
HAL Id: hal-03198701
https://imt-mines-albi.hal.science/hal-03198701

Submitted on 8 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Transformation from CBM to EPL Rules to
Detect Failure Symptoms

Alexandre Sarazin, Sébastien Truptil, Aurelie Montarnal, Jérémy Bascans,
Xavier Lorca

To cite this version:
Alexandre Sarazin, Sébastien Truptil, Aurelie Montarnal, Jérémy Bascans, Xavier Lorca. Model
Transformation from CBM to EPL Rules to Detect Failure Symptoms. MODELSWARD 2020 -
8th International Conference on Model-Driven Engineering and Software Development, Feb 2020, La
Valette, Malta. pp.200-224, �10.1007/978-3-030-67445-8_9�. �hal-03198701�

https://imt-mines-albi.hal.science/hal-03198701
https://hal.archives-ouvertes.fr


Model Transformation from CBM to EPL
Rules to Detect Failure Symptoms

Alexandre Sarazin1,2(B), Sebastien Truptil3(B), Aurélie Montarnal2(B),
Jérémy Bascans1(B), and Xavier Lorca2(B)

1 APSYS, 36 Rue Raymond Grimaud, 31700 Blagnac, France
alexandre-m.sarazin@mines-albi.fr, jeremy.bascans@apsys-airbus.com

2 IMT Mines Albi, Centre de Génie Industriel, Allée des Sciences, 81000 Albi, France
{aurelie.montarnal,xavier.lorca}@mines-albi.fr

3 CEA, CEA Tech Occitanie, 51 Rue de l’Innovation, 31670 Labège, France
sebastien.truptil@cea.fr

Abstract. The increasing complexity of modern systems, cost reduc-
tion policies and ever increasing safety requirements are bringing new
challenges to the maintenance domain. In many fields, periodic mainte-
nance actions become either insufficient or too expensive. In this con-
text, Condition-Based Maintenance (CBM) strategies, and Prognostics
and Health Management (PHM) in particular, are offering an interest-
ing alternative by allowing systems to be maintained only when needed.
These strategies rely on a constant monitoring and analysis of the sys-
tems operating conditions in order to detect and identify a failure when
it occurs and even sometimes beforehand.

Nowadays, two main approaches are explored to detect failures in
PHM solutions: one based on machine learning, the other based on exper-
tise and capitalised system knowledge. This work proposes to combine a
Complex Event Processing (CEP), to manage incoming data’s volume-
try and velocity, with an Expert System (ES) in charge of exploiting the
capitalized knowledge. This paper focuses on the configuration of a CEP
from rules contained in a CBM ES using a Model Driven Architecture
(MDA). This configuration is a challenge, especially regarding the man-
agement of rules with temporal parameters and the need for intermediate
results to deal with the rule’s complexity.

Keywords: Maintenance · Knowledge base · Model transformation

1 Introduction

Maintenance is defined as the “combination of all technical, administrative and
managerial actions during the life cycle of an item intended to retain it in,
or restore it to, a state in which it can perform the required function” [1]. In
particular, preventive maintenance describes maintenance action carried out to
assess and/or to mitigate the degradation and reduce the probability of failure
of an item. Condition-based maintenance (CBM) is a specific kind of preventive

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67445-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-67445-8_9


maintenance assessing the systems physical conditions and analysing them to
identify possible ensuing maintenance actions. Among the many solutions used
for CBM data analysis, the two main strategies are data-driven and Expert
Systems (ES).

Data-driven strategies, mostly consisting of machine learning algorithms,
classify failures from past experience. The drawbacks of these approaches are
the difficulty to explain the result and the large amount of reliable and relevant
failure records required to train the learning algorithm. In fields like aeronautics
where systems reliability is already strong, collecting a large amount of records
of the same failure on identical systems is a very challenging task. However, the
main advantage is the limited domain knowledge required to implement them.

ES approaches reproduce an expert reasoning by exploiting a base of facts
and rules created from capitalised expert knowledge. However, according to [30],
ES have “common defects in efficiency, scalability and applicability”.

In order to solve the scalability issue, in particular from the data ingestion
perspective, [25] proposed to use Complex Event Processing (CEP) to moni-
tor and process the incoming data. The monitoring rules should be provided
by the ES base of facts and transformed into generic rules and Event Process-
ing Language (EPL) rules according to the Model Driven Architecture (MDA)
methodology. However, the transformations proposed do not manage rules acti-
vated over a timeframe observation. For instance, a rule is activated if a condition
is fulfilled continuously or repeats itself several times in a predefined timeframe.
Yet, these kinds of rules can be written in EPL. In order to integrate these rules,
this paper proposes an updated version of the transformations defined in [25].

In Sect. 2, the notions of PHM, ES and CEP will be defined and the moti-
vation behind their combination will be explained. In Sect. 3, the CBM, generic
rules and EPL metamodels will be presented. In the 4th section, the model trans-
formations from these models will be detailed according to the MDA method-
ology. Finally, in Sect. 5, a representative case study is used to illustrate these
transformations while stressing the need for considering timeframe based rules.

2 Use PHM Approach to Detect Failure Symptoms

2.1 Prognostics and Health Management

Modern maintenance is confronted to many challenges. Firstly, the systems
become more and more complex which raises the difficulty in identifying and
preventing failures. Secondly, the safety and availability requirements are get-
ting increasingly demanding. As such, systems reliability is constantly being chal-
lenged. Moreover, cost reduction has become a strategic stake in many industrial
fields and maintenance is not spared.

2



In this context, periodic maintenance, also known as time-based mainte-
nance, is becoming insufficient as unnecessary actions become too expensive and
unexpected failures affect availability and reliability [17]. In order to tackle these
challenges, maintenance needs to be performed only when needed. Consequently,
monitoring the systems working conditions in real time should be performed to
detect and identify failures the moment they occur or, in best cases, beforehand.
Prognostics and Health Management is a CBM strategy defined by [29] as “a
method that permits the reliability of a system to be evaluated in its actual
life-cycle conditions, to determine the advent of failure, and mitigate the system
risks”. It is composed of 7 main steps designed to collect, monitor and process
sensor data in order to identify failures and estimate the Remaining Useful Life
(RUL) of the defective system (Fig. 1). This information can then be processed
by a decision support system and displayed to the end user [6,22] .

Fig. 1. PHM 7 steps [19].

The first step is to collect data in the system’s actual life cycle conditions.
This step is critical, as the relevance and quality of the collected data have a
major impact on the quality of any further analysis. The second step is the data
processing. It is meant to clean and transform collected data into more relevant
variables before analysis. The third step is to assess the system’s health status
through anomaly detection based on the processed data. Next, potential fail-
ures and root causes should be identified. Depending on the identified failure, a
degradation model should be chosen and applied to estimate the defective sys-
tems RUL in the prognostics phase. Finally, this information should be provided
to a decision support system and displayed to the end user.

3



Although PHM architecture addresses modern maintenance issues, it also
raises several technical challenges. In particular, ingesting and processing a large
amount of incoming sensor data in an acceptable time is no simple task.

2.2 Expert System

In order to assess the system’s health and diagnose failures, two main strategies
can be adopted: data-driven or Expert Systems (ES). Data-driven technolo-
gies mostly rely on learning algorithms to detect anomalies and identify failures
from a set of past records. However, this approach has benefits and drawbacks.
This approach could detect maintenance needs even if the cause or the rea-
son of the malfunction is unknown or not explainable. Nevertheless, the results
obtained from these algorithms are hardly explainable and the confidence on
the result depends on the number and the representativeness of the learning
dataset. Depending on the observed system, collecting the learning dataset can
be challenging, especially in fields like aeronautics where reliability is a major
concern.

This work focuses on system without enough learning dataset but with
available expert knowledge and safety documentation. To exploit this knowl-
edge, we believe that an Expert System (ES) is interesting as explained in
[9,12,17,21,22,28]. An ES is a computer program in which expert knowledge
is implemented for a specific topic in order to solve problems or provide some
advice [16]. ES are composed of a user interface, an inference engine and a
knowledge base [23]. The user interface is meant to allow the user to interact
with the system. The knowledge base structures a set of facts and rules describ-
ing the monitored system as well as the symptom and failures which can affect
it. This component can be implemented using a static and dynamic database.
The static database is meant to collect domain expert knowledge on the system.
This database is stable, even though facts and rules may be added or modi-
fied. It should also be complete, consistent and accurate for the ES to perform
acceptable analysis. The dynamic database, however, is used to “store all infor-
mation obtained from the user, as well as intermediate conclusions (facts) that
are inferred during the reasoning” [20]. Its content is lost at the end of each
execution. An inference engine processes this knowledge base and reaches a con-
clusion. It can be used as a “control structure [...] that allows the expert to
use search strategies to test different hypotheses to arrive at expert system con-
clusions” [23]. Using an ES can thus be considered a solution to capitalize and
exploit the available knowledge on the system. In the maintenance context, the
rules for anomaly detection, diagnostic and prognostic must be applied to the
input data in order to identify failures and estimate the RUL.

Although ES offers a good solution for processing maintenance data, this solu-
tion has scalability limits and can not easily process a large amount of incoming
data [30]. Complex Event Processing (CEP) can be used to fill this gap.

4



2.3 Complex Event Processing

Managing the inflow of data is one of the main issues in implementing PHM,
especially on complex systems. As an acceptable monitoring can only be per-
formed when many sensors of different types are set on the system, the volume
and velocity of these inputs are challenging to process. These processing issues
share common characteristics with big data problems defined through the 5V
[18]: volume of the collected data, velocity of its update, veracity of the informa-
tion, variety of the sources and value of the information. To process the input
data with reduced volume and velocity, a CEP can be used.

As described by [11], a CEP engine aims at processing data efficiently to
immediately recognise patterns when they occur. It was first introduced by
Luckham and Fransca [24] to process events at multiple levels of abstraction.
It enables a system to reach passive context-awareness, however, unlike expert
systems, it does not take decisions or recommendations. A CEP engine is based
on a set of complex event processing rules. According to [8,10], each rule enables
to:

– Detect the occurrence of patterns based on presence or absence of linked
events (e.g. incoming data)

– Filter events thanks to conditions;
– Generate new events, called complex events, based on incoming events. These

complex events can be processed as new incoming events.

Depending on the language used to describe the complex event processing rules,
the condition used to filter conditions could be simple (comparison to a thresh-
old) or more complex with some functionality using temporal windows. Regard-
ing the needs of the PHM approach, the use of temporal windows to detect
abnormal situation is a requirement. Thus CEP using rules implementing Event
Processing Languages (EPL) is a suitable option. EPLs are SQL-like languages
designed support CEP solutions by defining events, conditions and patterns in
order to detect interesting behaviors in the data [7]. ESPERTech1 or Siddhi2 are
some examples of well-known EPL-based solutions.

In conclusion, to support PHM, ES and CEP are both useful and comple-
mentary. Indeed, CEP are designed to monitor large amounts of data in real
time and detect patterns based on predefined rules whereas ES allow further
analysis such as diagnostics or prognostics.

2.4 Using CEP and Expert System to Support PHM Approach

As detailed in [25], CEP can be combined with an ES in a PHM architecture.
Indeed, as explained in previous sections, CEP and ES both have advantages and
drawbacks. A CEP is designed to monitor large amounts of data in real time
and detect patterns. Thus a CEP could reduce the flow of data but it could not

1 http://www.espertech.com/.
2 https://docs.wso2.com/display/CEP300/Siddhi+Language+Specification.

5

http://www.espertech.com/
https://docs.wso2.com/display/CEP300/Siddhi+Language+Specification


perform a diagnosis. An ES analyses data (to provide diagnostics or prognostics)
and explains the analysis result but the processing could be slow. Therefore,
the combination of the two technologies is relevant in a PHM application. To
combine the two technologies, the anomaly detection rules implemented in the
ES knowledge base should be transformed into EPL rules to be applied by the
CEP according to Figure 2.

Fig. 2. Relation between CEP and expert system adapted from [25].

In this architecture, incoming sensor data with high velocity and volume
should be injected in the CEP. Used as a filter, the CEP then detects the relevant
anomalies based on rules extracted from the ES knowledge base. The detected
events can then be processed by an inference engine to identify the related failure.
This information can then be displayed to the end-user through an interface.

The main issue in combining CEP and ES, is to transform CBM rules into
EPL. Moreover, according to [7], one of the downsides of CEP systems is their
first hand complexity. In order to ease the domain experts work in implementing
CEP solutions despite the lack of EPL knowledge, a meta model for EPL and an
automatic model-to-code solution have been designed to implement the rules in
commercial solutions. The EPL metamodel proposed by [7] is detailed in Fig.3.

This EPL metamodel is composed of four main types of components: the
“SearchConditions”,“Pattern”, “Output” and “Link” elements.

To illustrate these types of components, the following simple examples are
used: if x > y then z and if Mean(k,l,m) > y then z.

The “Link” elements are designed to connect the elements of the three other
components. It is divided into operands (as x, k, l, m, y and also Mean(k,l,m))
and operators (as >). An operator is an operation performed on one or several
operands. Operators can either be Unary, Binary or N-ary depending on the
number of operands they can be applied on.

6



Fig. 3. EPL metamodel [7].

The “SearchConditions” component is a collection of “ConditionsElement”.
These elements are rules composed of “ConditionExpression” elements (as x
> y and Mean(k,l,m) > y). These “ConditionExpression” elements are built
from“DataWindow” (as x, y, Mean(k,l,m)), acting as operands, compared with
operators. “DataWindow” are transformations of “WindowElement” (as k, l, m
and x) which are input data.

The “Pattern” component is defined as “a template specifying conditions
which can match sets of related events”. It is used to manage sets of events
occurring in a timeframe. For instance, a “PatternCondition” can count the
occurrence of a specific type of event while the “PatternTimer” specifies the
length of a monitoring timeframe. All these elements can be considered in the
transformation process and thus leads to extend the work of Sarazin et al. [25].

Finally, the “Output” (as z) component specifies the features of the complex
event generated by the rules activation. It can be composed of several events
each possessing properties and generated using expressions.

Further details about the elements of this model are available in Boubeta-
Puig et al. [7].

3 Proposed Model Driven Architecture

The previous sections aim to argue that the use of CEP combined to ES is
relevant to provide a PHM architecture. The combination of the two technologies
is based on conditions used to detect relevant anomalies. Indeed, CEP are used

7



to reduce the incoming flow of data to the ES. Therefore, the configuration of
the CEP essentially depends on the ES content. This paper’s proposal is to
automatically configure the CEP from the ES using a model driven architecture
(MDA) [26]. This section presents first the concepts as Model, Metamodel and
Model Transformation, before proposing a model transformation from CBM to
CEP rules based on an MDA methodology.

3.1 Model, Metamodel, Model Transformation

According to [2], a model is a “formal specification of the function, structure
and/or behavior of an application or system”. It should also be noticed that a
single system can be represented by many different models depending on the
point of view adopted [4]. The rules used to create and structure a model are
defined using a metamodel, which is an “explicit specification of an abstraction”
[3]. It defines the concepts manipulated in a model and the relations between
them. A model can thus be considered as an instance of a metamodel and all
models must conform to their own metamodels, conforming themselves to a
metametamodel [5].

In order to differentiate the business concepts manipulated in a system from
the technological platform used to implement them, a model-based methodology
named Model Driven Architecture (MDA) has been defined [26]. This method-
ology can be used in software development to separate the design steps based on
the formalisation of business logic from the the technical implementation steps.
According to the MDA guide, this methodology improves the “portability, inter-
operability and reusability” of the final result. The MDA methodology relies on
four main types of models [2,26]:

– The Computation Independant Model (CIM)
– The Platform Independent Model (PIM)
– The Platform Model (PM)
– The Platform Specific Model (PSM)

The CIM is designed from the formalisation of the business logic by a domain
expert with its own vocabulary. According to the MDA methodology, once the
CIM is defined, the PIM can be designed to include a first level of specification.
The PIM purpose is to make it possible to adapt the CIM to different platforms
of the same kind. The PM describes the platform used to implement the model.
It describes the concepts manipulated in the platform and the structure binding
these concepts together. Finally, the PSM is defined as a “view of a system from
the platform specific viewpoint”. It is the implementation of the PIM on the
platform modeled by the PM. [2].

MDA methodology consists in transforming a CIM to a PIM and a PIM to
a PSM. This process is called model transformation [2]. It can also be defined
as “a transformation operation Mt taking a model Ma as the source model and
producing a model Mb as the target model” [5]. In a model transformation,
all concepts may not be commonly shared by the source and target models.

8



Consequently, the first step of a model transformation is to identify the shared
concepts in each model, which correspond to the transformation domain, and the
specific concepts which are not shared (Fig. 4). In the transformation domain,
the concepts are then converted from the source to the target model using trans-
formation/mapping rules. The specific part of the source model can be consid-
ered as capitalized knowledge while the specific concepts of the target model are
additional knowledge that should be implemented from external sources [27].

Fig. 4. Model transformation principle [27].

3.2 Model-Driven Architecture from CBM to EPL Rules

To transform CBM rules into CEP rules, an MDA can be implemented. Accord-
ing to the MDA philosophy, the transformation should be performed in two steps:
the first step is to transform the CBM model into generic rules and the second
step should convert these generic rules into CEP rules. Should alternatives to
modern CEP emerge, the generic rules are designed to improve the transforma-
tion’s adaptability towards new solutions. Consequently, CBM and generic rules
refer to CIMs because the rules contain no platform specification even though
their respective structures are different. However, EPL rules can be assimilated
as a PIM. In [7], a model to code transformation has been presented to con-
vert EPL rules into more specific languages like EQL, CQL, SteamSQL or CCL.
These languages could be considered as PMs and the rules implementations in
these languages would be PSMs.

In this paper, a metamodel for generic rules will be defined and the trans-
formation rules from CBM to generic rules and from generic rules to EPL will
be detailed (Fig. 5).

9



Fig. 5. Model transformation from a CBM to EPL rules [25].

The first transformation should convert CBM rules into generic rules. As
such, a metamodel should be used to define and structure the concepts manip-
ulated in a CBM rule. The metamodel chosen has been designed by [13] with
concepts defined from ISO standards. This metamodel describes the different
parts of a CBM solution (Fig. 6). According to this metamodel, a CBM solution
is divided into 5 parts:

– Physical Description
– Functional Description
– Information Sources
– Symptom Analysis
– Maintenance Decision-Making

The “Physical Description” part is composed of all information related to
the systems structure. It describes the different components to the maintain-
able items level which are “the group of parts of the equipment unit that are
commonly maintained (repaired/restored) as a whole” [15].

The “Functional Description” part regroups the functions performed by
the equipment units. For each function, the related functional failures are also
described and the failure modes for each functional failure are provided.

The “Information Sources” block collects all the elements related to infor-
mation gathering. This block contains monitoring variables generated from sen-
sor data, variables, and measurement techniques. These monitoring variables
are meant to be used by the “Symptom Analysis” block for anomaly detection
purpose.

The “Symptom Analysis” block defines the descriptors, symptoms and infor-
mation rules. A descriptor is a “feature, data item derived from raw or processed
parameters or external observation” [14]. A descriptor is produced by processing
one or several monitoring variables. A symptom is a “perception, made by means
of human observations and measurements (descriptors), which may indicate the
presence of one or more faults with a certain probability” [14]. An interpretation
rule is “the description of how the descriptor values have to be interpreted or

10



treated in order to get the monitoring outputs (detection, diagnosis, prognosis)
for a failure mode” [13].

Finally, the “Maintenance Decision-Making” block, regroups several CBM
processes divided into three types: anomaly detection, diagnosis and prognosis
activities. The detection element is used to calculate the descriptors values and
spot abnormal behaviors using interpretation rules. It is a “conclusion or group
of conclusions drawn about a system or unit under test” [14]. When an anomaly
is detected, it can trigger a diagnosis process in order to identify the related
failure and the responsible maintainable item. When an anomaly or a diagnostic
process is performed, it can also trigger a prognostics process to estimate the
Remaining Useful Life of a maintainable item. The results of these processes are
collected by a maintenance decision process meant to help the end-user.

Fig. 6. Basic structure for the CBM solution [13].

4 Model Transformation

Once the motivations to combine ES and CEP in a PHM architecture have been
explained, the model transformation from CBM to EPL should be detailed. This
transformation is performed in two steps: the CBM rules are first converted into
generic rules before being transformed into EPL. In this chapter, the metamodel
for generic rules will first be detailed, then the mapping for the first and second
transformations will be described.

11



Fig. 7. Generic rules metamodel.

4.1 Generic Rules Metamodel

The first model transformation converts CBM rules into generic rules. As the
metamodel for CBM has been previously presented, the generic rules metamodel
should now be detailed (Fig. 7). The purpose of designing these generic rules is to
improve the transformation adaptability should an alternative to EPL emerge.
This metamodel should define a rule general structure while staying at a con-
ceptual level.

According to this metamodel, input data can be transformed into a variable
using a formula. This variable can then generate a complex variable which can
be created from several variables using a formula and/or by applying timeframe
operators. Two timeframe operators are presented in this metamodel: “during
timeline” which counts the duration of an event are situation in a predefined
timeline and “occurs in timeline” which counts the number of occurrences of an
event in a given timeline. These operators and their aggregation in a complex
variable can be considered a major modification of the version presented in [25]
because it allows the event’s chronology to be considered when defining rules
activation conditions. The generated complex variable can then be used as a
variable. Indeed, a complex variable is a specific kind of variable, which is usually
more expensive to create in terms of duration or calculation.

A condition is a comparison operator (e.g. ≤,≥,=) applied to two operands,
which can be either a constant value or a variable. A complex condition is an aggre-
gation of two simple or complex conditions related by a logical operator (e.g. AND,

12



OR). For instance (a ≥ b)OR(c ≤ d) is a complex condition composed of two con-
ditions (a ≥ b) and (c ≤ d) related by the logical operator “OR”. The highest
level complex condition activates a rule which generates an output. This output
can potentially be used as an input for an another rule and inserted as a variable.
Consequently, a business rule could be converted into several generic rules.

Once the generic rules metamodel has been defined, the mapping rules with
the CBM metamodel presented previously can be detailed.

4.2 From CBM Knowledge Base to Generic Rules

As the source and target models for the first transformation, respectively the
CBM and generic rules metamodels, have been defined, the mapping rules can
be detailed. The first step in performing model transformation is to identify the
shared concepts. In the source model, these concepts are:

– the sensor and variables which can be considered as inputs
– measurement techniques as a first input processing
– the monitoring variables which result from input data transformation
– the descriptors which define how the monitoring data should be processed
– the symptoms for rule characterization
– the interpretation rules to define the activation conditions including operators

and threshold values
– the detection, diagnosis and prognosis elements to indicate which actions

should be triggered by the rule activation

In order to connect these elements to target model concepts, mapping rules
should be applied according to Table 1.

Table 1. Transformation rules from a CBM model into generic rules.

CBM model concept Generic rule model concept

Sensor Input data

variable Input data

Measurement technique Formula

Descriptor During dimeline

Occurs in timeline

Formula

Variable

Complex variable

Monitoring variable Variable

Interpretation rules Constant

Comparison operator

Logical operator

Condition

Complex condition

Rule

Output

Symptom Rule

Diagnosis, detection, prognosis Output

13



According to this mapping, the source model’s sensor and variable concepts
can be matched as input data in the target model. These input data are then
transformed into a target model variable using a formula. The process is similar
to the generation of the source model’s monitoring variable from measurement
techniques applied to a sensor or variable. As such measurement techniques are
matched with a formula and monitoring variable as a target model’s variable.

A descriptor is processed from the transformation of one or several monitoring
variables using a formula and/or timeline operators. Consequently, a descriptor
is mapped to several target model’s concepts. Depending on the descriptor’s
content, formula and variable instances can be generated or even complex vari-
able with “during timeline” and/or “occurs in timeline” instances. Interpreta-
tion rules define the conditions applied to a descriptor to trigger a maintenance
action.

Similar to descriptors, interpretation rules can be mapped to several target
model’s concepts depending on their content. Indeed, interpretation rules can
be matched with complex conditions and generate the conditions, logical and
comparison operators they are composed of. Should an interpretation rule be too
complex, an output can be generated to be used as variable in a new rule. One
such example will be presented in chapter 5. The symptom component provides
business logic on the state of the system depending on the interpretation rule’s
activation. It can thus be mapped to the target model’s rule. The maintenance
actions can be triggered by the rule activation and can thus be matched as a
rule output.

Once the generic rules are designed, the second transformation into EPL
rules can be performed.

4.3 From Generic Rules to EPL

This section aims at presenting the mapping rules, available in Table 2, from
generic rules to EPL. In this table, the generic rule model concepts of Table 1
have been factorised to simplify the connection with the EPL model concepts. As
a reminder, CEP is designed to monitor large amounts of data in real time and
detect patterns thanks to rules which respect the EPL Metamodel. To achieve
this purpose, a CEP receives incoming data, named “WindowElement”, which
has to be combined with others to create a “DataElement”. The combination of
incoming data could be based on a “PatternExpression” such as the number of
occurrences during a timeframe or others aggregation operators as well as the
identity function. Once a “DataElement” is generated, a CEP aims to identify
a desired pattern referred to as a “SearchCondition” that is a combination of
“ConditionElement”. More extensive details have been presented in Sect. 2.4.

According to these mapping rules, the source model’s input data corresponds
to the target model’s WindowElement. A WindowElement can be transformed
by a PatternExpression, which refers to a formula, in order to provide a DataEle-
ment that refers to a variable. Regarding the complex variables, it is obvious that
they refer to DataWindow because they are generated based on a combination
of variables thanks to aggregation operators. This means that a variable could

14



Table 2. Transformation rules from generic rules to EPL.

Generic rule model concept EPL model concept

Input data WindowElement

Variable DataWindow or WindowElement

Formula PatternExpression

Occurs in timeline PatternCondition

During timeline PatternTimer

Complex Variable DataWindow

Constant Operand

Comparison operator Operator

Logical operator Operator

Condition ConditionElement

Complex condition SearchConditions

Rule EPLModel

Output OutputElement

be a WindowElement. Thus depending on the rule, variables could refers to
DataWindow or WindowElement.

The “Occurs in timeline” operator is a pattern condition while the “During
timeline” operator is a PatternTimer. A constant is matched as an operand,
while the logical and comparison operators are matched as operators. A condi-
tion, composed of operands and operators, corresponds to a ConditionElement.
A complex condition, composed of several conditions can be assimilated to a
SearchCondition element. Finally, the rule, activated by a complex condition
and generating a output can be translated as an EPLModel and the source
model’s output as an OutputElement. In addition, the OutputElement could be
used as a new incoming event by CEP as explained in Sect. 2.3. Thus, the gen-
erated output element may then be integrated as a WindowElement of another
rule.

These rules allow generic rules to be transformed into EPL rules. In the next
chapter, examples of such transformations will be presented.

5 Case Study/Illustration

Previously, the motivations behind combining CEP and ES in a PHM solu-
tion have been explained. The metamodels for CBM, generic and EPL rules
have been presented and the mapping rules have been specified according to the
MDA methodology. In this section, a realistic case study with two CBM rules
will illustrate how these transformations should be applied. Events chronology
management will be displayed to demonstrate the value of these transformations
extended from the work of [25].

15



5.1 System Description

The proposed case study consists in detecting abnormal situations on a system
in charge of regulating the airflow in a room. To ensure this functionality the
considered system is composed of two actuators A1 and A2 which have to open
or close a “panel”. A2 can be considered as A1 backup. As such they should be
opened and closed at the same time. An abnormal situation is referring to (1)
an abnormal opening or closing of the panel and or (2) to an overpressure in the
room. In order to detect these abnormal situations, data are gathered by sensors
and sent to the PHM architecture. This data is:

– two Boolean variables are used to indicate the actuators position:
• FO: equals 0 if the actuator is not opened and 1 if opened
• FC: equals 0 if the actuator is not closed and 1 if closed

– P: the pressure inside the room.

Therefore, the following input data are available to detect abnormal situa-
tions: A1 FO, A1 FC, A2 FO, A2 FC and P. Based on these data, the following
rules could be used to detect the two kind of abnormal situations:

1. One of the Two Actuators Has Failed: This situation occurs when A1
and A2 are in different positions or it can be due to a loss of signal which
implies that the Boolean value has not been updated. These abnormal situ-
ations could be identified thanks to the following logical expression:

If (A1 FO �= A2 FO) AND (A1 FC �= A2 FC)

2. Risk of Overpressure inside the Room Increases: When the pressure
inside the room increases by 0.14psid in a 500 ms timeframe during at least 1s
or if this same increase occurs 3 times in 10 s. Figure 8 illustrates the detection
of over-pressure in the room. This figure simulates incoming P values each

Fig. 8. Illustration of the detection of overpressure in the room.

16



500ms and the value of the two timeframes (1s and 10s) based on the value
of the pressure difference ∆P . If the value of ∆P is over 0.14psi, then each
timeframe increases by 1 and if the value of the timeframe is over the thresh-
old, then an alert of risk of over-pressure has to be identified. This figure
illustrates also that the timeframe value could decrease if ∆P ≤ 0.14psi.

This case study is relevant because the first rule illustrates the transposition
of a rule with several monitored variables in the generic rule metamodel and the
EPL metamodel whereas the second rule illustrates how to interpret the time
windows in the generic and EPL metmamodel.

5.2 Examples of CBM Models

The models of the two previously presented rules are respectively detailed in
Fig. 9.

Fig. 9. CBM model for the two rules.

In the first example, A1 FO, A2 FO, A1 FC and A2 FC are being monitored
and compared in the interpretation rule (A1 FO <> A2 FO)AND (A1 FC <>

A2 FC). The related symptom is called “S1” and triggers a diagnosis action
when the interpretation rule is activated. This example is meant to detail how
to manage several inputs in the transformation process.

In the second example, only the pressure is being monitored. The data gener-
ated form the sensor is transformed by the measurement technique ∆ into a mon-
itoring variable ∆P . This monitoring variable generates an identical ∆P descrip-
tor which is used in the interpretation rule (∆P > 0.14 during 1s) OR (∆P >

0.14 occurs 3 times in 10s). The symptom related to this rule is “S2” and trig-
gers a diagnosis action. This example is meant to explain how the “during” and
“occurs in timeline” operations are managed in the transformation process.

17



5.3 Generic Rules Examples

This section focuses on the transformation from the CBM level to the generic
rules level of the two rules presented in Sect. 5.1. For each example, the mapping
rules will be applied to the source model before presenting the resulting target
model.

Regarding the first rule, used to detect that one of the two actuators has
failed, the mapping between the CBM model elements and the generic rule model
elements is detailed in Table 3. The resulting model is represented in Fig. 10. In
this example, it should be noticed that the source model’s interpretation rules are
transformed into several elements in the target Model. Indeed, the interpretation
rule corresponds to a Complex Condition composed of two conditions linked by

Table 3. Application of transformation rules from CBM to generic rules for the first
rule.

Source model conceptSource element Target element Target model concept

Monitoring variable A1 FO A1 FO Variable

Monitoring variable A1 FC A1 FC Variable

Monitoring variable A2 FO A2 FO Variable

Monitoring variable A2 FC A2 FC Variable

Interpretation rules A1 FO �= A2 FO and
A1 FC �= A2 FC

& Logical operator

�= Comparison operator

A1 FO �= A2 FO Condition (C1)

A1 FC �= A2 FC Condition (C2)

C1 & C2 Complex condition

Prognosis One of the two
actuators has failed

One of the two
actuators has failed

Output

Fig. 10. Generic rule model of the first example.

18



Table 4. Application of Transformation Rules from CBM to Generic Rules for the
second rule (model a).

Source model concept Source element Target elementTarget model concept

Variable P P Input data

Measurement technique∆ ∆ Formula

Monitoring variable ∆P ∆P Variable

Interpretation rules ∆P > 0.14 during 1 s

or ∆P > 0.14 during 3
times in 10 s

0.14 Constant

> Comparison operator

∆P > 0.14 Condition

∆P > 0.14 Complex variable

Table 5. Application of transformation rules from CBM to generic rules for the second
rule (model b).

Source model conceptSource element Target element Target model concept

Interpretation rules ∆P > 0.14 during 1 s
or ∆P > 0.14 occurs 3
times in 10 s

∆P > 0.14 Complex Variable

or Logical operator

1 s During timeline

3 times in 10 s Occurs in timeline

∆P > 0.14 during 1 s Condition (C1)

∆P > 0.14 occurs 3
times in 10 s

Condition (C2)

C1 or C2 Complex condition

Diagnosis Risk of over-pressure Risk of over-pressure Output

logical operator. Each condition is composed of two Variables and a Comparison
Operator.

Regarding the second rule, which aims to detect a risk of overpressure inside
the room, this rule is based on occurrences number of pressure variation above
a threshold. If the number of occurrences is greater or equal to 2 in one second
or 3 in ten seconds then the risk has to be detected. In this kind of rules, it is
necessary to define a complex variable and split the CBM rule into two generic
rules at the CIM level in two rules at the PIM level. The first generic rule
should generate a complex variable when the pressure variation is above 0.14
psi. The second generic rule should monitor the number of these occurrences
over a timeframe to detect the overpressure risk. Table 4 details the mapping
from the source model’s elements to the target model’s element whereas the left
part of Fig. 11 corresponds to the part of the target model generating a complex
variable.

19



Once the complex variable ∆P > 0.14 psi is generated, the next part of the
second rule could be transformed. Table 5 shows the mapping from the source
model elements to the target model elements illustrated by the right part of
Fig. 11.

Fig. 11. Generic rule models describing the second example.

5.4 Examples of EPL Models

This section focuses on the transformation from generic to EPL rules of the
models presented in Sect. 5.3. These transformations are based on the mapping
rules detailed in Sect. 4.3.

A generic rule model of the first rule, referring to an abnormal situation
caused by the failure of one of the two actuators, has been described in the
previous section. It can now be transformed into an EPL model based on the
mapping rules presented in Table 6. The resulting model is detailed in Fig. 12.

Regarding the second Rule, referring to a risk of overpressure in the room, two
generic rule models have to be transformed. The generic model which generates
the complex variable ∆P >0.14 psi can be converted in the EPL Model presented
in the left part of Fig 13 based on the mapping rules presented in Table 7.

Finally, the model of the second rule detecting a risk of over-pressure in the
room is transformed in the EPL model represented in the right part of Fig. 13
according to the mapping rules listed in Table 8.

20



Table 6. Application of transformation rules from generic rule to EPL for the first
rule.

Source model conceptSource element Target element Target model concept

Variable A1 FO A1 FO WindowElement

Variable A1 FC A1 FC WindowElement

Variable A2 FO A2 FO WindowElement

Variable A2 FC A2 FC WindowElement

Logical operator & & Operator

Condition (C1) A1 FO �= A2 FO SearchCondition

Condition (C2) A1 FC �= A2 FC SearchCondition

Complex condition C1 & C2 C1 & C2 SearchElement

Output One of the two
actuators has failed

One of the two
actuators has failed

Output

Fig. 12. EPL rule model for the first example.

Table 7. Application of transformation rules from generic rule to EPL for the second
rule.

Source model conceptSource elementTarget elementTarget model concept

Input data P P WindowElement

Formula ∆ ∆ PatternExpression

Variable ∆P ∆P DataWindow

Condition ∆P > 0.14 ∆P > 0.14 SearchCondition

ComplexVariable ∆P > 0.14 ∆P > 0.14 OutputElement

21



Table 8. Application of transformation rules from generic rule to EPL for the second
rule.

Source model conceptSource element Target element Target model concept

Complex variable ∆P > 0.14 ∆P > 0.14 WindowElement

Logical operator OR OR Operator

During timeline 1 s during: 1 s PatternTimer

Occurs in timeline 3 times in 10 s occurs in 10 s PatternCondition

Condition (C1) ∆P > 0.14 during 1 s ∆P > 0.14 during

1 s

ConditionElement

Condition (C2) ∆P > 0.14 occurs 3 times

in 10 s

∆P > 0.14 occurs

3 times

ConditionElement

Complex condition C1 or C2 C1 or C2 SearchConditions

Output Risk of over-pressure Risk of

over-pressure

Output

Fig. 13. EPL rule models describing the second example.

6 Summary and Future Work

In the maintenance domain, the multiplication of data sources have boosted the
development of condition-based maintenance (CBM) strategies and given birth
to new approaches such as Prognostics and Health Management (PHM).

Nowadays, two main approaches are explored to detect failures in PHM solu-
tions: one based on machine learning, the other based on expertise and general
domain knowledge. This work focuses on the solutions based on expertise and
capitalised knowledge and thus focuses on systems with few records related to
failures. In such context, the use of Expert Systems (ES), in charge of exploit-
ing the capitalized knowledge, is relevant. Moreover, unlike machine learning
approaches, an ES is able to explain the need for maintenance actions. This
aspect is a key stone for decision in the maintenance domain. However, current
ES have scalability limits regarding the multiplication of data sources and espe-
cially the volumetry and velocity of the incoming data. Therefore, this paper

22



proposes to combine the ES with Complex Event Processing (CEP) to tackle
these limits. Indeed, a CEP aims at processing data efficiently to immediately
recognise patterns when they occur. Therefore, a CEP can be used in order to
filter the incoming data and only requests the ES when it is relevant, in other
words a CEP aims to reduce the volumetry and the velocity of the incoming
data for the ES.

Even if the idea to combine ES with CEP is promising, it requires that the
configuration of the CEP, especially the rules, are always in line with the needs
of ES. This requirement implies that the configuration of the CEP has to be
automatically generated from the ES. This paper details the proposed Model
Driven Architecture (MDA) used to generate the CEP configuration from the
ES. This MDA consists in transforming, first, CBM models into generic rules
models before transforming these generic rules models into EPL models. Then
code, as EQL rules for example, can be generated from these EPL models. This
paper focuses on the first two transformations and the need to pass through the
generic rules level due to the CBM rule’s complexity such as the use of temporal
parameters or the need for intermediate results. Due to this complexity, the
transformation of descriptors and interpretation rules concepts of the CBM can
provide lots of different generic rules concepts.

However, the presented work has limitations which have to be addressed.
One of the main challenges in this model transformation is to automatically
generate descriptors from documentation. To deal with this issue, exploiting
resources in text format may be very helpful. To perform this, using comple-
mentary approaches might be necessary to extract and decompose descriptors
into generic rules model instances. Consequently, this transformation could be
improved by the use of Natural Language Processing (NLP), for example the
use of entity named recognition algorithms. In addition, this proposal has, for
now, been tested on case studies such as presented here, however the short-term
planned perspective is now to implement this architecture on a real complex
system.

References

1. AFNOR: NF EN 13306 - Maintenance – Terminologie de la maintenance, January
2018

2. Belaunde, M., et al.: MDA guide version 1.0. 1 (2003)
3. Bezivin, J., Gerbe, O.: Towards a precise definition of the OMG/MDA framework.

In: Proceedings 16th Annual International Conference on Automated Software
Engineering (ASE 2001), pp. 273–280, November 2001. https://doi.org/10.1109/
ASE.2001.989813

4. Bezivin, J., Briot, J.P.: Sur les principes de base de l’ingénierie des modèles.
L’OBJET 10(4), 145–157 (2004)

5. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model
transformations? Transformation models!. In: Nierstrasz, O., Whittle, J., Harel,
D., Reggio, G. (eds.) MODELS 2006. LNCS, vol. 4199, pp. 440–453. Springer,
Heidelberg (2006). https://doi.org/10.1007/11880240 31

23

https://doi.org/10.1109/ASE.2001.989813
https://doi.org/10.1109/ASE.2001.989813
https://doi.org/10.1007/11880240_31


6. Blanchard, B.S., Verma, D.C., Peterson, E.L.: Maintainability: A Key to Effective
Serviceability and Maintenance Management. Wiley, New York (1995). https://
trove.nla.gov.au/work/30017742

7. Boubeta-Puig, J., Ortiz, G., Medina-Bulo, I.: A model-driven approach for facilitat-
ing user-friendly design of complex event patterns. Expert Syst. Appl. 41(2), 445–
456 (2014). https://doi.org/10.1016/j.eswa.2013.07.070, http://www.sciencedirect.
com/science/article/pii/S0957417413005575

8. Cugola, G., Margara, A.: Processing flows of information: from data stream to
complex event processing. ACM Comput. Surv. (CSUR) 44(3), 1–62 (2012)

9. DePold, H.R., Gass, F.D.: The application of expert systems and neural networks
to gas turbine prognostics and diagnostics. J. Eng. Gas Turbines Power 121(4),
607–612 (1999). https://doi.org/10.1115/1.2818515

10. Etzion, O., Niblett, P., Luckham, D.: Event processing in action. Manning Green-
wich (2011)

11. Flouris, I., Giatrakos, N., Deligiannakis, A., Garofalakis, M., Kamp, M., Mock,
M.: Issues in complex event processing: status and prospects in the big data era.
J. Syst. Softw. 127, 217–236 (2017)

12. Gertler, J.: Fault Detection and Diagnosis in Engineering Systems. CRC Press
(1998). Google-Books-ID: fmPyTbbqKFIC

13. Guillen, A.J., Crespo, A., Gómez, J.F., Sanz, M.D.: A framework for effective
management of condition based maintenance programs in the context of indus-
trial development of E-Maintenance strategies. Comput. Industry 82, 170–185
(2016). https://doi.org/10.1016/j.compind.2016.07.003, http://www.sciencedirect.
com/science/article/pii/S0166361516301178

14. ISO: ISO 13372, Surveillance et diagnostic des machines – Vocabulaire, June 2012
15. ISO: NF EN ISO 14224 - Petroleum, petrochemical and natural gas industries -

Collection and exchange of reliability and maintenance data for equipment, Octo-
ber 2017

16. Jackson, P.: Introduction to Expert Systems, 3rd edn. Addison-Wesley Longman
Publishing Co. Inc., Boston (1998)

17. Jardine, A.K.S., Lin, D., Banjevic, D.: A review on machinery diagnostics and
prognostics implementing condition-based maintenance. Mech. Syst. Sig. Process.
20(7), 1483–1510 (2006). https://doi.org/10.1016/j.ymssp.2005.09.012, http://
www.sciencedirect.com/science/article/pii/S0888327005001512

18. Jin, X., Wah, B.W., Cheng, X., Wang, Y.: Significance and challenges of big data
research. Big Data Res. 2(2), 59–64 (2015). https://doi.org/10.1016/j.bdr.2015.01.
006, http://www.sciencedirect.com/science/article/pii/S2214579615000076

19. Jouin, M., Gouriveau, R., Hissel, D., Péra, M.C., Zerhouni, N.: Prognostics
and health management of PEMFC – state of the art and remaining chal-
lenges. Int. J. Hydrogen Energy 38(35), 15307–15317 (2013). https://doi.org/10.
1016/j.ijhydene.2013.09.051, http://www.sciencedirect.com/science/article/pii/
S036031991302274X

20. Kalogirou, S.A.: Artificial intelligence for the modeling and control of combus-
tion processes: a review. Progress Energy Combustion Sci. 29(6), 515–566 (2003).
https://doi.org/10.1016/S0360-1285(03)00058-3, http://www.sciencedirect.com/
science/article/pii/S0360128503000583

21. Lee, J., Jin, C., Liu, Z., Ardakani, H.D.: Introduction to data-driven methodolo-
gies for prognostics and health management. In: Ekwaro-Osire, S., Goncalves, A.,
Alemayehu, F. (eds.) Probabilistic Prognostics and Health Management of Energy
Systems, pp. 9–32. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
319-55852-3 2

24

https://trove.nla.gov.au/work/30017742
https://trove.nla.gov.au/work/30017742
https://doi.org/10.1016/j.eswa.2013.07.070
http://www.sciencedirect.com/science/article/pii/S0957417413005575
http://www.sciencedirect.com/science/article/pii/S0957417413005575
https://doi.org/10.1115/1.2818515
https://doi.org/10.1016/j.compind.2016.07.003
http://www.sciencedirect.com/science/article/pii/S0166361516301178
http://www.sciencedirect.com/science/article/pii/S0166361516301178
https://doi.org/10.1016/j.ymssp.2005.09.012
http://www.sciencedirect.com/science/article/pii/S0888327005001512
http://www.sciencedirect.com/science/article/pii/S0888327005001512
https://doi.org/10.1016/j.bdr.2015.01.006
https://doi.org/10.1016/j.bdr.2015.01.006
http://www.sciencedirect.com/science/article/pii/S2214579615000076
https://doi.org/10.1016/j.ijhydene.2013.09.051
https://doi.org/10.1016/j.ijhydene.2013.09.051
http://www.sciencedirect.com/science/article/pii/S036031991302274X
http://www.sciencedirect.com/science/article/pii/S036031991302274X
https://doi.org/10.1016/S0360-1285(03)00058-3
http://www.sciencedirect.com/science/article/pii/S0360128503000583
http://www.sciencedirect.com/science/article/pii/S0360128503000583
https://doi.org/10.1007/978-3-319-55852-3_2
https://doi.org/10.1007/978-3-319-55852-3_2


22. Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., Siegel, D.: Prognostics and
health management design for rotary machinery systems—reviews, methodology
and applications. Mech. Syst. Sig. Process. 42(1), 314–334 (2014). https://doi.
org/10.1016/j.ymssp.2013.06.004, http://www.sciencedirect.com/science/article/
pii/S0888327013002860

23. Liebowitz, J.: Expert systems: a short introduction. Eng. Fracture Mech.
50(5), 601–607 (1995). https://doi.org/10.1016/0013-7944(94)E0047-K, http://
www.sciencedirect.com/science/article/pii/0013794494E0047K

24. Luckham, D.C., Frasca, B.: Complex event processing in distributed systems. Com-
puter Systems Laboratory Technical Report CSL-TR-98-754. Stanford University,
Stanford 28 (1998)

25. Sarazin, A., Truptil, S., Montarnal, A., Lamothe, J., Commanay, J., Sagaspe,
L.: Towards model transformation from a CBM model to CEP rules to support
predictive maintenance. In: MODELSWARS 2020-The 8th International Confer-
ence on Model-Driven Engineering and Software Development, vol. 1, pp. 205–215.
SciTePress (2020)

26. Siegel, J.: MDA guide, revision 2.0 (2014)
27. Truptil, S., et al.: Mediation information system engineering for interoperability

support in crisis management. In: Popplewell, K., Harding, J., Poler, R., Chalmeta,
R. (eds.) Enterprise Interoperability IV, pp. 187–197. Springer, London (2010)

28. Vachtsevanos, G., Lewis, F., Roemer, M., Hess, A., Wu, B.: Systems approach to
CBM/PHM. In: Intelligent Fault Diagnosis and Prognosis for Engineering Sys-
tems, pp. 13–55. Wiley, Hoboken (2006). https://doi.org/10.1002/9780470117842.
ch2, http://onlinelibrary.wiley.com/doi/10.1002/9780470117842.ch2/summary

29. Vichare, N.M., Pecht, M.G.: Prognostics and health management of electronics.
IEEE Trans. Components Packag. Technol. 29(1), 222–229 (2006). https://doi.
org/10.1109/TCAPT.2006.870387

30. Xiaoxue, L., Xuesong, B., Longhe, W., Bingyuan, R., Shuhan, L., Lin, L.: Review
and trend analysis of knowledge graphs for crop pest and diseases. IEEE Access 7,
62251–62264 (2019). https://doi.org/10.1109/ACCESS.2019.2915987, conference
Name: IEEE Access

25

https://doi.org/10.1016/j.ymssp.2013.06.004
https://doi.org/10.1016/j.ymssp.2013.06.004
http://www.sciencedirect.com/science/article/pii/S0888327013002860
http://www.sciencedirect.com/science/article/pii/S0888327013002860
https://doi.org/10.1016/0013-7944(94)E0047-K
http://www.sciencedirect.com/science/article/pii/0013794494E0047K
http://www.sciencedirect.com/science/article/pii/0013794494E0047K
https://doi.org/10.1002/9780470117842.ch2
https://doi.org/10.1002/9780470117842.ch2
http://onlinelibrary.wiley.com/doi/10.1002/9780470117842.ch2/summary
https://doi.org/10.1109/TCAPT.2006.870387
https://doi.org/10.1109/TCAPT.2006.870387
https://doi.org/10.1109/ACCESS.2019.2915987

	Model Transformation from CBM to EPL Rules to Detect Failure Symptoms
	1 Introduction
	2 Use PHM Approach to Detect Failure Symptoms
	2.1 Prognostics and Health Management
	2.2 Expert System
	2.3 Complex Event Processing
	2.4 Using CEP and Expert System to Support PHM Approach

	3 Proposed Model Driven Architecture
	3.1 Model, Metamodel, Model Transformation
	3.2 Model-Driven Architecture from CBM to EPL Rules

	4 Model Transformation
	4.1 Generic Rules Metamodel
	4.2 From CBM Knowledge Base to Generic Rules
	4.3 From Generic Rules to EPL

	5 Case Study/Illustration
	5.1 System Description
	5.2 Examples of CBM Models
	5.3 Generic Rules Examples
	5.4 Examples of EPL Models

	6 Summary and Future Work
	References


