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Abstract During the last decades, resource constrained project scheduling problems have been 

abundantly presented in extant literature. However, there are still some real-world challenges that 

have not been adequately considered. These challenges include environmental commitments and 

constraints related to the procurement of resources (as regards procurement commitment). This calls 

for the integration of the project planning and forward-reverse supply chain planning systems. To 

achieve this goal, this paper contributes to the existing literature by presenting a model that 

incorporates the two issues in the integrated planning system: 1) the procurement commitment 

objective is met through the just-in-time delivery of non-renewable resources to the project sites 

while considering the limited supply capacity of suppliers and 2) the environmental commitment is 

satisfied by collecting and recycling the waste generated at project sites. A mixed integer linear 

formulation of the problem is proposed. Since the model is NP-hard (Non-deterministic Polynomial 

time-hard), the paper develops a new heuristic-based genetic algorithm to solve the problem 

instances. The main parameters of the algorithm are tuned using the Taguchi method. The results 

show the efficiency of the algorithm in obtaining appropriate solutions in reasonable computational 

times. The integrated planning model that is proposed in this paper and its novel resolution method 

would help managers to make more responsive and efficient decisions. 

Key words Resource constrained multi-project scheduling problem; Supply chain planning; 

Environmental responsibility; Combinatorial optimization; Genetic algorithm; Taguchi design. 

 

1. Introduction 

This section is organized in two parts. The first part gives an overview of the research background 

and highlights the main aspects of the problem studied. The second part presents the use case that 

inspired the contributions of the paper.  

 

1.1. Background of the research 



 

 

Resource Constrained Project Scheduling Problem (RCPSP) is one of the most important topics of 

study in operations research and management science. In RCPSPs, the objective of the problem is to 

schedule project activities and determine how limited resources should be allocated to them in order 

to optimally satisfy one or several predetermined criteria (Pritsker et al. 1969). 

Lova and Tormos (2001) reported that up to 84% of the values of all projects are realized in a multi-

project environment. This fact highlights the importance of Resource Constrained Multi Project 

Scheduling Problems (RCMPSP). In the scheduling of multi-projects, the efforts of decision makers 

are generally focused on the allocation of resources to projects. Investigating resource allocation 

issues in RCMPSPs, Herroelen (2005) stressed the necessity of developing appropriate approaches to 

deal with constrained resources in multi projects. According to Węglarz et al. (2011), two types of 

resources – renewable and non-renewable – are required to perform project activities. Renewable 

resources, such as labour and machinery, are released after the accomplishment of the activities to 

which they were assigned, such that they can immediately be reused by other eligible activities. 

Regarding the non-renewable resources, such as construction materials, they are depleted by usage 

and are therefore continuously supplied to the project sites during the execution phase. 

In many building renovation and energy efficiency improvement projects, the required non-

renewable resources are often of high value and low demand. Therefore, the first key issue in this 

study deals with planning to deliver the right quantities of the high value non-renewable resources 

just-in-time in order to achieve operational objectives such as the minimization of the inventory 

levels and costs. In conventional project scheduling approaches, the scheduling of activities and the 

planning of non-renewable resources (materials) ordering are considered separately. In other words, 

a schedule is first determined and then the required materials are ordered accordingly. Aquilano and 

Smith (1980) argued that this policy leads to different drawbacks due to the fact that trade-offs 

between the decisions on activity scheduling and material ordering are neglected. Therefore, the 

authors proposed to integrate Project Scheduling Problems (PSPs) with Material Ordering (MO) 

models. Nevertheless, their integrated PSP-MO model considers only the lead-time for material 

acquisition and assumes that ready-to-use materials can be stored on the project sites. Regarding the 

high-value materials, there are some challenges.  Indeed, the inventory levels of these resources on 

the project sites should be kept to a minimum so as to reduce the storage costs. One way to achieve 

this is by asking the suppliers/manufacturers of these materials to deliver them just-in-time to the 

project sites. Considering a situation where the required materials are supplied just-in-time 

throughout the supply chain network, it can be argued that the limited supply (transportation and/or 

production) capacity of the suppliers / manufacturers as well as the constraints related to just-in-time 

delivery can significantly impact not only the procurement (transportation and production) of the 

materials, but also the schedules of the activities. On the other hand, project planning constraints 

such as the due-dates and the execution time-windows of activities can impact the supply quantities 

of the non-renewable resources to the project sites. Therefore, the optimal decision may not be made 



 

 

without considering the impacts of the suppliers’/manufacturers’ constraints on the scheduling of the 

projects and also the impact of the project scheduling constraints on the production and 

transportation planning of the non-renewable resources in the supply chain. For this reason, the 

model proposed in this paper aims to integrate an RCMPSP with the problem related to the planning 

of the supply of materials under limited transportation and production capacities of the 

manufacturers and/or suppliers. With reference to the definition of supply chain planning (SCP) 

given by de Kok and Fransoo (2003), we denote that our paper presents a new model that integrates 

RCMPSP and SCP problems. 

The second key issue in this paper has to do with the execution of projects in an environmental-

friendly manner. The increasing concerns about the management of natural resources and the 

protection of the environment have led to considering sustainability factors as an inseparable part of 

decisional procedures (Robichaud Lauren Bradley and Anantatmula Vittal 2011; Tayyar et al. 2013; 

Bandyopadhyay et al. 2017; Torabzadeh Khorasani 2018; Rabbani et al. 2019; Jain et al. 2020). In 

this respect, the management of the wastes generated during the execution and closure of 

construction projects has become an important subject for both researchers and practitioners. Wang 

et al. (2018) reported that construction and demolition wastes form approximately 30% to 40% of all 

solid wastes generated worldwide. A systematic collection- recycling plan is therefore significantly 

needed.  

With this in view, an important dimension to be added in modelling frameworks for PSPs is the 

determination of a plan to optimally collect the wastes from project worksites and transport them to 

appropriate recycling centres. In establishing such a plan, it will be inevitable to take into account the 

project scheduling constraints as well as the transportation and recycling capacity constraints. 

To respond to the above-mentioned requirements, a new mathematical model, which is an extension 

of project scheduling problems, and a genetic algorithm-based resolution method are developed in 

our study. 

Based on the above discussion, we observe that some issues encountered in many real-world cases 

are not adequately addressed in the literature of project scheduling problems. These issues include 

the constraints related to the procurement and delivery of non-renewable resources to project 

worksites as well as environmental commitments. The consideration of these issues leads to asking 

the following questions: 

• What modelling framework can be used to optimally plan and schedule activities in multiple 

projects that are subjected to the just-in-time delivery of non-renewable resources by 

suppliers with limited supply capacity, while taking into consideration) the environmental 

concerns related to the collection and recycling of the wastes generated at the project 

worksites? 



 

 

• How can the model be presented mathematically through a mixed integer programming 

problem? 

• What methods can be applied in order to solve the instances of the problem to optimality? 

 

1.2. The case used for the research 

Following a directive issued in 2009 by the French government, the country committed itself to 

combat climate change and reduce its greenhouse gas emissions by 75% by 2050 (Légifrance 2009). 

Given that the building sector generates 24% of the total emissions in the country, it is key to 

reaching the objectives of the climate change policy (Légifrance 2009). Consequently, the French 

agency for environment and energy management elaborated a project that aims to reduce the total 

energy consumption level of buildings in France. The objective of this project, named CRIBA 

(Construction et Rénovation Industrialisée Bois et Acier), is to reduce energy consumption from 

about 200 kWh/m²/year to only 25 kWh/m²/year in 500 000 habitations. The solution to achieve this 

goal is to install insulated-prefabricated panels on the buildings’ external facades, and to replace the 

existing heating and hot water systems with energy-saving ones.  

The theoretical framework of this study responds to the requirements that project planners engage in 

scheduling of the renovation activities in different worksites of the CRIBA project. The main 

specificities of the implementation and accomplishment of the thermal renovation projects in the 

CRIBA context are: 

- Just-in-time supply of the prefabricated isolation panels with the aim of reducing the inventory 

levels of high-value materials on the worksites while also protecting the panels from different 

hazards that can damage them; 

- Regular collection and shipment of wastes from the worksites to appropriate recycling centres 

in order to meet environmental responsibility objectives; 

- Limited transportation, production and recycling capacities of the supply chain actors, coupled 

with the due-dates and time windows that are imposed for the execution of renovation 

activities. 

The remainder of the paper starts with a review of the literature and the formulation of our research 

objectives. Then, it continues with the description of the model before presenting the proposed 

solution method and the numerical results obtained from the application of the developed method. 

Finally, the paper ends by presenting a summary of the study, its limitations in practice and 

perspectives for future works. 

 

2. Literature review 

In section 1.1, we outlined three aspects of this paper that constitute its main contribution: 1) project 

scheduling with the integration of issues related to material (non-renewable resource) procurement; 



 

 

2) project scheduling considering environmental responsibility commitments, with specific attention 

to the collection, transportation and recycling of wastes generated on project sites; 3) resolution 

methods, with particular emphasis on metaheuristics and genetic algorithms. The review of the 

literature will be presented with respect to these three issues and will enable us to position the 

contribution of this paper.  

 

2.1. Project scheduling with material procurement issues 

After highlighting the shortcomings of separating project scheduling and material ordering problems, 

Aquilano and Smith (1980) proposed to integrate PSPs with MO models and built the schedule of the 

project activities by considering the impact of the lead-times of the acquisition of materials. 

Following this work, Smith-Daniels and Aquilano (1984) investigated a single project scheduling 

problem that considered the planning of both non-renewable and renewable resources. Smith-Daniels 

and Smith-Daniels (1987a) later worked on the integration of PSP and MO with respect to the 

maximization of the net present value of money. Smith-Daniels and Smith-Daniels (1987b) 

presented a model that considered the lead-times for material ordering and assumed a due-date for 

project closure. In a subsequent research, Dodin and Elimam (2001) extended the work of Smith-

Daniels and Smith-Daniels (1987b) by incorporating the variability in the duration of activities, with 

the aim to minimize the total cost of executing the project. Sheikh Sajadieh (2009) studied the impact 

of discounts on material acquisition costs. Assuming that unlimited quantities of the non-renewable 

resources can be kept on the project site, Nima et al. (2012) studied a single project scheduling 

problem with a given due-date for the completion of the project and also with predetermined time 

windows for the execution of the activities. To solve the model instances, they developed a hybrid 

algorithm that combined the genetic and simulated annealing algorithms. Niaki et al. (2015) 

extended the work of Nima et al. (2012) by incorporating order lead-times and also scheduling for 

the constrained renewable resources. Tabrizi and Ghaderi (2016) extended the model in (Sheikh 

Sajadieh 2009) by including the constraint of limited capacity for storing the materials. Further still, 

Tabrizi and Ghaderi (2016) investigated the execution cost for single project scheduling as well as 

the effect of uncertainty in activity durations. Following up their work in (Niaki et al., 2015), 

Zoraghi et al. (2017) investigated the combination of multi-mode project scheduling problem in 

resource investment and quantity discount model in material ordering. A project scheduling problem 

with the generalized precedence relations including finish to start, start to start, start to finish and 

finish to finish precedencies subjected to material ordering issues is studied in (Gholizadeh-Tayyar et 

al., 2018). The most recent paper in this context is presented by Habibi et al. (2019), where the 

authors studied an integrated project scheduling and material ordering problem and looked at the 

environmental and social merits of the potential suppliers of the project resources. 



 

 

This overview of the extant literature reveals a lack of studies on the philosophy of the delivery of 

materials to the project sites with special emphasis on the limited procurement capacity (production 

and transportation capacities) of the suppliers and just-in-time delivery of the non-renewable 

resources. Therefore, this paper aims to fill this gap by presenting an integrated framework for 

project scheduling and supply chain planning systems. 

 

2.2. Project scheduling with environmental responsibility commitments 

In the context of project management, environmental responsibility commitments can be studied 

from two perspectives of the execution process: forward (related to material ordering and delivery) 

or reverse (related to the collection and recycling of wastes generated during the execution of the 

project activities). Our paper focuses on the reverse perspective, that is, the management of 

generated wastes, which has in recent times been of particular interest to researchers (see (Shen and 

Tam, 2002; Gálvez-Martos et al. 2018)). Lachimpadi et al. (2012) provided a synthesis of principles 

and best practices to improve resource efficiency and environmental impact as regards the 

management of wastes in construction and demolition projects in Europe. Based on the information 

gathered from interviews, Udawatta et al. (2015) aimed to provide new solutions to efficiently 

manage and reduce waste generation in construction projects. Today, there is no existing solution 

that enables to reduce waste generation to zero. There is therefore the need to develop solutions for 

collecting and recycling these wastes. In the field of manufacturing supply chain management, a 

large body of research has been done on closed-loop logistics, where wastes are transported from 

customers to recycling centres (Kannan et al. 2010; Subramanian et al. 2012; Battini et al. 2017; Kim 

et al. 2018; Prakash et al. 2020). But, in the context of project scheduling problems, a lot of research 

is still required (to the best of our knowledge) to develop mathematical models that optimally plan 

waste management operations. This paper aims to consider in the project scheduling problem the 

optimal planning of the collection, transportation and recycling of the wastes generated on the 

project sites. It proposes a new Mixed Integer Linear Programming (MIP) model. To solve the 

instances of the model, the development of an efficient resolution method is needed. 

 

2.3. Resolution methods 

Constrained project scheduling problems are NP-hard problems (Blazewicz et al. 1983), and any 

generalization of classical problems is also NP-hard. For this reason, exact methods become 

computationally intractable when solving large-size instances. To tackle this difficulty, many 

researchers have studied and suggested the use of metaheuristics. In metaheuristics, the Serial 

Schedule Generation Scheme (SSGS), which is a stepwise process, schedules the eligible activities at 

the earliest precedence and resource-feasible start time (Kelley 1963). 



 

 

In PSPs, the genetic algorithm (GA) has been widely used in research. A review of 304 papers 

published (in SpringerLink, ScienceDirect, Taylor and Francis and IEEE) on resource constrained 

project scheduling problems between 2000 and 2020 revealed that132 used the genetic algorithm. 

The wide use of the GA can be linked to its advantage of being a population-based search approach 

as well as to its strong ability to explore and exploit the solution space. Alcaraz and Maroto (2001) 

proposed a genetic algorithm where they generalize the activity list in SSGS method. The procedure 

defined by Toklu (2002) benefits from a penalty function that enables to repair probable infeasible 

off-springs. Gonçalves et al. (2008) studied a GA for the resource constrained multi-project 

scheduling problem. The initialization procedure of their GA relies on heuristics that produce 

parameterized schedules based on priorities, delay times and release dates. Browning and Yassine 

(2010) presented a review of the applications of different heuristics used for the resolution of multi-

project scheduling problems. Wauters et al. (2016) discussed the results of a challenge where 

metaheuristics are developed for multi-mode and multi-project scheduling problems. Zamani (2019) 

studied the application of the genetic algorithm on a multi-mode resource-constrained project 

scheduling problem. Many other researchers have studied the application of other metaheuristics that 

are used in project scheduling, for example, Particle Swarm Optimization and Tabu Search. The aim 

of this literature review is not to present an exhaustive list of all the works that have been done in 

this field, but rather to present those that inspired the development of the GA that is proposed in this 

paper. 

The model presented in our study is a new extension of former project scheduling models. To solve 

it, it is inevitable to develop a novel solving method that takes into account the hypotheses of the 

problem in the proposed integrated planning model. The new method includes a procedure that 

schedules the activities of multiple projects and plans different supply chain operations (production, 

transportation and recycling) in an interactive manner while considering the constraints and 

hypotheses related to the two parts: project scheduling and supply chain planning. 

 

2.4. Research objectives 

Figure 1 presents the research framework where the project planning constraints impact the planning 

of operations in the forward-reverse supply chain and reciprocally the forward-reverse supply chain 

constraints affect the scheduling of activities in projects. This mutual two-way impact shows the 

need to integrate the two planning systems, and consequently meet the procurement and 

environmental commitments through just-in-time delivery of non-renewable resources on the one 

hand and shipping and recycling of wastes on the other hand.  



 

 

 
Fig.1 Research framework: an integrated planning system 

 

Based on the discussions in the introductory section and the literature review, we formulate two 

research objectives: 

1. Develop a planning system that integrates project scheduling and supply chain planning in 

order to create a model that considers supply chain constraints in the scheduling of the 

project activities and at the same time considers project planning constraints in the planning 

of the supply chain operations, while meeting procurement commitments (just-in-time 

delivery through the limited procurement capacity of the suppliers) as well as environmental 

commitments (recycling of waste).   

2. Develop an efficient heuristic-based genetic algorithm to solve instances of the problem, 

especially for large sizes. 

 

3. Model development 

3.1. Problem statement 

In the problem of this study, a set of multiple projects, indexed by s, are supposed to be scheduled 

simultaneously. Every activity i in the projects possesses a processing time Di	, a due-date DDi	, an 

earliest ETi  and a latest start LTi  dates with a priori known values. We categorize the Finish-to-Start 

precedence relations between the activities, FS(i,j)  as “wait”(NWFS(i,j) = 0) or “no-wait” (NWFS(i,j) = 

1) precedencies. The “no-wait” relations imply that a successor activity should be processed 

immediately after the execution of its predecessors, whereas the “wait” precedencies exclude the 



 

 

immediate execution of successor activities. Therefore, a lag time Lagi,j , which presents a delay, 

may exist between the execution of the activities in “wait” relations. In the problem studied, a 

common pool of renewable resources is shared among multiple projects. We assume that some of the 

renewable resources, indexed by r',  hold a significant rental cost, while the others, indexed by r, do 

not have high rental costs. The model of this study aims to minimize the execution cost of the 

projects by shortening the period during which the high rental cost resources are maintained at the 

project sites. Both expensive and inexpensive renewable resources have initial available quantities, 

respectively noted by IR'
r'  and  IRr . However, the model keeps the possibility of extending the 

capacity of the renewable resources by adding limited supplementary quantities MR'
r'and MRr . The 

demand of the project activities for expensive and inexpensive renewable resources are respectively 

denoted by Dr'
ir' and Drir	. 

Each activity i may require the non-renewable resources nr, which is noted by Dnri,nr	. Regarding the 

non-renewable resources, in order to eliminate their stock and also protect them from different 

natural or non-natural hazards, these resources are delivered just-in-time (via a supply chain 

network) to the project worksite. In the model, we assume that the supply of raw materials, indexed 

by k, is constrained by the limited transportation capacity of the suppliers, FCape (e presents index of 

suppliers). The manufacturing centres, indexed by m, possess one or more production lines lm that 

have limited production capacities in each time period t of the planning horizon,IMClnm(lm,m),t. The 

production of the items and the ordering of the raw materials are realized according to a given bill of 

materials Q(p1, p2), which determines the quantity of a component p1 that is used to produce item p2. 

In the network, for environmental responsibility concerns, we assume that there exist individual 

centres which exclusively recycle the wastes generated on the sites. Besides, we presume that some 

of the manufacturers may also possess recycling centres with recycling lines. The recycling lines and 

he recycling centres are respectively indexed by lr and c. The recycling lines lr in the recycling 

centres c possess limited recycling capacity, noted by IRClnr(lr,c),t. The production of products pm 

and recycling of wastes w require given values of workload that are respectively denoted by WMpm,lm 

and WRw,lr . The workload is considered as a given amount of working time that should be dedicated 

to performing the production or recycling of items. We suppose that the production and recycling 

centres are flexible enough in adding supplementary capacities in order to increase their 

responsiveness in meeting requirements. 

In our problem, we categorize all the items into two groups and refer to them as  “incoming” items, 

indexed by in (d',p'), and “outgoing” items, indexed by out (o'',p''). The “incoming” items have to do 

with items that are received in a unit and will be used there. Examples of “incoming” items are raw 

materials and intermediate products. On the contrary, the “outgoing” items are processed in a unit 

and will be shipped to the next use destinations. End products of the supply chain and wastes are 



 

 

examples of “outgoing” items. For both “incoming” and “outgoing” items, there is a limited storage 

capacity in the supply chain units. They are respectively noted by  InCapuand OutCapu, where u is 

the index of units in the supply chain. The storage capacity is considered as the space that is 

available to store items at different centres in the supply chain. Depending on the space that is 

occupied by each item p, noted by Cfp,and the limited available warehouse space, a limited quantity 

of the items can be stored in the supply chain units. It is assumed that the initial and final quantities 

of the stocks is equal to zero. Furthermore, the transportation capacity of the units in the supply chain 

is limited. This capacity is denoted by FCapu. In both forward and reverse supply chains, there are 

non-negligible production PrLim (lm,m,pm) and transportation TLf(o,d,p) lead-times. The objective of the 

model is to minimize the total cost of running the system. Therefore, the model aims to minimize 

both the project planning costs and the forward-reverse supply chain planning costs. We note that the 

detailed description of the notations to show the cost terms (as well as all the notations) are provided 

in section 3.3. 

 

3.2. Problem formulation 

Table 1 provides the description of the mathematical notations: 

 
Table 1 Indexes, sets, parameters and decision variables 

1.a Indexes and sets: 

Indexes and sets related to multi-project scheduling: 

S: set of projects, indexed by s. 

I: set of activities, indexed by i. 

T: set of time periods, indexed by t. 

R: set of inexpensive renewable resources, indexed by r. 

R' set of expensive renewable resources, indexed by r'. 

As : set of activities that belong to project s, (As ⊂ I). 

FS(i,j) : Finish-to-Start precedence relation between successor activity j and predecessor 

activity i.  

NWFS(i,j) : 1, if successor activity j in precedence FS begins immediately after ending the 

predecessor activity i. 0, otherwise. NWFS(i,j) = 1 and NWFS(i,j)  = 0 respectively 

represent no-wait and wait precedencies. 

αs(i,j) : link between i and j. It is used to relate beginning activity i and ending activity j at 

worksite s. 

αr', s(i,j)
'  : link between i and j, where i is the activity of placing high rental cost renewable 



 

 

resource r' on project site s and j is the activity of its displacing. 

 

Indexes and sets related to forward and reverse supply chain planning: 

 * Stared notations are the ones that relate forward and reverse supply chain planning problem to multi-project scheduling 

problem. 

NR*: set of non-renewable resources (final products of the supply chain network) required 

on the project sites, indexed by nr. 

PM: set of items produced by the supply chain, indexed by pm.  

K: set of raw materials, indexed by k. 

W*: set of waste types, indexed by w. 

E: set of suppliers of raw materials, indexed by e. 

M: set of manufacturing centres, indexed by m.  

C: set of recycling centres, indexed by c.  

U: set to represent all units in the network. It includes the project sites, manufacturing 

centres, recycling centres and suppliers of raw materials, U= S 	∪  M ∪	C ∪  E, 

indexed by u. 

PT: set to represent all items in the network. 

F (o,d,p)*: set of flows that represent the shipment of item p from origin o to destination d, o є 

U, d є U, p є PT, indexed by f(o,d,p). 

IN (d', p'): set of pairs to link “incoming” item p'   to destination d' . Product p'   is used in 

destination d', d' є U, p' є PT, indexed by in(d', p').  

OUT (o'',	p''): set of pairs to link “outgoing” item 	p''  to origin o''. Product p''   is sent from origin 

o'', o'' є U-E, p'' є PT, indexed by out(o'',	p''). 

LM: set of production lines, indexed by lm.  

LR: set of recycling lines, indexed by lr.  

LNM (lm, m): set of pairs that link production line lm to the manufacturing site m to which it 

belongs, indexed by lnm (lm, m). 

LNR (lr, c): set of pairs that link recycling line lr to the recycling centre c to which it belongs, 

indexed by lnr (lr, c). 

IM (lm, m, pm): set of triplets representing the production of item pm in production line lm at 

manufacturing centre m, indexed by im (lm,m,pm). 

IC (lr, c, w): set of triplets representing the recycling of waste w in recycling line lr at recycling 

centre c, indexed by ic (lr,c,w). 

β (p1): set of items that are made out of item p1. 

 

 



 

 

1.b Parameters: 

Parameters related to the multi-project scheduling problem: 

ETi : earliest start time of activity i. 

LTi : latest start time of activity i. 

DDi	: due date of activity i. 

Di	: processing time of activity i. 

Drir	: demand of activity i for inexpensive renewable resource r. 

Dr'
ir'  demand of activity i for expensive renewable resource r'. 

IRr	: initial quantity of inexpensive renewable resource r. 

IR'r' 	: initial quantity of expensive renewable resource r'. 

MRr : maximum quantity of inexpensive renewable resource r that can be added. 

MR'
r' : maximum quantity of expensive renewable resource r' that can be added. 

Lagi,j : lag time between end of activity i and start of activity j. 

RCs : per-period running cost of project s. 

HCr': use cost of expensive renewable resource r'. 

NCr : use cost of inexpensive renewable resource r. 

PCi	: per-period penalty cost for late completion of activity i. 

 

Parameters related to both multi-project scheduling and forward and reverse supply chain planning problems: 

Dnri,nr	: demand of activity i for non-renewable resource nr. 

WPw,i : quantity of waste type w that is generated by activity i. 

TCf(o,d,p) : cost for shipping a unit of item p from origin o to destination d. 

TLf(o,d,p) : transportation lead-time to ship item p from origin o to destination d. 

FCapu : transportation capacity of unit u. 

 

Parameters related to forward and reverse supply chain network planning problems:  

InCapu : maximum capacity for storing the “incoming” items in unit u. 

OutCapu : maximum capacity for storing the “outgoing” items in unit u, excluding the 

suppliers of the raw materials.  

IMClnm(lm,m),t: initial production capacity of line lm in unit m at period t. 

IRClnr(lr,c),t: initial recycling capacity of line lr of unit c at period t. 

WMpm,lm : workload for producing item pm in line lm. 

WRw,lr : workload for recycling waste w in line lr. 

PrLim (lm,m,pm) : lead-time to produce item pm in line lm of manufacturing centre m. 



 

 

SCp : storage cost per unit of item p, p є PT. 

PRCpm : production cost per unit of item pm. 

RRCw: recycling cost per unit of waste w. 

APlnm(lm,m): cost for adding a unit of capacity to production line lm in manufacturing centre m. 

ARlnr(lr,c): cost for adding a unit of capacity to recycling line lr in recycling centre c. 

Q(p1, p2) : quantity of component p1 that is used in the production of item p2 in the bill of 

materials. 

Cfp : coefficient that determines the space occupied by a unit of item p, p є PT. 

 

1.c Decision variables 

Decision variables related to the multi-project scheduling problem: 

Xit : 1 if activity i starts at time t, 0 otherwise. 

Yit : 1 if activity i is being processed over time t, 0 otherwise. 

Zi : lateness of activity i. 

Vi : start time of activity i. 

ARrt : quantity of inexpensive renewable resource r only added at time t. 

AR'
r't

 : quantity of expensive renewable resource r' only added at time t. 

 

Decision variables related to both multi project scheduling and forward and reverse supply chain network planning problems: 

TQf(o,d,p),t : transported quantity of item p from origin o to destination d at time t, o є U, d є U, p 

є PT. 

 

Decision variables related to the forward and reverse supply chain network planning problem: 

SInin(d', p'),t : stock quantity of “incoming” item p received at destination d at time t, d' є U, p' є 

PT. 

SOutout(o'', p''),t:  stock quantity of “outgoing” item p sent from origin o at time t, o'' є U-E, p'' є PT, 

indexed by out(o'',	p''). 

PQim(lm,m,pm),t  quantity of item pm produced in production line lm of unit m at time t. 

RQir(lr,c,w),t  quantity of waste w recycled in recycling line lr at recycling centre c at time t. 

ALPlnm(lm,m),t	: quantity of capacity added to production line lm at manufacturing centre m only at time 

t.   

ALRlnr(lr,c),t	: quantity of capacity added to recycling line lr at recycling centre c only at time t.   

 

The mathematical model of the problem is presented below: 



 

 

Objective Function: 

The objective function of the model (Equation 1) aims to minimize the total cost of the system. The 

cost terms in the first brackets correspond to the project planning costs while those in the second 

brackets correspond to the supply chain planning costs. The project planning costs include respectively 

i) the running cost of projects, ii) costs related to the use of expensive renewable resources, iii) penalty 

cost for the late completion of activities, iv) the cost of adding supplementary inexpensive renewable 

resources, and v) the cost of adding supplementary expensive renewable resources. Regarding the 

supply chain planning costs of the model, they are composed of i) the transportation cost of items from 

origins to destinations of use, ii) storage cost of (“incoming”) items that are used in a unit, iii) storage 

cost of (“outgoing”) items that are sent from a unit, iv) production cost of products, v) recycling costs 

of wastes, vi) cost of adding supplementary production capacities and, vii) cost of adding 

supplementary recycling capacities. 

Min OF = [∑ ∑ (Vj+(i,j)є αs(i,j) Dj- Vi) RCs s  +∑ ∑ ∑ (Vj+(i,j) є α
r', s(i,j)
' Dj- Vi) HCr'r's  + +∑ Zi PCii + 

∑ ∑ ARrt NCrtr   + ∑ ∑ AR'
r't

 HCr'tr'   ] + 

[∑ ∑ TQf(o,d,p),tt TCf(o,d,p),tf(o,d,p) +∑ ∑ SInin(d', p'),tt SCpin(d', p') +  

∑ ∑ SOutout(o'', p''),tt SCpout(o'', p'')  + ∑ ∑ PQim(lm,m,pm),tt PRCpmim (lm,m,pm)  + 

∑ ∑ RQir(lc,c,w),tt PRLwir (lc,c,w)  + 

∑ ∑ ALPlnm(lm,m),tAPlnm(lm,m) tlnm(lm,m) + ∑ ∑ ALRlnr(lr,c),tARlnr(lr,c)tlnr(lr,c)  ]  

 

 

1 

The above objective function is solved subject to the constraints presented in Table 2. 

 
Table 2 The constraint functions of the model 

Explanation Equation Equation 

 number 

Multi project planning constraints: 

Constraint (2) states that an 

activity should be started at a 

time between its earliest and 

latest start time. 

∑ Xit
LTi
t = ETi

 = 1
 

∀i є I 

2 

Constraint (3) assures that the 

sum of the periods during which 

an activity is running is equal to 

its processing time. 

∑ Yit
LTi + Di - 1
t = ETi

 =Di
 

∀i є I 

3 

With regards to the lag time, Vj ≥ Vi + Di +Lagij 

∀(i,j) є FS(i,j),NWFS(i,j) = 0 

4 



 

 

constraint (4) and constraint (5) 

respectively define the start time 

of successor activities under a 

“wait” and “no-wait” conditions. 

Vj = Vi + Di  

∀(i,j) є FS(i,j),NWFS(i,j) = 1 

5 

Constraints (6) and (7) link the 

decision variables , and . 

∑ Yit
t - 1+ Di
k = t  ≥ Di Xit 

∀i є I , ∀t є {ETi , …, LTi}  

6 

 Vi = ∑ t Xit
LTi
t = ETi  

∀i є I 

7 

Constraint (8) determines the 

lateness that may occur in the 

completion of activities 

 Zi  ≥ Vi+ Di - DDi 

∀i є I   
8 

Constraints (9) and (10) 

respectively guarantee the 

satisfaction of activities’ demand 

for respectively inexpensive and 

expensive renewable resources 

by the allocation of the initial 

quantity of these resources and 

the quantity that may be added. 

 ∑ DritYit
 
i є I  ≤ IRr + ARrt 

∀r є R, ∀t є T 

∑ Dr'
itYit

 
i є I  ≤ IR'

r' + AR'
r't 

∀r' є R', ∀t є T 

9 

 

 

10 
  

Expressions (11) and (12) 

respectively guarantee that the 

supplementary quantities of 

inexpensive and expensive 

renewable resources cannot 

exceed a given maximum value. 

AR 
rt	≤ MR 

r 
 

∀r є R, ∀t є T 

11 

AR'
r't	≤ MR'

r'
 

∀r' є R', ∀t є T  

12 

  

Constraints to relate project scheduling and forward and reverse supply chain planning 

problems:   

Constraint (13) satisfies the 

demand of the project activities 

of worksites for the non-

renewable resources to be 

delivered just in time. 

∑ TQ&(',(,)),*+,-!(#,%,&)	&(',(,))	є F(o,d,p) | d=s, p=nr =  

∑ Dnri, nr Xitiє/s  
∀s є S, ∀nr є NR, ∀t є T  

 

13 

Equation (14) shows the balance 

of flows for the wastes that are 

SOutout0o", p"1,  t-1 + ∑ X2*	WP3,22	є	5(  = 

∑ TQf(o,d,p), tf  + SOutout0o", p"1,  t 

14 



 

 

sent from the worksites. ∀s є S, ∀w є W, ∀t є T 

∀out(o", p") є OUT(o", p") | o"=s, p"=w 

Forward and reverse supply chain planning constraints:   

Similar to equation (14), 

equation (15) shows the balance 

of flows in the supply chain for 

“outgoing” items. This 

constraint is expressed for the 

produced products that are 

transported from the 

manufacturing centres. 

SOutout0o", p"1,  t-1 +  

∑
	
	26(76,6,)6)	є IM(lm,m,pm) | m=o" , pm= p"   

PQ26(26,6,)6),*+	89-)*(+*,*,&*)= 

∑ TQ!(#,%,&),(!(#,%,&)	є F(o,d,p) | o=m, p=pm  + 

SOutout*o", p"+,  t 

∀m є M, ∀pm є PM, ∀t є T 

∀out(o", p") є OUT(o", p") | o"=m, p"=pm  

15 

Equations (16), (17) and (18) 

represent the balance of flows 

for “incoming” items 

respectively for raw materials 

received at manufacturing 

centres, intermediate products 

received in the manufacturing 

centres and the wastes that 

should be recycled in the 

recycling centres. 

SInin:d', p';,  t-1 +   

∑ TQ&(',(,)),*+	,-!(#,%,&)&(',(,))є F(o,d,p) | d=m, p=k  = SInin:d', p';,  t +  

∑ 	<	є =	(8,) | 	8, = k 	  

∑ PQ26(26,6,)6),*26(76,6,)6)	є IM(lm,m,pm) | m=d' , pm= b Q(p',<)  

∀m є M, ∀k є K, ∀t є T 

∀in/d', p'0 є IN/d', p'0 | d'=m, p'=k  

16 

SInin:d', p';,  t-1 +  

∑ TQ&(',(,)),*+	,-!(#,%,&)&(',(,))є F(o,d,p) | d=m, p=pm  = SInin:d', p';,  t 

+  
∑ 	<	є =	(8,) | 	8, = pm 	   

∑ PQ26(26,6,)6),*26(76,6,)6)	є IM(lm,m,pm) | m=d' , pm= b Q(p',<)  

∀m є M, ∀pm є PM, ∀t є T 

∀in/d', p'0 є IN/d', p'0 | d'=m, p'=pm  

17 

SInin:d', p';,  t-1 +   

∑ TQ&(',(,)),*+	,-!(#,%,&)&(',(,))є F(o,d,p) | d=c, p=w  = SInin:d', p';,  t +  

∑ RQ2@(79,@,3),A2@(79,@,3) 	  

∀c є C, ∀w є W, ∀t є T 

∀in/d', p'0 є IN/d', p'0 | d'=c, p'=w  

18 

Constraint (19) shows that the 

production of the items is 

limited by the available 

production capacities (including 

∑ PQim(im,m,pm), tim(lm,m,pm) WMpm, b ≤ IMClnm(lm,m), t + 

ALPlnm(lm,m), t 
∀lnm(lm, m),t є LNM(lm,m) , ∀t є T  

19 



 

 

the capacities that may be 

added).   

Expression (20) indicates that 

the recycling of wastes is 

constrained by the initial 

recycling capacity plus the 

supplementary capacity that may 

be added. 

∑ RQic(lr,c,w),t WRw,lr ic(lr,c,w) ≤  

IRClnr(lr,c), t + ALRlnr(lr,c), t 

∀lnr(lr, c),t є LNR(lr,c) , ∀t є T  
 

20 

Expressions (21) and (22) 

present the constraints related to 

storage capacities, respectively, 

for “incoming” and “outgoing” 

items. 

∑ SInin0(',)'1|d=u,  t)' Cf)'≤ InCapu 

∀u є U, ∀t є T 

21 

∑ SOutout0''',)''1|o=u, t)'' SCf)''  ≤ OutCapu 

∀u є U, ∀t є T 

22 

Constraint (23) deals with the 

limited transportation capacity. 

TQf(o,d,p) | o=u, t ≤ FCapu 

∀u є U, ∀f(u,d,p)  є F(o,d,p), ∀t є T 

 

23 

Constraints (24) and (25) state 

the initial and final stock level of 

the items. 

SInin:d', p';,  t = 0 

∀in/d', p'0 є IN/d', p'0, t є {0, T} 

24 

SOutout0o", p"1,  t =0 
∀out(o", p") є OUT(o", p"), t є {0, T}      

25 

Constraints on decision 

variables: 

And, constraints (26), (27) and 

(28) present the types of the 

decision variables. 

0 ≤Yit ≤ 1 

∀i є I, ∀t є T 
26 

Ui, Vi, ARrt, AR'
r't, TQf(o,d,p), t, SInin:d', p';,  t, SOutout0o", p"1,  t, 

ALPlnm(lm,m), t, ALRlnr(lr,c), t, PQ26(26,6,)6),*, RQ2@(79,@,3),A ≥ 0 

∀i є I, ∀t є T, ∀f(o,d,p) є F(o,d,p), ∀in/d', p'0 є IN/d', p'0, 

∀out(o", p") є OUT(o", p"), 

im(lm,m,pm),t є IM(lm,m,pm),t, 

∀ic(lr, c, w) є IC (lr, c, w), ∀r є R, ∀r' є R'
 

 

27 

X2*є {0, 1}  
∀i є I, ∀t є T  

28 

 

3.3. Specificities on the formulation of the model 



 

 

In the mathematical model presented in Section 3.3, we used a different mode to determine some 

indexes, including f(o,d,p), in(d',p') and out(o'',p'') indexes. This mode of indexing provides some 

specificities to our mathematical model. They are outlined hereunder. 

1) Determination of f(o,d,p) triplet as an index to establish a mathematical model which is 

independent of the network structure of the supply chain 

Generally, the structure of supply chain networks is determined by the number of the network layers 

and the type of relationships that exist between the actors. In a three-stage supply chain network, 

which is composed of raw material suppliers, manufacturing centres and customers, the relationships 

between any two actors can be considered as the flows that exist between two actors to transport an 

item from an actor to the other. In such a network, the decision variable to show the transported 

quantity of raw material k from supplier e (in the first layer) to manufacturing centre m (in the 

second layer) can be determined by a typical variable Ge,m,k. To show the material flows of product p 

between the second and third layers, that is, between manufacturing centres m and customers s, it is 

necessary to define a new variable, such as Qm,s,p. In extending the mathematical model of this three-

layer problem to a model with four layers or more, it will be necessary to determine extra decision 

variables and add expressions to formulate the material flows between the new layers. In our 

formulation mode, the determination of index f(o,d,p) that represents all the potential material flows, 

which exist between the actors (transporting an item p from origin o to destination d) as well as the 

decision variables related to this index (decision variable TQf(o,d,p),t related to the quantity of the 

transported items between the actors) makes the presentation and application of the model not 

limited to the problems with a fixed number of layers in the supply chain network. We note that the 

justification of the indexing mode used in the mathematical model is to help managers, who are not 

experts in OR, to create supply chain networks with desired number of layers through graphical 

interfaces of a Decision Support Tool (DST) and to optimize the supply chain according to the 

constraints of the optimization model. In the context of the CRIBA project, to make the theoretical 

framework of this paper useable for managers, we developed a web-based DST. The description of 

the architecture, licence and interfaces of the DSS is not within the scope of this paper. 

2) Determination of in(d',p') and out(o'',p'') indexes to build the stock decision variables 

Using f(o,d,p) index and TQf(o,d,p),t decision variables to model the flow of the materials, an adapted 

approach is required to model and calculate the stock level of the different items in the supply chain 

network. We determined in(d',p') and out(o'',p'') indexes. They respectively represent the items that 

are received in a unit and those that are sent from a unit. These indexes are used to establish the 

related stock variables, that is, SInin(d', p'),t and SOutout(o'', p''), t. 

 

3.4. An illustrative example 



 

 

A typical instance of the problem is shown in Figure 2. In Figure 2.a, there are four identical projects 

to be scheduled. The forward-reverse supply chain network is composed of five categories of actors 

that include the suppliers of the raw materials, the manufacturers of the intermediate products, the 

manufacturers of the final products, the worksites and the recycling centres. Figure 2.b depicts the 

activity network of the projects. In order to minimize the cost related to the hiring of renewable 

resources with high rental costs, the model of this study aims to shorten the period during which 

these resources (cranes in the case of this study) are maintained at the project sites. For this purpose, 

we minimize the duration between two specific activities that are added to represent the installation 

and removal (hiring and returning) of these resources. We note that the Activity-On-Node diagram of 

the project activities includes neither predecessor activities that determine the supply of the non-

renewable resources to the project sites nor the successor activities that present the collection of 

wastes that are generated at worksites after the execution of the activities. Indeed, including these 

activities in the Activity-On-Node diagram can generally lead to two consequences :1- it forces the 

planning system to supply the non-renewable resources or collect the generated wastes at 

predetermined dates. So, it reduces the flexibility in the planning and does not let the model to plan 

to optimality the supply operations as well as the operations related to the collection and recycling of 

the wastes. 2- It can lead to more unnecessary transportations (to supply the non-renewable resources 

to project worksites or to ship the generated wastes to the project worksites), and consequently it can 

increase the cost in the system. Whereas, by excluding these activities from the Activity-On-Node 

diagram, the demands for the non-renewable resources in the project sites as well as the quantities of 

the wastes that should be transported to the recycling centres can be regrouped. So, the transportation 

operations can be planned and performed to optimality. 



 

 

 

Fig.2 A figurative instance of the model 

4. Solution method 

To solve the proposed model, a two-phase approach including a pre-processing phase and a main 

phase is applied: 

 

4.1. Critical Path Method-based pre-processing phase 

In real-world applications, the data required for the scheduling of projects are generally estimated 

and set by experts. In this study, in order to rectify the estimated earliest and latest start dates of the 

activities, we employ the forward and backward procedures of the Critical Path Method (CPM) 

presented by (Ahuja, 1976). The modified earliest and latest start dates enhance the main phase of 

the resolution method by generating the feasible candidates for the start time of activities. We note 

that the modified earliest (latest) finish date of each activity is calculated by adding its processing 

time to its modified earliest (latest) start date.  



 

 

 

4.2. Genetic algorithm-based main phase 

The genetic algorithm, introduced by Holland (1976), maintains a population of solutions whose size 

is specified by Population Size. In the GA, an individual, which presents a candidate solution, is 

characterized by a set of variables known as genes. Genes are joined into a string to form a 

chromosome. The individuals of the population are evaluated according to their fitness function 

(elitism). A set of operators, known as crossover and mutation, are issued to generate diversity in the 

population and to create new individuals. Each of the operators is employed according to appropriate 

rates that are respectively termed as Crossover Rate and Mutation Rate. The GA proceeds toward an 

optimal solution until a predefined convergence criterion is reached. The details of our GA are 

described in the following sub-sections. 

 

4.2.1. Solution representation 

The illustration of individual Λ in the GA is given in Figure3. “NΛ” contains a permutation of 

activities. It is worth noting that since in our problem the renewable resources are shared among 

multiple projects, we regroup the activities of the projects to make a mega project and create a 

universal set of activities. “NΛ” is a permutation list that includes all the activities that belong to 

multiple projects. We note that in the NΛ list, start and end activities exist for each project, where 

these activities respectively do not possess predecessor and successor activities. Using the “NΛ” list, 

“SNΛ” presents a precedence-feasible activity list where each activity is placed on the list after all its 

predecessors. The feasible start dates to execute the activities are calculated via a procedure that 

converts the SNΛ list to a feasible schedule. The generated start dates are represented by vector “V”. 

The matrices from “Z” to “SOut” in individual Λ record the values for the corresponding decision 

variables in the model. The mechanisms to determine the activities’ schedule and the values for the 

decision variables are described in section 4.2.2. 

 

Fig.3 Presentation of an individual in the search algorithm with its key arrays 



 

 

 

4.2.2. Initial population generation 

The main intention of our search procedure is to determine the feasible start date for the activities of 

projects by considering the interactions between the project scheduling constraints and forward 

supply chain planning constrains, and then to propagate the impact of the constructed solutions on 

the reverse supply chain to generate optimized solutions for its variables. Figure 4 describes this 

mechanism. As mentioned in section 4.2.1, each solution comprises the precedence-feasible activity 

list SN. An adapted Serial Schedule Generation Scheme (SSGS) is used to transform the SN list to a 

list of feasible start dates. Using the following principles, it schedules the activities at the precedence 

and resource-feasible start time:  

i. Each activity should be started at a time point between its modified earliest start time and 

latest start time.  

ii. The successor activities with no-wait precedencies must be started immediately after the 

accomplishment of their predecessors. In situations where the required renewable resources 

are not totally available, the amount of the deficiency will be added.  

iii. The successor activities with wait precedencies can be started only when the required 

renewable resources are completely available. In the cases where the renewable resources 

are not available, the needed quantities can be added at any time in a point varying from the 

eligible modified earliest and latest start time. To assign a start time to an activity in the SN 

list, a cost indicator (CI) is used. The value of the indicator at time t is calculated as in 

expression (29): 

CI = CI1+CI2+ CI# 29 

where, CI1 is the total cost of adding the resources at time t and over the processing 

time of the activity, CI2 is the penalty cost for the late completion of the activity, and 

CI#  is an inner penalty cost to penalize the time point t if the added quantity of 

resources exceeds the maximum allowed additional value. This value is determined 

according to the preference of the decision makers. Among the potential time points, 

the one that holds a minimum value for the CI is chosen as the start time of the 

activity. 

iv. In any case, if the required amount of renewable resources exceeds the maximum additional 

capacity, the solution will be penalized by adding a penalty cost in the fitness function. 

v. If the calculated start dates cause the production and transportation capacities in the forward 

supply chain to be violated, the constructed schedules are rejected, and the search algorithm 

generates another schedule until it finds one that satisfies the capacity constraints as well.  



 

 

 

Fig.4 Working mechanism to initialize the GA individuals 

 

In essence, the solution method presented in this paper schedules the critical activities in their 

feasible dates, while satisfying the constraints. The non-critical activities can be floated over an 

interval defined between their modified earliest and latest start dates. Our method aims to assign a 

start date to non-critical activities in a way that the constraints are guaranteed, and the total cost is 

minimized. 

Considering the activities that start at different time points, the total demand for non-renewable 

resources at every time point t is calculated. The generated demands for the non-renewable resources 

are transmitted level by level, from the project sites to the manufacturing centres and then to the raw 

material suppliers. Taking the transportation lead-time into account, the demanded quantity of the 

non-renewable resources is transported to the project worksites just-in-time through the flows from 

potential manufacturers. To initialize the stock values of the “outgoing” items in a corresponding 

manufacturer, a random value between zero and the value of the generated demand is drawn. This 

generated stock should be used at upcoming time periods. The stock level at the end and beginning 

period of the planning horizon must be zero. The quantities for “incoming” items are calculated 

based on the bill of materials and they are supplied to the use destinations by potential intermediate 

product manufacturers or raw material suppliers. 

Considering the demanded quantities of the non-renewable resources as well as the probable stocks, 

the total production workload is calculated and the required supplementary capacities are added to 

the production lines, while considering the lead-times. The production of the required intermediate 

products as well as the supply of raw materials are dealt with in a similar manner. 



 

 

To calculate the values of the variables in the reverse supply chain, the potential destinations for 

shipping the wastes are first found and then a random fraction of the generated wastes is associated 

with the corresponding flows while taking the transportation lead-time into account. The solutions 

which violate the transportation capacity are penalized in the fitness function.  

At the last step, the lateness of the activities and the total quantity of the added renewable resources 

are calculated, and their values are recorded in their corresponding matrices.  

 

4.2.3. Fitness function 

The fitness of individuals is determined by the summation of two terms that include: i) the cost of the 

solution calculated according to the objective function and ii) the penalty cost that is imposed by the 

violation of a solution from soft constraints of the model. These constraints involve the stock 

capacity constraints of the forward supply chain units and the capacity constraints of the reverse 

supply chain as well as the constraints related to maximum quantity of renewable resources that can 

be added. Equation 30 presents the fitness function terms, where η and μ are weight factors between 

0 and 1, η+μ=1, b is the index of the soft constraints, ρ and δ are respectively a penalty coefficient 

and a violation factor. 

Fitness function= Min [ η(Objective function value)+μ(Total penalty cost from solutions 

violating the soft constraints)] = Min [η(OF) + μ(∑ ρbb δb)] 

(30) 

Depending on the flexibility of organizations in dealing with the violation in soft constraints, the 

decision makers are able to determine different values ofρ to makemedium to large influence on the 

optimization results. To determine the value of the violation factorδ, we propose to use expression 

31. In this formula, if solution (x1, x2, …, xk) does not make constraint g to violate the right-hand-

side value g0 , the violation factor δ is equal to 0. Otherwise, it is equal to g (x1, x2, …, xk)
g0

− 1.	The 

termg (x1, x2, …, xk)
g0

 presents a relative value and considers the violation value in its scale. So, using 

expression 33, not only small and large violations have not been penalized equally, but also, they are 

penalized according to their violation values in their scales. 

δ Gg (x1, x", …, xk)	≤ 	g0H = I
0																										 g (x1, x", …, xk)	≤	g0

g (x1, x%, …, xk)
g0

− 1 g (x1, x", …, xk)	≥	g0
K 

 

(31) 

4.2.4. Elite solution selection and search operators 

Selection is the process of choosing individuals (parents) from the population for reproduction. The 

Roulette wheel operator, discussed in (Holland 1976), is employed to select elite solutions for 

crossover. Using this operator, if the fitness of individual Λ is fΛ, the selection probability of Λ is 

pΛ= fΛ /∑ fη
Npop
η=1 , where Npop is the number of individuals in the population. Order 1 crossover 



 

 

(OX1) is used as the reproduction operator (Tseng and Liang 2006). Using OX1, each of the new 

solutions inherits the genes between two crossover points from one of the parents in the same 

position as they are placed in the parent’s chromosome. The remaining genes are taken from the 

other parent in the order they emerge in that parent’s chromosome, starting from the first position 

following the second crossover point and ignoring the elements that have already been presented in 

the offspring. This operator is applied to the “N” list of the algorithm. 

Furthermore, a hybrid mutation between the swap, reversion and insertion operators has been 

employed to make the algorithm capable of searching for neighbouring solutions. The swap operator 

chooses two genes from the chromosome at random, then it swaps their values. The inversion 

mutation chooses a part of a chromosome. Then, it orders the genes of the selected part inversely. 

The insertion operator specifies two genes of the chromosome. Without changing the order, it 

replaces the one next to the other. 

 

4.2.5. New population sizing and stop criteria 

The new individuals produced by crossover and mutation are added to the population list. The 

individuals are sorted according to their fitness. The fittest individuals are chosen to form new 

populations. The number of the chosen individuals is equal to the size of the population. The 

research procedure terminates once a maximum number of iterative runs is attained. 

 

5. Computational experiments  

5.1. Data setting 

The pattern for data generation and the dimension of the instances are outlined in Appendix A. As 

presented in the appendix, the data are generated using statistical distributions within bounds. The 

values for the bounds of the statistical distributions are estimated by the CRIBA project coordinators. 

It is worth noting that the generation of random data enables to eliminate the impact of the data. It 

also helps to validate the efficiency of the resolution method in finding optimized solutions for 

random instances.  

 

5.2. Parameter setting for the proposed GA 

Since the performance of the metaheuristics significantly depends on the values of their parameters, 

finding the optimum setting for the parameters will be inevitable. The Taguchi method is a fractional 

factorial experimentation approach that performs efficiently in determining robust values for 

variables (parameters) of experiments. It relies on two main concepts: i) orthogonal arrays and ii) 

Signal-to-Noise ratio. The inclusion of the orthogonal arrays in the Taguchi model enables to take 

into account different levels of factors and to conduct a limited number of experiments while 



 

 

preserving a sufficient amount of the information. In a GA possessing four factors (population size 

(Npop), number of iterations (Nit), crossover rate (CrR) and mutation rate (MuR)) and three levels 

(lower, moderate and upper values), the orthogonal array L9(3**4) is used to perform the Taguchi 

experiments. The Signal-to-Noise (S/N) ratio measures the robustness of the responses (see 

(Taguchi, 1986)). The term signal is associated with the response values whereas the term noise 

measures the variability in the responses. The (S/N) ratio is calculated as in expression 32, where Y 

represents the responses and n is the number of experiments. 

S/N = -10 log (∑ Yi
2

i / n) (32) 

Since the results of the S/N analysis, can be totally dominated by the magnitude of responses, the 

normalization of the value of responses will be inevitable. In this study, we employ the Relative 

Percentage Deviation (RPD) index to rescale the responses (Vallada and Ruiz 2011), using 

expression 33. 

Relative Percentage Deviation (RPD) = 
-ResponseAlgorithm - Response Best-

Response Best
× 100 

(33) 

To run the S/N analysis, three sizes of the model instances including small, medium and large ones 

are generated, relying on principles presented in Appendix A. Different levels of the GA parameters 

for each size of the instances are presented in Table 3. Using Table 3 and the orthogonal array L9, 

the values for different parameters in each size category of the model are set (see column “Factor 

levels” in Table 4). The genetic algorithm is executed with the values assigned to the parameters. 

The column “Response value” in Table4presents the response values (fitness values) of the best 

solution found by the algorithm. Based on the response values, the “RPD” is calculated. The RDP 

results are used to conduct the S/N analysis and to determine the robust values of the parameters of 

the genetic algorithm in each size category of the instances. Table 5 summarizes the results. We note 

that Minitab 16.0 is used to perform the S/N analysis.  

Furthermore, the time elapsed to perform each of the experimentations is reported in the column 

“Time” of Table 4. As can be seen, increasing the number of iterations generally increases the 

computational time. It is worth noting that the number of iterations is not the only factor that 

determines the duration of the resolution time. Another driving factor is the algorithm’s effort in 

finding and maintaining feasible solutions when the constructed solutions are rejected because of the 

infeasibility. 
Table 3 Levels of the Taguchi design for different factors of the instance problems 

Project 

size 

(Upper, Moderate, Lower) values for driving factors of the algorithm 

Mutation rate 

(MuR) 

Crossover rate 

(CrR) 

Number of 

iterations 

(NIt) 

Population size 

(Npop) 

Small (0.2, 0.25, 0.3) (0.6, 0.7, 0.75) (25, 30, 35) (20, 25,30) 



 

 

Medium (0.2, 0.3, 0.35) (0.65, 0.75, 0.8) (80, 90, 100) (70, 85, 100) 

Large (0.2, 0.35, 0.4) (0.75, 0.8, 0.85) (180, 195, 210) (150, 175, 200) 

 

Table 4 Taguchi experiments for small, medium and large sizes of the problem instances 

Instance size: Small 

Test 
Factor levels Response 

 value 

RPD CPU 

time (s) MuR CrR NIt Npop 

1 0.2 0.7 25 20 91596.52 0 38 

2 0.25 0.7 30 20 91596.52 0 21 

3 0.35 0.6 35 20 91596.52 0 32 

4 0.35 0.7 25 25 91596.52 0 23 

5 0.25 0.75 30 25 91896.52 0.326454 28 

6 0.25 0.6 35 25 91896.52 0.326454 29 

7 0.2 0.75 25 30 91896.52 0.326454 27 

8 0.35 0.75 30 30 91896.52 0.326454 27 

9 0.2 0.6 35 30 91596.52 0 18 

Instance size: Medium 

Test 

Factor levels Response 

 value 

RPD CPU 

time 

(s) 

MuR CrR NIt Npop 

1 0.2 0.75 100 100 214963.04 1.4839664 804 

2 0.2 0.8 90 85 214528.04 1.2786030 712 

3 0.3 0.8 80 100 211819.70 0 727 

4 0.35 0.75 80 85 215443.04 1.7105742 620 

5 0.3 0.75 90 100 215848.04 1.9017745 590 

6 0.3 0.65 100 85 214963.04 1.4839664 691 

7 0.35 0.8 100 70 214528.04 1.2786030 705 

8 0.35 0.65 90 70 215848.04 1.9017745 756 

9 0.2 0.65 80 70 215848.04 1.9017745 414 

Instance size: Large 

Test 

Factor levels Response 

value 

RPD CPU 

time 

(s) 

MuR CrR NIt Npop 

1 0.25 0.8 180 150 426286.45 1.091285 4593 

2 0.4 0.75 195 200 425649.05 0.940129 4743 

3 0.4 0.85 210 150 422890.31 0.285912 4431 



 

 

6 

4 0.35 0.75 210 175 424080.06

6 0.568054 4613 

5 0.25 0.75 210 200 423143.4 0.345930 2697 

6 0.4 0.8 180 175 427379.73

3 1.350551 4210 

7 0.35 0.85 180 200 421684.66

6 0 5150 

8 0.35 0.8 195 150 421852.3 0.039753 3527 

9 0.25 0.85 195 175 422780.06

6 0.259767 4366 

 

Table 5 Calibration of the parameters of the genetic algorithm for the instance problems 

Size of the instance 

problems 

Value for driving factors of the algorithm 

MuR CrR NIt Npop 

Small size 0.25 0.75 25 30 

Medium size 0.2 0.8 100 85 

Large size 0.35 0.85 195 150 

 

 

5.3. Numerical results: analysis on the convergence and performance of the algorithm 

The random instances (small, medium and large size instances) generated in section 5.2and the 

results reported in Table 5 are used to study the convergence of the algorithm. Figure5depicts how 

the proposed algorithm comes into a convergence. As can be seen, the algorithm has almost a quick 

convergence in the small-size problem, whereas in medium- and large-size problems, the 

convergence happens in a reasonable duration of time.  

 

Fig.5 Convergence of the algorithm in different instances using the Taguchi design results 



 

 

 

The performance of the algorithm is investigated from two perspectives: The time elapsed to find 

results and The quality of results. 

To investigate the algorithm performance from the perspective of the elapsed time, the resolution 

time of the genetic algorithm is compared with the resolution time of the mathematical model by 

Branch & Bound algorithm of the Cplex solver. For this purpose, the random instances (including 

small, medium and large sizes) that are generated in section 5.2 are used. The resolution time by the 

Cplex solver in the small-and medium-size instances is respectively 4 and 1265 seconds. In the large 

case, the solver ends up after 17940 seconds (4 hours and 59 minutes) without returning any 

solutions. On the other hand, the resolution time for solving the same instances by the proposed 

algorithm is 16 seconds, 699 seconds and 4442 seconds respectively in small, medium and large 

sizes. As the results show, the resolution time by the genetic algorithm is much shorter than the 

resolution time of the mathematical model of the problem by the Cplex solver. It must be mentioned 

that the mathematical model and the algorithm are respectively coded in the Cplex solver version 

12.6.1 and Matlab software R2014b. Furthermore, the experiments are carried out on a notebook 

with Intel® Core i7 CPU, 2.20 GHz processor with a memory of 8 GB.  

Regarding the quality of results, 75 more instances (25 instances for each of the small, medium and 

large sizes) have been generated. To evaluate the performance of the algorithm, the gap between the 

results obtained from the GA and the results obtained from the resolution of the proposed 

mathematical model by the Cplex solver is calculated for each of the instances using formulation 

(34), (Niaki et al. 2015) . Since the resolution of the model by the Cplex solver is traceable for small 

and medium instances, the results of the application of the proposed algorithm on 50 instances of 

these sizes are used to calculate the Gap indicator. Furthermore, formulation (35) is used to compare 

the best solution of the initial population (BI) with the best solution of the algorithm (BA). The 

results are summarized in Table 6. 

Gap = Genetic AlgorithmResult- cplexResult
cplexResult

×100 (34) 

Improvement = ./0	.2	
./

× 100 (35) 

 
Table 6 Value of the performance indictors in different size of the problem 

 

Test 

Problem size 

Small Medium Large 

Gap  

(%) 

Improve-

ment (%) 

Gap  

(%) 

Improve-

ment (%) 

Improve

-ment 

(%) 

1 1.0 2.9 1.5 1.2 5.1 



 

 

2 0.9 0.8 0.4 6.1 4.9 

3 1.0 0.7 4.3 9.0 2.5 

4 0.8 2.3 1.5 7.2 3.6 

5 0.4 2.7 1.5 5.1 3 

6 1.3 1.8 2.3 5.6 7.7 

7 1.0 3.0 1.5 9.5 4.9 

8 1.9 1.09 3.9 5.4 3.2 

9 0.6 0.7 2.4 5.5 8.9 

10 0.1 1.7 2.8 8.3 4.8 

11 0.6 2.7 0.7 1.05 3.5 

12 0.4 3.2 2.4 4.3 9.5 

13 0.3 0.1 0.2 1.3 3.5 

14 0.08 2.9 1.7 3.7 4.3 

15 0.5 3.2 0.3 5.3 0.4 

16 0.4 0.7 1.6 3.8 2.2 

17 0.3 0.8 2.0 3.4 7.1 

18 0.3 0.8 0.2 9.8 2.3 

19 0.05 0.6 1.5 6.9 2.4 

20 0.9 3.3 0.5 3.0 9 

21 0.2 0.6 1.9 5.8 2.7 

22 0.04 2.1 1.6 5.4 0.7 

23 0.3 3.3 0.2 1.5 2.4 

24 0.4 1.1 2.3 4.1 2.4 

25 0.08 0.6 0.7 5.1 0.7 

Min 0.04 0.1 0.2 1.05 0.4 

Max 1.9 3.3 4.3 9.8 9.5 

Mean 0.55 1.75 1.6 5.1 4.1 

 

The results presented in Table 6 show that the ranges of the gap for the small and medium instances 

are respectively [0.04, 1.9] and [0.2, 4.3]. On the other hand, the improvement indicator in small- 

and medium-size instances respectively belongs to [0.1, 3.3] and [1.05, 9.8]. As can be seen, the 

averages calculated in different instances for the improvement indicator are small values (1.75%, 

5.1% and 4,9% respectively in small, medium and large size instances). This fact shows that the 

initialization procedure of the GA makes the algorithm capable of starting from optimized solutions 

with good enough quality. On the other hand, the maximum value of the gap in small and medium 

cases is respectively equal to 1.9% and 4.3%, while the average of the gap in these instances is 

0.55% and 1.6 %. Considering these values, one can state that the genetic algorithm is capable of 



 

 

providing appropriate results in different instances of the problem. In a nutshell, the small value of 

the gap indicator and the good quality of the solutions obtained by the algorithm confirm that the 

proposed resolution method is efficient and able to find appropriate solutions. 

 

6. Conclusion 

The conclusion of this study is presented under three sub-sections: summary, limitations, and future 

research perspectives. 

 

6.1. Summary  

This paper aims to study an optimization model for planning a set of multiple projects considering 

material procurement and environmental commitments. The material procurement commitments are 

satisfied thanks to the just-in-time delivery of the non-renewable resources to the project worksites, 

subject to the limited transportation and production capacities of suppliers. Regarding the 

environmental commitments, they are met by the collection and recycling of the wastes that are 

generated at the project sites. These commitments are obtained by proposing a modelling framework 

that enables to integrate the project planning and forward-reverse supply chain systems. The idea for 

this integration stems from the fact that the project planning constraints impact the planning of the 

supply chain operations (production, transportation and recycling), and reciprocally the forward-

reverse supply chain constraints (as well as the just-in-time delivery of non-renewable resources) 

affect the scheduling of activities in projects. 

A new two-phased procedure is developed to solve the instances of the proposed model. It includes a 

pre-processing phase based on the CPM method and a main phase based on the genetic algorithm. 

Given that the performance of the metaheuristics depends on the values given to their parameters, the 

Taguchi method has been employed to define robust values for the parameters of the proposed GA. 

The performance of the algorithm in the generation of results is evaluated using two indicators, 

namely, gap and improvement indicators. The modelling framework and resolution method 

contribute to responding to the requirements of a French project (called CRIBA) in thermal 

renovation of buildings. The data to carry out the experiments are set by coordination experts of the 

CRIBA project. Computational experiments show that the proposed algorithm consistently produces 

high-quality solutions in reasonable computational times. 

 

6.2. Limitations  

The results showed that our resolution method allows finding high quality solutions. However, using 

this method, decision makers have some intermediate choices (such as determining the value of 

penalty coefficients) to make to get a good solution.   

 



 

 

6.3. Future research perspectives 

For future research works, uncertainty can be integrated in different parameters of the model such as 

the duration of the activities, the transportation and production capacities or the demand of the 

activities for different renewable and non-renewable resources. The model can also be extended by 

integrating the assumptions on different modes of transportation, discount levels for purchasing the 

materials as well as the possibility of executing the activities in multi-mode. Furthermore, a 

deficiency can still be seen in the optimization models of the project scheduling problems with 

environmentally responsible attitudes. Therefore, future research may consider other hypotheses to 

minimize the amount of the greenhouse gas emissions in the supply chain network. The study is still 

open to be developed by the application of other metaheuristics as well as different initialization 

procedures in the metaheuristics. Finally, the comparison of the performance between resolution 

procedures can be of interest. 

 

Appendix A Data generation pattern 

Parameters 

Problem size 

Small (1 project) 

( 

𝟏𝟔∗×𝟑∗∗×𝟑∗∗∗×𝟑𝟓∗∗∗∗ ) 

Medium (2 projects) 

(32×4×3×35) 

Large (3 projects) 

(64×4×3×35) 

Dnri,nr  DU*~ (0, 2) DU~ (0, 3) DU~ (0, 4) 

Drir  DU~ (0, 2) DU~ (0, 5) DU~ (0, 10) 

Dr'
ir'  DU~ (0, 2) DU~ (0, 5) DU~ (0, 10) 

Lagi,j  DU~(0,1) DU~(0,1) DU~(0,2) 

IRr  DU~(2,7) DU~(5,10) DU~(10,20) 

IR'
r'  DU~(2,7) DU~(5,10) DU~(10,20) 

MRr  DU~(2,12) DU~(5,25) DU~(10,50) 

MR'
r'  DU~(2,12) DU~(5,25) DU~(10,50) 

RCs 	 U∗~(2000,2500) U~(2200,2700) U~(2400,2900) 

HCr' 	 U~(1100,1400) U~(1100,1400) U~(1100,1400) 

NCr  U~(120,1400) U~(120,1400) U~(120,1400) 

PCi  U~(250,350) U~(250,350) U~(250,350) 

InCapu  U~(0,30) U~(0,60) U~(0,120) 

OutCapu  U~(1,25) U~(2,50) U~(4,100) 

FCapu  U~(5,50) U~(10,100) U~(20,200) 

IMClnm(lm,m),t U~(1,25) U~(2,60) U~(4,100) 

IRClnr(lr,c),t U~(1,25) U~(2,60) U~(4,100) 



 

 

WMpm,lm : U~(1,2) U~(1,2) U~(1,2) 

WRw,lr : U~(1,2) U~(1,2) U~(1,2) 

TCf(o,d,p)  U~(10,20) U~(10,20) U~(10,20) 

TLf(o,d,p)  U~(0,2) U~(0,2) U~(0,2) 

PrLim (lm,m,pm)  U~(0,1) U~(0,1) U~(0,1) 

SCp  U~(0.2,20) U~(0.2,20) U~(0.2,20) 

Cfp  U~(1,2) U~(1,2) U~(1,2) 

PRCpm  U~(50,300) U~(50,300) U~(50,300) 

RRCw U~(1,50) U~(1,50) U~(1,50) 

APlnm(lm,m) U~(90,300) U~(90,300) U~(90,300) 

ARlnr(lr,c) U~(60,120) U~(60,1200) U~(60,120) 

Q(p1, p2) U~(1,5) U~(1,5) U~(1,5) 

WPw,i U~(0,2.8) U~(0,2.8) U~(0,2.8) 

Di	 DU~ (0, 2) DU~ (0, 2) DU~ (0, 3) 

ETi	 DU~ (7, 24) DU~ (7, 24) DU~ (7, 24) 

LTi	 DU~ (7, 31) DU~ (7, 31) DU~ (7, 31) 

RCs  U~ (2500, 2700) U~ (2500, 3000) U~ (2500, 3500) 

HCr' U~ (1200, 1500) U~ (1200, 1500) U~ (1200, 1500) 

NCr  U~ (100, 300) U~ (100, 300) U~ (100, 300) 

PCi	 U~ (200, 500) U~ (200, 500) U~ (200, 500) 

TCf(o,d,p)  U~ (10, 150) U~ (10, 150) U~ (10, 150) 

SCp  U~ (0, 500) U~ (0, 500) U~ (0, 500) 

PRCpm  U~ (100, 1000) U~ (100, 1000) U~ (100, 1000) 

RRCw U~ (50, 70) U~ (50, 70) U~ (50, 70) 

APlnm(lm,m) U~ (100, 1000) U~ (100, 1000) U~ (100, 1000) 

ARlnr(lr,c) U~ (50, 100) U~ (50, 100) U~ (50, 100) 

Ø *I: No. of activities, **R: No. of renewable resources, ***NR: No. of non-renewable resources 

and ****T: No. of time periods. 

Ø DU∗: Discrete uniform distribution, U∗: Continuous uniform distribution. 

Ø We note that ETi	(earliest start time of activity i) and LTi (latest start time of activity i) are 

estimated according to the precedency relations in the activity on node diagram as well as the 

lag time that are exist between activities. In general, they take values as presented hereabove. 
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