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Abstract: 

Grinding is one of the main unit operation in industrial processes handling powders. The 

particle size reduction that takes place during grinding tests, usually results in a significant 

change in the flow behavior of the ground powder. Up to now, a model predicting the 

evolution of powder flowability with grinding time, according to the operating conditions is 

still missing. In this paper, a methodology combining a grinding kinetic model and a 

flowability model involving the population-dependent granular Bond number is developed. 

The methodology has been applied to an alumina powder, ground in a batch ball mill. The 

flow function coefficient of the ground samples is measured after various grinding times in a 

powder shear tester. The comparison between model predictions and experimental data shows 

that this method allows an accurate prediction of the powder flow behavior over the first 

sixteen minutes of grinding.  
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Nomenclature: 

Notation Parameter Usual units � Intermediate matrix [ A = (B-I) S ] s-1 � Breakage matrix - ��� Breakage parameter - ��� Cumulative breakage parameter - ��� (population-dependent) Granular Bond number - �	 Cut-off distance nm 
��
 Surface asperity diameter nm 
� Particle diameter µm �� Sauter mean diameter µm �� Diagonal matrix of components exp (−���) - ��� Flow function coefficient - ��� Interparticle attractive forces N � Gravity acceleration m.s-2 �  Hamaker constant 10-19 J ! Filling ratio - "�#$%
 kth Kapur coefficient s-k & Number of size classes - ' Passage matrix - ( Specific electrostatic charge µC.kg-1 )� Cumulative mass fraction oversize class i - *+, Root mean square nm � Selection matrix s-1 �� Selection parameter s-1 � Grinding time s - Powder level - . Intermediate matrix [ V = P.ED.P-1 ] - .� Volume of the element i L / Particle size distribution vector - 0� Mass fraction of class i - /
 Particle weight N 1 Intermediate vector [ Z = P-1.W ] - 2	 Interparticle distance nm 

   3 Model parameter - 34 Model parameter - 35 Model parameter - 6 Model parameter - 7� Pebbles bed porosity - 8 Total squared error - 9�: Dispersive surface energy mN.m-1 ;� Intermediate vector - <� Particle true density g.cm-3 
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Abbreviations: 

AFM: Atomic Force Microscopy 

DVS: Dynamic Vapor Sorption 

PGB: Population-dependent Granular Bond number  
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1. Introduction 

In many industrial processes dealing with particulate media, grinding operations are 

commonly used in order to reduce the particle size or increase their specific surface area 

(Austin and Rogers, 1985). Such industrial processes range from heavy industrial plants such 

as in mineral processing or cement manufacturing, to smaller capacity plants such as for 

pharmaceutical, ceramic or pigment preparations (Prasher, 1987). However, by decreasing the 

particle size, the grinding operation is likely to decrease the flowability of the powder bed, 

making its handling more difficult, if not impossible. This may result in process slow-down or 

equipment damaging. As highlighted by Schulze, even for simple equipment such as 

intermediate storage silos, bad dimensioning may lead to powder arching and ratholing that 

often results in irregular discharge or even complete blockage (Schulze, 2007). Therefore, the 

flow behavior of the granular materials handled in a given process is a critical parameter that 

needs to be taken into account while designing mixing, conveying or storage equipment for 

example. 

As reported in previous investigations, the flowability of a given powder depends on the 

predominance of the interparticle forces (Castellanos, 2005; Liu et al., 2008). These forces, 

acting at a microscopic scale, are expected to become greater than the particle weight as their 

size decreases. Such postulate has been confirmed by many experimental investigations 

focusing on the influence of the particles size and shape on the bulk powder flowability (Fu et 

al., 2012; Mellmann et al., 2013), this will be discussed further in section 2.1. Thus, the 

degradation of the powder flowability appears to be almost inevitable in any grinding process.  

This means that the grinding parameters, which have a great influence on the ground powder 

flowability, may affect the processability of the powder through all the following process 

steps. Up to our knowledge, most grinding kinetic models developed in the literature are 

focusing on the evolution of the particle size, which is the main variable of interest in the 

grinding operation. However, the evolution of the ground powder flow behavior according to 

the grinding time has never been investigated so far; although it appears that it is one of the 

most critical parameters governing its processability through various operations. Thus, the 

aim of this paper is to suggest a methodology for predicting the flowability of powders 

obtained after a given grinding time. Such a method would be of significant industrial interest 

since it could guide the manufacturers for: 

• predicting the expected variations in powder flow according to the grinding time, 

• dimensioning the conveyers, silos, mixers that may handle the ground powder 

accordingly with the grinding time needed, 

• defining the optimal grinding conditions that lead to a sufficient particle size without 

decreasing to much the powder processability. 

This work provides a substantial amount of analyzed data in order to reflect as much as 

possible the empirical observations that can be made in an actual process. The methodology 

suggested in this paper is described in detail so that it can be reproduced in other conditions. 

At this point, it is important to note that we do not infer that the powder’s flowability has a 

direct effect on the grinding mechanisms in the ball mill process. However, its flowability 

after grinding affects its manufacturability for draining, transport or storage steps that may be 

present after the milling operation. Thus, the aim of this paper is to assess how the ball mill 
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process has an influence on the flowability of the ground powder, obtained after grinding 

rather than during the operation itself. 

After discussing the effect of particle size on the overall powder’s flowability in section 2.1, 

the grinding theory will be developed in section 2.2 and 2.3. Then, the equipment, materials 

and methods employed for the acquisition and the exploitation of the experimental data in 

section 3. Afterwards, the results of batch laboratory grinding tests corresponding to various 

durations will be reported for an alumina powder in order to establish the model by comparing 

the predicted results to experimental data. 

2. Theoretical background 

2.1. Link between the flowability of a given powder and its particle size distribution 

The link between the macroscopic flowability of a given powder and its particle size 

distribution has been recently developed through the population-dependent granular Bond 

number (PGB) (Bernard-Granger et al., 2019; Capece et al., 2015). This dimensionless 

number represents the force balance at the individual particles level. It is defined as the ratio 

between the interparticle forces and the particle’s weight as described in equation (1). This 

granular Bond number is not expected to represent the powder behavior in a dynamic motion. 

However, it can be used to assess the ability of the powder to overcome the cohesive forces in 

a quasi-static regime in order to start flowing. In practice, such a force balance between 

cohesive and gravitational forces may be of great interest for dimensioning silos, conveyer 

strips or for defining a draining protocol for a given equipment, such as a powder mixer or a 

mill. 

 ��� = ���/
  (1)   

where /
 is the weight of a given particle and ��� represents the sum of all the interparticle 

forces contributions. These attractive interparticle forces may be capillary, electrostatic and 

Van der Waals forces which are responsible for the cohesion of the powders (Seville et al., 

2000a). 

One of the main advantages of the PGB is that it takes into account the whole particle size 

distribution while most other models developed in the literature use mean diameters such as 

the Sauter mean diameter. The PGB of a polydispersed powder can be calculated from 

equation (2), by taking the weighted harmonic mean of all the potential individual granular 

Bond numbers, ���,�� between the particles belonging to each size classes, indexed from 1 to & (Giraud et al., 2020a). 

 ��@ = AB B 2� ∙ 2����,��
D

�E4
D

�E4 FG4
 (2)   

where 2� and 2� corresponds to the surface fraction of the particles belonging to the size 

classes of index H and I. 

It was shown, both theoretically and experimentally, that the PGB correlates well with the 

powder flow behavior investigated by shear tests (Castellanos, 2005). In particular, Capece 

found a power law correlation, represented by equation (3), between the macroscopic flow 



 

6 

 

behavior of a given powder and the microscopic properties of the involved particles, 

represented by their PGB. 

 ��� = 3 × ��@GK (3)   

where 3 and 6 are adjustable model parameters and ��� is the flow function coefficient of the 

powder, measured by shear testing as will be described in section 3. Such a correlation has 

then been verified experimentally, focusing on various raw ceramic powders (Bernard-

Granger et al., 2019) and pharmaceutical powders as well (Capece et al., 2016). A physical 

significance has also been suggested for the model empirical parameters 3 and 6 based on the 

Rupmf’s theoretical equation (Giraud et al., 2020a). Finally, it has been shown that this 

correlation is also suitable to predict the flowability of ground powders knowing their particle 

size distribution (Giraud et al., 2020b). In this last investigation, the correlation represented by 

equation (4) was found to describe well the behavior of alumina and zirconia powders co-

ground in a batch ball mill for various grinding times. 

 ��� = 179.6 × ��@G	.PQ (4)   

This equation (4) shows that if the evolution of the PGB with grinding time was known, it 

would allow a prediction of the ground powder flowability. This can be achieved with a 

population balance model which is described in the following sections. 

2.2. Population balance in batch grinding and matrix analysis 

Since the breakage behavior of a given particle depends on its size, it is common to use the 

particle size distribution whose size classes are discretized, following geometric screen 

intervals, indexed from 1 (largest particles) to & (finest ones) (Prasher, 1987). The total 

amount of size classes, &, mainly depends on the particle size measurement method and on 

the spread of the distribution. Then, the evolution of the particle size during batch grinding 

tests can be simulated by resolving the population balance equation for each size class 

(Austin, 1971). For a given size interval, the population balance can be represented thanks to 

a kinetic model involving the rate of breakage of the particles and the overall size of the 

fragmented particles. This is achieved by defining two functions which are usually discretized 

in the same way as the particle size distribution: the selection function ��, and the breakage 

function, ��� (Reid, 1965). The selection function, ��, can be interpreted as the specific 

breakage rate associated to the size class H. It represents the mass fraction of the particles of 

class H that are reduced in size per unit of time or per breakage event. The breakage function, ���, accounts for the mass fraction of particles belonging to class I that are found in class H 
(H < I) after a breakage event. It can also be understood as the distribution of the fragments 

obtained after breaking a particle of class I. As a first approach, the selection and breakage 

function are considered stationary, meaning that they do not depend on the grinding time 

(Austin, 1971). The evolution of the mass fraction, 0�, of each size class can then be 

expressed in terms of the selection and breakage functions through the differential equation 

system (5) (Austin and Bagga, 1981). 

 

0�(�)
� = −��0�(�) + B ��,���0�(�)�

�E4  (5)   
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In equation (5), the variation of the population of the class H depends on two main terms: a 

first negative one, accounting for the particles that are broken and leave the class H for higher 

class numbers, and a second positive one, accounting for the particles coming from smaller 

class numbers to join the class H particles. A standard method employed to solve such a 

system is to express it by means of matrices (Berthiaux et al., 1996) as shown in equation (6), 

where the breakage and selection functions are still considered stationary. 

 

/(�)
� = �/(�)  with  � = (� − X)� (6)   

where / is the particle size distribution vector, � is an & × & diagonal matrix containing the 

elements �� of the selection function, � is an & × & lower triangular matrix containing the ��� 

elements of the breakage function and X is the & × & identity matrix. 

The first-order linear differential system represented by equation (6) can be solved by 

diagonalization of the matrix �, a lower triangular matrix whose diagonal elements are the −�� terms. This means that there is a passage matrix ', constituted of the eigenvectors of 

matrix �, such that: 

 � = −'�'G4 (7)   

Then, equation (6) transforms as follows: 

 

/(�)
� = −'�'G4/(�) (8)   

The equation (8) can be expressed in the form of equation (9) by introducing the substitution 

vector 1 = 'G4/, noting that ' and 'G4 are not a function of time: 

 

1(�)
� = −�1(�) (9)   

The equation (9) can be easily integrated, giving: 

 1(�) = ��(�);Y (10)   

where ;Y is a column vector containing the integration constants and �� is an & × & diagonal 

matrix containing the exp(−���) elements. 

Finally, noting in equation (10) that 1(0) = ;Y, and substituting 1 by 'G4/, the particle size 

distribution vector can be computed for any given time �, as long as  the initial particle size 

distribution /(0) is known: 

 /(�) = .(�) ∙ /(0)   with   .(�) = '��(�)'G4 (11)   

2.3. Determination of the selection and breakage parameter from Kapur’s 

approximation 

In most cases, the selection and breakage parameters are estimated from an empirical 

approach involving mono-size grindings (Gupta, 2017; Petrakis et al., 2017). Nevertheless, 

this method is only suitable for a few amount of size classes, typically two or three, and when 

the particles are large enough (greater than around 50 µm in diameter) to allow separation of 

the size classes by sieving (Berthiaux et al., 1996). Considering that the precision of the PGB, 
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as defined in equation (2), increases with the number of size classes, these experimental 

methods cannot be relevant in our case. For larger number of size classes, some numerical and 

mathematical methods have been developed (Berthiaux and Dodds, 1997), providing an 

approximation of the breakage and selection parameters. In this study, we will estimate these 

two parameters from a method based on Kapur’s approximation (Kapur, 1971). 

First, we have to express the population balance, represented by equation (5), in terms of the 

cumulative oversize mass fraction )�(�) = ∑ 0�(�)��E4 : 

 

)�(�)
� = −��)�(�) + B\��]4��,�]4 − ����,�^)�(�)�G4

�E4  (12)   

where ��,� = ∑ �$,�D$E�]4  is the cumulative breakage function. Kapur’s solution (Kapur, 1971) 

consists in a second order series development, which can be extended to order ,_, as shown in 

equation (13). 

 ln )�(�))�(0) = B "�#$% �$b!



$E4  (13)   

Berthiaux carried out batch bead mill tests for hydrargillite and carbon suspensions and 

showed that this approximation even fits the experimental data for the first order (_ = 1) 

during the first 15 minutes of grinding, leading to the approximate equation (14) (Berthiaux et 

al., 1996). The same author also showed that this approximation seems to be consistent with 

the experimental data obtained by grinding hydragillite in a jet mill over the first minutes of 

grinding (Berthiaux and Dodds, 1999). 

 ln )�(�))�(0) ≈ "�#4%� (14)   

where the "�#4%
 coefficients can easily be found from experimental data that are acquired 

during the initial period of grinding through log-linear representation. It is worth noting that 

for longer grinding times the approximation may become no longer relevant, while the 

selection and breakage parameters found are still valid. 

Then, the selection and breakage functions can be deduced from a mathematical treatment 

derived directly from equation (14) (Berthiaux et al., 1996). 

 �� = −"�#4%   and   ��,� = "�G4#4% − "�#4%
"�#4%  \��g� = 0^ (15)   

As long as the approximation equation fits the particle size distributions data set (14), this 

method allows an easier determination of the breakage and selection functions, whatever the 

number of size classes considered. As a result, � and � matrices can be built up and equation 

(11) can be employed to compute the model and predict the particle size distribution for 

grinding times longer than those considered in the approximation, since B and S are supposed 

to be stationary. 

3. Materials and methods 
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3.1. Powder 

An alumina (Al2O3) GE15 powder, from Baikowski® (Poisy, France) was used for this study. 

It was chosen for its medium flowability and its specific particle size distribution, as 

compared to other ceramic oxide powders investigated previously (Giraud et al., 2020a). 

3.2. Preparations in a ball mill 

The ball mill is a 1 L cylindrical (116x106mm) stainless steel vessel, filled with 500 

cylindrical 8x8 mm steel pebbles, which are used as grinding media. A representation of the 

experimental setup is provided in Figure 1. The powder is introduced in the vessel and the 

supporting rolls induce the rotation of the cylindrical vessel horizontally around its 

longitudinal axis, as shown in Figure 1. The rotation of the vessel is controlled by a 

potentiometer graduated from 0 to 100 and the rotational speed can be measured by a 

tachometer DT-2236® (Luron electronic, Taipei, Taiwan). When the vessel is rotating, the 

powder in contact with the pebbles is fragmented through various mechanisms: 

• compaction under the weight of the pebble bed, 

• shearing due to friction forces between the moving pebbles, 

• impact when the pebbles are ejected from the pebble bed and collapse on the powder 

(Arai, 1996). 

However, in practice, according to the size of the alumina particles, the powder might be 

mostly ground because of shearing fragmentation mechanisms (Arai, 1996). 

Although wet grinding is generally preferred because of the lower grinding energy needed, 

dry grinding was performed in this investigation. Such operation is still used in various 

industrial processes where the products may be damaged or dissolved in water or other 

liquids. The amount of pebbles and powder filled into the vessel is adjusted in order to get a 

constant filling ratio of ! = 0.3 (see equation (16)) and a powder level of - = 1.00 (see 

equation (17)). This corresponds to a number of 500 pellets and a mass of 35.90 � of alumina 

powder introduced into the vessel. Such filling conditions are commonly employed as they 

seem to correspond to optimal operating conditions for a ball mill (Prasher, 1987; Shoji et al., 

1982). 

 ! = .
jkklj�.Yj��jl  (16)   

 - = .
mn:jo7� ∙ .
jkklj� = .
mn:jo7� ∙ ! ∙ .Yj��jl (17)   

where .Yj��jl is the total volume of the vessel (here 1 L), .
mn:jo is the apparent volume of 

the powder bed before grinding when poured into the vessel, .
jkklj� is the apparent volume 

of the pebbles bed and 7� = 0.33 is the porosity of the pebbles bed when the vessel is not 

rotating. The value of 7� was determined experimentally by measuring the volume of water 

needed to fill the porosities between the pebbles within the vessel. 

The vessel is rotating horizontally around its radial axis at 25 rpm, which corresponds to a 

Froude number (ratio between the centrifugal and gravitational forces at the edge of the 

vessel) of 0.04. This rotational speed was defined in order to ensure a cascade motion regime 



 

10 

 

of the pebbles into the vessel, which is adequate for grinding the powders (Mellmann, 2001; 

Rumpf, 2012). The cataracting regime may also be suitable for grinding the powders but there 

is still a risk of deteriorating the pebbles and the vessel due to the repeated impacts between 

the falling pebbles and the vessel’s walls. 

Various grinding tests were carried out with exactly the same conditions described above but 

for different grinding times. The ball mill was stopped successively after 0.4, 1, 2, 4, 6 and 8 

minutes of grinding. Finally, another grinding test of 16 minutes long was carried out in order 

to check the consistency of the predictions after a longer grinding period. 

3.3. Characterization methods 

The following characterizations were carried out on the alumina powder before and after 

grinding, in order to calculate the PGB values. For this study, we assumed that the true 

density, the Hamaker constants and the surface asperity diameters remained the same before 

and after grinding. These assumptions are discussed respectively in sections 3.3.3, 3.3.4 and 

3.3.5. 

3.3.1. Powder flowability 

The flowability of the powder samples was assessed by shear testing with a FT4® (Freeman, 

Tewkesbury, UK) powder rheometer. Tests were carried out in a 10 mL cylindrical glass cell 

under a normal pre-consolidation stress of 9 kPa, according to the Jenike standard procedure 

(EFCE, 1989). After pre-conditioning steps and successive tests under various consolidation 

stresses (3, 4, 5, 6 and 7 kPa), the yield locus and the Mohr circles can be plotted according to 

Mohr’s theory. Ultimately, the dimensionless flow function coefficient ��� can be computed 

from the Mohr circles (Seville et al., 2012). This index is commonly used to evaluate the flow 

behavior of powders according to the classification given in Table 1 (Leturia et al., 2014). The 

flow function coefficient is related to the shear stress needed to overcome the cohesive forces 

and thus yield the powder bed in a quasi-static regime. This explains why it seems closely 

related to the granular Bond number, which represents the same thing at a particle scale, as 

shown in equation (3). 

Each measurement was performed at least twice on different powder samples. The ��� values 

given in Table 2 correspond to their mean value and the standard deviations are taken as 

incertitude intervals. Since capillary forces may also influence the flowability (Seville et al., 

2000b) of the powders, all the samples were dried in a stove at 110 °C for 24 hours before any 

rheological measurement. 

3.3.2. Particle size distribution 

The volume particle size distribution of the powder samples were measured by LASER 

diffraction using a Mastersizer 3000® (Malvern, Malvern, UK) device equipped with a Hydro 

MV® liquid dispersion unit. Dry dispersion measurements were also attempted but the results 

were not enough robust and stable for exploitation. This is possibly due to a re-agglomeration 

phenomenon taking place during the conveying step or pneumatic transport through the 

Venturi of the Malvern® equipment. For each ground powder, five samples were analyzed by 

taking ten measurements on each sample. The results after different grinding times are given 

on Figure 2 and the corresponding Sauter mean diameters are reported in the third column of 
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Table 2 for an incertitude interval corresponding to the standard deviation of the data. As 

expected, we can observe that the particles become smaller as the grinding time increases. 

The surface particle size distribution, involved in the calculation of the PGB, as defined in 

equation (2), can be deduced from the volume particle size distribution thanks to equation 

(18). 

 2� = 0�
� × AB 0�
�
D

�E4 FG4
 (18)   

where 2� and 0� correspond respectively to the surface and volume fractions associated to the 

size class index H. 
3.3.3. True density 

The true density of the alumina powder was measured with a helium pycnometer AccuPyc II 

1340® (Micromeriticsn Mérignac, France) in a 10 mL cell. Five different powder samples 

were measured between three and five times each. Each measurement cycle includes 25 

purges followed by 25 measurements carried out at 23 °C and 135 kPa. The measured true 

density of the alumina GE15 powder has been determined as <� = 4.017 ± 0.070 � ∙ r+Gs, 

where the incertitude corresponds to the standard deviation between the samples. 

In order to estimate the influence of grinding on the true density of the alumina powder, 

another sample has been considered in the same conditions after 5 minutes of grinding. Such a 

ground alumina powder sample exhibits a true density of <�,�omtD: = 4.080 � ∙ r+Gs which 

does not represent a significant modification considering that this value is included in the 

incertitude interval given above for measurement completed on the raw powder. Therefore, 

we assume that the true density remains constant throughout the grinding process and thus a 

constant value of <� = 4.017 ± 0.070 � ∙ r+Gs can be considered. 

3.3.4. Particle surface energy 

The dispersive surface energy of the alumina particles was measured by analyzing the heptane 

vapor sorption and desorption isotherms acquired with a dynamic vapor sorption (DVS) 

equipment (SMS, London, UK). The Fowkes model was used to compute the dispersive 

surface energy 9�: from the DVS measurements (Tisserand et al., 2009). The Hamaker 

constant �  was then computed using the Frenkel equation (Israelachvili, 2011): 

 � = 24w�	59�: (19)   

where �	 ≈ 0.165 &+ is a cut off distance. 

The measurements were carried out on two different powder samples, driving to an average 

value of � = (1.57 ± 0.03) × 10G4x !, the incertitude corresponding to the standard 

deviation between both measurements. 

Like for the true density, the Hamaker constant of the alumina powder was measured 

following exactly the same protocol after 5 minutes of grinding. The result shows that the 

obtained value after grinding is � ,�omtD: = 1.61 × 10G4x !, which is not significantly 

different to the initial value, moreover when considering the incertitude intervals. We 
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therefore assume that the Hamaker constant does not change with the grinding time and the 

same value of � = (1.57 ± 0.03) × 10G4x ! can be considered. 

3.3.5. Particle surface asperities 

Among all the particle characteristics needed to estimate the interparticle forces magnitude, 

the surface asperity diameter is the most difficult one to measure experimentally. However, 

the approximate value of 
��
 = 200 &+  can be considered reasonably since previous 

studies showed that it reflects well the size of natural roughness at a given particle surfaces 

(Beach et al., 2002). Complementary atomic force microscopy (AFM) measurements were 

carried out on the powder investigated, in contact mode with a confocal Raman microscope 

alpha300 R (WITec®, Ulm, Germany), resulting in an average root mean square, *+,, value 

of *+, = 195.3 ± 17.9 &+, which tends to confirm the usual approximation of 200 &+. 

However, considering that only three particles were analyzed, we will stick with an 

approximate value of 
��
 = 200 &+ for the interparticle forces calculations. 

Considering the difficulty of such measurements, we assume that the surface asperity 

diameter remains constant throughout a grinding test. However, such an assumption could not 

be checked experimentally and might be wrong in practice. Indeed, the surface asperity 

diameter may either decrease or increase, due to smoothing of the particles or small particles 

inclusions during the grinding operation. This is to keep in mind while exploiting the results. 

3.3.6. Electrostatic charge 

A tribo-electrification technique was employed in order to estimate the specific electrostatic 

charge developed by the alumina powder. A few grams of powder was incorporated into a 

cylindrical stainless steel vessel, similar to the ball mill vessel, isolated from the ground and 

rotating at 92 rpm. The powder samples are then introduced in a Faraday cage after a given 

time spent in the rotating cylinder, in order to measure the total charge acquired thanks to an 

electrometer. The initial specific charge of the alumina power was measured to be ( =+ 1.6 ;y ∙ b�G4 and remains quite stable up to 15 minutes in the rotating vessel. From this 

value, it can be shown that the corresponding electrostatic force is considerably smaller than 

Van der Waals forces, using common electrostatic and Van der Waals force models (Bernard-

Granger et al., 2019). As an example, for a 15 µm particle diameter, close to the measured 

Sauter mean diameter of the raw alumina powder investigated, the magnitude of the 

electrostatic force is 10-19 N while in the same time the Van der Waals forces contribution is 

around 10-4 N. 

3.4. Interparticle forces 

In this paper, we assume that the Van der Waals forces are the only relevant interparticle 

forces and the other force contributions are neglected. Indeed, as explained previously in 

section 3.3.1, all the powder samples are dried in a stove before any rheological measurement, 

removing all the residual humidity which is likely to generate capillary forces within the 

powder. Moreover, as shown in the previous section 3.3.6 the electrostatic forces are clearly 

negligible when compared to the magnitude of the Van der Waals ones. 

Thus, the granular Bond number between two particles of diameters 
� and 
� of the same 

given powder in close contact can be expressed from equation (20), where the Van der Waals 

forces are estimated from the modified Rumpf equation (Chen et al., 2008). In this equation, 
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we assume that two particles of the same mono-constituent powder would share the same 

Hamaker constant � , true density <� and surface asperity diameter 
��
. Thus, the values 

corresponding to the alumina powder investigated, obtained in sections 3.3.3, 3.3.4 and 3.3.5 

can be employed to calculate the PGB after each grinding time. 

 ���,�� = � 2w<��2	5 × 
z
{
�s
�s |

}~ 1
2 �1 + 
��
22	 �5 + 3
��

��
 + 
z�

�� (20)   

where � is the gravity acceleration, 2	 = 0.4 &+ is the typical interparticle distance in close 

contact (Molerus, 1982) and 
z = 2 :�:�:�]:� is the harmonic mean of diameters 
� and 
�. 

Finally, the PGB can be computed by calculating all the individual granular Bond numbers, ���,��, between particles of size classes H and I and further combining them with equation (2), 

knowing the surface particle size distribution. The PGB values obtained after each grinding 

time are summarized in Table 2. 

4. Results and discussion 

The methodology employed in order to predict the flowability of the ground powders 

according to the grinding time is represented schematically on Figure 3. The first step (kinetic 

model) consists in simulating the evolution of the particle size distribution during the grinding 

tests from the population balance kinetic model described in section 2. Then, the second step 

(rheological model) consists in calculating the PGB corresponding to the particle distribution 

predicted in the first step. Finally, the flow function coefficient of the ground powder is 

calculated after any grinding time from the power law model, represented by equation (3). It 

can be noted that both kinetic and rheological models are independent and may be applied 

separately. However, both models are needed in order to predict the evolution of the powder’s 

flowability according to the grinding time. The aim of this paper is to link both models in 

order to be able to anticipate the variations in the powder’s flowability after various grinding 

durations. 

4.1. Size classes number for the particle size distribution 

The total amount of size classes, &, can be interpreted as the resolution of a given particle size 

distribution. For a given maximal and minimal particle diameters, & defines the spread of the 

size classes. In our case, the Malvern® equipment gives the volume particle size distribution 

over 100 size classes ranging from 10 nm to 3.5 mm with a common ratio of 1.136, meaning 

that each class center corresponds to 1.136 times the center of the lower class. However, the 

particle size distributions obtained by such a method have to be adjusted before calculating 

the selection and breakage parameters. Indeed, the number of size classes selected appears to 

be a critical parameter of the model for the various reasons listed below. 

First, a small number of size classes leads obviously to less information implemented into the 

population balance model, which results in a loss of precision for the prediction of the 

grinding kinetics. Moreover, it should be highlighted that the particle size distribution is the 

main input for the calculation of the PGB, meaning that its precision depends on the 

resolution of the particle size distribution which is directly related to &. In particular, the PGB 
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appears to be highly sensitive to the population of fine particles (Giraud et al., 2020a), this 

means that a high precision is required for the particle size distribution, especially for the 

fraction of fine particles, those diameter are under 10 µm. Second, a high number of size 

classes may result in a very low amount of particles in some classes. These size classes are 

then too selective and thus not consistent, leading to incoherence in the definition of the 

selection function from Kapur’s approximation. Finally, the logarithmic form of equation (13) 

requires avoiding empty classes within the first size classes. 

To summarize, the number of size classes, &, should be high enough as it represents the 

resolution of the model input, but not too high in order to avoid empty or irrelevant classes. 

Accordingly, the particle size distributions provided by the Malvern® equipment have been 

manipulated in order to meet these requirements. Firstly, no particle was measured below 

0.872 µm whatever the grinding time, meaning that all the classes defined under this limit are 

empty classes that need to be removed. The measured maximal particle size varied between 

454 µm, for the raw alumina powder, and 111 µm, for the alumina powder ground for 8 

minutes. Since empty classes must be avoided within the first classes, all the classes defined 

above 454 µm were removed and the thirteenth classes from 111 to 454 µm were merged 

together. This leaves exactly 38 relevant size classes ranging from 0.872 to 454 µm. It should 

be noted that grouping thirteen classes at the beginning of the distribution won’t affect 

significantly the PGB since it mostly depends on the population of fine particles, represented 

by the last classes of the distribution, as shown in previous investigations (Giraud et al., 

2020a). Then selection and breakage parameters can be determined with & = 38, which 

corresponds to the highest possible resolution for this investigation. 

Up to our knowledge, the effect of having too many size classes (or a resolution too high) on 

the population balance model has not been investigated in depth in the literature since this 

model is often used for particle size distributions obtained by seizing the powder, which rarely 

involves more than ten size classes. In this paper, the model is applied to particles size 

distributions measured by LASER dispersion which gives much smaller size classes. In order 

to investigate the effect of the particle size distribution’s “resolution”, another estimation of 

the selection and breakage parameters have been carried out by taking a smaller amount of 

size classes. This was achieved by merging the 100 initial classes five by five, removing 

empty classes and merging the first three classes together, as represented schematically on 

Figure 4. This brings the total amount of size classes to & = 8. 

The repartition of the size classes for & = 38 and for & = 8 is represented schematically on 

Figure 4. The cumulative mass fraction corresponding to both configurations after 6 minutes 

of grinding are compared on Figure 5. 

Accordingly, the methodology described in sections 2.1 and 2.2 has been applied twice, in 

order to predict the particle size distributions of the ground alumina powder for different 

amount of size classes & = 8 or & = 38. 

4.2. Modelling grinding kinetics 

The first step for predicting the evolution of the particle size distribution of the alumina 

powder investigated is to determine the selection, �, and breakage, �, matrices (Gupta, 2017). 

Since the dimension of the selection and breakage matrices is equal to the number of size 

classes, the number of parameters to be estimated will depend on whether the particle size 
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distribution is defined over 38 or 8 classes. Indeed, if & = 38, there will be 38 selection 

parameters (diagonal matrix) and 703 breakage parameters (lower triangular matrix) to be 

estimated. For & = 8, there will be only 8 selection parameters and 28 breakage parameters to 

be estimated. In order to avoid overloading figures and tables, the results of the next 

paragraph will focus on the case where the particle size distribution is defined over 8 size 

classes (& = 8). It must be noted that the same procedure was carried out for 38 size classes, 

leading to similar results. 

As introduced in section 2.2, the �� and ��� parameters can be computed from Kapur’s first 

order approximation represented by equation (14). This approximation suggests that the 

cumulative oversize fraction of each size class varies exponentially with the grinding time. In 

order to verify this hypothesis, the logarithm of the cumulative oversize fraction for each class 

has been plotted as a function of the grinding time on Figure 6 for & = 8. It appears that 

Kapur’s approximation is rather good for all of the size classes except for the first one. 

Concerning the first class, the validity of the model seems to hold until 4 minutes of grinding 

only. This can be explained by the fact that there is a very small amount of particles 

remaining in this class after few minutes of grinding. Indeed, the mass fraction corresponding 

to the first class represents 9.97% before grinding and only 0.52% after 6 minutes of grinding, 

which may explain why the linear breakage low does not seems to stand for this class after a 

few minutes of grinding. Thus, the first Kapur coefficient "4#4%
 has been calculated by 

removing the last two points corresponding to grinding times of 6 and 8 minutes on Figure 6. 

All the coefficients "�#4%
 corresponding to each size class when & = 8 are summarized in 

Table 3, along with the total squared error, 8� associated. For information, if all the points 

were to be considered for the first size class, the corresponding squared error associated to 

Kapur’s approximation would be 84 = 0.7643 instead the actual error of 84 = 0.0014 

obtained by removing the last two points. 

Then, the selection and breakage parameters are computed from equation (15) using the "�#4%
 

values given in Table 3, the corresponding matrices are then given in equations (21) and (22) 

respectively. 

 � =
|
}}}
}~

0.25 0 0 0 0 0 0 00 0.15 0 0 0 0 0 00 0 0.07 0 0 0 0 00 0 0 0.04 0 0 0 00 0 0 0 0.03 0 0 00 0 0 0 0 0.01 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0�
���
��

 (21)   

And 

 � =
|
}}}
}~

0 0 0 0 0 0 0 00.41 0 0 0 0 0 0 00.31 0.52 0 0 0 0 0 00.11 0.19 0.40 0 0 0 0 00.06 0.11 0.22 0.37 0 0 0 00.06 0.10 0.21 0.34 0.54 0 0 00.04 0.07 0.14 0.23 0.37 0.80 0 00.01 0.02 0.03 0.06 0.09 0.20 1 0�
���
��

 (22)   

The selection parameters, ��, can be interpreted as kinetic constants, expressed in min-1 

associated to each size class. For example, the kinetic constant associated to the breakage of 

the particles belonging to the second class, whose particle diameters ranges from 35.3 to 
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33.9 ;+, is �5 = 0.15 min-1. Therefore, the decreasing values of the �� parameters with the 

particle size reflects the fact that it is more difficult to grind small particles than large ones. 

Figure 7 shows the values of the �� parameters obtained as a function of the particle size 
�, 
where 
� is taken as the upper diameter of the class H. Only six points are represented since 

the values of �� and �� worth zero in equation (21). It appears that the selection parameters 

evolve with the particle size according to a power law represented by equation (23), as 

commonly reported in the literature (Austin, 1971), with 34 = 0.0050 and 35 = 0.6976. 

 �� = 34 × �
�
	���
 (23)   

where 
	 = 1 ;+ is the unit size needed for the dimensional homogenization. 

As explained previously, the columns constituting the breakage matrix, �, represent the 

particle size distribution after grinding one size class only. For example, the second column of 

the � matrix indicates that 52 % of the particles belonging to the second class (35.3 −66.9 ;+) are going in the third class (18.7 − 35.3 ;+) once ground, while only 2 % of them 

are fragmented into the last class (≤ 1.45 ;+). For all the size classes, it is interesting to note 

that most particles that are being ground are going into the two following classes. Such a 

behavior may suggests that the ball milling process is mainly inducing a de-agglomeration of 

the powder into blocks that may be pre-existant in the particle’s structure, rather than a 

destructive fragmentation of the particles. The evolution of the cumulative breakage 

parameters, ���, is represented as a function of the size ratio (
� 
�⁄ ) on Figure 8. It appears 

that most of the breakage events lead to a size reduction that does not exceed one tenth of the 

initial particle size. 

Then, the methodology described in section 2.1 is employed in order to solve the population 

equation given by equation (6). The passage matrix, ', is constituted of the eigenvectors of 

the invertible matrix � = (� − X) × �, which can be computed numerically with the Matlab® 

software. The same software is used to get the inverted 'G4 matrix. Finally, the particle size 

distribution vector, /(�), can be expressed as a function of the initial particle size distribution 

of the alumina powder, /(0), and a square matrix, .(�) according to equation (11). Figure 9 

shows that the model predictions after six minutes of grinding are in good agreement with the 

actual particle size distribution measured by LASER diffraction, for & = 8. 

According to Figure 9, the model predictions seem to be quite close to the experimental 

particle size distribution measured after six minutes of grinding. The Sauter mean diameter 

has been calculated for each grinding time from the particle size distributions measured by 

LASER diffraction and those predicted by the model, with & = 8. The results are compared 

on Figure 10, where the predicted values are very close to the experimental ones. This result 

confirms that the model allows a good prediction of the particle size distributions for all the 

grinding times from 0.4 to 8 minutes. 

The results obtained by applying the same methodology for a larger number of size classes & = 38 are also represented on Figure 10. It appears that in this case, the Sauter mean 

diameter obtained from the experimental and from the predicted particle size distributions are 

also very close, showing that the model is also suitable for a larger number of size classes. It 

can also be noticed that the Sauter mean diameter values are varying depending on the 

number of size classes considered, even if they are calculated from the same particle size 
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distribution. This issue will be addressed in the next section 4.3. In order to compare 

quantitatively the results obtained when the number of size classes varies from 8 to 38, the 

total squared error between the predicted and measured particle size distributions after 0.4, 1, 

2, 4, 6 and 8 minutes of grinding for both configurations are given in Figure 11. It clearly 

appears that the predictions are more robust when the number of size classes is larger. Indeed, 

for each grinding time, selecting 38 classes instead of 8 allows to reduce the error between 

predicted and experimental values by a factor of 3. 

This shows that such a grinding model, based on the population balance, is suitable for 

particle size distributions obtained by LASER dispersion, even though the size classes are 

substantially finer than those used traditionally by sieving.  

4.3. Evolution of the granular Bond number according to the grinding time 

As explained in the introduction (section 1), the PGB can be calculated for any given particle 

size distribution by combining equations (2) and (20), thanks to the properties of the alumina 

GE15 particles measured in section 3.3. Thus, the particle size distributions predicted in the 

previous section 4.2 can be employed to predict the evolution of the PGB as a function of the 

grinding time. Figure 12 shows the evolution of the PGB computed from the measured 

particle size distributions (shown in Figure 2), as compared to those computed from the 

grinding kinetic model for a size class number set either to & = 8 or & = 38. The obtained 

values are also reported in Table 4. It appears that the predictions made from the particle size 

distributions defined over 8 size classes only, lead to significant errors in the PGB when 

compared to experimental results. On the other hand, the calculations made with & = 38 lead 

to predicted PGB that are very similar to the experimental ones. Indeed, the variation between 

the measured PGB and the model predictions for & = 38 are almost included in the 

incertitude intervals given in Table 4. 

By the way, it is also interesting to observe, on the first line of Table 4, that even the PGB 

values obtained before grinding the powder, where no kinetic model is needed, are 

significantly different. The only difference between those values is the number of classes: 50 

for ��@j�

,  38 for ��@DEs� and 8 for ��@DE�. This highlights the fact that merging the size 

classes five by five for the whole distribution leads to completely different Bond number 

values. On the other hand, grouping only the thirteenth first classes together doesn’t affect the 

computed Bond number that much, as the comparison between ��@j�

 and ��@DEs� shows. 

This underlines the fact that the population-dependent granular Bond number is highly 

affected by the precision of the particles size distribution and depends especially on the 

fraction of the finest particles, as reported recently (Giraud et al., 2020a). This was also 

visible on Figure 10 where the Sauter mean diameters appeared to be significantly different 

depending on the number of size classes considered from the same particle size distribution. 

Then, the PGB of the ground powders can be predicted when considering & = 38 size classes, 

as shown in Figure 12. This allows to express the PGB of a given ground powder directly as a 

function of the initial particle size distribution and the grinding time. Indeed, it is possible to 

get the mass fraction 0�(�) of the size class H after any grinding time by combining Kapur’s 

approximation, represented by equation (14), with the experimental equation (23) found 

previously and with equation (15). This results in equation (24). 
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 0�(�) = )�(0) × exp(−34
����) − )�G4(0) × exp (−34
�G4���) (24)   

where )�(0) is the cumulative mass fraction of class H before grinding and 34 and 35 have 

been found experimentally in section 4.2 and are specific to the alumina powder investigated. 

The surface fractions 2�(�) can be deduced by converting the mass fraction according to 

equation (18). Then, the surface fraction predicted from the kinetic model can be directly 

implemented in the PGB as defined in equation (2), providing a definition of the PGB, ��@(�), after a given grinding time, as described in equation (25). 

 ��@(�) = AB B 2�(�) ∙ 2�(�)���,��
D

�E4
D

�E4 FG4
 (25)   

It should be noted that equation (25) is valid only if the individual granular Bond number 

between two particles H and I is considered stationary, meaning that the Hamaker constant, the 

true density and the asperity diameter are not affected by the grinding process. 

4.4. Evolution of the flowability according to the grinding time 

Since the evolution of the PGB during grinding has been predicted by a grinding model in 

section 4.3, the flowability of the ground alumina powder can also be predicted. Indeed, as 

explained in the introduction (section 1), the PGB is linked to the flow function coefficient 

according to a power law represented by equation (3). In particular, model coefficients 3 =179.6 and 6 = 0.54 were found to fit the behavior of the same ground alumina GE15 powder 

as shown in equation (4) (Giraud et al., 2020b). The time-evolution of the flow function 

coefficient obtained in this investigation (see first column in Table 2) has been plotted on 

Figure 13 as a function of the corresponding PGB (see last column in Table 2). We can notice 

in Figure 13 that the experimental data, represented by crosses, are not far from the model 

predictions made from the previously found equation (4), represented by the grey line on 

Figure 13. The total squared error associated to the model equation (4) is 8(Q) = 4.16. 

However, equation (26), whose coefficients have been adjusted by the least square method, is 

a better power law fit for the experimental data, with a corresponding total squared error of 8(5s) = 0.16. This equation is represented by the black line on Figure 13. 

 ���(�) = 75.3 × ��@(�)G	.Qs (26)   

Finally, the flow function coefficients of the ground powders can be computed from the PGB 

predicted with the population balance model, thanks to equation (26). The predicted flow 

function coefficients are represented by the continuous line on Figure 14, where the actual 

experimental measurements are represented by the crosses. The residuals, corresponding to 

the differences between the measured and predicted values, are shown on the top right corner 

of the figure. It appears that the residuals seem to be distributed fairly randomly, although 

more data would be needed in order to carry out a proper residual analysis. Overall, it appears 

that the model predictions are in very good agreement with the experimental data. This shows 

that the evolution of the powder flowability as a function of the grinding time is predictable 

from the particle properties and from the initial particle size distribution of the raw powder, 

provided that a grinding kinetic model is known. 
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In order to check the consistency of the model for longer grinding durations, another grinding 

test of the same powder has been carried out in the ball mill for 16 minutes, with the same 

conditions described in section 3.2. The measured flow function coefficient is represented on 

Figure 14 with the other experimental results. Then, the complete methodology is applied in 

order to get a prediction of the flow function coefficient of the alumina powder after 16 

minutes of grinding. First, the particle size distribution is predicted from the selection and 

breakage matrices for & = 38 size classes. Then, the corresponding PGB is computed from 

the predicted particle size distribution. Finally, equation (26) provides the predicted flow 

function coefficient. It appears on Figure 14 that this methodology successfully predicts the 

flowability of the powder after 16 minutes of grinding. This is all the more interesting 

considering that the selection and breakage parameters, did not have to be computed again to 

make this prediction. This confirms the assumption stating that these parameters are not a 

function of time for the case studied. Likewise, the power law given by equation (26) seems 

to provide valid predictions for 16 minutes of grinding, despite the fact that its coefficients 

were found from measurements performed on samples ground for 0.4 to 8 minutes only. 

However, it should be noted that the flow function coefficient does not vary very much after 

10 minutes of grinding, making such an extrapolation easier. 

5. Conclusion and perspectives 

In this paper, we showed that the population balance model could be used to predict the 

evolution of the particle size distribution of an alumina powder according to the time spent in 

a ball mill. In particular, Kapur’s first order approximation was shown to be consistent with 

the experimental data for up to 8 minutes of grinding. The grinding kinetic model, which is 

usually applied for particle size distributions obtained by sieving was shown to be also 

suitable with particle size distributions measured by LASER diffraction despite the much 

finer size classes involved. This allowed estimating the selection and breakage function from 

a relatively small amount of grinding tests and characterizations. The PGB of the powder 

samples was then computable for any grinding time from the predicted particle size 

distributions. The results obtained highlighted the fact that this dimensionless number is 

highly dependent on the precision of the particle size distribution, especially for the fine 

particles area. Finally, the macro/micro power law correlation, represented by equation (3), 

linking the flow function coefficient to the PGB was shown to be very consistent with the 

experimental data. 

The overall method allowed to predict efficiently the evolution of the flowability of the 

alumina powder investigated through the grinding process. In addition, the extrapolation of 

the model is still consistent after 16 minutes of grinding, despite the fact that the model 

parameters ��, ���, 3 and 6 were established from experimental data collected during the first 

8 minutes of grinding only. Such a verification shows that this methodology allows to predict 

the evolution of the flowability of a given ground powder according to the grinding time, 

from few samples taken at various grinding times and analyzed by LASER diffraction. Thus, 

this method may by used by industrials for estimating the processability of a powder after 

varying the grinding time.  

In a previous study, we showed that the power law equation (3) could be used for predicting 

the flowability of co-ground powders prepared in a ball mill (Giraud et al., 2020b). This study 

suggested that such prediction was possible if the particle size distribution of all the 
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constituting powders, ground in exactly the same conditions, are known. However, this is not 

always possible in practice since mono-constituent grindings may not be realizable. The 

present paper opens a path to get rid of this constraint by computing the multi-component 

population-dependent granular Bond number of the co-ground samples directly from the 

particle size distributions of the constituent raw powders, knowing their selection and 

breakage functions. Such an approach should be tested in the future. 

Finally, this work showed that the evolution of the flowability of the alumina powder could be 

described analytically as a function of the grinding time by combining equations (18), (24), 

(25) and (26). Thus, it would be interesting to investigate the influence of the parameters 34 

and 35, which depend on the particle breakage behavior and on the grinding conditions, on 

the evolution of the flow function coefficient through the grinding time. It should also be 

noted that a link between the flowability, measured by shear tests, and the selection and 

breakage function has been found. It is then tempting to investigate a reverse model allowing 

to assess the selection and breakage parameters from simple shear tests carried out after 

different grinding times. Such reverse model should be explored in future works. 
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Graphical abstract 

Figure 1: Representation experimental setup used for grinding the powders. The powder and 

the pebbles are contained in the cylindrical vessel, rotating around its longitudinal axis.  

Figure 2: Volume particle size distribution of the alumina GE15 powder before and after 

various grinding tests. 

Figure 3: Schematic representation of the methodology employed in order to predict the 

flowability of the ground powder according to the grinding time. 

Figure 4: Schematic representation of the width of the particle size classes, represented as a 

geometric progression by rectangles, for the initial particle size distribution and for 

configurations with 38 and 8 size classes. 

Figure 5: Cumulative oversize particle size distribution of the alumina powder after six 

minutes of grinding, represented over 8 (a) or 38 (b) size classes. 

Figure 6: Representation of Kapur’s first order approximation (dotted lines) for each size 

classes (n=8). The experimental data are represented by the squares, triangles, rounds and 

diamonds. 

Figure 7: Evolution of the selection parameters as a function of the particle size. 

Figure 8: Cumulative breakage parameters represented for each size class (n=8) as a function 

of the relative size. Class 7 and 8 are not represented sin particle fragmentation do not take 

place in those classes (the corresponding parameters the B matrix are zeros). 

Figure 9: Comparison between measured and predicted particle size distributions of the 

alumina powder after 6 minutes of grinding (n=8). 

Figure 10: Evolution of the mean Sauter diameter calculated from the particle size 

distributions measured by LASER diffraction (points) and predicted by the model (crosses) 

for n=8 and n=38. 

Figure 11: Total squared error obtained between the measured and predicted particle size 

distributions after various grinding durations for n=8 of n=38. 

Figure 12: Evolution of the population-dependent granular Bond number according to the 

grinding time, computed from measurements and from predictions made with n=8 or n=38. 

Figure 13: Flow function coefficient of the alumina powder after different grinding durations, 

as a function of the population dependent granular Bond number represented on a logarithmic 

scale. The cross symbols correspond to experimental measurements, the continuous line 

corresponds to the power law those coefficients have been fitted with (26) and the dotted line 

corresponds to the law given by equation (4). 

Figure 14: Evolution of the flow function coefficient of the alumina powder according to the 

grinding time. The experimental data are represented by the cross symbols and the model 

predictions, computed from the initial properties of the raw powders are represented by the 

continuous line and the squares. The residuals are represented on the top right corner. 
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Table 1: Classification of the flowability of a given powder according to its flow function 

coefficient. 

Table 2: Flow function coefficient, Sauter mean diameter and the corresponding population-

dependent granular Bond number of the alumina GE15 powder after different grinding times. 

Table 3: Kapur's first order coefficients, K�#4%
, obtained from Figure 6, and the total squared 

error, ϵ� corresponding to this approximation. The particle size distribution being defined over 

8 size classes. The coefficients are computed after 8 minutes of grinding except for the first 

class for which Kapur’s approximation seems to hold until 4 minutes of grinding only. 

Table 4: Evolution of the population dependent granular Bond number according to the 

grinding time. Comparison between the Bond numbers computed from particles size 

distributions measured experimentally (Bo����
), predicted for n=38 (Bo��Es�) and for n=8 

(Bo��E�). 
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Table 1: 

Flow index value Flowability ��� < 1 Not flowing 1 < ��� < 2 Very poor 2 < ��� < 4 Poor 4 < ��� < 10 Easy ��� > 10 Free flowing 
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Table 2: 

Grinding time (min) 
Flow function 

coefficient ��� (-) 

Sauter mean 

diameter �� (µm) 

Population-

dependent granular 

Bond number ��� (-

) 

Raw powder 5.99 ± 0.00 14.5 ± 0.24 391 ± 16 

0.4 4.87 ± 0.17 13.2 ± 0.14 502 ± 19 

1 4.73 ± 0.01 12.1 ± 0.25 638 ± 42 

2 4.15 ± 0.12 10.8 ± 0.15 886 ± 38 

4 3.75 ± 0.34 10.0 ± 0.24 1103 ± 58 

6 2.67 ± 0.11 7.9 ± 0.46 2395 ± 345 

8 2.35 ± 0.14 7.1 ± 0.10 3105 ± 145 
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Table 3: 

Class number H "�#4%
 8� Class number H "�#4%

 8� 
1 (4 min) -0.2533 0.0014 5 -0.0274 0.0009 

2 -0.1501 0.0461 6 -0.0125 0.0001 

3 -0.0725 0.0157 7 -0.0025 0.0000 

4 -0.0435 0.0049 8 -0.0000 0.0000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

43 

 

Table 4: 

Grinding time ���j�

 ���DEs� ���DE� 

No grinding 391 ± 16 353 71 

24 seconds 502 ± 19 427 84 

1 minute 638 ± 42 551 106 

2 minutes 886 ± 38 790 149 

4 minutes 1103 ± 58 1394 258 

6 minutes 2395 ± 345 2172 399 

8 minutes 3105 ± 145 3134 571 

 




