goals in the area of organic synthesis oriented towards biologically ac-
tive compounds is the research and development of efficient environmentally safe methods.
In fact, since the 2000s many regulations for the chemical and pharmaceutical industries
have appeared, especially in terms of efficiency, waste management and energy input.
All these issues are now addressed and termed «Green Chemistry», a multifaceted field
dealing with what we call the twelve principles of P.T. Anastas and J.C. Warner [1]. Most
important of them are: atom economy, preventing the use of solvents volatile and/or toxic,
minimize chemical waste and minimize energy [2]. Organic reactions and processes are
classically conducted in solutions (mostly organic) under reflux or thermal energy to be
balanced at the end of the transformation. We focus on the Green Chemistry synthetic
aspects, and focus on chemical reactions by using alternative energy sources that appeared
and developed since the last two decades; namely, the processes: photochemistry through
light excitation, microwave, sonochemistry irradiation, and mechanochemistry [3].

In this article, in order to give an emblematic example of the evolution of synthesis
strategies towards ever greener processes, in particular in the pharmaceutical field, we
will focus not only on recent classical synthesis of 1,2,3 and 1,2,4-triazoles, but also on
sonochemistry and mechanochemical synthesis of these systems in relation to their bi-
ological activities. First, we will initially focus on these two alternative energy sources,
i.e., sonochemistry/ultrasonic irradiation, and mechanochemistry. Mechanical effects
caused by sound irradiation—called sonochemistry—can be applied to liquids. It can
induce formation and growth of acoustic cavitations resulting in implosive bubble col-
lapse [4–6]. This leads to intense compressional heating and extremely high pressures in
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the resultant so called hot spots (5000 K, 1000 atmospheres) while heating and cooling rates
are exceeding 1010 K s−1 (Figure 1) [7,8]. The sonic spectrum ranges from high power to
low power ultrasound (20 KHz to 10 MHz). The range from 20 KHz to 1 MHz is used
in sonochemistry. As indicated before, ultrasound irradiation can induce formation and
growth of acoustic cavitations resulting in implosive bubble collapse that due to their
physical properties can substantially improve chemical reactions (catalytic or not) in terms
of speed (in some reactions a million fold reactivity increase was observed), selectivity
and yield. Ultrasound reactions are not adequate for reactions between solids or solid-gas
systems [9]. Ultrasound in organic synthesis has been studied considerably in the past two
decades. Especially, various named organic transformations effected through ultrasound
irradiation were developed. Among the most important [10] we can point to the coupling
reactions, i.e., Heck, Suzuki, Sonogashira, Ullmann, ultrasound-assisted phase transfer
catalysis, some named reactions like Reformatsky, Michael, Baylis-Hillmann, but also
oxidation/reduction reactions, halogenations. Finally, ultrasound synthesis of ionic liquids
and heterocyclic, especially nitrogen contained compounds [11], has gained much success
and development. Mechanical energy can also induce chemical transformations [10]. Ac-
cording to IUPAC, a mechanochemical reaction is a “Chemical reaction that is induced
by the direct absorption of mechanical energy” [12,13]. Wilhelm Ostwald (Nobel Prize
in 1909), was the first who mentioned the term “Mechanochemistry” and defined it as a
“branch of chemistry which is concerned with chemical and physico-chemical changes
of substances of all states of aggregation due to the influence of mechanical energy”.
It is important to mention the pioneering work of Boldyrev et al., on the mechanisms and
kinetics in comminuting devices [14–16], serving as a basis for many mechanochemical
works. How the absorption of mechanical energy induces chemical transformations in
terms of mechanistic understanding is still under investigation and not fully elucidated.
Various models were proposed based on solid chemistry knowledge, like “hot spot” and
“magma-plasma model” [17–19]. Other also well-known models (spherical, kinetic and
impulse . . . ) were equally proposed [20,21]. Many efforts were developed recently towards
a mechanistic level understanding of mechanochemical processes [22]. One of the major
trends in progress is to research possible links between the mechanical effect and the action
of the forces generated at the molecular level [23–27]. In parallel with these recent advances,
the topic is still subject to research from the experimental and theoretical points of view [28].
In terms of the experimental view, the traditional grinding by using a mortar and a pestle
has been replaced by more sophisticated ball-milling or mechano-milling techniques that
are generally conducted in vibration mills or planetary mills at frequencies of 5–60 Hz.
The reactions are generally carried out in vessels or jars of different kinds of materials
(stainless steel, tungsten carbide, zirconia, agate, etc.). In recent years a deviation from
the pure solid status of reactants, named the liquid assisted grinding, gained considerable
interest because it offers opportunities to mechanochemistry to reach viable results in
comparison to solution synthesis [29,30]. These studies are greatly facilitated by a pos-
sible continuous monitoring of mechanochemical reactions [31,32]. One drawback for
mechanochemistry is the fact that up to now difficulties exist in practically controlling
the air and moisture sensitive reagents. However, Kubota et al. have shown recently [33]
that mechanochemistry allows carrying out the syntheses of organometallics sensitive to
humidity in air.

In the two last decades, this green chemistry approach has been developed consider-
ably in areas related to inorganic compounds and metal complexes synthesis and related
mechanistic aspects [34–36] while less interest was focused on organic mechanochemistry,
even after the pioneering work reported by Toda in the 1980s [37] and Kaupp [38]. This is
actually changing since the last decade’s focus was essentially on the green chemistry and
green processes approach [39]. In recent times, mechanochemical synthetic approaches for
creating carbon-carbon, carbon-heteroatom, metal-ligand coordination bonds etc. became
important issues and gained considerable attention in the literature [40,41], and many
applications were carried out in the field of organic mechanochemistry [42–52]. Among
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the many heterocyclic ring structures, especially nitrogen-contained, which were found
and/or designed as important scaffolds for inducing biological effects are the triazoles.
Triazole is a five membered ring with three nitrogen and two carbon atoms. Depending on
the disposition of the five atoms, triazoles exist in two isomeric forms, namely 1,2,3- and
1,2,4-triazoles. Triazoles have become increasingly popular between medicinal chemists
and pharmaceutical companies due essentially to their unique properties such as: rigidity,
strong hydrogen-bond properties, stability under in vivo, and interesting pharmacokinetic
profiles. Due to their importance, much literature data exist for 1,2,3-triazole systems
in comparison to the 1,2,4-triazoles concerning either their syntheses or their biological
activities see for instance [53–55]. In that respect the review presented here focuses on three
recent parts, namely:

(a) Construction of 1,2,3-triazole systems in biologically relevant compounds by means
of classical and “green chemistry” conditions involving ultrasound chemistry and
mechanochemistry.

(b) Construction of 1,2,4-triazole systems in biologically relevant compounds by means
of classical and “green chemistry” conditions involving ultrasound chemistry and
mechanochemistry.

(c) The mechanochemical cyclo-reversion of 1,2,3-triazole compounds and the scientific
discussion on the topic that it could be extremely stimulating as mechanochemistry
seems to provide a method by which reactive azide or alkyne intermediates could be
selectively unmasked.
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Figure 1. A summary of various approaches toward synthesis of 1,2,3-triazoles.

2. 1,2,3-Triazole Systems

One of the most important five-membered heterocyclic scaffolds due to its extensive
biological activity is the 1,2,3-triazole one. The framework can be readily obtained through
the click chemistry via reaction of an aryl/alkyl halide, alkynes and NaN3. Many synthetic
methodologies were developed the past few decades, usually partitioned between metal-
free and metal catalysed approaches, thus offering new opportunities for introduction
of this valuable moiety to biologically relevant compounds designed and developed by
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medicinal chemists (Figure 1). A very recent review treats on those methodologies and on
the medicinal attributes of 1,2,3-triazoles [56].

We report here notable current examples (year 2018) of classical synthesis of biologi-
cally active compounds bearing this frame, but also recent literature from 2014 concerning
synthesis of 1,2,3-triazoles by chemical transformations using alternative energy sources
(ultrasonic irradiation).

Alexandre et al. reported in 2018 [57] that compounds based on 4-amino-1,2,3-triazole
core as potent inhibitors of indoleamine 2,3-dioxygenase (IDO1) are important targets of
immuno-oncology research. The authors screened on a recombinant human IDO1 a library
of 350,000 compounds and were able to identify a series bearing the 4-amino-1,2,3-triazole
core. Upon chemistry optimisation they obtained compound N-(4-chlorophenyl)-2H-1,2,3-
triazol-4-amine with a remarkable potency (IC50 of 0.023 µM) substantially more potent
than any other IDO1 inhibitor. Synthesis of this compound differs from all other methods.
The synthesis involves diazotization of 4-chloroaniline 1 by sodium nitrite followed by
reaction with 2-aminoacetonitrile hydrochloride 2 in order to afford 2-(2-(4-chlorophenyl)
iminohydrazino) acetonitrile 3 which upon heating under reflux in ethanol afforded the
desired compound 4 (Scheme 1).
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Scheme 1. Synthesis of 2-(2-(4-chlorophenyl)iminohydrazino) acetonitrile 4.

Wu et al. [58] reported the design and synthesis of tacrine 1,2,3-triazole derivatives as
potent cholinesterase inhibitors. Tacrine 5, the first drug approved by the FDA that binds
at the catalytic active site (CAS) region a potent non selective inhibitor of both bAChE
and hBChE was hybridized through various types of linkers bearing the 1,2,3-triazole
frame with the chloroquinoline scaffold. Starting from indoline-2,3-dione 6, the authors
obtained in a four step procedure the key tetrahydroacridine intermediates 7 bearing
various terminal alkynes. After introduction of an azide functionality in the chloroquinoline
scaffold 8 the partners were coupled via CuAAC reaction giving compounds 9 (Scheme 2).
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Among all compounds synthetized, compound 9 (R = H, linker = piperazine) exhib-
ited a potent inhibition against AChE and BChE with IC50 values of 4.89 and 3.61 µM,
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respectively. The authors point out that although this compound is less potent than tacrine,
it has a unique binding mode at both CAS and also to the peripheral anionic site (PAS),
as well as less toxicity. They concluded by considering it as a lead compound that could be
the basis for the development of more active dual inhibitors of AChE and BChE (Table 1).

Table 1. Inhibition of AChE (Electrophorus electricus) and horse serum BChE by Tacrine 5 and a
derivative 9 (with piperazine as linker and R = H).
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Compounds
Inhibition (%) at 100 µM IC50 (µM)

AChE BChE AChE BChE

9 (R = H, linker = piperazine) 78.69 91.80 4.89 3.61
Tacrine 5 86.22 99.63 0.316 0.066

Ashok et al. [59] reported the synthesis of a novel prototype that possessed a chromene
and a 1,2,3-triazole pharmocophore frame with activities against M. tuberculosis. The strat-
egy adopted by the authors for their synthesis started from substituted acetophenone 10
which upon Kabbe condensation and reduction of the carbonyl group afforded spirochro-
manols 11. Deprotection of 11 and dehydration provided the corresponding spirochromene
12. 1,2,3-triazole-fused spirochromene derivatives 13 were then obtained through a Huis-
gen cycloaddition in the presence of pyrrolidine as catalyst (Scheme 3).
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Among the compounds tested against M. tuberculosis H37Rv strain, 5 compounds
presented strong MIC activities (between 4 and 9 µM). Their cytotoxicity against RAW
264.7 cells was determined and indicated at least one log difference in comparison to their
MIC values. These findings indicated that 1,2,3-triazole-fused spirochromene derivatives
can have biological significance for further development (Table 2).
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Table 2. Anti-tubercular and toxicity evaluation of compounds 13 against M. tuberculosis H37Rv.

Compounds 13
MIC (µg/mL) MIC (µM)

Cytotoxicity in % Inhibition
at 50 µg/mLR1 R2 R3

Me H C6H5- 1.56 4.74 30.23
Me H 4-OMe-C6H5- 1.56 4.34 33.14
Cl H Benzyl 1.56 4.11 29.36
Cl Me C6H5- 3.125 8.60 24.90
Cl Me 4-Cl-C6H5- 3.125 7.87 24.76

MIC: minimum inhibitory concentration (the lowest concentration that inhibited the bacterial growth).

López-Rojas et al. [60] reported the synthesis of 4-substituted 1,2,3-triazole coumarin-
derivatives and evaluated their antimicrobial activity. The strategy adopted by the authors
was the synthesis of acetylenic O- 15 or N-propargylated 17 coumarins starting from
4-hydroxy 14 and 4-bromo 16 coumarin respectively. Copper(I) catalyzed Huisgen 1,3-
dipolar cycloaddition reaction with synthetized (or commercially available) alkyl or aryl
azides and afforded the desired compounds 18 (Scheme 4).
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Scheme 4. Synthesis of 4-substituted 1,2,3-triazole-coumarin derivatives 18.

The authors thus created a focused library of 26 compounds with two isosteric series
(hydroxy/amino) and with different substituents at the triazole moiety. Based on their MIC
values against selected microorganisms, 5 out of 26 compounds showed significant antibac-
terial activity towards Enterococcus faecalis (MIC = 12.5–50 µg/mL) while low cytotoxicity
was observed against human erythrocytes (Table 3).

Table 3. Antimicrobial activity of compounds 18 against Enterococcus faecalis (MIC µg/mL) of the
synthesized compounds.

Compounds 18
Enterococcus faecalis

X R

O C6H5- 50
O 2-OMe-C6H4- 12.5
O 4-F-C6H4- 50

NH 3-NO2-C6H4- 50
NH C11H23 50

2.1. Ultrasound Assisted Syntheses of 1,2,3-Triazoles

We will refer herein to some relevant publications from 2014 up to now.
In 2014, Mady et al. [61] reported the ultrasound assisted synthesis of diaryl sulfones

bearing 1,2,3-triazole moieties as potential antioxidant and antimicrobial agents. Synthesis
of disubstituted triazoles is depicted below (Scheme 5). The authors explored three routes:
a stepwise approach that allowed a click coupling of two different azides and a second and
third one where both alkynes were introduced then allowed to click from the same azide.
Ultrasound (US) Barbier type mediated propargylation occurred readily to construct the
common intermediate 19. This can undergo CuAAC cycloaddition reaction with different
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azides under ultrasound conditions affording a first 1,2,3-triazole containing compound 20.
The hydroxy group can be further propargylated and coupled with other azides (or the
same), affording final compounds 23.
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The second route introduces first a second alkyne group via propargylation of the
hydroxy group of key sulfone 21 and then CuAAC cycloaddition reaction with the cor-
responding azide. All syntheses were operated under ultrasound conditions in a very
efficient manner. The authors also synthetized bis-triazoles via the one-pot click reaction
(third route).

Biological and antioxidant activities of all compounds were also reported. Many of
them were found to be most potent antifungal agents with MIC values around 25 µg/mL
(Table 4). Moreover, compound 24 (Scheme 6) showed an excellent antioxidant activity
(IC50 = 20 µg/mL) using a DPPH free radical scavenging assay.

Table 4. Minimum inhibitory concentration (µg/mL) against A. niger.

Compounds R A. niger
MIC (µg/mL)

20 C6H5- 25
23 C6H5- 25
23 (4-SO2Ph)C6H4PhCO- 25
23 (4-F)C6H4PhCO- 25
23 (4-Br)C6H4PhCO- 25
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Nallapati et al. reported in 2015 [62] synthesis of 1,2,3-triazoles derived from olanzap-
ine. Olanzapine (Zyprexa), a member of the thienobenzodiazepine class, is a confirmed
marketed drug used for the treatment of schizophrenia and bipolar disorder. The au-
thors describe modifications of olanzapine and explore their activities. One of the target
molecules chosen by the authors being olanzapine decorated with 1,2,3-triazole moieties.
In that respect alkyne 26 was first prepared through classical coupling in the presence of
NaH of propargyl bromide with the drug olanzapine 25 in THF. The thus prepared alkyne
reacted with aryl or alkyl azides at room temperature under ultrasound irradiation and in
the presence of diisopropylethylamine affording the triazolo derivatives 27 in fairly good
yields (Scheme 7).
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Scheme 7. Synthesis of new olanzapine based 1,2,3-triazole derivatives 27 via CuAAC method.

The authors reported in vitro activities of these compounds against phosphodiesterase
4B protein (PDE4B), a gene family that plays a role in the treatment of schizophrenia. Three
of the compounds tested were identified as selective inhibitors of PDE4B (IC50 5 to 6 µM)
(Table 5).

Table 5. Inhibition of PDE4B at 10 µM by compounds 27.

Compounds 27
Average % Inhibition against PDE4B

R

-CH3Ph 72.82
-CH2C6H3(Cl-o)(CF3-p) 75.37

-C6H4F-p 74.83
PDE4B: phosphodiesterase 4B protein.

N. Rezki reported in 2015 [63] synthesis under conventional methods and ultrasound
conditions of 1,4 disubstituted 1,2,3-triazoles tethering bioactive benzothiazole nucleus
and their antibacterial evaluation. Synthesis (Scheme 8) started from 2-aminobenzothiazole
derivatives 28 which were acylated upon reaction with bromoacetylbromide. Then, azida-
tion in the presence of sodium azide afforded the corresponding azidobenzothiazoles 29.
All reactions were performed under classical and ultrasound conditions with better yields
in the latter case. Huisgen copper(I) catalysed 1,3-dipolar cycloaddition with appropriate
terminal alkynes in the presence of sodium ascorbate in tBuOH/H2O, and was carried
out under heat or use of ultrasound at room temperature affording compounds 30. Again,
ultrasound conditions revealed to be more favorable.
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All compounds were tested against three gram positive and three gram negative
bacteria and two fungal strains. Some of them, revealed promising activities in the range
of 4–8 µg/mL (Table 6).

Table 6. Antimicrobial activity of compounds 30 expressed as MIC (µg/mL).

Compounds 30 Gram-Positive
Organisms

Gram-Negative
Organisms Fungi

R R1 Sp Bs Sa Pa Ec Kp Af Ca

-SO2Me -
CH(OH)(Ph) 8 8 4 4 8 8 8 8

-SO2Me -C2H4OH 4 4 8 4 4 8 4 4
-SO2Me -C3H6OH 4 4 8 4 4 8 4 4

Sp: Streptococcus pneumonia; Bs: Bacillus subtilis; Sa: Staphylococcus aureus; Pa: Pseudomonas aeruginosa; Ec:
Escherichia coli; Kp: Klebsiella pneumonia; Af: Aspergillus fumigates; Ca: Candida albicans.

N. Rezki and M.R. Aouad reported in 2017 [64] synthesis of hybrid compounds
bearing fluorinated 1,2,4-triazole, 1H-1,2,3-triazole and also a benzothiazole functionality.
Construction of the 1,2,4-triazole substituted frame started from reaction of 2-fluorobenzoyl
chloride 31 with hydrazine hydrate.

Subsequent treatment was administered with diverse alkyl/aryl isothiocyanates,
which upon basic reaction conditions underwent an oxidative ring closure affording the
thione derivatives 32. The latter reacted with propargyl bromide in the presence of tri-
ethylamine under ultrasound conditions, furnishing the thiopropargylated 1,2,4-triazole
precursors 33 required for the click reaction. On the other hand, acylation of the appropriate
2-aminobenzothiazoles 34 followed by the azidolysis reaction allowed obtention of the
azidoacetamide derivative 35. The Huisgen cycloaddition reaction was then performed
between the two coupling reagents in the presence of CuSO4 and Na-ascorbate as catalysts
in DMSO-H2O. The ultrasound conditions were less time consuming and much more
efficient with almost quantitative yields (Scheme 9).

Almost all compounds showed activities with MIC values in the range 6.45–33.2 µmol/L
against S. pneumoniae. In addition, compound 37 (Figure 2) showed the strongest antifungal
activities among all compounds with MIC values of 6.45 µmol/L against A. fumigatus and
C. albicans.

2.2. Mechanochemical Syntheses of 1,2,3-Triazoles

Praveen et al. reported in 2017 [65] the synthesis of new hybrid pharmacophores
under ball milling conditions through two well established named reactions, namely a
Baylis-Hillman [66] and a Huisgen’s click chemistry [67]. The authors aimed to prepare
potential medicinal targets bearing a 3-substituted-3-hydroxy-2-oxindole frame present
in many natural products and medicinal agents [68–70] and a 1,2,3-triazole scaffold.
The authors successfully combined a Baylis-Hillman and a click reaction by using DABCO
as a base and copper oxide nanoparticles as catalysts. By milling together a mixture of
N-propargyl isatin, N-methylmaleimide, benzyl azide, DABCO in the presence of CuONP
catalyst (5%) they were able to find optimal conditions of achieving the synthesis of the
target compound 38a in 96% of yield (Scheme 10).
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They then applied the conditions found for creating a small focused library (Table 7)
as their methodology and accommodated a large variety of substituted starting compounds.
In addition, the authors proved the recyclability of the catalyst and its total recovery.
Biological studies along with molecular docking demonstrated the rational efficiency of the
compounds as antibacterial and antifungal. The best activities were found for compound
38m (Figure 3), which was most active against S. aureus (with a MIC value of 16 µg mL−1),
for compounds 38a.d,i,l active against E. coli and for compounds 38e,h,k,m,p active against
C. albicans.

Table 7. Compounds 38: Structures and mechanochemical yield.

Compounds 38
Yield (%)

R R1 R2

38a Me H benzyl 96
38b Me H p-methylbenzyl 98
38c Me H p-methoxybenzyl 99
38d Me H hexyl 80
38e Me H phenyl 70
38f Me H ethoxycarbonylmethyl 90
38g Me H p-nitrobenzyl 93
38h Me 5-Cl benzyl 99
38i Me 5-Cl p-methylbenzyl 90
38j Me 5-Cl p-nitrobenzyl 90
38k Me 5-Cl p-methoxybenzyl 98
38l Me 5-Cl phenyl 71

38m phenyl H benzyl 90
38n benzyl H benzyl 93
38o Me 5-Br benzyl 96
38p Me 5-Me benzyl 88
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Figure 3. Most active compound 38m of the series.

Sahu et al. published in 2019 [71] the synthesis of quinine-triazole systems with the
aim to find new compounds via molecular hybridization [72] that can be addressed to
two antiprotozoal targets that are malaria and leichmaniosis [72,73]. The synthetic route
(Scheme 11) started with activation through mesylation of the secondary alcohol of quinine
generating the compound 39 and subsequent substitution with the azide group via a
solution-based methodology [74]. The generated azido dehydroxyquinine 40 was then
allowed to react via a copper catalyzed cycloaddition reaction with a variety of alkynes.
These reactions were carried out under mechanochemical conditions in ball mill at 300 rpm,
affording the triazolyl compounds 41 in 45% to 91% yields (Table 8). Screening results
showed that from the 19 synthetized compounds, 5 showed significant antimalarial and
antileichmanial activities (Table 8) and four of them did not reveal any in vivo (rodent
animal model) toxic manifestation at doses as high as 1000 mg/Kg.



Molecules 2021, 26, 5667 12 of 27

Molecules 2021, 26, x FOR PEER REVIEW 12 of 28 
 

 

 
Figure 3. Most active compound 38m of the series. 

Sahu et al. published in 2019 [71] the synthesis of quinine-triazole systems with the 
aim to find new compounds via molecular hybridization [72] that can be addressed to 
two antiprotozoal targets that are malaria and leichmaniosis [72,73]. The synthetic route 
(Scheme 11) started with activation through mesylation of the secondary alcohol of qui-
nine generating the compound 39 and subsequent substitution with the azide group via a 
solution-based methodology [74]. The generated azido dehydroxyquinine 40 was then 
allowed to react via a copper catalyzed cycloaddition reaction with a variety of alkynes. 
These reactions were carried out under mechanochemical conditions in ball mill at 300 
rpm, affording the triazolyl compounds 41 in 45% to 91% yields (Table 8). Screening re-
sults showed that from the 19 synthetized compounds, 5 showed significant antimalarial 
and antileichmanial activities (Table 8) and four of them did not reveal any in vivo (ro-
dent animal model) toxic manifestation at doses as high as 1000 mg/Kg. 

 
Scheme 11. Synthesis of triazolyl compounds from Quinine. 

Table 8. Compounds 41 Structure, yield and activity. 

Compounds 
41 

R 
Yield 
(%) 

Antimalarial 
Assay (IC50, 

(µM)) 

Antileishmani-
al Assay(IC50, 

(µM)) 

Toxicity Profile 
NOAEL 
(mg/kg) 

a  91 0.25 8.26 >1000 
b  89 0.25 4.4 >1000 

c 

 

56 0.25 1.78 >1000 

Scheme 11. Synthesis of triazolyl compounds from Quinine.

Table 8. Compounds 41 Structure, yield and activity.

Compounds 41 R Yield (%) Antimalarial
Assay (IC50, (µM))

Antileishmanial
Assay(IC50, (µM))

Toxicity Profile
NOAEL (mg/kg)

a
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Finally, S. Sampath et al. reported last year [75] the synthesis of 1,2,3-triazole tethered
3-hydroxy-2-oxindoles under ball milling conditions (Scheme 12) as corrosion inhibitors
and antimicrobials. 3-Functionalized oxindoles can be obtained from the valuable hete-
rocyclic scaffolds isatins. Among the different 3-substituted oxindoles, the 3-hydroxy-3-
substituted-2-oxindoles are present in many natural products [76]. In addition, they are
considered as valuable key intermediates in organic synthesis [77–79], leading to com-
pounds with pronounced pharmaceutical properties [80–82]. The authors synthetized a set
of new derivatives of this family by combining an aldol condensation and a click reaction
using ball milling conditions. A mixture of N-propargyl isatin, acetophenone, benzyl azide
in the presence of DABCO and copper oxide nanoparticles CuONPs (2.5 mol%) was reacted
in a ZrO2 jar material at a speed of 400 rpm, affording the desired products 42 in 87% to 92%
yields, except for azide possessing the strong electron withdrawing NO2 group (80% yield).
Among the compounds synthetized, derivative 42b displayed a remarkable corrosion
inhibition potency (for corrosion inhibition in acidic media see references [83,84]), while
compound 42a showed appreciable antifungal (C. albicans) and antibacterial (S. aureus)
effects (Table 9). The authors consider that the biological results are quite encouraging for
triggering a detailed structure-activity study and the comprehension of their activity.
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3. 1,2,4-Triazole Systems

The 1,2,4-triazole-based biologically active compounds have found enormous appli-
cations in medicinal and agricultural sciences. A great number of drugs are extensively
used in clinics. Among them, we can point to the antifungal fluconazole 43, antitumoral
letrozole 44, and the antiviral ribavirin 45, (Figure 4) [85], while several triazole based
compounds play an important role in agriculture ensuring harvest and crops [86]. Their
extensive medicinal, agrochemical potential, resulted in an overwhelming effort to develop
synthetic methods that include three categories of synthetic objectives: (a) cyclizations
to form the triazole ring, (b) transformations of heterocyclic compounds to construct the
triazole ring, and (c) substitutions on the 1,2,4-triazole ring.
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the 5-position of a 3-C-glucopyranosyl scaffold give access to very efficient inhibitors of 
glycogen phosphorylase. In that respect they become extremely important hits as poten-
tial antidiabetic agents (type 2 diabetes). Szőcs et al. reported in 2015 [88] 38 new devel-
opments concerning the synthetic approaches for this class of compounds and in partic-
ular the oxidative ring closures of N1-alkylidene carboxamidrazones. When glycosyl cy-
anides 49 and amidrazones 50 were treated under Raney reductive conditions in the 
presence of NaHP2O2, they afforded the two tautomeric forms 51 of O-peracylated 
N1-(β-D-glycopyranosyl-methylidene)-arenecarboxamidrazones. Bromination of 52 by 
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In this review, we discuss only some examples of the recent cyclization reactions with
amidrazones and hydrazides. In addition, it is noteworthy to point out that there are no
reported methods to synthetize 1,2,4-triazole frames under green chemistry conditions.
We report here our first results concerning the mechanochemical organic synthesis of a
valuable annulated 1,2,4-triazole scaffold.
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3.1. From Amidrazones

Amidrazones are the conjugated products of imines and hydrazines; their cyclisa-
tion with carbonyl compounds is one of the most important pathways to access 1,2,4-
triazole derivatives.

In 2015, Nakka et al. [87] reported an environmentally benign protocol for the synthesis
of 3,4,5-trisubstituted 1,2,4-triazoles 48. The authors performed the coupling/cyclisation
reaction by heating in polyethylene glycol and in the presence of ceric ammonium nitrate
(catalyst, 5%), N-arylamidrazones 46 and aldehydes 47. The authors demonstrated that this
protocol could generate good yields of 3,4,5-tri-substituted 1,2,4-triazoles bearing different
functionalities, while in addition, the effective recyclability of the medium could make the
process industrially interesting (Scheme 13).
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Szőcs et al. [87] have already shown that 1,2,4-triazole frames judiciously attached
at the 5-position of a 3-C-glucopyranosyl scaffold give access to very efficient inhibitors
of glycogen phosphorylase. In that respect they become extremely important hits as po-
tential antidiabetic agents (type 2 diabetes). Szőcs et al. reported in 2015 [88] 38 new
developments concerning the synthetic approaches for this class of compounds and in
particular the oxidative ring closures of N1-alkylidene carboxamidrazones. When glyco-
syl cyanides 49 and amidrazones 50 were treated under Raney reductive conditions in
the presence of NaHP2O2, they afforded the two tautomeric forms 51 of O-peracylated
N1-(β-D-glycopyranosyl-methylidene)-arenecarboxamidrazones. Bromination of 52 by
N-bromosuccinimide (NBS) led to halogenated 47 type derivatives. The latter can then
undergo in pyridine or by NH4OAc in AcOH, a ring closing reaction to the desired 3-C-
glycosyl-5-substituted-1,2,4-triazoles 53 (Scheme 14).
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The authors took advantage of their methodology to create 3,5-diaryl-1,2,4-triazoles
55 starting from N1-arylidene-arenecarboxamidrazones 54. Reaction of the latter with
NBS/NH4OAc in AcOH (whatever the order) afforded triazoles 55, thus demonstrating
the general applicability of the method (Scheme 15).



Molecules 2021, 26, 5667 15 of 27

Molecules 2021, 26, x FOR PEER REVIEW 15 of 28 
 

 

 
Scheme 14. Synthesis of 3-C-glycosyl-5-substituted-1,2,4-triazoles 52. 

The authors took advantage of their methodology to create 3,5-diaryl-1,2,4-triazoles 
55 starting from N1-arylidene-arenecarboxamidrazones 54. Reaction of the latter with 
NBS/NH4OAc in AcOH (whatever the order) afforded triazoles 55, thus demonstrating 
the general applicability of the method (Scheme 15).  

 
Scheme 15. Syntheses of N1-arylidene-arenecarboxamidrazones and their transformation into 
3,5-diaryl-1,2,4-triazoles 55. 

Among the different compounds synthetized and tested, it is noteworthy to point 
out that compound 56 (Figure 5) with an inhibition constant Ki of 0.41 μM against rabbit 
muscle glycogen phosphorylase could be considered as the starting point for the devel-
opment of more potent compounds for pharmacological treatment, not only of diabetes 
but also wherever the regulation of glycogen metabolism plays a significant role (cerebral 
and cardiac ischemias, and tumor growth). 

 
Figure 5. C-glucopyranosyl 1,2,4-triazoles 56. 

In 2018, Aly et al. [89] reported a general method for the synthesis of 
1,3,5-trisubstituted 1,2,4-triazoles 59, 60 from reaction of amidrazones 57 with diethyl 
azodicarboxylate 58. The authors performed the coupling/cyclisation reaction between 
N-arylamidrazones 57 and diethyl azodicarboxylate 58. The reaction was conducted 
under reflux in EtOH and catalyzed by a few drops of triethylamine (Scheme 16), thus 
allowing to get an easy access to the highly diverse triazoles 59, 60. The reaction is based 
on oxidation of ethanol to acetaldehyde via the Mitsunobu reagent; upon reaction with 
amidrazones the substituted 3-methyltriazoles 59 could be obtained, while a [2  +  3] cy-
cloaddition reaction between two oxidized forms of amidrazones produced triazoles 60.  

Scheme 15. Syntheses of N1-arylidene-arenecarboxamidrazones and their transformation into 3,5-
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Among the different compounds synthetized and tested, it is noteworthy to point out
that compound 56 (Figure 5) with an inhibition constant Ki of 0.41 µM against rabbit muscle
glycogen phosphorylase could be considered as the starting point for the development
of more potent compounds for pharmacological treatment, not only of diabetes but also
wherever the regulation of glycogen metabolism plays a significant role (cerebral and
cardiac ischemias, and tumor growth).
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Figure 5. C-glucopyranosyl 1,2,4-triazoles 56.

In 2018, Aly et al. [89] reported a general method for the synthesis of 1,3,5-trisubstituted
1,2,4-triazoles 59, 60 from reaction of amidrazones 57 with diethyl azodicarboxylate 58.
The authors performed the coupling/cyclisation reaction between N-arylamidrazones 57
and diethyl azodicarboxylate 58. The reaction was conducted under reflux in EtOH and
catalyzed by a few drops of triethylamine (Scheme 16), thus allowing to get an easy access
to the highly diverse triazoles 59, 60. The reaction is based on oxidation of ethanol to
acetaldehyde via the Mitsunobu reagent; upon reaction with amidrazones the substituted
3-methyltriazoles 59 could be obtained, while a [2 + 3] cycloaddition reaction between two
oxidized forms of amidrazones produced triazoles 60.
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Scheme 16. Reaction of the Mitsunobu reagent on amidrazones 57.

3.2. From Hydrazides

Several hydrazides are commercially available and the non-commercial ones are
successfully prepared by the reaction of hydrazine with the corresponding ester precursor.
Up to now, a lot of works have been done concerning the cyclization of hydrazides or their
derivatives. Very recent work in relation to biological activities is presented here.

In 2018, Singh et al. [90] reported the design and synthesis of new bioactive 1,2,4-
triazoles as potential antituberculosis and antimicrobial agents. In that respect, they syn-
thetized a series of functionalized 1,2,4-triazole derivatives through the synthetic scheme
presented below (Scheme 17).
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Scheme 17. Synthesis of 1,2,4-triazole 64 from hydrazides.

Isonicotinic acid hydrazide 61 was transformed to the potassium dithiocarbazinate 62
by reaction with carbon disulfide under basic conditions. Then, treatment with hydrazine
hydrate under thermal conditions in water, afforded the 4-amino-1,2,4-triazole-3-thiol 63.
The latter reacted on its 4-amino group to form various Schiff base compounds. Some of
the compounds were found to have very potent antitubercular activities, even better than
isoniazid and also against clinical isolates (Table 10).

Table 10. Percent reduction in relative light units (RLU) of compounds 64 against M. tuberculosis
H37RV and clinical isolates, S, H, R and E resistant M. tuberculosis at 100 µg/mL.

Compounds 64 Percent Reduction in RLU

R M. tuberculosis H37Rv Clinical Isolates, S, H R and
E resistant M. tuberculosis

4-F-C6H4- 80.50 50.72
4-CH3-C6H4- 82.01 52.79

CH=CH-C6H5 83.49 52.47

Synthetized compounds were also tested in vitro against representative bacterial and
fungi strains, one compound has very potent activity against B.subtilis, while another one
is very potent against A.niger and C. albicans fungi (Table 11).

Table 11. In vitro antibacterial and antifungal activities of compounds 64.

Compounds 64 Minimum Inhibitory Concentration (MIC, µg/mL)

R
Gram-Positive Bacteria Fungi

S. aureus B. subtilis A. niger C. albicans

4-F-C6H4- 12.5 10.2 125 106.3
-CH=CH-C6H5 75 81.3 11.7 10.9

Sonawane et al. reported in 2017 [91] the synthesis of 1,2,4-triazole-3-thione deriva-
tives as antimycobacterial agents. The two routes employed by the authors are outlined
in Scheme 18. The acid chloride 66, prepared by reacting aromatic carboxylic acid 61
with thionyl chloride reacted with thiosemicarbazide, which without isolation and upon
thermal heating under aqueous basic conditions, led to the desired compounds 67 (route A).
Triazolethiones 69 could not be synthetized by this procedure were obtained by reaction of
hydrazide 68 with carbon disulfide, followed by heating in the presence of a 25% ammonia
solution (route B).

Two of the compounds synthetized showed high antitubercular activity against the
dormant H37Ra strain in vitro and ex vivo; they also showed extremely low cytotoxicity
and high solubility indicating the potential of developing these compounds further as
novel therapeutics against tuberculosis infection (Table 12).
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Compound

Anti-Tubercular Activity against
MTB (µg/mL)

Cytotoxic Activity of Triazole Thiones against
Human Cancer Cell Lines (µg/mL) Aqueous

Solubility
(µM)

Dormant Stage Active Stage THP-1 A549 PANC-1

MIC MIC GI90 GI90 GI90
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0.46 >30 >100 >100 >100 >3200

MTB H37Ra, Mycobacterium tuberculosis H37Ra; Growth Inhibition (GI): GI90 (concentration which resulted in 90% decrease in cell viability).
Expressed in µg/mL. THP-1: acute monocytic leukemia; A549: lung adenocarcinoma; PANC-1: pancreas carcinoma.

Liu et al. [92] reported in 2017 a family of 7-hydroxy-4-phenylchromen-2-linked 1,2,4-
triazoles with potent antitumoral activities. The synthetic procedure adopted made use of
the coumarin synthetized derivatives 70 that were functionalized by reaction with ethyl-
bromoacetate followed by transformation of the ester group to a hydrazide functionality.
The latter, when condensed with dimethylacetal followed by a strong thermal reaction with
an amine in the presence of glacial acetic acid afforded the triazole derivatives 73 in good
overall yields (Scheme 19).
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The new 1,2,3-triazole derivatives showed improved antiproliferative activities. Par-
ticularly, compound 74 exhibited potent activity with important IC50 values against AGS
(2.63 ± 0.17), MGC-803 (3.05 ± 0.29) and HCT-116 cell lines (11.57 ± 0.53 µM) (Figure 6).
The authors also demonstrated that these compounds had strong activity against the HeLa
cell line, with an IC50 value of 13.62 ± 0.86 µM. All activities were better than those of
the non-substituted 7-hydroxy-4-phenyl-2H-chromen-2-one 70 (with R = H) and that of
the positive control drug 5-fluorouracil. Moreover, the authors showed that the biolog-
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ical activities of the 1,2,4-triazole derivatives were significantly higher than that of the
1,2,3-triazole ones.
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1,2,4-triazol-3-yl)methoxy)-4-phenyl-2H-chromen-2-one 74.

3.3. Annulated 1,2,4-Triazole Systems

Among the annulated 1,2,4-triazole systems we will present the triazolophthalazine
frame that was developed in our group by conventional and non-conventional means.

Some years ago, De et al. [93] explored the possibility of cinnamic acid derivatives
as potential antituberculosis agents. In the course of their studies the authors synthetized
4-alkoxy cinnamoyl derivatives resulting from the coupling of the corresponding acids
(or activated ones) with different nucleophiles and among them amines, hydrazines, thiols.

In the course of their first studies, when reacting under peptide coupling condi-
tions (EDC, HCl, HOBt, and trimethylamine), 1-hydrazinophthalazine hydrochloride 75,
and cinnamic acid derivatives for 48 h under reflux in acetonitrile, the authors obtained
in good yields the corresponding 3-(4-alkoxystyryl)-[1,2,4]triazolo[3,4-a]phthalazines 77
(65–90%). This was formed through a coupling-intramolecular cyclization-dehydration
sequence (Scheme 20).
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All alkoxylated compounds showed good antitubercular activities. More importantly,
triazolophthalazine derivative 73 (Figure 7), bearing a 4-isopentenyloxy chain on the phenyl
ring, showed excellent antitubercular potency (MIC = 1.4 µM) in addition to a very good
cytotoxicity toward HCT116 human cells (IC50 = 449 µM; 160 µg/mL and selectivity index
SI = 320). It is also noteworthy to point out that this compound does not act on the mycolic
acid biosynthesis of mycobacteria and up to now its target is unknown.
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In order to build a small, focused library of styryltriazolophthalazines, Veau et al. [94]
modified the convergent route to a divergent one, by exploring the possibility of the
construction of the phenolic precursor 79 that could then lead to various alkoxylated
derivatives of type 77 (Scheme 21).
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Scheme 21. Convergent (A) and divergent (B) routes for synthesis of compounds 77.

The target precursor 79 was thus obtained by the authors in a two step procedure:
1-hydrazinophthalazine hydrochloride 74 and p-hydroxy cinnamic acid 80 when reacted
in acetonitrile for 1 h under peptidic coupling conditions but under microwave afforded
a 69% yield after a simple filtration–recrystallization sequence of the styrylphenolic tria-
zolophthalazine 79. Alkylation by various alkylating agents and under standard conditions
led to the desired alkoxylated derivatives 81 (alkylating agent, K2CO3, KI, DMF, 60 ◦C,
overnight) (Scheme 22).
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Scheme 22. Synthesis of alkoxylated trans-styryltriazolophthalazine derivatives 81.

In continuation of this work on the triazolophtalazine frame the authors considered
that this could be an interesting pharmacophore to explore. In that respect they also
synthetized two compounds bearing either an alkyne group or a bromine at the 2 position
of the 1,2,4-triazole frame.

Concerning the alkyne compound, after several attempts, Veau et al. [94] considered
the best way to obtain it is a two-step sequence. Coupling of trimethylsilyl propiolic
acid 82 with 1-hydrazinylphthalazine hydrochloride 74 under mild conditions afforded
acyclic precursor 83. Under microwave irradiation in acetonitrile for 1 h, the precursor
was transformed quantitatively to the cyclized silylated intermediate 84. Upon standard
deprotection conditions (i.e., K2CO3 in MeOH) compound 84 led to derivative 85 (31%
overall yield over three steps) (Scheme 23).
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For the first time, Gonnet et al. [95] reported in 2019 the mechanochemical synthesis
of 1,2,4-triazoles starting from hydralazine hydrochloride. By using a planetary ball-mill,
and in the presence of pyrogenic S13 silica as the grinding auxiliary, total conversion to
intermediate hydrazones 86 was achieved in a few minutes (Scheme 24). Iodobenzene
diacetate (IBD) was used for optimal conversion of nonphenolic hydrazones to annulated
1,2,4-triazoles 87, while SeO2 was found to be efficient for phenolic compounds (Scheme 25).
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In addition, for the first time, the one-pot two-step synthesis (Scheme 24) leading to
annulated 1,2,4-triazoles was also successfully conducted.

Comparison to the conventional syntheses of hydrazone 86 and triazole 87 clearly
showed the green metrics overall efficiency of the mechanochemical synthesis (Table 13).

Table 13. Comparison of Green metrics for the synthesis of Hydrazone 86 and Triazole 87,
in solution/by mechanochemistry.

Compound Time (h) Yield (%) E-factor PMI

86 1/0.5 100/100 14/4 15/5
87 4/0.75 84/97 74/12 75/13

Synthesis of the brominated compound 91 was also explored. First a conventional
method was performed by Veau et al. [94], by reacting overnight under reflux in ethanol,
1-hydrazinyl-phthalazine hydrochloride 74 with trimethylortho-formate in the presence of
some drops of acetic acid in order to obtain unsubstituted triazolophthalazine 90. Then,
reaction with bromine in the presence of pure acetic acid under reflux afforded the bromi-
nated compound 91 in 53% yield.

More recently, Gonnet et al. [95] reported the two-step bromination reaction success-
fully conducted by mechanochemistry. Reaction of 1-hydrazinylphthalazine hydrochloride
74 in the presence of trimethylorthoformate and some drops of acetic acid reacted in a
planetary ball mill for 1 h affording quantitatively triazolo-phthalazine 90. Reaction in
the same planetary ball-mill (PBM) of the triazolophthalazine with sodium bromide, ox-
one and some silica afforded after 1 h the brominated compound 91 in quantitative yield
(Scheme 26).
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All compounds bearing the 1,2,4-triazole frame were evaluated for various biological
properties. The 3-aryl substituted 1,2,4-triazole derivatives 87 and 89 do not present valu-
able activities against M.tuberculosis ((MIC around 80 µM) [96]. The alkyne derivative 85
present a very good activity (MIC 12.9 µM) while the brominated 91 is much less potent
(MIC 40 µM) [94]. The alkyne derivative 85 did not manifest cytotoxicity toward HCT116
human cells while it is equally active against multidrug-resistant M. tuberculosis strains.
Considering all results starting from compound 73, it seems likely that the triazoloph-
thalazine could be an important scaffold in order to obtain new families of compounds
with strong antitubercular activity and an alternative mode of action for compared with
standard anti M. tuberculosis drugs.

In that respect, the authors consider the possibility of developing focused libraries of
triazolophthalazine compounds by using the two important precursors that are the alkyne
and the brominated derivatives and developing coupling reactions under conventional
and/or mechanochemical means. In addition, further work is necessary to tackle the
identification of the protein targeted by this class of potent anti M. tuberculosis compounds.
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4. Mechanochemical Cycloreversion of 1,2,3-Triazoles

Globally, the cycloaddition process is strongly favored thermodynamically (∆H = −45
to −55 Kcal/mol) [97]. The 1,2,3-triazole frame is robust and inert under most thermal
chemical treatments but also in aqueous or biological environments. In 2011, Brantley
et al. [98] reported the possibility of unclicking the click on specific 1,4-substituted 1,2,3-
triazoles by mechanical forces. They first hypothesized that mechanical exogenous forces
directed to judiciously chosen scaffolds incorporated in a polymer chain can formally
disallow pericyclic reactions. The authors incorporated the triazole ring in polymer chains
and one of them was judiciously chosen, when mechanical ultrasound forces were applied
(ultrasonication in a Suslick cell at 0 ◦C) resulted in the cleavage of the triazole ring 92 to
its alkyne 93 and azide 94 components (Scheme 27).
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They concluded that the ability to selectively deconstruct triazoles might serve to elab-
orate mechano-responsive materials for potential controlled bioconjugation applications or
force responsive fluorescent tags for biological assays.

This stimulated a puzzling publication (that was retracted since by the editor) [99]
aroused strong debate. The same authors, based on sonochemical experiments related to
extended Bel theory, discussed and concluded on the lowering of the activation energy
barrier for cycloreversion [100] through application of an external force to the triazole ring.
In the contrary, purely theoretical work, it was shown that the cycloreversion barrier is as
high as 70 Kcal/mol [101]. In addition, the mechanochemically induced retro-click of the
1,2,3-triazole ring vs. bond rupture next to it could not be unambiguously concluded when
single molecule force spectroscopy experiments were applied [100]. Stauch and Dreuw
reported in 2017 [102] a theoretical work where by using the JEDI (Judgment of Energy
DIstribution) analysis it was concluded that for 1,4 disubstituted triazoles the unclick
reaction is impossible, even when CuI assisted (Scheme 28a). For 1,5-disubstituted triazoles
where a parallel alignment of the scissile bond exists, this could be feasible. Nevertheless,
the retro click cycloreversion is not selective as it competes with the carbon-nitrogen bond
connecting the triazole ring to the linker. During the same year, Krupička et al. [103] also
concluded that only in these 1,5-disubstituted 1,2,3-triazole systems are the Gibbs free
energy barriers 55 Kcal/mol (unclick reaction) versus 45 Kcal/mol for external C-N bond
cleavage. The authors also point out an extremely exciting finding by showing that the
calculated Ru-assisted mechanochemical cycloreversion of the 1,5 regioisomer dramatically
lowers the activation energy of the rate determining step down to 20 Kcal/mol (the first
step), while the decomplexation of the cleaved intermediate readily occurs, leading to the
alkyne and azide components (Scheme 28b).
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cloreversion and (b) 1,5-dimethyl 1,2,3-triazole leading to RuII-catalyzed cycloreversions.

In conclusion, the authors point out that the Ru-assisted mechanochemical unclicking
of the 1,5 regioisomer could be an extremely selective process. If this is to be experimentally
proved it would open the path for very important potential applications.

5. Conclusions

Among the nitrogen-contained heterocyclic ring structures one of the most important
providing long term advancement in the medical field are triazoles. They became in the
last decades the heterocycle of choice in all fields of drug discovery receiving much of the
attention and offering new opportunities for medicinal chemists.

We must point out that while 1,2,3-triazole systems are very well documented in
terms of classical organic synthesis, their synthetic methodologies under green chemistry
approaches based on less energy input requirements are beginning to emerge, but are
still focused on ultrasound reactions. It is our feeling that the mechanical approaches will
be further developed (mechanochemical synthesis, ultrasound). There is still a lot to be
invented and this is a great opportunity for the chemists and medicinal chemists, but also
in extenso for the pharmaceutical industry.

The same and in a greater extent is also true for the synthesis of the valuable regioi-
someric scaffold of 1,2,4-triazole systems. Except for our contribution in the field, there
is no other green chemistry (ultrasound or mechanochemistry) developed for this family
of compounds. We believe that here also great opportunities exist for all communities of
synthetic, physical, theoretical and medicinal chemists, whether they are in the academia
or in the industry.

Finally, concerning the mechanochemical (ultrasound) unclicking of the 1,5 disub-
stituted 1,2,3-triazole, active experimental research work is needed in order to create an
extremely selective process that could also confirm the theoretical work. That could pave
the way for important biological and other applications.
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