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Abstract

Over recent decades, numerous studies in a myriad of research fields have improved the efficiency of the Monte-Carlo method
to solve radiative transfers in heterogeneous media. The formalization of the concept of path integral formulation on which the
construction of the random trajectories is based has made it possible to lay down a convenient framework to investigate sampling
strategies and to design adapted low-variance algorithms. Our study focuses on the particular case of laser emission, which corre-
sponds to a spatially-localized source emitting in a low solid angle, which partially illuminates the environment. In this case, the
intrinsic characteristics of the laser emission cause problems of convergence with a Monte-Carlo method due to the difficulty in
statistically linking sensors (probe points) to sources. This paper proposes, using integral formulation and a Null-Collision Algo-
rithm (NCA), a practicable and simply implementable method to avoid such constraints. The intensity is broken down into a direct
and a scattered term (local estimate technique). Then, a reworking of the various integral terms makes it possible to propose a com-
plete algorithm adapted to a collimated source partially illuminating the studied scene. Non-zero contributions are brought more
continuously to the Monte-Carlo weight and variance is strongly reduced. The entire methodology, from integral formulation to
algorithmic interpretation, is presented step by step. For validation purposes, a new reverse and optimized Monte-Carlo algorithm
is compared with an analogous Monte-Carlo for estimation of flux absorbed by a wall in an academic configuration, which ensures
benchmark results. As the current proposed algorithm is highly suitable for building computer-generated images (probe calcula-
tion), the propagation of light due to laser emission through inhomogeneous environments is then illustrated by the construction of
such images. This new tool provides useful support for experimental characterization of the radiative behaviour of particles.

Keywords: Monte-Carlo method, Null-Collision algorithm, Laser emission, Heterogeneous media, Radiative transfer,
Computer-generated image

1. Introduction

Monte-Carlo Methods (MCMs) are algorithmic methods

based on the probability theory. They are considered as
reference methods as they provide a statistical uncertainty
along with any estimate. MCMs are most efficient in high-
dimensional integral problems, complex geometries, and com-
plex physics. They are used by many scientific communities
(physics, economics, computer graphics...) who share simi-
lar needs in terms of computation, analysis and optimization,
and face the same conceptual and methodological challenges.
This forms a rich environment, where communities inspire each
other, which does much to accelerate the methodological devel-
opment of MCMs.
In the framework of radiative transfer, Monte-Carlo (MC) algo-
rithms explicitly simulate the processes (emission, absorption,
scattering, reflection) that model light propagation throughout
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a participating medium and its bounding surfaces. The analysis
of the simulated paths provides important insights into the in-
teraction of radiation with the medium. Many quantities can be
estimated using different algorithms; from directional localized
intensities (probe sensor) to spatially, hemispherically and/or
spectrally integrated fluxes, to images (maps of intensity) as
seen through imagers or human eyes.
Fundamentally, MC is a method that estimates integrals (and
discrete sums) by interpreting them as expectations. Any quan-
tity that can be expressed under an integral form can be esti-
mated using a MC algorithm, including differential problems
that are initially formulated outside the frame of stochastic pro-
cesses [1, 2]. The radiative-transfer equation (RTE) that models
light propagation has a solution that is expressed as an integral
formulation, which is recursive in scattering media. The quan-
tity of interest is the incident intensity at a given location in a
given direction I0 = I(x0, u0), and the unknown in-scattering
intensity at another location x1 and in another direction u1 ap-
pears under the integral. I1 will in turn be evaluated by MC,
following the same algorithm as for I0. I0 is hence written as
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Nomenclature

Latin Symbols
I radiant intensity (W m−2 sr−1 Hz−1)
u unit direction vector (-)
x coordinate vector (m)
p probability density
T transmittance (-)
B boundary
V volume
N volume of the laser sheet
H Heaviside function
P probability density (test)
k̂ uniform radiative coefficient
D distance between laser sheet and the absorbing sur-

face (m)
d distance travelled through the laser sheet
e thickness of the laser sheet (m)
L side length of the cube (m)
lx side length of the absorbing surface (x direction) (m)
ly side length of the absorbing surface (y direction) (m)
P total power (W)
r random variable
S surface (m2)
w Monte-Carlo weight

Greek Symbols
δ Dirac function
κ radiative property (m−1)
Ω solid angle (sr)
α absorbtance (-)
∆Ω solid angle of dispersion of the laser source (sr)
σ Monte-Carlo weight-standard deviation
Φ single-scattering phase function (-)
σ length (m)
ξ transmittance along the radiative path (-)
ρ parameter of the choice of majorant (-)

ϕ flux density (W m−2 nm−1)

Subscripts
i ith realisation of the Monte-Carlo algorithm
j jth segment built
k kth null-collision event
a absorption
s scattering
g absorption, scattering or extinction
n null-collision
w wall
I intensity
T transmittance
a+s extinction
e emitted
in entry of the laser sheet
max maximum
out output of the laser sheet

Superscripts
* source
s1 once-scattered
dir direct
s2 higher order of scattering
scat scattered

Other Symbols
X̂ X computing using null-collision
X estimator of X
X̃ preferential sampling of X
AMC Analogous Monte-Carlo
ORMC Optimized Reverse Monte-Carlo

the expectation of a function f of the random variable I1, itself
written as the expectation of f (I2), and so on.
Because the expectation is a linear operator, only one sample of
each random variable Ik = I(xk, uk) is necessary to compute one
sample of I(x0, u0), as long as f is a linear function:

E
[
f
(
E

[
f (. . . Ik)

])]
= E

[
f ( f (. . . Ik))

]

More generally, combining unique samples of various random
variables through linear functions to obtain one sample of the
main variable, whose expectation is estimated, is called double
randomization. This is a fundamental strength of MCMs.
One point of difficulty that has been much discussed in recent
years with important implications for various communities, in-
cluding the film industry, is the treatment of heterogeneous me-
dia. In the presence of spatial heterogeneities, the optical thick-

ness τ, which is the key variable of Beer’s law of extinction, is
in fact the integral of the varying extinction coefficient along the
line of sight. This integral, in the context of MCMs, would be
written as an expectation and a unique sample would be com-
bined with other random variable samples, using double ran-
domization. The difficulty is that this integral is combined non-
linearly with the rest of the integrals, through the exponential
function. Because of this non-linearity, double randomization
cannot be used, and the optical thickness must be computed de-
terministically along the whole path.
Fortunately, an unbiased way to bypass this non-linearity so
that double randomization can be recovered exists: the null-
collision method. This method was known and used from the
origins of MCMs, under different names in the different com-



munities (Woodcock tracking [3], delta tracking [4], maximum
cross-section [5]).
An intuitive interpretation of the method’s principle is that
transparent fictitious particles are added to the true medium to
make it artificially homogeneous (cf. section 2.4). As the in-
tegral of extinction along the line of sight becomes a simple
product, Beer’s exponential can be easily inverted to sample the
distance before next event. The resulting total medium is opti-
cally thicker than the original medium (the sampled distances
are shorter); in compensation, some of the collision events are
rejected: the so-called “null” collisions.
Historically, this method has been seen as a trick to avoid the
heavy computation of optical thickness in heterogeneous me-
dia. It was only with the work of Galtier et al. [6] that the
null-collision integral formulation was written and interpreted
as a way of bypassing Beer’s nonlinearity, giving birth to an
entire family of designed and efficient algorithms and opening
doors for extending MCMs to non-linear formulations [7, 8, 9].
In addition, the NCA allows a straightforward extension of the
use of acceleration grids from surfaces to volumes. With the
integral along the line of sight no longer appearing inside the
integral formulation, acceleration strategies can be employed.
Considering an artificially homogeneous medium, distance be-
fore next event can be sampled independently of the true radia-
tive property field or without having to resort to the use of a
deterministic method, freeing it from the dependence on reso-
lution. However, the introduction of fictitious colliders can lead
to an increase in the cost of calculation. This is particularly true
for media with large spatial variations in radiative properties.
The time spent processing null-collisions can become lengthy
in the most transparent areas of the domain due to the large
amount of rejections to be treated. An adapted subdivision of
the field of interest into a given number of homogeneous me-
dia by parts (bounding boxes or acceleration grids) thus appears
to be a convenient manner to ensure fast access to a true colli-
sion, greatly reducing computation cost, and is naturally related
to the practice of NCA. Thus, compromises on data resolution
are no longer necessary and the resolution of radiative prob-
lems with large scale ratios can be considered. Villefranque et
al.[10] showed that employing an adaptive grid based on an uni-
tary upper-bound optical thickness criterion, a computing time
can be achieved that is almost insensitive to the resolution of
cloud fields.
Strictly following the RTE solution expressed as an integral for-
mulation leads to the construction of unidirectional paths start-
ing at the position/direction of interest (probe calculation) and
then conducting successive sampling of the different random
variables: distance before next event, nature of the event, scat-
tered direction of propagation, . . . Thus, the integral formula-
tion naturally simulates light flowing from sensor to sources and
employs so-called “reverse” or “backward” algorithms. How-
ever, it is common to encounter a practice that relies almost ex-
clusively on images from transport physics with “packet pho-
tons”, those launched according to the laws of emissions and
which will then evolve in the environment following the con-
struction of paths that are also unidirectional. Such so-called
“direct” or “analogous” algorithms simulate light flowing from

sources to sensor. With regard to the reciprocity principle, “di-
rect” and “reverse” algorithms are strictly equivalent. A photon
emitted in x1 in the direction u1 has the same probability of be-
ing absorbed in x2 as a photon emitted in x2 in the direction
−u1 of being absorbed in x1. This satisfies, in steady-state, the
second principle of thermodynamics. However, in terms of con-
vergence issues, one may be led to favour one or the other of the
direct and reverse visions. Indeed, if one followed a direct ap-
proach, the probability of a photon reaching a small detector in
a small solid angle is low. It is even null if the detector is punc-
tual. Reverse algorithms are, in this case, well adapted. Re-
ciprocally, if the sources are of small spatial and/or directional
extent, then “direct” algorithms are more suitable. The choice
between direct or reverse allows the optical paths of interest
to be preferentially selected, according to the source/detector
properties.
More generally, even if a direct algorithm is applicable, the in-
tegral formulation associated with reverse algorithms makes it
possible to design adapted low-variance algorithms. Depending
on which terms of the expectation (integral formulation) are in-
terpreted as probability density functions (pdf) or as weights,
different sampling strategies can be implemented, yielding dif-
ferent convergence properties. For example, the distance before
next event is often sampled using the (normalized) exponential
transmissivity directly as a pdf, which yields an exponentially
distributed sample of distances, favouring short distances that
contribute most to the path’s weight.
In reality, any pdf can be used to sample any random event, as
long as the sample’s weight is corrected by the true probability
of the event:

∫

Γ

dxp(x)wx =

∫

Γ

dxg(x)
wx p(x)

g(x)

Designing pdfs that will minimize the sample’s variance is a
very common practice in MCMs development, and is known as
importance sampling [11].
Integral formulations are fundamental tools in the process of
developing new algorithms that will be efficient in problematic
cases where existing algorithms are slow to reach convergence:
they provide a rigorous framework that guarantees flexibility
and confidence. Because the integral directly translates into its
associated algorithm, the numerical convergence of the algo-
rithm can be improved by working on the integral.
An example of a difficulty that was bypassed by working from
the integral formulation is when both sensor and sources are
of small spatial and/or directional extent, resulting in a small
shape factor. In these situations, most simulated paths do not
connect sensor to lights, therefore not contributing to the input
of energy measured at the sensor. Sampling enough paths to
have a significant number of non-zero contributions can take a
very long time. In the limit case when the lights are of null sup-
port in space or direction, no unidirectional path will ever bring
a positive contribution to the estimated quantity, and “unidirec-
tional” MCMs (direct or reverse) become impracticable.
In the framework of integral formulations such as the RTE, a
solution is to split the observable into two contributions : a di-
rect and an at-least-once-scattered term. The two terms of the



sum are evaluated by MC: the direct contribution is evaluated
by tracing a ray towards the source and is added to the total
path’s weight, while the other term is evaluated by continuing
the path to the next scattering event (in the volume or at a sur-
face). At each change of direction along the simulated “main”
path, the intensity that needs to be estimated to continue the
recursive path is, again, split into direct and at-least-once scat-
tered. The final path’s weight is a sum of contributions from
paths of increasing order of scattering, emitted by the source
and propagated along sub-paths of the main path. Reciprocally,
with a direct algorithm, the path start from the source and the
direct contribution is evaluated by simply tracing a ray towards
the detector. Such techniques bear different names in the differ-
ent communities in which they were developed; for instance the
local estimate in atmospheric radiative transfer [5] or the next-
event estimation in neutron transport [12].
The method described above works only under certain condi-
tions: the light source must either cover a large area or emit
within a wide solid angle. For example, in solar radiation
through the atmosphere, since the sun is modeled as a colli-
mated source that illuminates the upper boundary of the atmo-
sphere, direct contributions are evaluated by tracing a ray in
the direction of incoming sunlight. Direct contributions from
a localized spotlight are evaluated by tracing rays that link the
current position to the light source. Indeed, this is only possi-
ble because sources such as the sun completely illuminate the
environment. However, sources such as laser beams are highly
localized in both space and direction. Hence, to address addi-
tional convergence challenges, an optimized specific algorithm
is needed to propagate this type of source to a localized, colli-
mated sensor.
In the engineering physics community, the numerical investiga-
tion of light transport by laser emission through heterogeneous
media is a scientific challenge that can provide benefits for a
wide variety of research fields, such as combustion, material
characterization, biology, astrophysics or atmospheric radiative
transfer. To the best of our knowledge, published attempts have
thus far been limited to homogeneous media, such as Daun
et al.’s [13] reverse MCM that numerically reproduces Laser-
Induced Incandescence (LII) measurements useful in the con-
text of soot characterization. However, in such experiments,
the medium emits within the laser sheet in all directions and
and it is not necessary to treat the directional aspect of the laser
source.
Different integral frameworks lead to different strategies to han-
dle the same problems. For example, Veach’s path integral for-
malism used in computer graphics [14] is slightly different from
Feynman’s path integral used in physics. Instead of succes-
sively sampling the events, the random variable is the ensemble
of positions (vertices) that form the geometrical path. The chal-
lenge is to sample the paths efficiently according to the distri-
bution of their total contributions: paths bringing large amounts
of energy should be preferentially sampled. This more global
interpretation of the path integral leads to different variance re-
duction techniques. Novak and colleagues’ review article [4]
provides referenced descriptions of some advanced techniques
used in computer graphics.

Techniques to handle laser-like sources in heterogeneous me-
dia exist in the framework of Veach’s path integral; however,
importance sampling of joint random variables is necessary to
ensure fast convergence (see, for instance, the line-to-line in-
tegration used in the context of Virtual Light Rays [4]). This
can be quite complicated when the phase functions are peaked,
as, for example, is the case in soots and clouds. Another limi-
tation is that algorithms based on path integrals are often op-
timized using the general framework of multiple importance
sampling [14], a technique that is not directly compatible with
null-collision algorithms (see discussions in [4]).
Seeking solutions adapted to the path integral formalism of
physicists, we worked at extending null-collision recursive inte-
gral formulations to efficiently handle laser-like sources, which
partially illuminate the studied scene, and propose a complete
methodology to compute the intensity reaching a punctual de-
tector.
The following two sections (section 2 and section 3) describe
the construction of the resulting algorithm, which is given in
section 4. In section 2, the medium of propagation is described,
the RTE is recalled, the MC estimator is presented, the null-
collision method is applied, and the algorithm that serves to
evaluate transmissivity between two points is given. The propo-
sition that specifically concerns laser beam emission is in sec-
tion 3: the intensity is split into three terms representing con-
tributions from a direct, a once-scattered and a more-than-once
scattered path. Algorithms to compute each term are described,
along with a variance reduction technique to sample a scatter-
ing point within the laser beam. In section 5, the new complete
practicable and generic algorithm is validated by comparison
with a well-mastered analog forward MC. For the sake of clar-
ity, the passage between the integral formulation towards the
application of null-collisions and the algorithmic interpretation
is re-specified whenever necessary.

2. Null-collision algorithms for radiative transfer

2.1. Configuration of interest, problematic and improvements
proposed

For validation purposes and as an illustration of the radiative
problem needing to be solved, an academic test case is consid-
ered here (cf. fig. 1 a)). The idea is to compute the incident
intensity on the detector (represented in blue) of size lx× ly with
only a spatially localized source (size L × e) which emits in a
single direction (represented with red arrows). Thus, the direct
propagation of the source (laser sheet) takes the geometrical
form of a parallelepiped (represented in red) of size L × L × e.
The thickness e of the laser sheet is very low compared to
others dimensions. The heterogeneous medium is defined by
a heterogeneous radiative field inside the represented cube of
side L bounded by absorbing walls B.
In this academic configuration, fig. 1 b) illustrates the difficulty
of convergence encountered. In this figure, the relative statisti-
cal uncertainty σ/Pa of the estimated absorbed power Pa as a
function of the square sensor (lx = ly = ld) size is represented
for two different MC algorithms and for a given set of parame-
ters. The analogous algorithm (result drawn in red) constructs
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Figure 1: Considered problem: a) academic geometry b) convergence observed: relative variance of the estimator as function of detector size with lx = ly = ld
and for 107 independent realizations c) computation time t for 107 independent realization as function of detector size c) computation time t1% for a 1 % statistical
uncertainty as function of detector size

unidirectional paths departing from the emitting surface while
the so-called ”Optimized Monte-Carlo“ (result drawn in black)
corresponds to the new reverse algorithm detailed in this
paper and based on paths initialized at the sensor and using a
separation of the observable into direct/diffuse components.
In general, the direct and reverse algorithms make it possible to
overcome both the spatial and directional constraints related to
the source and the detector, respectively. However, when using
unidirectional paths, the algorithm always depends on the
difficulty to reach the second item. In this example, the source
is null support in direction and of small spatial extent while
the detector tends to be null support in space as the size of the
sensor decreases. Using unidirectional paths, convergence is
thus impossible with a reverse algorithm while a calculation
is possible with an analogous MC algorithm. As shown in
fig. 1 b), statistical uncertainty of the AMC becomes more and
more difficult to achieve as the size of the sensor decreases.
For a given number of realizations (cf. fig. 1 c)), a Monte
Carlo based on unidirectional paths is faster than the optimized
Monte Carlo based on the construction of several subpaths.
Nevertheless, as represented in fig. 1 d), the computation time
needed to obtain a good level of convergence of the AMC
increases strongly with the decrease of the sensor size. In the
asymptotic case of a spatially punctual sensor (null support),
the calculation can not be performed as well. Hence, when it is
a question of estimating the incident intensity on pixels (small
spatial and directional extent), the AMC will also become
impractical and an optimization of the whole algorithm is

therefore necessary. Such optimization is provided and detailed
in this paper.
In order to answer this question and produce computer-
generated images while maintaining the use of null-collisions,
it is convenient to use the framework made possible by integral
formalism, which leads intuitively and naturally to reverse
Monte-Carlo algorithms. Hence, in the following, only an
optimized reverse MC algorithm is detailed, while a direct
analogous MC algorithm is only used for validation purposes.
Let us remark that, from the reverse formulation proposed, the
building of the correspondent optimized and direct algorithm
is straightforward. However, the choice between a direct and
a reverse algorithm being strongly dependent on the studied
configuration, this question is not discussed here.
The optimization presented in this paper makes it possible to
avoid the constraints related to both a small directional and
spatial extent of the second item (source or detector). In addi-
tion, as in the case of the academic configuration presented, the
algorithm can also handle the case of null support in direction
or space. Finally, as shown in fig. 1 b) and fig. 1 d), once the
computation has been made possible thanks to improvements
in path construction, the variance is logically insensitive to size
and direction constraints related to the second item (detector or
source).

2.2. Radiative Transfer
The monochromatic intensity Iν at a given position x and in

a given direction u inside the semitransparent heterogeneous



medium is a solution of the RTE:

u · −→∇ Iν(x, u) = −κa,ν(x)Iν(x, u) − κs,ν(x)Iν(x, u)

+
1

4π

∫

Ω′=4π
κs,ν(x)Φν(x, u′|u)Iν(x,

−→
u′)du′ (1)

where κsν, κaν andΦν are the monochromatic scattering, absorp-
tion and single scattering phase function, respectively. Let us
note that the medium is assumed cold. Hence, the black-body
emission term is not considered. The walls are assumed to be
black and cold. No emission from walls is considered. In this
problem, the laser is the only source present in the scene. Thus,
the radiative boundary condition is written as:

Iν(xw, u) = I∗ν H(x ∈ B∗ ∩ u ∈ Ω∗) (2)

where B∗ and Ω∗ correspond to the domain where the energy
is emitted and the direction of propagation, respectively.
Thus, the intensity is non-zero only on the emission surface
and in the direction of propagation. Otherwise, it is strictly
null. In the following, the spectral index ν is removed for the
sake of brevity but all considered quantities are monochromatic.

2.3. Monte-Carlo method to solve radiative transfer
The intensity at a given position x0, a given direction u0 and

solution of the RTE (cf. eq. (1)) takes the following integral
form:

I(x0, u0) =
∫ ∞

0
dσ1κs(x0 − σ1u0) exp

(
−
∫ σ1

0
κa+s(x0 − σ′1u0)dσ′1

)

×
[∫

4π
du1Φ(x1, u0|u1)I(x1, u1))

]
(3)

where κa+s = κa + κs the extinction coefficient and σ1 all
propagation distances before scattering along the line of sight.
In other words, assuming no black-body emission from the
medium, eq. (3) expresses the intensity at a given position x0

and a given direction u0 as a spatial integral of the incident ra-
diant energy in-scattered at the position x1 = x0 − σ1u0 and
attenuated by extinction. Such an expression can be interpreted
with a reverse MC algorithm.
By rearranging the previous equation, probability densities are
brought up for algorithmic interpretation:

I(x0, u0) =
∫ ∞

0
dσ1 pΣ(σ1) Ta(x0, x1)

∫

4π
du1Φ(x1, u0|u1)I(x1, u1))

(4)

where:

pΣ(σ1) = κs(x0 − σ1u0) exp
(
−
∫ σ1

0
κs(x0 − σ′1u0)dσ′1

)
(5)

the probability density of a random variable Σ corresponding to
the distribution of scattering free pathσ1 ∈ [0;+∞] in the direc-
tion −u0. The transmittance due only to absorption is defined
as:

Ta(x0, x1) = exp
(
−
∫ σ1

0
κa(x0 − σ′1u0)dσ′1

)
(6)

which quantifies the part of the radiation that has not been ab-
sorbed between the two scattering positions.
As long as the incident radiant energy at the new position x j+1

and in the new direction u j+1 remains unknown, the procedure
is pursued, which corresponds to a recursive process. The cor-
responding algorithm is described in algorithm 1.

Algorithm 1 Recursive algorithm
Sample a scattering free path σ1 according to pΣ
Evaluate new position x1 = x0 − σ1u0
Compute absorption transmittance Ta

Sample a new direction u1 according to Φ
I(x0, u0) = Ta I(x1, u1) (recursivity)

Scattering and absorption events are treated here separately
through, firstly, the sampling of a scattering free path and, sec-
ondly, computation of a transmittance by absorption. In this
field, a wide number of techniques exist. Since the question
of determining the relevance of one kind of sampling method
compared to others is not central in this work, the interested
reader can refer to [15], which gives a broad overview of the
existing methods. The choice made comes simply from the fact
that the sampling of a scattering length appears naturally during
the formulation of the solution due to the absence of black-body
emission of the medium. As shown in [16], the sampling used
here is particularly well adapted to mainly scattering media.

2.4. Null-collision principle
In the case of an inhomogeneous environment, the extinction

coefficient, which varies along the line of sight, induces a non-
linearity of Beer’s law. This makes it necessary to calculate the
optical thickness in a deterministic way. Recent methodologi-
cal developments [6] have shown that it is possible to use so-
called null-collision MCM to avoid the latter constraint. The
main idea is to add transparent fictitious collision, defined by
κn = k̂ − κ, the null-collision coefficient, in order to consider
an artificially homogeneous medium. Thus, the resulting con-
sidered medium is optically thicker and some of the collisions
are rejected by applying a purely forward scattering. For more
details, the interested reader may refer to the recent work of El
Hafi et al.[9] where the principle of similarity with a homoge-
neous medium is developed. The introduction of fictitious col-
lision does not induce bias on the estimated value. It consists
in adding −κnI(x, u) +

∫
4π κnI(x, u)δ(x, u − u′) to the right-hand

side of the RTE (cf. eq. (1)). The Dirac distribution δ ensures
that the modified RTE has exactly the same solution:

u · −→∇I(x, u) = −(κa(x) + κs(x) + κn)I(x, u)

+
1

4π

∫

Ω′=4π
κs(x)Φ(x, u′|u)I(x,

−→
u′)du′

+

∫

Ω′=4π
κnI(x, u)δ(x, u − u′) (7)

The absorption and scattering being treated separately, a uni-
form scattering coefficient k̂s = κs + κn is defined. Likewise, a
uniform absorbing coefficient k̂a = κa + κn is used to compute



the transmittance by absorption with a null-collision method
T̂a(x0, x1). This specific point is the topic of the following sec-
tion (cf. section 2.5). Let us note that the null-collision coeffi-
cient is always chosen as an upper bound of the true radiative
field. However, the interested reader can find an extension to
negative values of the null-collision coefficient in [6].
The formal solution of the modified RTE (eq. (7)) is:

I(x0, u0) =
∫ ∞

0
dσ1 exp

(
−
∫ σ1

0
k̂sdσ′1

)
T̂a(x0, x1)

×



κs(x1)
∫

4π
du1Φ(x1, u0|u1)I(x1, u1)

+κn(x1)
∫

4π
du1δ(x1, u1 − u0)I(x1, u1)



(8)

which can be rewritten as:

I(x0, u0) =
∫ ∞

0
dσ1 k̂sexp

(
−k̂sσ1

)
T̂a(x0, x1)

×



κs(x1)
k̂s

∫

4π
du1Φ(x1, u0|u1)I(x1, u1)

+
κn(x1)

k̂s

∫

4π
du1δ(x1, u1 − u0)I(x1, u1)



(9)

The different probability densities are brought up:

I(x0, u0) =
∫ ∞

0
p̂Σ(σ1) T̂a(x0, x1)

×



Ps(x1)
∫

4π
du1Φ(x1, u0|u1)I(x1, u1)

+Pn(x1)
∫

4π
du1δ(x1, u1 − u0)I(x1, u1)



(10)

with Ps = κs/k̂s the probability that the collision is real (scat-
tering) and Pn = (1 − Ps) the probability that the collision is
null. The determination of the type of collision is thus carried
out thanks to a Bernoulli test.
One can note that the latter formulation is only valid for an in-
finite medium. For the sake of brevity, interaction with walls
is voluntarily not presented to lighten the mathematical formal-
ism. However, this does not lead to major difficulties. A test to
determine whether or not a collision would occur at the bound-
ary should be added. This particular point will be dealt with
during the presentation of the complete generic algorithm in
section 5.
Hence, in the case of an infinite medium, the corresponding al-
gorithm is described in algorithm 2.

Algorithm 2 Recursive algorithm with null-collision
Sample a scattering free path σ1 according to p̂Σ
Evaluate new position x1 = x0 − σ1u0

Compute absorption transmittance T̂a
Uniform sampling of r1;
if r1 < Pn(x1) then

Sample a new direction u1 according to Φ (scattering)
else

Set u1 = u0 (null-collision)
end if
I(x0, u0) = T̂a I(x1, u1) (recursivity)

2.5. Evaluation of a transmittance

In our approach, we have to repeatedly calculate the transmit-
tance either by absorption, scattering or extinction. This quan-
tity represents the part of the radiative energy which crosses an
arbitrary length L in the unit direction u0 between two positions
x0 and x1 of the semi-transparent medium:

Tg(L) = Tg(x0, x1) = exp
(
−
∫ L

0
κg(x0 − l′1u0)dl′1

)
(11)

where κg can represent either the absorption, scattering or ex-
tinction coefficient. The index g indicates the nature of the in-
teraction between radiation and matter.
Let us introduce the quantity pL(l1)dl1, which corresponds to
the probability that a photon travels a distance greater than l1
but smaller than l1 + dl1. According to eq. (11), we write:

pL(l1)dl1 = Tg(l1) − Tg(l1 + dl1) (12)

Hence, under a differential formalism:

pL(l1) = −dTg(l1)
dl1

= κg(x0 − l1u0) exp
(
−
∫ l1

0
κg(x0 − l′1u0)dl′1

)
(13)

the probability density corresponding to the distribution of a
free path before either an absorption, scattering or extinction
event is defined. A probability density (only for scattering) was
previously used in eq. (5) to sample a scattering free path.
By appealing to the distribution of free paths pL(l1) as ex-
pressed in eq. (13), we can express the transmittance in eq. (11)
with the following integral form:

Tg(L) = Tg(x0, x1) =
∫ L

0
pL(l1) dl1

=

∫ ∞

0
pL(l1)H(l1 > L) dl1 (14)

This integral form can be interpreted as a Monte-Carlo algo-
rithm. It consists of sampling the free path according to pL(l1)
(cf. eq. (13)) and checking if the distance travelled is smaller or
greater than the targeted distance L. The MC weight wT is zero
if l1 < L and unitary otherwise. An illustration of this proce-
dure is proposed in fig. 2.



Figure 2: Computation of a transmittance using null-collision method: when
a real collision is found, a test determines if the distance aimed for has been
reached. The MC weight is zero if not and unitary otherwise

As explained above (cf. section 2.4), the use of the null-
collision method is a solution to bypass the Beer’s non-linearity,
which appears when considering a heterogeneous medium. The
transmittance is then computed as:

T̂g(x0, x1) =
∫ ∞

0
p̂L(l1)dl1 × (15)


H(l1 > L) × {1}
+H(l1 < L)

[
κg(x0−l1u0)

k̂g
× {0} + (1 − κg(x0−l1u0)

k̂g
)
{
T̂g(x0 − l1u0, x1)

}]

with k̂g = κg + κn the uniform field of absorption, scattering
or extinction coefficient. The corresponding algorithm is given
below:

Algorithm 3 Recursive computation of the transmittance with
null-collision

Sample a a free path l1 according to p̂L
if l1 < L then

Uniform sampling of r1;
if r1 < κg(x0 − l1u0)/k̂g then

wT = 0 (absorption and/or scattering)
else
T̂g(x0, x1) = T̂g(x0 − l1u0, x1) (recursivity)

end if
else

wT = 1 (transmitted)
end if

3. Decomposition of the intensity

3.1. Principle

The procedure presented so far makes it possible to construct
a path, which allows the RTE to be solved within a heteroge-
neous semi-transparent medium. The construction of one ra-
diative path (one realization of the algorithm) will stop when
a boundary condition is reached (no emission of the medium).
By considering the problem of a source partially illuminating

the scene, we can highlight, thanks to the algorithmic interpre-
tation, a convergence problem. Indeed, the only way to link the
detector to the source and obtain a non-zero weight for the al-
gorithm would be to undergo a scattering event within the laser
layer in the exact direction of propagation of the laser source.
However, the probability that the sampled direction of scatter-
ing is exactly equal to the direction of propagation of the source
is zero. As it stands, all the realizations of the MC algorithm
would bring zero weight and absolutely no convergence would
be possible.
In order to overcome this problem, the main idea is to separate
the intensity into two contributions such that:

I(x j, u j) = Idir(x j, u j) + Iscat(x j, u j) (16)

where Idir is the direct intensity or, in other words, the part of
the energy directly transmitted by the source at the position x j

and in the direction u j. The second part of the right-hand side
Iscat corresponds to the rest of the energy, which is not due to
direct transmission. Hence, the latter is due to, at least, one scat-
tering event before reaching the position x j in the direction u j

(in-scattered intensity). Very recent work applied such decom-
position, called the local estimate technique, to solve radiative
transfers in a highly resolved cloudy atmosphere [10].
The main difference between an atmospheric problem and the
problem considered here lies in the aspect of partial illumina-
tion of the scene. Indeed, in the first case, the direct intensity is
zero unless −u j ∈ Ω∗ with Ω∗ the solid angle of the source at
the position x j. In our case, the direct intensity is zero unless
−u j ∈ Ω∗ and x j ∈ N with N the part of the volumeV occu-
pied by the laser sheet.
By injecting eq. (16) in eq. (3), the intensity is written as three
components:

I(x0, u0) = Idir(x0, u0)

+

∫ ∞

0
dσ1κs(x1) Ta+s(x0, x1)

∫

4π
du1Φ(x1, u0|u1)Idir(x1, u1)

+

∫ ∞

0
dσ1κs(x1) Ta+s(x0, x1)

∫

4π
du1Φ(x1, u0|u1)Iscat(x1, u1)

(17)

with:

Idir(x j, u j) = I∗Ta+s(x∗, x j)H(−u j ∈ Ω∗)H(x j ∈ N) (18)

where Idir is the intensity emitted by the laser source I∗ and at-
tenuated by absorption and scattering Ta+s between the source
position x∗ and the position x j. The three components in
eq. (17) can be interpreted as:

I(x0, u0) = Idir(x0, u0)︸      ︷︷      ︸
=0 unless (x0∈N)∩(u0∈Ω∗)

+ Is1(x0, u0)︸      ︷︷      ︸
=0 unless one scattering in N

+ Is2(x0, u0)︸      ︷︷      ︸
higher order of scattering (recursivity)

(19)

In the latter equation (cf.eq. (19)), the direct intensity at the
initialisation is non-zero unless the first position is inside the



Figure 3: Part of the intensity transmitted by the source at the position x j and
in the direction u j : computing Is1 (cutting plane)

illuminated volume and if the first direction is inside the solid
angle of the source. The second term Is1 represents the part of
the intensity emitted by the source, directly transmitted to the
position x1, scattered in the direction considered u0 and reaches
the considered position x0. Thus, this term is zero if there is no
intersection between −u0 starting from x0 and the laser sheet.
Finally, the term Is2 represents the part of the intensity emit-
ted by the source but reaching the position x0 in the direction
u0 with more than one scattering event. Hence, such a term
is computed recursively, as presented in section 2.2 and sec-
tion 2.4.
The direct intensity appears only at the initialisation. For
j > 0, only at-least-once-scattered intensity is computed. Thus,
eq. (19) can be expressed with the following recursive form:

Iscat(x j, u j) = Is1(x j, u j)︸     ︷︷     ︸
=0 unless scattering inN at order j+1

+ Is2(x j, u j)︸     ︷︷     ︸
order> j+1 (recursivity)

(20)

The following section concerns the algorithmic interpretation
of the once-scattered intensity Is1.

3.2. Computation of the once-scattered intensity

The second term of the right-hand side of the eq. (17) is non-
zero for positions x1 inside the laser sheet N . The recursive
form of the once-scattered intensity is then expressed as:

Is1(x j, u j) =
∫ xout

xin

dσ1κs(x1) Ta+s(x j, x1)

×
[∫

4π
du1Φ(x1, u j|u1)I∗Ta+s(x∗, x1)H(−u1 ∈ Ω∗)

]

(21)

As shown in fig. 3, xin and xout denote the positions where the
jth segment enters and leaves the laser sheet along the direction
u j, respectively. For the sake of clarity, we note xs all the posi-
tions inside the laser sheet N .
Only the directions included inside the source angle solid Ω∗

allow non-zero contributions. Thus, the latter equation is sim-

plified as:

Is1(x j, u j) ≈
∫ xout

xin

dσ1κs(xs) Ta+s(x j, xs)

×
[
Φ(xs, u j|u∗)I∗Ta+s(x∗, xs)∆Ω∗

]
(22)

where ∆Ω∗ is the solid angle of dispersion of the laser source.
Finally, the part of the energy emitted by the laser source and
which reaches the position x j in the direction u j can be ex-
pressed as:

Is1(x j, u j, xin) = Ta+s(x j, xin)
∫ d

0
dσ1 κs(xs) Ta+s(xin, xs)

×Φ(xs, u j|u∗) Ta+s(xs, x∗) I∗∆Ω∗ (23)

using Ta+s(x j, xs) = Ta+s(x j, xin) Ta+s(xin, xs). The total dis-
tance travelled throughout the laser sheet is d = ||xout−xin||. Let
us note that the product I∗∆Ω∗ corresponds to the flux density
per unit area of the laser ϕ∗. This physical characteristic of the
laser emission is the ratio of the power emitted to the surface of
emission at a given frequency.
In order to bring up a probability of a mean free path by scat-
tering, the transmittance by extinction is separated such that
Ta+s(xin|xs) = Ts(xin|xs)Ta(xin|xs). Thus, eq. (23) can be rewrit-
ten as:

Is1(x j, u j) =
∫ ∞

0
dσ1 pΣ(σ1)H(σ1 < d) Ta(xin, xs)

× Ta+s(x j, xin) Φ(xs, u j|u∗) Ta+s(xs, x∗) ϕ∗ (24)

Let us note that the term
∫ ∞

0 dσ1 pΣ(σ1) H(σ1 < d) corre-
sponds to the absorptance by scattering between the positions
xin and xout along the direction u j. This quantity is the com-
plementary probability of a transmittance and is computed by
sampling distance before scattering according to pΣ(σ1) and
verifying if the distance travelled is smaller or greater than the
distance d. The MC weight is unitary if σ1 < d and zero other-
wise.
A uniform scattering coefficient k̂s is used (cf. section 2.4) and
the null-collision method is applied:

Is1(x j, u j) =
∫ ∞

0
dσ1 p̂Σ(σ1)

×


H(σ1 > d) × {0}
+H(σ1 < d) ×


Ps(xin − σ1u j)

{
ws1

I

}

Pn(xin − σ1u j)
{
Is1(x j, u j, xin − σ1u j)

}

(25)

where ws1
I = T̂a+s(x j, xin)T̂a(xin, xs)T̂a+s(xs, x∗)Φ(xs, u j|u∗)ϕ∗ is

the MC weight if σ1 < d and if the collision is real. Moreover,
a uniform extinction coefficient k̂a+s = k̂a + k̂s is needed to com-
pute each transmittance by extinction T̂a+s.
In the particular case of x j ∈ N , the once-scattered intensity
can be computed simply by setting xin = x j. The transmittance
T̂a+s(x j, xin) would then be unitary.



3.3. Double Randomization for transmittances

As highlighted above, computation of Is1(x j, u j) is based on
the evaluation of three transmittances and one absorptance. As
described in section 2.5, each of these quantities is also obtained
by the use of a MC method and would therefore require the use
of a large number of realizations. In order to avoid an increase
in the number of total realizations to be carried out as well as a
propagation of error, a strategy of double randomization is used
[17]. The Beer’s non-linearity being bypassed thanks to the use
of null-collision, the latter strategy allows the integral quan-
tity Is1(x j, u j) to be expressed as a unique expectation. Thus,
a single realization of the algorithm can be carried out for the
calculation of each term of transmittance or absorptance. We
note wT2, wT3 and wT4 as one realization of the MC algorithm
associated with the calculation of Ta+s(x j|xin), Ta(xin|xs) and
Ta+s(xs|x∗), respectively.

3.4. Preferential sampling for computation of the absorptance

Preferential sampling, which consists in arbitrarily modify-
ing a probability density, is an efficient way to reduce the vari-
ance of the estimated quantity. The possibilities for modifica-
tions being numerous, we only propose here a designed prefer-
ential sampling adapted to the main cause of the increasing of
the variance: computation of the absorptance.
Indeed, in eq. (25), a distance travelled before scattering σ1

is sampled according to p̂Σ. In the case of an optically thin
medium inside the laser sheet, which may be due either to a low
thickness of the laser sheet or to low values of scattering coef-
ficients, the vast majority of scattering paths sampled would be
greater than the distance travelled d. Thus, a vast majority of
realizations would retain a MC weight of zero and the variance
would increase. One possibility to avoid the latter constraint
is to normalize the probability density p̂Σ in the interval [0; d].
The new arbitrary probability density p̃Σ is written:

p̃Σ =
p̂Σ

1 − exp(−k̂sd)
=

p̂Σ
α̂s

(26)

where α̂s corresponds to an arbitrary uniform absorptance by
scattering along the distance travelled d.
The scattering paths sampled according to p̃Σ can not be greater
than d. The bias introduced by the modification of the proba-
bility density is then compensated by a modification of the MC
weight. Thus, eq. (25) is modified as:

Is1(x j, u j, xin) =
∫ ∞

0
dσ1 p̃Σ(σ1)

×


H(σ1 > d) × {0}
+H(σ1 < d) ×


Ps(xin − σ1u j)

{
α̂s ws1

I

}

Pn(xin − σ1u j)
{
α̂s Is1(x j, u j, xin − σ1u j)

}

(27)

The resulting MC algorithm is detailed in algorithm 4.

Algorithm 4 Computation of Is1(x j, u j)
if x j ∈ N then

Set xin = x j

Compute xout

else
Compute xin and xout

end if
Sample a scattering free path σ1 according to p̃Σ
if σ1 < d then

Uniform sampling of r1;
if r1 < Ps(xin − σ1u j) then

Set xs = xin − σ1u j

Compute wT2, wT3 and wT4 (algorithm 3)
Compute Φ(xs, u j|u∗)
ws1

I + = α̂swT2 wT3 wT4 Φ(xs, u j|u∗)I∗∆Ω∗
else

Is1(x j, u j, xin) = α̂sIs1(x j, u j, xin − σ1u j) (recursivity)
end if

else
ws1

I + = 0
end if

4. Complete formulation of the algorithm

The terms of direct intensity Idir and once-scattered inten-
sity Is1 having being made explicit, the last step is to express
the term of higher order of scattering Is2, which is computed
recursively as explained in section 2.4. Using null-collision,
the complete formulation allowing the resolution of the investi-
gated problem can be expressed as:

I(x0, u0) = Idir(x0, u0) + Is1(x0, u0) + Is2(x0, u0)

= Idir(x0, u0) + Is1(x0, u0) +
∫ ∞

0
dσ1 p̂Σ(σ1) T̂a(x0, x1)

×



Ps(x1)
∫

4π
du1Φ(x1, u0|u1)

(
Is1(x1, u1) + Is2(x1, u1)

)

+(1 − Ps)(x1)
∫

4π
du1δ(x1, u1 − u0) Is2(x1, u1)

(28)

Let us note wT1 as a realization of the MC algorithm associated
with the calculation of Ta(x0, x1). In the event of a fictitious
collision (no change of direction u1 = u0), with the order of the
scattering events not increasing (rejection technique), the com-
putation of the once-scattered intensity Is1(x1, u1) is not per-
formed.
For j > 0, the recursive form is:

Iscat(x j, u j) = Is1(x j, u j) + Is2(x j, u j)

= Is1(x j, u j) +
∫ ∞

0
dσ j+1 p̂Σ(σ j+1) T̂a(x j, x j+1)

×



Ps(x j+1)
∫

4π
du1Φ(x j+1, u j|u j+1) Iscat(x j+1, u j+1)

+(1 − Ps)(x j+1)
∫

4π
du j+1δ(x j+1, u j+1 − u j) Is2(x j+1, u j+1)

(29)



Hence, three uniform radiative coefficients are needed:

• Absorbing k̂a, useful for T̂a computation

• Scattering k̂s, useful for p̂Σ and p̃Σ samplings

• Extinction k̂a+s = k̂a + k̂s, useful for T̂a+s computation

The complete resulting algorithm is fully described in fig. 4.
Interactions with walls are added.

• The starting point is to set the order of scattering j to zero,
to sample a direction u0 and a position x0 (step A1 and
A2). Then, the direct intensity at the initialisation is com-
puted (step A3) and weight of MC is initialized (step A4).

• The computation will loop on the backward and recursive
MC branch (B2-B17) until an absorption event occurs in
the medium or on the boundary. The quantity ξ j keeps
track of the attenuation of the intensity by absorption in
the medium all along the path composed by j number of
segments. If ξ j+1 is 0, the optical path is then interrupted
and the Monte-Carlo weight of the ith realization is com-
puted (step O1).

• More precisely, at each jth iteration, a scattering free path
length is sampled according to p̂Σ(σ) and a collision loca-
tion is obtained (steps B2 and B3). A test on the distances
traveled (B4) reveals whether the collision occurs in the
medium or on the boundary. If it occurs in the medium, we
follow the procedure associated with the infinite medium
case (B4-B10) as described in algorithm 2. If it occurs on
the boundary, a computation of the transmittance by ab-
sorption is first performed (step B12). Then, if no absorp-
tion event occurs (B13), a Bernoulli trial is used to identify
if the path will be interrupted due to an absorption event
(B15-O1) or will continue according to a reflection event
(B15-B16).

• The implementation of the Monte-Carlo weight is per-
formed through the source branch. For each new direc-
tion u j sampled, a test is used to determine if an inter-
section between the laser sheet N and a ray starting from
x j in the direction −u j exists (step B1). If an intersection
xin does not exist, the algorithm follows the main Monte-
Carlo branch presented previously. Otherwise, the algo-
rithm follows the new specific source branch and computes
the once-scattered intensity (S1-S10). The corresponding
procedure is described in algorithm 4.

• The main idea is to iteratively determine if a scattering
event occurs between the entry xin and exit xout location of
the laser sheet (S2-S7). Index k corresponds to the num-
ber of null-collision events. If no scattering event occurs
and the path comes out of the laser sheet, the Monte-Carlo
weight for the computation of the diffuse intensity is set to
0 (step S11).

• Otherwise, the weight is set to the part of energy which
arises from the source and which is scattered at xs (S10-
S12). The output of the source branch joins the main
branch at step B2.

The whole Monte-Carlo weight of a realization of this algo-
rithm (with boundaries) is written as:

wi = Idir +

jmax∑

j=0

ξ j H(γ j,s) α̂kmax
s wT2wT3wT4 Φ(xs, u∗|u j)I∗∆Ω∗

(30)

where jmax is the index of the last collision before absorption
by the medium or boundaries and kmax the index of the last fic-
titious collision before a scattering event occurs inside the laser
sheet. H(γ j,s) is equal to 1 if a new direction u j is sampled
(real collision), an intersection with N exists and a scattering
event occurs inside the laser sheet. Hence, the estimation of I
of I(x0, u0) using N realizations is given by:

I =
1
N

N∑

i=1

wi (31)

and the associated standard deviation is:

σI =

√√√
1

N(N − 1)

N∑

i=1

(w2
i − I

2
) (32)

5. Results

5.1. Validation : Calculation of a flux
5.1.1. Studied geometry

A parametric study in order to validate and evaluate the nu-
merical behaviour of the above-described algorithm is now pre-
sented. The simple academic configuration as shown in fig. 1
is considered. The system is a cube, of side L with cold purely
absorbing faces, that are perpendicular to the x, y and z axes
of a Cartesian coordinate system. The laser source is repre-
sented by a surface S ∗ = L × e, which uniformly emits power
Pe only in the direction u∗ = y. A detector is assimilated to a
cold and black absorbing surface of size S a = lx × ly, centered
in the middle of the bottom face and of normal n = z perpen-
dicular to the direction of propagation u∗. A distance D sepa-
rates the lower part of the laser sheet from the detector. For the
rest of the study, the geometrical parameters are set such that
e/L = 0.005, lx/L = ly/L = 0.25 and D/L = 0.5. Moreover, the
Henyey-Greenstein single-scattering phase function Φ is used
with a zero and uniform asymmetry parameter throughout the
field.

5.1.2. Validation procedure
As seen previously, the work of integral formalism has al-

lowed the construction of an optimized reverse algorithm that
is intuitive with respect to path geometry and path construction.
On the other hand, the construction of the weights in relation to
the sampling choices (to control variance) are not immediate.



A validation procedure is required. Thus, the proposed Opti-
mized Reverse Monte-Carlo (ORMC) algorithm is compared
to a well-mastered Analogous Monte-Carlo (AMC) algorithm.
The total absorbed power Pa by the detector is computed with
both methods. It is defined as:

Pa =

∫

S a

dx0

∫ 2π

|u0·n|<0
|u0 · n| I(x0, u0)du0 (33)

On the one hand, in the case of the ORMC algorithm, paths
start from the detector. In order to interpret the computation
of the total absorbed power as a MC algorithm, eq. (33) is re-
written:

Pa =

∫

S a

dx0 pS (x0)
∫ 2π

|u0·n|<0
du0 pΩ(u0) {S aπI(x0, u0)} (34)

where pS (x0) = 1/S a and pΩ(u0) = |u0 ·n|/π are the two proba-
bility densities associated with the sampling of a position on the
absorbing surface and a direction, respectively. Both probabil-
ity densities are chosen here such that the sampling is uniform.
Computation of the incident intensity I(x0, u0) is performed as
described above with a reverse procedure. Hence, one realiza-
tion of the algorithm consists in sampling the initial position x0
and a direction u0 (step A2 cf. fig. 4) and estimating the associ-
ated MC weight wi (cf. eq. (28)) then multiplying the latter by
a factor S aπ.
On the other hand, in the case of the AMC algorithm, paths start
from the source. One realization of the direct algorithm simply
consists in sampling a position on the emitting surface S ∗ in the
direction u∗ and building a radiative path based on absorption,
scattering and null-collision events (cf. algorithm 2). The MC
weight of the ith realisation is wi = Pe if the path is interrupted
on the detector and is zero otherwise.
In what follows, in order to consider the different steps of the
validation chain while providing benchmark results for further
improvement, three cases are investigated:

• Homogeneous medium solved as homogeneous

• Homogeneous medium solved as heterogeneous

• Heterogeneous medium

First of all, the medium is described by a set of uniform
radiative properties and the resolution of the problem, with
AMC and ORMC algorithms, is carried out as such. Thus, all
the different exponential terms are computed analytically. This
simple case allows us to validate the structure of the algorithm
and, more specifically, the physical formulation of the diffuse
intensity Is1. Thereafter, the medium is still homogeneous but
the computation is performed with the complete MC algorithm
as described above (cf. fig. 4). Consequently, the probabilistic
estimation of the different transmittances as well as the use
of the principle of double randomization are verified. Finally,
the case of a heterogeneous medium defined with analytical
profiles is considered. The total procedure proposed, with the
use of null-collision algorithms, is then validated.

Let us recall that the purpose of this comparison is not to
identify which of AMC or ORMC is the most efficient in
terms of computing time and convergence. The size of the
detector is deliberately chosen to be large enough to allow the
convergence of the AMC algorithm. The proposed benchmark,
as well as the AMC, are presented solely for the purpose of
validating the reverse formulation proposed. Thereafter, this
generic algorithm could be generalized to the calculation of
an intensity at a given point and in a given direction for all
three-dimensional complex scenes. This computation-probe
aspect of the ORMC will allow easy implementation and deal
conveniently with the space and directional aspects (restricted)
of the detector (pixels) when building computer-generated
images.

5.1.3. Homogeneous medium solved as homogeneous
The radiative properties κa and κs being uniform, all the trans-

mittancesT and diffuse intensity Is1 can be expressed and com-
puted analytically. Hence, a null-collision algorithm is not used
and a simplified version of the above-described procedure is
implemented (not presented for the sake of brevity).
Table 1 displays the simulated values of the estimated total
power absorbed Pa, the standard deviation and the relative stan-
dard deviation for several values of the optical thicknesses κaL
and κsL obtained with the AMC and ORMC algorithms using
106 independent realizations. The columns labelled |ε| corre-
spond to the absolute difference on the value estimated and σ̇
the ratio of the AMC standard deviation to the ORMC standard
deviation, respectively.
Firstly, one can note that the total power absorbed is very low
compared to the total power emitted. The ratio Pa/Pe does not
exceed a value of 0.44 % for the chosen set of parameters. Thus,
a very small amount of the emitted energy reaches the detector.
This highlights the complexity in terms of convergence of the
problem to be solved. However, the relative uncertainty σ/Pa
attests to a good level of convergence (below 2 % for AMC and
0.6 % for ORMC in all cases). By comparing the difference |ε|
with the standard deviations, we can state that the total power
absorbed Pa associated with AMC and ORMC are indeed statis-
tically compatible for low and high optical thicknesses. Thus,
the proposed methodology for the simple case of a homoge-
neous medium is validated. Let us note that, for a given number
of realizations with ORMC, the relative variance increases with
the increase in the optical thickness of the medium, whether
by absorption and/or scattering. This is simply explained by
the fact that it becomes more and more difficult to connect the
detector to the source with the increase in the opacity of the
medium. The number of positive contributions to the MC algo-
rithm decreases with the increase of the extinction (absorption
and/or scattering). In the case of an optically thick medium,
methodological improvements of the MC algorithm could be
brought [18].

5.1.4. Homogeneous medium solved as heterogeneous
In this part, the complete procedure as described in fig. 4 is

now applied to the case of a homogeneous medium. Each trans-



mittance is computed numerically using a specific Monte Carlo
procedure (double randomization). For simplicity, the upper-
bounds k̂s, k̂a and k̂a+s are chosen to be uniform throughout the
field and are set to values of κa, κs and κa + κs, respectively. In
other words, the probability to meet a null-collision is naturally
set to zero and all collisions are thus real (scattering, absorption
or extinction).
Table 2 displays the same quantities for the same set of param-
eters as in the previous case (cf. table 1) using 107 indepen-
dent realizations. For κaL ∈ [0.5; 2.0], relative uncertainties
show a good level of convergence (below 1.5 % for AMC and
0.7 % for ORMC in all values of κsL investigated). For higher
values of κaL, we notice an intermediate level of convergence
with relative uncertainties above 4.5 % for AMC and 1.5 %
for ORMC. Considering the values of standard deviation σ and
the difference on the estimated value |ε|, estimations performed
with AMC and ORMC are statistically compatible and the pro-
cedure is validated.
Let us note that approximately the same order of magnitude on
the uncertainty as the previous study is obtained for ten times
more MC realizations. This point can be easily explained by the
error arising from the stochastic estimation of the three trans-
mittances and the absorptance. Hence, the uncertainty associ-
ated with AMC and ORMC increase the total uncertainty of the
desired computed quantity. Finally, the same remark as previ-
ously (cf. section 5.1.3) regarding the link between the uncer-
tainty and the optical thickness of the medium can be made.
For the chosen set of parameters, table 3 displays the computa-
tion times obtained with an ”Intel i5 - 2.4 GHz” CPU with-
out any parallelization. Let us note that the proposed algo-
rithm, based on local estimate techniques, has no specificity
in terms of parallelization, and is therefore naturally fitted to
parallel computing frameworks [19]. In a first approximation,
its computation time decreases linearly with the number of pro-
cessors involved in the calculation. For each MC algorithm,
computation time t to perform 107 independent realizations,
computation time t1% to reach 1 % statistical uncertainty and
ratio tAMC

1% /tORMC
1% are provided. As remarked above (cf. fig. 1

c)), for a given number of realizations of the MC algorithm,
the proposed optimized algorithm, based on a main path plus
a sub-path for once-scattered intensity, is about twice as slow
as the AMC based on a unidirectional (single) path. Never-
theless, the time needed to reach 1 % statistical error is much
lower for ORMC than for AMC thanks to the convergence gain
produced by this subpath. We note that the proposed reverse al-
gorithm is particularly efficient for optically thin medium. For
κa,maxL = 0.5 κs,maxL = 0.5, AMC needs 13.66 s to reach 1 %
statistical uncertainty while only 0.39 s is sufficient for ORMC.
On the one hand, the increase in absorption increases the diffi-
culty of connecting the detector to the source. Thus, for a given
scattering coefficient, the time t is quite constant and the time
t1% increases. On the other hand, the increase in scattering in-
creases the number of scattering events to be performed and the
statistical uncertainty. Consequently, an increase of the times t
and t1% is noticed.

5.1.5. Heterogeneous medium
The last validation step consists in applying the methodol-

ogy to a heterogeneous medium. The latter is defined by a non-
uniform radiative properties field which is given by an analyti-
cal profile:

κa(x) = κa,max

(
L/2 − x

L

) 1 −
√

(y − L/2)2 + (z − L/2)2

L2/2


(35)

κs(x) = κs,max

(
L/2 − x

L

) 1 −
√

(y − L/2)2 + (z − L/2)2

L2/2


(36)

featuring an axisymmetric flame along the x axis (maximum ra-
diative property along the axis centered on y = L/2 and z = L/2
and a linear decay as a function of the distance to the axis, down
to zero at the corners).
As previously, the upper-bounds k̂a, k̂s and k̂a+s are chosen as
uniform and are set to κa,max, κs,max and κa,max + κs,max, respec-
tively. Table 4 displays the same quantities as previous studies
(cf. table 1 and table 2) for several values of the maximum opti-
cal thicknesses κa,maxL and κs,maxL obtained with both the AMC
and ORMC algorithm and using 107 independent realizations.
Table 5 displays the corresponding computation time. Figure 5
allows a graphic comparison of the total power absorbed as a
function of the maximum scattering optical thickness for three
different profiles of radiative field:

• the homogeneous medium (uniform profile)

• linear (linear evolution along the x, y and z axes with max-
imum reached for coordinate x = (L/2, L, L)

• the axisymmetric flame (cf. eq. (35) and eq. (36))

Each simulation is performed for an unitary absorbing optical
thickness and computed with both AMC and ORMC using 107

independent realizations. Each value is represented with the
associated uncertainty (three times the estimated standard devi-
ation).
Regarding the uncertainties and the absolute difference |ε| in ta-
ble 4 or results represented in fig. 5, there is no doubt of the
statistical compatibility between AMC and ORMC, or that the
proposed reverse procedure (cf. fig. 4) allows an unbiased and
precise estimation of the incident radiative flux on the detector.
In fig. 5, the differences in the variation of the absorbed power
as a function of the maximum scattering thickness come, obvi-
ously, from a difference in the distribution of the radiative field
as well as from the average optical thickness of the medium un-
der consideration. The same observations as previously stated
(cf. section 5.1.3 and section 5.1.4) regarding the link between
the uncertainty, the computation time, and the optical thickness
of the medium can be made. Note that since the axisymmetric
flame profile is, on average, optically thinner than the homo-
geneous profile case, the convergence and computation times,
for a given set of κa,max and κs,max, are lower. Results obtained
on this academic case provide a benchmark solution and could



therefore be used for further algorithmic improvements.
Figure 6 simultaneously addresses the issue of the preferential
sampling performed (cf. section 3.4) and the influence of the
choice of the uniform upper-bound k̂ on the performances. The
relative statistical uncertainty, the computation time t for 106

independent realizations and the computation time t1% for 1 %
statistical uncertainty are drawn for varying values of ρ such as
k̂s = ρκs,max. Results obtained with AMC, ORMC without pref-
erential sampling and ORMC with preferential sampling are
represented. On the one hand, the interest of using preferential
sampling is highlighted. Due to the small optical thickness of
the laser sheet, it is essential to favour scattering event along the
distance travelled through the laser sheet to increase non zero
contributions and, thus, decrease the relative statistical error.
Regarding fig. 6 c) and d), preferential sampling does not in-
crease the computation time for a given number of realizations
of the algorithm and allows a strong reduction of computation
time necessary to reach 1 % statistical uncertainty (cf. fig. 6 e)
and f)).
On the other hand, the use of preferential sampling with NCA
leads to a dependence between convergence of the algorithm
and the choice of the upper bound. This can be explained sim-
ply by the expression of the preferential sampling performed
(cf.eq. (26)). The upper-bound appears in the retained weight of
Monte-Carlo. As represented in fig. 6 a) and b), the relative sta-
tistical uncertainty of ORMC can strongly increase with the in-
crease of the upper-bound k̂. Convergence of AMC and ORMC
with no preferential sampling is insensitive to the choice of
the upper-bound. This is in good agreement with the results
of Galtier et al. [6] and Eymet et al. [7]. Therefore, an ap-
propriate choice of upper bounds is especially necessary when
using a MC algorithm based on null-collision and preferential
sampling. The use of acceleration grids (naturally related to the
practice of NCA) allows to meet this particular need [10].

5.2. Application : Image rendering of inhomogeneous media
The algorithm presented in this article allows the calculation

of the intensity at a given position and in a given direction while
freeing itself from the constraints due to particularities of the
laser emission. Hence, the proposed methodology (cf. sec-
tion 4) can be used in a wide number of applications in order
to simulate the presence of such types of source, which par-
tially illuminate the studied scene. As performed in the above
section for validation purposes (cf. section 5.1), integration
of the intensity makes it easy to perform the computation of
radiative quantity such as the net flux exchanged (for walls)
or the divergence of the radiative flux (for volumes). More-
over, by integrating the intensity over the solid angle of each
pixel of a camera, such reverse algorithms can also be useful
for building computer-generated images. They make it pos-
sible to obtain a visual rendering of the radiative transfer and
to illustrate the implementation of radiative-transfer algorithms
in inhomogeneous media. Moreover, images obtained experi-
mentally can be compared to images produced numerically and,
then, serve as useful support for analysis such as the verifica-
tion of commonly-made assumptions. Future work will concern
the study of the morphology of soot by studying such images.

The generic algorithm presented here corresponds to a first step
to produce computer-generated images for such kinds of laser-
like source, as is the case of sooting flames. An academic sit-
uation is treated in this paper for proof of concept and valida-
tion issues. This algorithm can be straightforwardly applied to
treat real flames inside complex geometries described thanks to
Large Eddy Simulation. Such properties are due to the use of
computer graphics tools coupled with NCA that allow orthogo-
nality between the algorithm and the data provided.
Benchmark images were carried out on the academic configu-
ration presented in fig. 7. Purely absorbing walls (ε = 1) are
considered. The semi-transparent medium is described by an-
alytical profiles for absorption and scattering. The same three
types of analytical profile as used above (cf. section 5.1) are in-
vestigated here also. These are given in fig. 7. The bottom left
corner of the laser is located at coordinate (L/2, 0, L/2). The
thickness of the laser sheet e is set such that e/L = 0.005. The
energy emitted propagates accordingly in the x direction. The
camera is located at coordinate (L, L/2, L/2) and perpendicu-
larly to the laser propagation direction. The field of view (fov)
of the camera is set to 55.
Figure 8 represents the obtained images for each three pro-
files (lines), for three different scattering optical thicknesses
(columns) such that κs,maxL = 1, κs,maxL = 2 and κs,maxL = 5. A
unitary absorption optical thickness κa,maxL is set and 30 000 re-
alizations of the MC algorithm per pixel are performed. Images
are built with 320 × 180 pixels. The considered problem be-
ing monochromatic, images are thus in greyscale. The obtained
images give a good illustration of the scattering behaviour of
each profile studied and appear as the radiative signature of
the medium. Light scattering increases with the increase in the
maximum optical thickness. Therefore, light is scattered further
and further away from the laser sheet. For the homogeneous
medium and κs,maxL = 1, all the laser sheet is visible. This cor-
responds mainly to the first order of scattering. Then, with the
increase in the scattering, the maximum of intensity gets closer
to the left part of the image, i.e the location of the laser emis-
sion. In the case of the linear profile, because the medium is
scattering more and more linearly with the increase in the coor-
dinates, the maximum intensity is reached on the right side of
the image. Hence, one can see that light transport is greater on
the upper part than on the lower part. Finally, in the case of the
simili flame profile, the laser sheet is no longer visible on the
left and on the right part due to the lack of scattering in this part
of the domain. Then, the axisymmetric profile is visible and
light transport is also logically more emphasized on the bottom
part than on the upper part.

6. Conclusion

The study of the propagation of a laser by absorption and
scattering in heterogeneous media can be complex due to the
small directional and spatial extent of such an emitting source.
The main difficulty lies in the ability to solve the convergence
problems caused by a source that partially illuminates the stud-
ied scene. Usually, assumptions are made, such as a low order
of scattering, or a homogeneous medium, or by using light field



pre-calculations.
In order to bypass this difficulty, we developed a flexible and
simply-implementable method based on a Backward (Reverse)
Monte-Carlo algorithm. The convenient framework proposed
by Galtier et al.[6] allows us to design, by means of the in-
tegral formulation and the null-collision algorithm, a specific
and designed Monte-Carlo algorithm, which integrates the het-
erogeneity of the radiative property field and the constraints
related to a laser-like source. Convergence constraints due to
laser emission were avoided thanks to the separation of the in-
tensity into direct/diffuse terms and an adapted working of the
integral formulation. Such a decomposition made it possible to
highlight the once-scattered intensity, which corresponds to the
part of the energy reaching a given position in a given direction
after only one scattering inside the laser sheet, which can be es-
timated with a specific Monte-Carlo Algorithm. Thus, Monte-
Carlo weight could be increased more continuously, even for
scattering positions outside the laser sheet and thus, the stan-
dard deviation is decreased. The whole demonstration and the
methodological procedure, from the integral formulation to the
different Monte-Carlo algorithms required, were developed.
The presented method allows computation of the intensity at
a given position and in a given direction (probe computation).
Thus, on the one hand, divergence of the radiative flux (vol-
umes) or absorbed flux (walls) can be estimated. A validation
procedure was carried out by comparing the total absorbed flux
with both the present approaches and a well-mastered analo-
gous Monte-Carlo algorithm. Results showed, for the three
cases investigated, a very good agreement and statistical com-
patibility for a wide range of absorbing and scattering optical
thicknesses. Furthermore, such reverse algorithms (probe com-
putation) are particularly well adapted for building computer-
generated images. Hence,the implementation of this new ra-
diative transfer algorithm allowed such images to be built effi-
ciently in academic benchmark cases.
These new algorithmic developments and validations corre-
spond to the first step in producing computer-generated images
of combustion media. Thanks to the orthogonality between the
algorithm and the data permitted by the NCA and the use of ac-
celeration grids, future work can focus on obtaining a radiative
property field from Large Eddy Simulation (LES) of sooting
flames. This will allow the study of the influence of soot mor-
phologies on the radiative transfer. Finally, because of current
difficulties related to the reproduction of the exact conditions of
an experimental physical measurement such as optical systems
or the polarization state of light, an experimental confrontation
is not feasible for the moment. However, this tool will provide
a support function for the analysis of commonly made assump-
tions and experimental constraints such as trapping effects, the
influence of species present and the impact of multiple scatter-
ing in soot characterization studies.
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Optical thickness Analogous Monte Carlo Optimized Reverse Monte Carlo error ratio
κaL κsL Pa

Pe
(%) σ

Pe
(%) σ

Pa
(%) Pa

Pe
(%) σ

Pe
(%) σ

Pa
(%) |ε| (%) σ̇ (-)

0.5 0.5 0.227595 0.003631 1.59 0.226742 0.000344 0.15 0.000850 10.6
0.5 1.0 0.351265 0.004487 1.28 0.355024 0.000650 0.18 0.003761 6.9
0.5 2.0 0.440055 0.004444 1.01 0.448159 0.001033 0.23 0.008100 4.3
0.5 5.0 0.367875 0.004335 1.18 0.367485 0.001483 0.40 0.000410 2.9
1.0 0.5 0.132405 0.002167 1.63 0.131976 0.000196 0.15 0.000431 11.1
1.0 1.0 0.204412 0.003686 1.80 0.204405 0.000368 0.18 0.000013 10.0
1.0 2.0 0.246245 0.002884 1.17 0.251915 0.000581 0.23 0.005669 5.0
1.0 5.0 0.189424 0.002403 1.27 0.187337 0.000782 0.42 0.002069 3.1
2.0 0.5 0.047177 0.000832 1.76 0.047128 0.000072 0.15 0.000052 11.5
2.0 1.0 0.071320 0.001017 1.43 0.072042 0.000132 0.18 0.000719 7.7
2.0 2.0 0.083775 0.001084 1.29 0.086263 0.000213 0.24 0.002485 5.3
2.0 5.0 0.058105 0.000857 1.47 0.056526 0.000256 0.45 0.001582 3.3
5.0 0.5 0.002814 0.000055 1.97 0.002834 0.000006 0.20 0.000013 10.0
5.0 1.0 0.004204 0.000078 1.86 0.004268 0.000010 0.22 0.000058 8.3
5.0 2.0 0.004725 0.000082 1.73 0.004932 0.000014 0.28 0.000197 6.0
5.0 5.0 0.002861 0.000062 2.16 0.002681 0.000015 0.57 0.000180 4.1

Table 1: Estimation, absolute and relative standard deviation as a function of optical thicknesses. Comparison of AMC and ORMC algorithm for 106 independent
realizations in the case of homogeneous medium (without NCA and double randomization technique)



Optical thickness Analogous Monte Carlo Optimized Reverse Monte Carlo error ratio
κa,maxL κs,maxL Pa

Pe
(%) σ

Pe
(%) σ

Pa
(%) Pa

Pe
(%) σ

Pe
(%) σ

Pa
(%) |ε| (%) σ̇ (-)

0.5 0.5 0.227439 0.001506 0.66 0.227139 0.000183 0.08 0.000300 8.2
0.5 1.0 0.355959 0.001883 0.53 0.354822 0.000374 0.11 0.001137 5.0
0.5 2.0 0.445549 0.002106 0.47 0.449592 0.000681 0.15 0.004042 3.1
0.5 5.0 0.366999 0.001912 0.52 0.367606 0.001065 0.29 0.000606 1.8
1.0 0.5 0.131239 0.001144 0.87 0.132406 0.000140 0.11 0.001166 8.1
1.0 1.0 0.205819 0.001433 0.70 0.204397 0.000273 0.13 0.001422 5.2
1.0 2.0 0.253779 0.001591 0.63 0.252198 0.000484 0.19 0.001581 3.3
1.0 5.0 0.186849 0.001365 0.73 0.186661 0.000726 0.39 0.000188 1.9
2.0 0.5 0.048280 0.000694 1.43 0.047170 0.000079 0.16 0.001109 8.8
2.0 1.0 0.071990 0.000848 1.19 0.072006 0.000154 0.21 0.000016 5.5
2.0 2.0 0.085860 0.000926 1.08 0.086795 0.000268 0.3 0.000935 3.4
2.0 5.0 0.055720 0.000746 1.34 0.056183 0.000378 0.68 0.000463 2.0
5.0 0.5 0.002770 0.000166 5.81 0.002840 0.000018 0.63 0.000070 9.2
5.0 1.0 0.004190 0.000204 4.83 0.004256 0.000032 0.76 0.000067 6.3
5.0 2.0 0.005010 0.000223 4.57 0.004906 0.000056 1.13 0.000103 4.0
5.0 5.0 0.002640 0.000162 6.15 0.002736 0.000076 2.91 0.000097 2.0

Table 2: Estimation, absolute and relative standard deviation as a function
of optical thicknesses. Comparison of AMC and ORMC algorithm for 107

independent realizations in the case of homogeneous medium (with NCA and
double randomization technique)

Optical thickness Analogous Monte Carlo Optimized Reverse Monte Carlo ratio

κa,maxL κs,maxL t (s) t1% (s) t (s) t1% (s) tAMC
1%

tORMC
1%

(-)

0.5 0.5 31.84 13.66 63.30 0.39 34.67
0.5 1.0 42.79 11.45 79.67 0.81 14.08
0.5 2.0 66.18 14.03 115.46 2.51 5.57
0.5 5.0 132.21 34.32 235.89 18.5 1.85
1.0 0.5 31.74 22.85 63.21 0.76 29.92
1.0 1.0 43.47 19.62 81.51 1.21 16.10
1.0 2.0 65.23 24.32 113.5 4.32 5.62
1.0 5.0 131.1 67.69 230.27 33.5 2.01
2.0 0.5 31.55 66.86 62.32 1.47 45.38
2.0 1.0 44.17 58.00 80.43 3.65 15.84
2.0 2.0 65.55 73.43 115.8 9.90 7.41
2.0 5.0 133.43 220.0 228.78 101.5 2.16
5.0 0.5 32.46 1088.29 64.45 25.3 42.96
5.0 1.0 44.08 1030.27 80.32 52.6 19.55
5.0 2.0 69.12 1276.54 117.04 161.4 7.90
5.0 5.0 130.4 4596.71 229.01 1820.2 2.52

Table 3: Comparison of AMC and ORMC algorithm in the case of homoge-
neous medium (with NCA and double randomization technique); computation
time t for 107 independent realizations, computation time t1% for 1 % statistical
uncertainty and ratio tAMC

1% /tORMC
1% between ORMC and AMC. This computa-

tion was performed with an ”Intel i5 - 2.4 GHz” CPU without any paralleliza-
tion.



Optical thickness Analogous Monte Carlo Optimized Reverse Monte Carlo error ratio
κa,maxL κs,maxL Pa

Pe
(%) σ

Pe
(%) σ

Pa
(%) Pa

Pe
(%) σ

Pe
(%) σ

Pa
(%) |ε| (%) σ̇ (-)

0.5 0.5 0.129679 0.001138 0.88 0.131952 0.000119 0.09 0.002272 9.5
0.5 1.0 0.237989 0.001540 0.65 0.240220 0.000251 0.10 0.002230 6.1
0.5 2.0 0.404389 0.002007 0.50 0.401241 0.000512 0.12 0.003148 3.9
0.5 5.0 0.630090 0.002502 0.40 0.632488 0.001135 0.18 0.002398 2.2
1.0 0.5 0.107860 0.001037 0.96 0.109157 0.000109 0.10 0.001297 9.5
1.0 1.0 0.196739 0.001401 0.71 0.198997 0.000225 0.11 0.002257 6.2
1.0 2.0 0.335599 0.001828 0.54 0.333091 0.000455 0.14 0.002508 4.0
1.0 5.0 0.526880 0.002289 0.43 0.525729 0.001009 0.19 0.001150 2.3
2.0 0.5 0.075900 0.000870 1.14 0.075967 0.000091 0.12 0.000068 9.6
2.0 1.0 0.139329 0.001179 0.84 0.138886 0.000184 0.13 0.000443 6.4
2.0 2.0 0.233919 0.001527 0.65 0.234908 0.000373 0.16 0.000988 4.1
2.0 5.0 0.373769 0.001929 0.51 0.373076 0.000827 0.22 0.000693 2.3
5.0 0.5 0.030130 0.000548 1.82 0.029244 0.000054 0.19 0.000885 10.1
5.0 1.0 0.054210 0.000736 1.35 0.054202 0.000112 0.21 0.000007 6.6
5.0 2.0 0.092800 0.000962 1.04 0.093000 0.000225 0.24 0.000200 4.3
5.0 5.0 0.152469 0.001233 0.81 0.151448 0.000491 0.32 0.001021 2.5

Table 4: Estimation, absolute and relative standard deviation as a function
of optical thicknesses. Comparison of AMC and ORMC algorithm for 107

independent realizations in the case of heterogeneous medium: profile of an
axisymmetric flame.

Optical thickness Analogous Monte Carlo Optimized Reverse Monte Carlo ratio

κa,maxL κs,maxL t (s) t1% (s) t (s) t1% (s) tAMC
1%

tORMC
1%

(-)

0.5 0.5 25.33 18.07 57.56 0.40 45.21
0.5 1.0 30.56 12.21 67.36 0.95 12.80
0.5 2.0 40.62 9.99 89.31 1.45 6.86
0.5 5.0 71.82 11.05 152.83 4.76 2.32
1.0 0.5 25.15 23.64 56.37 0.51 46.24
1.0 1.0 30.27 15.13 66.68 0.82 18.34
1.0 2.0 41.92 12.10 88.12 1.44 8.41
1.0 5.0 74.02 13.56 145.61 5.32 2.54
2.0 0.5 25.53 34.37 55.06 0.70 49.35
2.0 1.0 31.96 22.61 67.39 1.09 20.81
2.0 2.0 42.14 18.44 84.25 2.51 7.33
2.0 5.0 72.48 19.85 151.66 6.89 2.88
5.0 0.5 29.33 97.54 58.93 2.07 47.01
5.0 1.0 35.14 63.69 69.22 3.25 19.59
5.0 2.0 47.11 50.30 91.04 5.92 8.49
5.0 5.0 77.18 51.86 157.03 17.11 3.03

Table 5: Comparison of AMC and ORMC algorithm in the case of hetero-
geneous medium (axisymmetric flame); computation time t for 107 indepen-
dent realizations, computation time t1% for 1 % statistical uncertainty and ratio
tAMC
1% /tORMC

1% between ORMC and AMC. This computation was performed with
an ”Intel i5 - 2.4 GHz” CPU without any parallelization.
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Figure 4: Description of the proposed algorithm. It follows a classical reverse
Monte-Carlo with a specific branch associated with the integration of a source
partially illuminating the scene.
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Figure 5: Ratio between power absorbed and power emitted Pa/Pe ± 3σ/Pe
as a function of maximum scattering optical thickness κs,maxL for κa,maxL = 1.0
and using 107 independent realizations. Comparison between ARM and ORMC
algorithm for: (a) homogeneous medium with NCA and double randomization
technique (b) linear profile (c) profile of an axisymmetric flame.
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Figure 6: Computational performance of Monte Carlo methods such as Analogous Monte Carlo and Optimized Reverse Monte Carlo (with and without preferential
sampling) as a function of the choice of the majorant k̂s = ρκs,max in the case of heterogeneous medium (axisymmetric flame): a), c) and e) correspond to a slightly
scattering medium κs,maxL = 0.5 while b), d) and f) correspond to a strongly scattering medium κs,maxL = 5.0; a) and b): Relative statistical uncertainty for 106

independent realizations. Convergence of ORMC is dependent on the choice of the upper-bound; c) and d) Computation time t for 106 independent realization.
Based on several sub-paths, ORMC is more sensitive than AMC to the choice of the upper-bound; e) and f) Computation time t1% for a 1 % statistical uncertainty.
This computation was performed with an ”Intel i5 - 2.4 GHz” CPU without any parallelization.



Figure 7: Configuration for the computer-generated images with analytical
profiles of radiative properties



Figure 8: Benchmark images (320 × 180 pixels) of three different analytical
profiles: homogeneous medium, linear profile and simili flame profile and for
three different maximum scattering optical thicknesses. Maximum absorption
optical thickness is unitary and 30000 realizations per pixel are performed
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