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A B S T R A C T

Condition Based Maintenance (CBM) has become the focus of many research topics over the past decades. This
is mostly related to the development of new machine learning algorithms and the ever increasing capacity to
collect data allowing failures to be detected and the system’s remaining lifetime to be estimated while requiring
few or no expert knowledge. However, current machine learning based CBM solutions have limitations. They
require an extensive and relevant data set to train on and are performed at the component level, not system-
wide. Conversely, Expert Systems (ES) do not have these restrictions but should be used on systems with
available expert knowledge and are currently suffering from efficiency, scalability and applicability limits.
In this paper, an ES solution for CBM based on an heterogeneous information network will be presented to
address the efficiency, scalability and applicability issues of modern ES. An application to an aircraft system
will be used as case study to illustrate the process and performance of this solution for anomaly detection and
diagnostics.
. Motivation

The increasing complexity of modern manufacturing systems em-
hasizes the need for preventive maintenance. At the same time, re-
ucing maintenance costs has become a critical challenge in many
ndustries like transportation (Numanoğlu & Ekmekçi, 2020) or en-
rgy (Salameh et al., 2018). Considering this policy, traditional time-
ased maintenance can be lacking, creating a need for more cost
ffective condition-based maintenance (CBM) solutions (Bayoumi et al.,

2008; Gündüz et al., 2019; Huynh, 2020).
CBM is based on sensor data analysis in order to detect symptoms

and failures, sometimes estimating the systems remaining useful life
(RUL). Two main approaches are being used to process sensor data.
A first approach is to feed learning algorithms with labeled historical
data to solve classification or regression problems from past experience.
The main advantage of this solution is its high adaptability as no need
for system knowledge is required. Even though a lot of works and
applications have been made on supervised machine learning algo-
rithms, the availability and high quality requirements on the training
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dataset are inherent major issues (Sheng & Zhang, 2019). The solution
proposed in this paper focuses on CBM for systems with few available
training sets and lots of human expertise or available documentation.
Therefore, the machine learning approach has been discarded here.
A second approach to diagnose failures is to capitalize on existing
system knowledge to artificially re-create an expert reasoning to reach
a conclusion by applying predefined rules related to monitored facts.
These systems are being referred to as Expert Systems (ES).

The purpose of this paper is to propose an architecture for CBM
addressing current ES limitations. After presenting the related state
of the art and its current limitations, a solution will be detailed,
experimented and finally discussed.

2. Literature review

As defined by ISO (AFNOR, 2018), maintenance is a ‘‘set of activities
or tasks used to restore an item to a state in which it can perform
its designated functions’’. It can be divided into two main strategies:
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corrective and preventive. While corrective maintenance consists in
restoring (repairing or replacing) some equipment to its required func-
tion after it has failed, preventive maintenance evaluates and/or slows
the equipment’s degradation, reducing its probability of failure. During
the last ten years, due to the increase of sensor data collection, lots of
Research focused on a specific type of preventive maintenance named
CBM, which evaluates and analyzes the equipment’s physical conditions
while considering the potential maintenance actions to perform.

In particular, Prognostics and Health Management (PHM) is a kind
of CBM introduced as a ‘‘discipline consisting of technologies and meth-
ods to assess the reliability of a product in its actual life cycle conditions
to determine the advent of failure and mitigate equipment/system
risk’’ (Cheng et al., 2010). This approach consists of three main steps:
the monitoring of the system, usually using sensors, the failure identifi-
cation, consisting in a diagnostics step, and the prognostics step which
evaluates the system’s remaining useful life (RUL) (Jouin et al., 2013).

Several PHM-like solutions have been designed for aircrafts and
as turbine engines in particular. Roemer and Kacprzynski (2000)
roposes a review of diagnostics and prognostics solutions with an
mphasis on data processing techniques ensuring the input records reli-
bility. Hanachi et al. (2018) presents another example of health mon-
toring, diagnostics and prognostics approach based on performance
ata. However, while these works detail numerous relevant techniques
or data collection, failure diagnostics and prognostics, none of them
ropose an architecture integrating these algorithms. In particular,
xpert knowledge management still needs to be addressed.

The failure identification is a critical step to select the corresponding
egradation model and provide accurate information on the root cause
o the user. As a matter of fact, the process of relating sensor data
o failures is already performed in diagnostic systems based on the
echnical documentation and human expertise. The difference between
iagnostics and prognostics is that diagnostics is performed after the
dvent of failure while prognostics estimates the RUL of the system
rom signs detected before the failure (Lee et al., 2014).

According to Zaidan et al. (2015) statistically robust methodologies
re more appropriate to deal with large amounts of data in real time for
omplex systems due to the difficulty in designing physical degradation
odels. Consequently a Bayesian approach is proposed for prognostics

nd improved in Zaidan et al. (2016). The Monte-Carlo approach can
lso be considered as a probabilistic and stochastic solution (Puggina
Venturini, 2012).
Jackson (1998) introduces an expert system as a software integrat-

ng expert knowledge on a specific domain in order to solve problems
nd provide advice by reproducing an expert reasoning based on facts
nd data. According to this definition, the solution proposed in this
aper belongs to the expert system’s field. As such, it should be com-
osed of three elements: a base of facts, a base of rules and a control
tructure (Levine & Pomerol, 1990). The base of facts is a set of atomic
lements of knowledge available before the reasoning. The base of rules
egroups all the rules to apply to the base of facts in order to reach

conclusion. These rules can be provided by a human expert or a
echnical documentation and performed if the status of the base of facts
atisfies its activation conditions. The control structure is designed to
hoose which rule should be activated should a conflict arise due to
everal rules activation conditions being fulfilled.

As expert systems have been defined several decades ago, many
pplications have been designed especially in the medical field. Indeed,
he process of a physician identifying a disease from symptoms on a
atient is similar to the process of identifying faults from anomalies in a
ystem. Consequently the maintenance and medicine fields contributed
reatly to ES development. Yanase and Triantaphyllou (2019) proposes
survey on computer-aided diagnosis in medicine with an entire

ection describing ES structure and algorithms with related works. Abu-
asser (2017) details a different description of ES components and lists
3 medical works based on ES. Rajabi et al. (2019) presents a statistical

tudy of ES works in the medical field over 30 years. It concludes that
‘AI and expert systems have a high potential to be employed in almost
ll fields of medicine’’.

The critical criteria to evaluate an ES performance is knowledge
anagement. However, according to Xiaoxue et al. (2019), current

nowledge management techniques have some ‘‘common defects in ef-
iciency, scalability and applicability’’. For instance, modern condition-
ased systems are supported by technical data increasingly complex,
ynamic, semantic and often updated. Knowledge graphs can address
hese limitations. A knowledge graph can be defined as a ‘‘structured se-
antic knowledge base that describes concepts and their relationships

n the physical world in the form of symbols. It allows knowledge rep-
esentation and management to solve knowledge association problems,
uch as knowledge retrieval and semantic question answering. It is
he basis and bridge to realize intelligent semantic retrieval’’ (Xiaoxue
t al., 2019). Knowledge graphs can be implemented using different
olutions like Bayesian networks, conceptual graphs or heterogeneous
nformation networks (HIN).

According to Agrawal et al. (2000), Naive Bayes classifiers are
ecognized to be among the best for classifying text. As such it can be
sed to create, process, and maintain a hierarchical arrangement of tex-
ual documents through interactive mining-based operations. Bayesian
etworks can also be used in maintenance diagnostic and decision-
aking systems although models should be implemented to grant an

mproved performance over time (Corset et al., 2003).
Conceptual graph are knowledge notations processed by reasoning

perators defined by Sowa (1983). It was designed to address prob-
ems related to natural language processing, database inference, and
nowledge engineering. This work was further improved by numerous
esearches. Roussey (2001) implemented the notions of vocabulary and
abel while Chein et al. (1998) introduced the concept of nested graphs.

HIN are defined by Sun and Han (2012) as an abstraction of the real
orld, focusing on the objects and the interactions between the objects.
he network structure of HIN provides an increased scalability when

ncreasing the system’s complexity as the knowledge processing and
ntelligibility is improved. Davis et al. (2011) presents three different
mplementations of HIN with a focus on supervised and unsupervised
ink prediction in a multi-relational setting. Other examples can be
ound in Angelova et al. (2012) to address the problem of multi-label
lassification in heterogeneous graphs, where nodes belong to different
ypes and different types have different sets of classification labels.

In order to structure maintenance data in a CBM information net-
ork, a metamodel is required. This metamodel should define the

unctional nature of the different kinds of nodes and edges. In this
aper, the work of Guillén et al. (2016) has been used as a basis. In
his metamodel, the maintenance data is structured in 5 blocks:

• A physical description block describes the systems components
from a perspective similar to a bill of materials. The smallest
components maintained are called Maintainable Items (MIs).

• A functional description block defines the functions performed by
a component or subsystem and the corresponding failures they are
subjected to.

• An information source block gathers information on the system’s
monitoring from heterogeneous sources like sensors or a mainte-
nance information system. These data are then being transformed
into monitoring variables using measurement techniques.

• A symptom analysis block designed to detect anomalies in the
monitoring variables and relate it to a symptom through descrip-
tors. Depending on the descriptors output, interpretation rules
can trigger 3 different kinds of actions: detection, diagnosis or
prognosis.

• A maintenance decision-making block composed of a set of de-
tection, diagnosis and prognostics processes applied based on the
other four blocks. These processes outputs can be aggregated
and sent to a maintenance decision process to provide valuable

information to the end user.
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As a conclusion, this literature review defined the CBM and PHM
oncepts and detailed the components of most ES. From the meta-
odel presented, a CBM-oriented ES can be designed. However as most
odern ES have limitations in efficiency, scalability and applicability,
solution should be proposed to address these deficiencies. In this

erspective, a framework integrating a knowledge graph to support the
S base of facts is proposed.

. Contribution

As previously mentioned, most of recent works on CBM focus on
ata collection, failure diagnostics and prognostics techniques but re-
earch on architectures able to integrate these algorithms is lacking. Ex-
ert knowledge management is especially challenging. The main limita-
ions to modern ES is the complexity of managing knowledge which in-
uces efficiency, scalability and applicability problems (Xiaoxue et al.,
019).

In this paper, a solution to implement CBM will be proposed. This
olution should be designed to integrate human expertise and technical
ata to perform diagnostics on complex systems, with few occurrences
f each failure. Furthermore, it should integrate heterogeneous data
rom different sources: technical documentation, monitoring data and
istorical maintenance records. Consequently, the choice of an ES
ased solution has been made with the perspective of extending it
o a PHM solution. In order to address the efficiency, scalability and
pplicability issues, this paper proposes an ES solution based on HIN
o represent and exploit heterogeneous data (sensor data, maintenance
ecords, technical data) from different sources (sensors, maintenance
nformation system, technical documentation). The choice of HIN has
een motivated by the criteria illustrated in Table 1.

In this section, we have argued the selection of a HIN expert
ystem for CBM and structured its knowledge base concepts with a
BM-specific meta-model.

Section 4 will detail the solution used to implement the expert
system (ES) base of facts, base of rules and control structure in a HIN. In
part 5, Section 5 will introduce a real case study on an aircraft system.
For this case study, a focus has been made on diagnostic in order to
identify a defective component from a detected failure. Section 6 of this
paper will propose to implement a probabilistic model on the network
in order to improve the diagnostic performance. Finally, the results will
be presented and discussed within Section 7.

4. Knowledge graph based expert system

In the previous sections, the concepts behind CBM, ES and knowl-
edge graphs have been presented and the motivation to design a HIN
based ES has been explicited as a solution to address the efficiency,
scalability and applicability limitations of current ES. To describe this
solution, the base of facts will first be presented as a HIN. Next, the
base of rules implementation and their application process through the
control structure will be detailed.

4.1. Base of facts designed from HIN

According to Levine and Pomerol (1990), an ES base of facts is a
set of elementary chunks of knowledge available before the reasoning.
It can also be referred to as the ES knowledge base (Liebowitz, 1995).
In this paper, the structure chosen to implement the base of facts is the
HIN. Sun and Han (2012) defines a information network as ‘‘a directed
raph 𝐺 = (𝑉 ,𝐸) with an object type mapping function 𝜏 ∶ 𝑉 → 𝐴 and
link type mapping function 𝜙 ∶ 𝐸 → 𝑅, where each object 𝑣 ∈ 𝑉

elongs to one particular object type 𝜏(𝑣) ∈ 𝐴, each link 𝑒 ∈ 𝐸 belongs
o a particular relation 𝜙(𝑒) ∈ 𝑅, and if two links belong to the same
elation type, the two links share the same starting object type as well
s the ending object type’’. If there is more than a single type of object
r relation, the information network is heterogeneous.
The variables involved in the proposed meta-model are as follows:
• Sets are uppercase latin letters.
• Values are lowercase greek symbols.
• Functions are lowercase latin letters.

inally, G is a graph with: 𝐺 = (𝑉 ,𝐸), where 𝑉 = {𝜐1,… , 𝜐𝑢} is the set
f nodes, and 𝐸 = {𝜖1,… , 𝜖𝑒} the set of edges with

= {𝜖𝑘 = (𝜐𝑖, 𝜐𝑗 ) ∈ 𝑉 2, (𝑖, 𝑗) ∈ [1; 𝑢]2, 𝑖 ≠ 𝑗} (1)

• Each node has a type 𝜏 which belongs to 𝑇 = {𝜏1,… , 𝜏𝑡}. The
function 𝑓𝑣 ∶ 𝜐 → 𝜏 is used to return the type 𝜏 of node 𝜐.

• Each edge has a type 𝜇 belonging to the set 𝑀 = {𝜇1,… , 𝜇𝑚}. The
function 𝑓𝜖 ∶ 𝜖 → 𝜇 returns the type 𝜇 of an edge 𝜖.

This formalization can be used to define the nodes and edges char-
acteristics with their types. These types can indeed be specified using
a set of attributes from the whole 𝑋 = {𝜒1,… , 𝜒𝑥}. These attributes
are properties and/or characteristics representing the nodes and edges
types. These attributes can be customized for any type of node or edge
depending on the information requirements to implement and exploit.

All attributes of a node type 𝜏 can be returned by the function

𝑓𝜏 ∶ 𝜏 → 𝑋𝑗 𝑤𝑖𝑡ℎ 𝑋𝑗 ⊂ 𝑋. (2)

Likewise, all attributes of an edge type 𝜇 can be returned by

𝑓𝜇 ∶ 𝜇 → 𝑋𝑗 𝑤𝑖𝑡ℎ 𝑋𝑗 ⊂ 𝑋. (3)

For two nodes 𝜐𝑝 and 𝜐𝑛 and an edge type 𝜇𝑙, the function 𝑔 (4) returns
a concrete edge 𝜖𝑥 if it exists and (5) the set {𝜖1,… , 𝜖𝑎} representing all
real edges between two nodes 𝜐𝑝 and 𝜐𝑛 with {𝜖1,… , 𝜖𝑎} ⊂ 𝐸 without
constraint on edge type.

𝑔 ∶ 𝜐𝑝 ∗ 𝜐𝑛 ∗ 𝜇𝑙 → 𝜖𝑥 (4)

𝑔 ∶ 𝜐𝑝 ∗ 𝜐𝑛 → {𝜖1,… , 𝜖𝑎} (5)

The value 𝛼 of an attribute 𝜒 for a node 𝜐 is returned by the function:

ℎ𝜐 ∶ 𝜐 ∗ 𝜒 → 𝛼 (6)

Likewise, the value 𝛽 of an attribute 𝜒 of the edge 𝜖 is returned by the
function:

ℎ𝜖 ∶ 𝜖 ∗ 𝜒 → 𝛽 (7)

Finally, these values can be modified using the function 𝑙:

𝑙𝜐 ∶ 𝜒 ∗ 𝜐 ∗ 𝛼 → 𝜐 𝑓𝑜𝑟 𝑎 𝑛𝑜𝑑𝑒 𝜐 (8)

𝑙𝜖 ∶ 𝜒 ∗ 𝜖 ∗ 𝛼 → 𝜖 𝑓𝑜𝑟 𝑎𝑛 𝑒𝑑𝑔𝑒 𝜖 (9)

4.2. Rules integration

Once the base of facts has been defined, the rules and their appli-
cation process should be detailed. To build a complex expert system,
various rules should be integrated such as 𝑅 = {𝛾1,… , 𝛾𝑛}. Each rule
𝛾𝑖 is represented and integrated using a combination of pre-defined
declarative algebraic operator. These operators allow to:

• integrate new knowledge (i.e. add new nodes),
• correlate knowledge (i.e. add new edges)
• navigate through the graph (i.e. search paths in the graph depend-

ing on rules)

The rules application process proposed in this paper is illustrated in
Fig. 1. With each modification of the ES base of facts, the related nodes
and edges are identified. The modifications can either be creation,
deletion or updates of nodes and/or edges. Browsing through the graph
to identify the related nodes and edges can be performed using a read
method. From this sub-graph, a set of rules can be extracted using a

projection operator.
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Table 1
Comparison table for KG solutions.

Knowledge graph solution Genericity Heterogeneity Intelligibility Adaptability Upgradability Volumetry Velocity

Bayesian networks ! % % ! ! % %

Conceptual graphs ! % ! ! ! % %

HIN ! ! ! ! ! ! !
Fig. 1. Rules processing referencing related equations.
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The Fig. 2 illustrates an example of graph. The node 𝜐1, of type 𝜏1,
is related to the nodes 𝜐3 and 𝜐4, of type 𝜏2, respectively by the edges
𝜖1 and 𝜖2 of type 𝜇1. The node 𝜐2, of type 𝜏1, is related to the node 𝜐4
y the edge 𝜖3 of type 𝜇1. Nodes of the same type share the same kinds
f attributes noted 𝜒1 and 𝜒2. Each edge can have a rule 𝛾. To explain
his with a real world example, the situation of a systems’ overheat can
e considered. In this case, the overheat is caused by the failure of one
f two fans. The node ‘‘Overheat’’, of type ‘‘FailureMode’’, is related
o the nodes ‘‘Fan1’’ and ‘‘Fan2’’, of type ‘‘MaintenableItem’’ (MI), by
he edges ‘‘P1-F1’’ and ‘‘P1-F2’’, of type ‘‘IsCausedBy’’. Each node has an
ttribute ‘‘ID’’ and the MIs also have a ‘‘Lifetime’’. This lifetime impacts
he rule ‘‘Probability’’ of the edges which indicates the most probable
ause for the failure.

A projection operator provides all rules on the connection between
wo nodes through an edge type 𝜇. In the example presented in Fig. 2,
project applied to the nodes 𝜐1 and 𝜐2 related by the edge 𝜖1 would

eturn the rule 𝛾1. The general formula is expressed as:

𝑟𝑜𝑗𝑒𝑐𝑡𝜐𝜈 ∶ 𝜈𝑎 ∗ 𝜈𝑏 ∗ 𝜇 → 𝑅𝑗 𝑤𝑖𝑡ℎ 𝑅𝑗 ⊂ 𝑅 (10)

A modification of the ES base of facts can trigger several rules.
reventing conflicts to arise is the purpose of the control structure. It is
erformed here using a check operator which applies a constraint type
ule to attributes of a set of nodes or edges. The check result is the
ist of rules to apply. Using the example given in Fig. 2, one such rule
ould be that only the nodes of type 𝜏2 with the maximum number of
elated nodes of type 𝜏1 meeting predefined conditions on attribute 𝜒1,
ike a threshold, have their rules applied on the edges. For instance, if
he attributes 𝜒1 of the nodes 𝜐1 and 𝜐2 fulfill the conditions, the rules
2 and 𝛾3 are returned by the check function but not 𝛾1 as 𝜐3 is only
elated to a single node 𝜐1. A general formula is proposed as:

ℎ𝑒𝑐𝑘𝑉 ∶ 𝑋𝑖 ∗ 𝑉𝑗 ∗ 𝑅𝑘 → 𝑅′
𝑘 𝑤𝑖𝑡ℎ 𝑋𝑖 ⊂ 𝑋, 𝑉𝑗 ⊂ 𝑉 ,𝑅′

𝑘 ⊂ 𝑅𝑘 ⊂ 𝑅 (11)

ℎ𝑒𝑐𝑘𝐸 ∶ 𝑋𝑖 ∗ 𝐸𝑗 ∗ 𝑅𝑘 → 𝑅′
𝑘 𝑤𝑖𝑡ℎ 𝑋𝑖 ⊂ 𝑋, 𝐸𝑗 ⊂ 𝐸,𝑅′

𝑘 ⊂ 𝑅𝑘 ⊂ 𝑅 (12)

A rule is composed of two main parts: the activation condition and
he effect. Only when the activation condition is fulfilled can further
rocessing be performed. Some preprocessing may be necessary at this
tep. A first processing step can then compute values using complex
 s
odels or algorithms. The result may be checked in a post processing
tep before altering the graph. This graph alteration can consist in
reating or deleting nodes and/or edges. Some attributes values can
lso be updated. These modifications can then trigger a new read and
epeat the process.

Using this process, the rules from the ES base of rules can be applied
o the base of facts structured in a HIN while preventing conflicts. Due
o the cyclic behavior of the rule’s application process, an acyclic graph
s required to reduce the risk of getting into infinite loops. This generic
tructure should now be used to implement a CBM solution with a case
tudy.

. Application to aircraft complex systems

Once the rules’ implementation has been theoretically defined, it
hould be experimented in a real case study. In this paper, the HIN
ased ES has been applied to an aircraft system. In order to create the
IN, the metamodel presented in Guillén et al. (2016) has been adapted
ccording to Fig. 3. In this adapted metamodel, the maintenance de-
ision block was not used as the diagnosis, prognosis, detection and
aintenance decision elements are processes to implement on the HIN
hich do not store information. The functions and functional failures
lso disappeared because the relation between failure mode and are
onsidered sufficient.

The detection process is meant to generate symptom and failure
arnings based on sensor data analysis. Consequently, the ‘‘value’’
ttribute of the ‘‘Monitoring Variable’’ nodes should be updated over
ime. Following the process detailed in the previous section, the de-
criptor values’ attribute should be computed an updated using the
escriptors’ formula. Following this update, a second rule may turn
he symptoms’ activated attribute to true if the condition set from the
nterpretation rules’ rules attribute is met. If all the activated attribute
alue of all the symptom related to a failure mode are true, then the
ailure modes’ activated attribute is set to true.

The diagnosis process should identify which Maintainable Item (MI)
s most probably the cause when a failure occurs. This process has been
erformed through four steps as described in Fig. 4. Its implementation
hould be composed of a set of rules applied to the relations between
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a failure node and the related MI nodes. When a single failure mode
is related to several MI, some processing should be performed to sort
them depending on their reliability.

In order to create this HIN, documentation data have been imple-
mented following this metamodel. While the considered system is not
a whole aircraft but only a subsystem, the resulting graph is composed
of more than 4000 nodes and more than 12000 relations. It should
be mentioned that only physical MI are considered in this paper as
software components cannot be maintained using the same logic. In
addition to documentation data, maintenance data can be implemented
in the graph. For instance, the MI model can change over time and the
MI lifetime increases every time the aircraft flies and is reinitialized
every time the equipment is changed or repaired.

In this section, rules have been applied to an aircraft system ac-
cording to Section 3. A first analysis of this HIN from a diagnostic
erspective points that 33% of the graphs failures are related to a single
I. Consequently, for these failures, simple propagation is enough to
dentify the cause and no further analysis is required. However, for the w
ther 77%, more processing should be performed in order to identify
he defected MI. In this paper, an implementation of probabilistic rules
ased on Weibull distribution is proposed to sort the MI by probability
f failure.

. Extension to probabilistic rules

.1. Motivation

Even though, in this case study, 43% of failure modes are related
o a single MI, in most cases several MI are possibly responsible. In
eality, airlines operators often manage to directly identify the failed
quipment from the failure modes based on their experience and past
ccurrences. Following this logic, an expert rule has been implemented
n the graph based on a probabilistic approach from an analysis of past
ailure occurrences. The aim is to sort the MIs related to the Failure
ode by decreasing failure probability. Through this process, the MI

ith the highest probability of breaking down can be identified. In
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order to define this probabilistic expert rule, a reliability analysis has
been performed to model the failure rate of an equipment. However,
this failure rate model depends on the type of equipment considered.
Usually, the evolution of a physical equipment’s reliability can be
divided into three main periods. The first period is the running in
period. This period represents the beginning of the equipment’s lifetime
where failures may occur due to production defects or installation
issues. Next is the permanent period which corresponds to the later part
of the lifetime. In this period, the failure rate is globally constant and
low because the system is in its main phase of life. Random events may
occur but independently of the lifetime and with low probability. The
third period is the ageing period. During this period, the equipment’s
lifetime reaches its end. As a consequence, the risk of failure increases
due to natural wearing. However, the three phases are not distinct in
all types of equipment.

For instance the reliability of a mechanical equipment is different
from an electronic equipment (Beleulmi et al., 2014). Mechanical sys-
tems usually have a consequent failure rate in the running in period and
an increasing failure rate in the ageing period with no clear permanent
period. Otherwise, in electronic systems the three periods are usually
clearly distinct.

6.2. Weibull distribution

In the aeronautic field, reliability is a major concern. As a conse-
quence, aircraft systems have been designed to be extremely reliable
which led to relatively low failure occurrences. Several probabilistic
distributions are often used in the literature like the Exponential distri-
bution, the Log-Normal distribution or the Weibull distribution (Coual-
lier et al., 2016). According to Beleulmi et al. (2014), the Weibull dis-
tribution is the universal distribution. Moreover, in the aeronautic field
the three periods can be represented depending on the system. As such,
the Weibull distribution has been chosen to model the equipment’s
reliability.

To model a bathtub-shaped failure rate with all three periods, a
combination of two Weibull distributions is used Lai (2014) and Xie
nd Lai (1996). The density distribution f and cumulative distribution
functions are respectively given by:

(𝑥) =

(

(

𝑘1
𝜆1

)(

𝑥
𝜆1

)(𝑘1−1)
+

(

𝑘2
𝜆2

)(

𝑥
𝜆2

)(𝑘2−1)
)(

𝑒
−
(

𝑥
𝜆1

)𝑘1

𝑒
−
(

𝑥
𝜆2

)𝑘2
)

(13)

𝐹 (𝑥) = 1 − 𝑒
−
(

𝑥
𝜆1

)𝑘1

𝑒
−
(

𝑥
𝜆2

)𝑘2

(14)

ith 𝑘1 > 0, 𝜆1 > 0, 𝑘2 > 0, 𝜆2 > 0 respectively the shape and scale
arameters of Weibull distributions.
o estimate the parameters of a Weibull distribution a regression
ethod is performed based on Ordinary Least Square Estimator on

he cumulative curve of empirical failures according to Zhang et al.
2008). However, in this case, no weights are attributed to failures.
he corrected Akaike Information Criterion (AICc) is used to identify
he best distribution between a traditional Weibull distribution and
he one presented in (13). The choice of the AICc is motivated by
he small size of the failures sample and its efficiency with regression
odels (Hurvich & Tsai, 1989).
 p
The AICc formula is given by:

𝐼𝐶𝑐 = 2𝑝 − 𝑙𝑛(𝐿) +
2𝑝 (𝑝 + 1)
𝑛 − 𝑝 − 1

(15)

where p is the number of parameters (𝑝 = 2 for a simple Weibull
distribution and 𝑝 = 4 for a combination of Weibull distributions), 𝑛
is the sample size and 𝐿 is the maximum value of likelihood function.

he model with the smallest AICc is chosen. Finally, a Kolmogorov–
mirnov test is performed in accordance with Nwobi and Ugomma
2014) to check if the model with the estimated parameters follows
Weibull distribution. If the test of Kolmogorov–Smirnov rejects the
eibull distribution, an other distribution should be used to model

he empirical curves. In this case study, the test has never rejected the
eibull distribution hypothesis.

. Experiments on the diagnosis process

.1. Experiment’s protocol

In the previous sections, the concepts and structure of the HIN based
S have been defined. The aeronautical case study has been presented
ith the failure detection and diagnosis processes has applications. The
iagnosis process relies on 4 steps has described in Fig. 4. The first step
s the activation of a failure mode. This activation triggers the collect of
ccused MIs. These MIs should then be sorted by decreasing probability
f failure after these probabilities have been computed. In this case
tudy, the probabilistic rules used to estimate these probabilities are
ased on Weibull models.

In order to assess the presented ES diagnosis performance, the HIN,
ase of rules and control structure have been implemented using a tool
alled Digibrain (Activus) according to Section 3.

The documentation, maintenance and monitoring data have been
tructured according to the metamodel presented in Fig. 3. Entities are
ranslated as nodes and relations as edges. An associate operator has
een used to create and fill the nodes and edges from these different
ources. A check operator can also control imported data quality.

The diagnosis process is performed using a projection operator
etween the failure modes and MIs. A failure mode with an activated
tatus triggers a Read rule to collect the related MIs. An Update is then
erformed on each MI to calculate the probability of failure from the
eibull distributions and the MI’s model and lifetime. Next, an update

n the failure mode diagnosis attribute generates the list of affected MIs
orted by decreasing probability of failure. The projection operator can
lso be used to update an MI’s attribute. Indeed, MI’s lifetime and/or
odel should be updated after a repair, a replacement and after each
se.

The following steps of this experiment consist in designing the
eibull models for each MI and run the diagnosis process before

nalyzing the results.

.2. Weibull models design

The first objective of the diagnosis is to identify the model of the
ailed equipment from past maintenance records. The second objec-
ive is to identify the physical position of this failed equipment. The

robabilistic rules allowing to identify the failed equipment model and
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Fig. 5. Failures’ modeling on Spare Model by Weibull distributions.
osition have been designed from an aeronautic maintenance data set
ontaining over 70 planes of the same type over 5 years (from several
irlines).

In this perspective, two empirical approaches have been designed.
he first approach, named Spare Model (SM), models the failure oc-
urrences by spare model over the equipment’s lifetime without con-
idering their physical position in the aircraft. The second approach,
amed Position Spare Model (PSM), takes this feature into account
y modeling the failure occurrences by MI and Spare Model. Indeed,
everal equipments with the same SM can be located at different
positions in the same time on the aircraft. However, a MI refers to an
equipment located in a specific position.

Hence, considering an equal amount of failures, the second ap-
proach designs more models with less empirical points by model.
However, this approach is more detailed as it identifies the failed
component on an individual, physical, level. In each case, we chose
to model failure instants with a Weibull distribution when there were
at least three failure occurrences. Otherwise, the failure rate is constant
and close to zero. The results of the modeling are presented in Fig. 5.
These figures illustrate the three different behaviors (running in period,
ageing period or permanent failure period) for each approach.
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7.3. Evaluation protocol

In order to evaluate the performance of the graph with these models,
records of failure modes have been gathered over a year with the
related failed equipment identified.

The aim of the diagnostic is to provide a list of potentially failed
Equipment Models ordered by decreasing failure’s probability. This
list is compared to the real breakdowns to evaluate the diagnostics’s
accuracy. The experiment is composed of 5 steps. The first step is to
identify the MI from the recorded failure mode. The second step is to
identify the corresponding degradation model for each MI. The third
step is to calculate the maintainable item’s failure’s probability from the
degradation model and the MI’s lifetime at the failure occurrence date.
The fourth step is to generate the list of potentially failed equipments
by decreasing failure probability. Finally, the diagnostics performance
is evaluated by observing the ranking of the failed equipment in the
previous list.

Noticed that the diagnostic based on the Spare Model can provide
the same breakdown probability to different MI if their models and
lifetimes are identical. This means that similar MIs installed at the same
time on the aircraft will be given the same ranking in the diagnostic
result list. However, when using the PSM where the physical position
is considered, two MIs, even similar, do not refer to the same curve. As
such their breakdown probability and rankings differ.

Figs. 6 and 7 illustrate the ranking of the real failed equipment in
the list returned by the diagnostic based on the Spare Model. Colors in
the histograms represent the total number of equipment in the list re-
turned by the diagnostic, that is to say the total number of MIs returned
by the graph. For instance, the red part with the rank ‘‘1’’ corresponds
to the number of failure modes where the failed equipment has been
correctly identified among 2 possibilities. MIs with the ranking ‘‘0’’
represent the situation where a single MI possibly responsible for the
failure according to the graph. In this case, which represents 36%, the

eibull models are not needed.

.4. Evaluation results

Fig. 6 illustrates results using Weibull model on Sparse Model. It
llows to predict correctly 71% in the first rank in the returned list.

The diagnostic obtains an accuracy of 94% by observing the two first
propositions only thanks to the probabilistic rule.

In Fig. 7, the ranks ‘‘0’’ and ‘‘1’’ have been aggregated to represent
the actual performance of the diagnostic. The global accuracy of the
diagnostic is 81% looking the first MI returned in the list and 96%
looking the two first items with the greatest probability of breaking
down.

The same approach has been respectively used to represent the
results obtained with the PSM. As shown in Fig. 8, 36% of the results
re given directly by the graph. The PSM predicts correctly 59% more
81% more in top 2) when a choice is needed and by aggregating all
orrect answers in Fig. 9, global accuracy is now of 74% (88% in top
).

The Spare Model and PSM both have their advantages. While the
pare Model is less detailed as it points the model of the failed equip-
ent and not the specific part, it offers better performance and can

e sufficient from a logistic perspective to improve the supply chain
anagement and maintenance scheduling for instance. At the same

ime, the PSM is more interesting for the maintenance operators as it
ndicates which equipment to test at a physical level, saving time in the
epair process.

As a conclusion, using these probabilistic rules, the detection of
he failed item improves from 36% with the physical and functional
escriptions alone to 81% with the SM and 74% with the PSM. Further-
ore, while some failed equipments are ranked in the second place or

elow in the diagnostics list, it may not mean that equipments ranked
efore have not failed. Further works could focus on considering this

spect in the results’ evaluation.
Fig. 6. Evaluation of probabilistic rule using modeling on Spare Model on all airlines.

Fig. 7. Global results of the diagnostic using modeling on Spare Model on all airlines.

8. Conclusion and perspectives

The maintenance domain is confronted to increasing requirements
in reliability and cost reduction driving the need for more efficient
maintenance policies. In this context, condition-based maintenance,
prognostics and health management are promising as they allow a
better evaluation of the systems’ degradation and environmental con-
ditions. These strategies are mainly implemented based on historical
data records using machine learning or based on capitalized expert
knowledge through an expert system.

This paper proposes an expert system framework addressing modern
ES limitations in efficiency, scalability and applicability. It is based
on an heterogeneous information network in charge of supporting and
manage the ES base of fact, base of rules and control structure. The
choice of the HIN addresses the efficiency and scalability issues of
modern ES which are not adapted to complex and dynamic systems.
A generic meta-model for CBM is used to answer the adaptability
requirements for these systems. A case study on an aircraft is presented
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Fig. 8. Evaluation of probabilistic rule using modeling on Position and Spare Model
on all airlines.

Fig. 9. Global results of the diagnostic using modeling on Position and Spare Model
n all airlines.

o illustrate this frameworks’ implementation and provide an example
f probabilistic rule based on Weibull distribution for diagnostics.

Despite the frameworks’ promising results, some limits and per-
pectives still need to be addressed. First, the availability of sensor
nd documentation resources are a necessity for the framework to be
mplemented. This limit is inherent to most condition based mainte-
ance solutions and can be considered a critical limit to the research
evelopment in the field. A second limit is the exploitation and struc-
uring of documentation resources into a base of facts. Some technical
ocumentation being in paper or pdf format, processing these resources
o generate an HIN can be considered as a challenge and a strong
erspective. An other perspective should be to develop more case
tudies to challenge the frameworks adaptation ability to different
ystems. Indeed, as the metamodel was designed to be generic and
daptable, this genericity should be challenged by testing other systems
ith more nodes and relations to evaluate the overall performance.
inally, more complex models should be integrated to improve the
diagnostics and prognostics performance. In particular, several works
focused on developing diagnostics and prognostics models for gas tur-
bine engine (Hanachi et al., 2018; Puggina & Venturini, 2012; Roemer

Kacprzynski, 2000; Zaidan et al., 2016). A case study could be
esigned to implement and test these models with C-MAPSS data.
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