
HAL Id: hal-03197287
https://imt-mines-albi.hal.science/hal-03197287

Submitted on 13 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Learning Local Descriptor for Comparing Renders with
Real Images

Pamir Ghimire, Igor Jovančević, Jean-José Orteu

To cite this version:
Pamir Ghimire, Igor Jovančević, Jean-José Orteu. Learning Local Descriptor for Comparing Ren-
ders with Real Images. Applied Sciences, 2021, 11 (8), pp.1-15/3301. �10.3390/app11083301�. �hal-
03197287�

https://imt-mines-albi.hal.science/hal-03197287
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

applied
sciences

Article

Learning Local Descriptor for Comparing Renders with
Real Images

Pamir Ghimire 1 , Igor Jovančević 1,* and Jean-José Orteu 2

����������
�������

Citation: Ghimire, P.; Jovančević, I.;

Orteu, J.-J. Learning Local Descriptor

for Comparing Renders with Real

Images. Appl. Sci. 2021, 11, 3301.

https://doi.org/10.3390/app11083301

Academic Editor: Lidia

Jackowska-Strumillo

Received: 26 February 2021

Accepted: 31 March 2021

Published: 7 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 DIOTASOFT, 31670 Labège, France; pamirghimire@gmail.com
2 Institut Clément Ader (ICA), Université de Toulouse, CNRS, IMT Mines Albi, INSA, UPS, ISAE,

Campus Jarlard, 81013 Albi, France; jean-jose.orteu@mines-albi.fr
* Correspondence: igorjovan@gmail.com

Abstract: We present a method to train a deep-network-based feature descriptor to calculate dis-
criminative local descriptions from renders and corresponding real images with similar geometry.
We are interested in using such descriptors for automatic industrial visual inspection whereby the
inspection camera has been coarsely localized with respect to a relatively large mechanical assembly
and presence of certain components needs to be checked compared to the reference computer-aided
design model (CAD). We aim to perform the task by comparing the real inspection image with the
render of textureless 3D CAD using the learned descriptors. The descriptor was trained to capture
geometric features while staying invariant to image domain. Patch pairs for training the descriptor
were extracted in a semisupervised manner from a small data set of 100 pairs of real images and cor-
responding renders that were manually finely registered starting from a relatively coarse localization
of the inspection camera. Due to the small size of the training data set, the descriptor network was
initialized with weights from classification training on ImageNet. A two-step training is proposed for
addressing the problem of domain adaptation. The first, “bootstrapping”, is a classification training
to obtain good initial weights for second training step, triplet-loss training, that provides weights for
extracting the discriminative features comparable using l2 distance. The descriptor was tested for
comparing renders and real images through two approaches: finding local correspondences between
the images through nearest neighbor matching and transforming the images into Bag of Visual Words
(BoVW) histograms. We observed that learning a robust cross-domain descriptor is feasible, even
with a small data set, and such features might be of interest for CAD-based inspection of mechanical
assemblies, and related applications such as tracking or finely registered augmented reality. To the
best of our knowledge, this is the first work that reports learning local descriptors for comparing
renders with real inspection images.

Keywords: deep convolutinal neural networks; learned feature descriptor; 3D CAD; nonphotorealis-
tic rendering

1. Introduction

In industrial visual inspection based on 3D computer-aided design (CAD) models, we
want to check whether produced mechanical assemblies actually conform with CAD speci-
fication.

In this paper, we are focused on one of the largest families of inspection problems,
usually called the presence–absence problem. Namely, we are aiming to verify the presence
of the right part at the right place in a complex mechanical assembly. To perform this
inspection task, we are interested in using images from passive 2D RGB cameras since they
are cheap and convey enough information to make many inspection decisions. To check
acquired images for conformity with CAD, we propose to compare them with simple
renders of the CAD with similar viewpoints using local keypoint features described with
our learned descriptor. This comparison should tell us if the part we are looking for based

Appl. Sci. 2021, 11, 3301. https://doi.org/10.3390/app11083301 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0031-5523
https://orcid.org/0000-0002-7627-0205
https://orcid.org/0000-0003-1585-9507
https://doi.org/10.3390/app11083301
https://doi.org/10.3390/app11083301
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11083301
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/8/3301?type=check_update&version=1

Appl. Sci. 2021, 11, 3301 2 of 15

on the CAD is present or absent in the real assembly given its inspection image. We have
CAD models that lack material related information (color and texture) and so we work
with simple renders that reveal geometry of the CAD, specifically, changes in normals and
depths of faces of the CAD model. Our CAD models also lack deformable elements such as
wires and plastic caps that are present in the real assemblies, and occlude the elements we
want to check. In tackling this challenging setting, we assume that the inspection camera is
calibrated and coarsely localized with respect to the inspected assembly, hence providing
us approximate camera viewpoint (pose + intrinsics) for each inspection image. For this, we
rely on an in-house developed localization module based on 2D/3D alignment. The CAD
can thus be rendered with a viewpoint similar to the real image.

In order to check whether certain components, henceforth inspection elements, are
mounted on the assembly correctly i.e., at expected positions and with expected orientations
as specified in the CAD, we propose to compare learned local features extracted from real
images with those from corresponding renders at interest points such as FAST corners [1].

This is an object detection approach using learned features to check whether an
element is present in the real image the way it is in the CAD render. We posit that such
learned features are more informative and hence more discriminative than simple 2D
features such as contours and edges. We want to use such features because the images
we want to inspect are challenging, while our reference CAD models are simple and
incomplete, as described before. The inspection elements that interest us are industrial parts
such as supports, clamps, etc. that have rigid and regular structures compared to natural
everyday objects that have more nonrigid geometries. Because of this, the 2D features can
be attractive choices for comparing a shape in a real image with that in the render [2,3].
However, the 2D features do not capture view-point dependent information since it is
possible to obtain, for example, same contours from different viewpoints due to object
symmetries. Comparing edges in render with those in a real image can also be misleading
since edges might result from textures, shadows, deformations, surrounding objects, etc.
Such features are hence not informative and discriminative since they capture only simple
geometric characteristics. In contrast, 2 1

2 D features, which are features computed from
image patches centered at interesting points, capture more detailed information that is
revealed due to viewpoint and are robust to the problems faced by 2D features as described
before [4].

Local features, engineered as well as learned, have been extensively studied for com-
paring images, finding local correspondences and detecting objects given a template [5–7].
The common denominator among the studied features has been comparison between only
real images. Consequently, these features capture local texture information, important in
real images, in addition to local geometric information. Consideration of texture informa-
tion is problematic when the CAD models lack material specifications restricting renders
to plain renders. We are thus interested in a feature extractor that can produce descriptors
to compare textureless patches from plain renders with textured patches from real images.
In other words, we want our feature extractor to be as much as possible invariant to texture
and to work even in absence of any texture in the compared images. Additionally, we also
want to ignore deformable elements such as wires and plastic caps in real image patches
when extracting descriptors since we do not have them in our simple CAD models; we
are restricted to low poly models that use simple primitives to convey complex shapes.
Given the success of learned features in comparing real image patches, we are interested in
training a neural network that can extract features from real and rendered image patches
that satisfy the requirements described before.

Due to the unique nature of our problem, we face two main challenges:

• Lack of a data set of corresponding real and rendered image patches
• Domain shift due to the patches coming from different domains

Since ours is the first work, to the best of our knowledge, that tries to learn a local
descriptor for comparing renders of simplistic CADs of mechanical assemblies and real
inspection images, we are unable to use available data sets of real image patches, like in [8].

Appl. Sci. 2021, 11, 3301 3 of 15

We create our own data set using <100 real-rendered image pairs, with an initial coarse
registration and a manual fine registration. We then crop the images around interest points
detected by the FAST detector [1]. This method for producing a patch-pair data set is our
first contribution. The images we used were taken by an industrial camera mounted on a
robotic platform that inspected an assembly from a set of pre-planned positions during
scheduled inspections. The time for inspection and the time on the imaging platform were
both limited, because of which a limited number of real images with approximate viewpoint
information were available for us to work with. Since we also produce one render for each
real image, this also limited the number of renders. Our second contribution is a two-step
approach for training a neural-network feature descriptor. Because our patches come from
two different domains (real and rendered) and are limited in number, we can not train a
neural-network descriptor from scratch. Direct minimization of a metric loss by initializing
the network with weights from training on real images data set, such as ImageNet [9], is
not enough to deal with domain gap because such initialization causes features extracted
from patches from different domains to be different. A two-step training approach that
first removes distinction between domains before learning discriminative features allows
the descriptor network to converge despite small size of our data set. We show that the
first step of our approach explicitly addresses the problem of domain shift.

2. Related Literature

Local features that describe local geometries can be more discriminative than 2D
features that capture information about only segments and corners. Local features have
also shown to be useful for a wide variety of vision tasks such as image matching, object de-
tection, etc., and so are more generic than 2D features. Recently, local features learned using
a deep network have been shown to be more discriminative than engineered ones [6,10,11].
These features are mostly learned using a data set of natural patches [8] on which either a
classification loss or a metric loss is minimized on matching and nonmatching patch pairs.
Two metric losses are commonly used, the contrastive loss [12] and the triplet loss [13].
Available patch-pair data sets, in addition to containing only real patches, are also created
from images with wide baseline and are meant for training descriptors for such scenarios.

In recent literature, many methods have been proposed for generating and using
synthetic data (renders) for performing different tasks such as classification, segmentation,
object detection, etc. on real images. In most works, the models that are used have accurate
descriptions of color and texture as they appear on the real object [14,15] and allow the
learned object detector to make decisions on the real image based on these cues. In some
works, however, use of color and texture cues is not prioritized. Ros et al. [16] for example
try to learn dense segmentation pipeline for real urban scenes using “photorealistic” renders
that do not have elements that correspond exactly in color or texture to the real urban
objects. Furthermore, it is shown in [14] that an object detector can be learned using
randomly colored and textured object models such that the learned detector is invariant to
these cues, and sensitive only to object geometry. These works suggest that it should be
possible to train a descriptor that uses only geometric cues.

Although the ease of rendering abundant labeled data makes rendered images at-
tractive for deep learning tasks, the key challenge of domain shift or domain adaptation
makes this task difficult [17]. This problem arises because geometric and photometric
details available in real images are hard to replicate in renders and real and virtual cameras
are different sensors [16]. Prior works have dealt with this problem by training jointly
on renders and real images one way or another. In [16], deep networks are trained to
predict same object labels for instances in renders and real images, and it is observed that
networks learn to extract features that work in both domains for the trained task. In [18],
minimization of the domain gap is prioritized explicitly by backpropagating the negative
of gradient of domain label prediction loss through a gradient reversal layer in addition
to backpropagating the gradient for the main task of classification. The authors of [19]
learned to map features extracted from real images to the feature space of renders and

Appl. Sci. 2021, 11, 3301 4 of 15

supply the mapped features to a different network to predict pose of a target object. This
allows the pose predictor to be trained even exclusively on renders, while the mapping
network is trained by creating a set of renders for a set of real images where the pose of
the target object in the renders is the same as that in the real images. The authors of [20]
used representations learned from a large labeled data set of images of one modality as
supervisory signals for learning representations for images of a different modality for
which labeled data sets are not available. Representations from RGB images are used to
supervise learning on paired depth and optical flow images, paired images being images
of the same scene in a different modality, by training networks on these images that extract
features similar to the RGB network at some specified network depth. The authors of [21]
trained an end-to-end CNN for 2D–3D exemplar detection by compositing rendered views
of textured CAD models on real images, and maximising the similarity between features
extracted from composites and real images with the same poses of the target objects. This
approach is similar to the feature mapping approach proposed in [19]. The authors of [22]
build templates automatically from 3D models that can be used for object detection and
pose estimation of textureless objects in real images without adaptation. The templates
for detection are created by using color gradients at silhouette boundaries of renders of
target objects and the ones for pose estimation are created by using surface normals in the
interiors as available in the 3D models.

For learning to associate renders of 3D CAD models with their real images, data
sets that contain images with exact pose information of the models are important. IKEA
Objects [23] is one such data set that contains textureless 3D models of furniture such
as cupboards, tables, etc., along with real images that are annotated with exact poses
of these objects. Pix3D [24] is another large data set of image-shape pairs (shape here
meaning textureless 3D CAD models) representing a wide variety of objects such as chairs,
candle holders, etc., that accurately match the objects in available real images and have
precise pose annotations. Similarly, in [25], it is an RGBD data set of textureless objects that
resemble industrial parts and contains natural scenes with pose annotations where these
objects are placed against a background, multiple objects at a time, and with some overlaps.
The authors of [22] proposed their own data set with models of 15 textureless household
objects and more than 1000 images with pose annotations. The data sets mentioned here
are primarily concerned with household or everyday items, and those that do contain
industrial parts contain images of relatively easy and well-organized setups of the parts.
Therefore, we created our own data set.

3. Methodology

There are two main parts to our method for training a cross-domain descriptor.
The first part is generation of patch-pairs from real images and renders of CAD mod-
els, both from the same viewpoints. The second part is training a deep network initialized
with weights from classification training on a large data set (ImageNet [9], weights avail-
able freely on the Internet (ImageNet weights for VGG https://github.com/machrisaa/
tensorflow-vgg accessed on 1 February 2018)) using a two-step approach. Similar to the
literature mentioned before, we also train jointly on renders and real images. The network
is initialized with weights obtained from training on real images in the Imagenet data set.
Then, through a two-step approach, the weights are adapted so that our network extracts
similar features from real and rendered image patches that correspond to the same area of
the assembly.

In the following two Sections 3.1 and 3.2, we will present our data set generation
process. We are interested in patch pairs that come from renders of industrial assemblies
where inspection elements might be components such as screws and brackets. Furthermore,
we want to teach our network to handle real images with challenging lighting and occlusion
due to wires, plastic caps and other elements that are not available to us in CAD. The second
step, training a deep network, is detailed in Section 3.3.

https://github.com/machrisaa/tensorflow-vgg
https://github.com/machrisaa/tensorflow-vgg

Appl. Sci. 2021, 11, 3301 5 of 15

3.1. Producing Simple Renders

We used simple shaders for producing renders that convey changes in face normals
and face depths with respect to the optical axis of the camera. No lighting was considered
in producing these renders so that intensities in the render were only due to geometry of the
CADs. In addition, the CADs of the inspection element were rendered to be brighter than
the CAD of the assembly. These choices ensured that a detector would find an interest point
only at those locations in the render that corresponded to locations with depth or surface
orientation discontinuities in the CAD, or discontinuities in element identity. The simple
shader has been illustrated in Figure 1. We used Unity3D [26] for creating our synthetic
data generation pipeline.

n

d

Depth gray

level, G(d)

1.0

0.0

min.
depth

max.
depth

d

x

y

z

Fragment normal in
camera (view) frame

Normal gray level
I = L(θ) + (1 -) G(d)

Figure 1. Simple shading for fast rendering based on fragment normal n and fragment depth d. L(θ)
is the component of fragment’s intensity in render due orientation θ of n relative to render camera’s
optical axis, and G(θ) that due to its depth. Final intensity in render, I, is an affine combination of the
two, with manually chosen α, which is the same for all fragments. I is also varied based on whether
the fragment belongs to CAD of inspection element or that of assembly on which it is mounted.

3.2. Creation of Patch-Pair Data Set

We intend to train a descriptor. We are inspired by the approaches in [6,7,10] and
we formulate a similar one with adaptations to address our particular problem. For this,
we need a data set of corresponding patches that come from renders and real images.
Since there isn’t an existing one to the best of our knowledge, we create such a data set
by first producing for each real image a simple render using the available viewpoint,
and CADs of inspection elements and those of assemblies they are mounted on. Second,
we finely register each render with its corresponding real image by manually selecting
a set of corresponding points between the two images and estimating a homography
that registers the render with the real image. This is necessary because of the inaccuracy
in our in-house localization module, as a result of which the renders are not perfectly
registered with the real images. Finally, to create the patch-pair data set, we crop each pair
of real-rendered images around same points that are detected by the FAST detector in the
render. The patch-pairs are created only using locations that are deemed interesting in the
render since we want patches that capture interesting geometry in the plain CADs and
their corresponding manifestations in real images, not patches that are found interesting in
real images by themselves.

We also produce patches by cropping renders and real images around most salient
points detected by the FAST detector exclusively in the real images, to produce ‘texture’
patches. The real ones of these patches contribute to a reservoir of texture patches when
training a descriptor by minimizing triplet loss and are always labeled as negatives in
the triplets (see Section 3.3.2). Our entire data set generation procedure is illustrated in
Figure 2.

Appl. Sci. 2021, 11, 3301 6 of 15

Camera
Intrinsics +
Pose

CAD of assembly
where inspection
element is mounted

CAD of Inspection
element

Inspection (i + 1)
......

Inspection (i)

XML Inspection (i + 2)

 Transfer
 FAST points
from simple render to real

3. Detection of
FAST feature points
on simple render

2. Register simple
render with real
image manually

0. Place assembly
and inspection
element CADs in
virtual world,
position camera
according to
estimated pose

1. Produce a simple
render, and
a mask of the
inspection
element
(inspection
mask)

4. Crop simple render
and real image around
detected FAST points

... ...

Training Data Points

5. Crop real image
around FAST points
detected in real image to
get texture patches

...

Patch-pairs and
texture patches
from one training
data point

Real
Image

before after

Figure 2. Proposed method for creating a patch-pair data set given CADs of inspection elements
and their environments along with real images with tracked viewpoint. The simple renders (in red)
are manually registered with the corresponding real image. Effect of registration is visible inside
the pink circle (images after step 2). From each registered image pair, patch pairs are produced by
cropping around FAST points detected in the render.

There are 2 main challenges in training with the patch-pair data set produced as
described in Section 3.2:

• Small number of patch pairs due to less than 100 image pairs available for producing
the training data set, and need for large patch sizes for discriminative context, due to
simplistic CADs

• Domain shift due to patches coming from synthetic and real domains

These two problems demanded a two-step approach, much like the one in [13],
with our modifications in the “bootstrapping” stage. The two-step method is in con-
trast with related works like [6,7,10] that directly minimize a discriminative or metric loss
on matching and nonmatching patches from a data set. We also tried this approach but this
lead to no convergence, possibly because of the two reasons mentioned before. However,
in face recognition literature, a similar two-step method was reported, although with differ-
ent strategies for “bootstrapping” and without identifying the stage explicitly as meant for
addressing domain-shift [13]. Our entire training process will be detailed in the following
two Sections 3.3.1 and 3.3.2 and is sumarized in Figure 3.

3.3. Two-Step Training for Feature Extractor
3.3.1. Bootstrapping

We started with the VGG16 deep architecture with ImageNet weights for classification
training, as detailed in [27] (Table 2, Column D). The filters in the first convolutional layer
were modified from 3 × 3 × 3 to 3 × 3 × 1 and their weights initialized by averaging the
3D filters along the 3rd dimension [28]. The 1000-way linear+softmax layer was replaced
with 2-way linear+softmax layer. The 2 fully connected layers following the convolutional
layers were initialized from scratch using Xavier initialization [28] (Figure 3, step 1). In the
original architecture, the fully connected layers have 4096 neurons each. For us, they have
L neurons each, with L = 1024 when patches are of size 128× 128 and L = 4096 when they
are 224× 224.

Appl. Sci. 2021, 11, 3301 7 of 15

VGG 16 trained on ImageNet,
needs 3-channel input

Conv Layers FC Layers

Weights transferred up to Conv Layers,
except first layer, modified to accept 1
channel input with different image
dimensions

Real and synthetic
patches containing no
FAST corners

Real and synthetic
patches containing FAST
corners

Bootstrapping

Bootstrapping Dataset

Weights fixed
during
bootstrapping

First layer is
learned for 1
channel input

2-class classification layer,
specific to bootstrapping
dataset

Triplet network created using weights learned
during bootstrapping, last layer is ignored

Matching
Patch-pairs

...

Reservoir
of texture
patches

Batch-serverTriplet-loss
Minimization

W W

0 +-

Triplets

Embedding Layer,
to be learned

Learned Feature
Descriptor Network

Weights fixed
during triplet loss
minimization

1

2

3

4

Figure 3. Proposed two-step method for training a deep descriptor using a data set of patches created
as described in Figure 2. The first stage (left of the vertical divider), bootstrapping, produces weights
such that distinction between domains is removed and the second stage (right of the divider), triplet-
loss training, trains an embedding layer on top of the weights learned previously that produces
discriminative features.

For bootstrapping, the patch-pair data set described before was organized into 2 classes,
one containing meaningful geometric information and the other not (texture patches). Both
classes contained patches from both real and synthetic images. A cross-entropy loss
(Equation (1)) was minimized to classify these patches. All layers except the first convolu-
tional and the last fully connected layers were “frozen” during this stage (Figure 3, step 2).
Training was performed for two epochs with minibatch gradient descent using batches of
size 128, initial learning rate was 0.005, and dropout was used after fully connected layers
for regularization with p = 0.5. The softmax-cross-entropy loss (E) that we minimized is:

E =
1
n ∑

i
[yilog(ŷi) + (1− yi)log(1− ŷi)] (1)

where n is the total number of training examples, yi ∈ {0, 1} is the patch class label of
the training example i (yi = 0 means the patch contains interesting geometry, and yi = 1
means that it doesn’t, and hence, is a texture patch) and ŷi = exi

ex0+ex1 is the predicted
softmax probability for example i, x0 and x1 being the predicted probabilities for the two
patch classes.

3.3.2. Triplet Loss Training

The weights learned from bootstrapping were retained except for the last 2-way
linear+softmax layer. We denote the retained architecture with φ. It maps an input patch
P ∈ IRM to IRD; φ(P) ∈ IRD. To φ, we appended an l2 normalization layer and a linear layer
W ′ ∈ IRL×D, L << D, which together implement eP = W ′φ(P)/||φ(P)||2. W ′ is an affine
transformation layer without any bias, since bias would be canceled when minimizing
triplet loss detailed in Equation (2). The thus augmented φ is replicated three times to
create a triplet network [13,29] and triplet loss [13] is minimized for batches of triplets
(anchor (a), positive (p), negative (n)) produced by a batch server. In each triplet, an anchor
is a negative or a positive example. The weights are shared among all the towers in the
triplet network, so they receive the same weight updates during training.

Appl. Sci. 2021, 11, 3301 8 of 15

The rationale behind triplet-loss minimization is to learn weights such that distances
between matching patches is minimized while at the same time, that between nonmatching
patches is maximized.

E(W ′) = ∑
(a,p,n)∈T

max{0, α− dan + dap} (2)

Here, dan = ||ea − en||2, dap = ||ea − ep||2, and T is the set of triplets in each training
mini-batch. Embeddings extracted from patches through a forward pass are denoted by
ex. α > 0 is the margin parameter that forces a desired minimum difference between
average distances between matching and nonmatching patches. The method and notations
followed in this section are similar to those in [13].

During triplet-loss training, only the “embedding layer” W ′ is updated, the rest of
the layers are frozen. Thus, it is only W ′ that learns a discriminative projection of features
extracted by φ (Steps 3 and 4 in Figure 3), learned during bootstrapping. The architecture
φ together with the l2 normalization and W ′ layers is the learned cross-domain feature
extractor. The extracted features are of dimension D, with D = 512 when patches are of
size 128× 128 and D = 1024 when they are of size 224× 224. Of the D′s we experimented
with, these were the best values.

During triplet-loss training, from each batch, we pick “hard” triplets, i.e., triplets for
which dan < dap so that the network can learn from minimizing the triplet loss computed
from them. To perform hard-negative mining, we filter a batch of triplets produced by the
triplet batch server by passing them through the network once before training for getting
their embeddings from which three pairwise distances are computed. We also perform
“in triplet hard-negative mining”, introduced by [10], by swapping anchor and positive
patches if dan > dpn. This improves triplet-loss training by making triplets even harder. We
use the Adam optimizer with an initial learning rate of 0.005, β1 0.9, β2 0.999 and ε 10−08.
Regularization was performed via dropout added before the embedding layer.

When picking negative real patches for a geometrically interesting patch from a render,
batch server has a choice of picking either a geometrically interesting nonmatching real
patch or a real texture patch, of which there are thousands in a “reservoir”. We under-
sample the texture patches with ratio of 3:7 to address class imbalance [30]. Small random
rotations are also applied to patches on the fly so that the descriptor learns to be robust to
rotations [6].

3.4. Computing Learned Descriptor at Test-Time

At test time, FAST points (or equivalently some other interest points) are detected
independently in real image and the corresponding render. A patch of a fixed size is
extracted around each interest point location and the learned descriptor evaluated for it.
The features extracted from the images can then be used for nearest neighbor matching (See
Figure 4) or converted into histograms of words based on Bag of Visual Words learned from
renders and real images using the learned features for comparing the pair for producing
an inspection decision.

Appl. Sci. 2021, 11, 3301 9 of 15

1. Cropping thanks to
localization module and
CAD model

2. Detection of
FAST interest
points

3. Extraction of
Patches around
interest points

4. Descriptor
computation
using trained
network

5. Descriptor
matching

Inspection Image
Corresponding
Render

Figure 4. Proposed workflow for using the descriptor at test-time for nearest-neighbor one-to-
one matching.

4. Results

We trained two different networks with patch-pairs of two sizes, 128 × 128 and
224 × 224, and different values of the margin parameter α (see Equation (2)). Table 1
presents the FPR95 rates, which are false positive rates when true positive rates are 95%,
observed for the different descriptors. They were obtained using a test set of 10K patch pairs
that were classified as either matching or nonmatching based on whether the Euclidean
distance between their embeddings was below a certain threshold. The best score of 13.8
was observed for 224× 224 descriptor with α = 5.0. For reference, this metric for SIFT
is reported in [10] to be between 26.0 and 30.0 when matching real image patches with
real ones.

Table 1. FPR95 rates observed for learned descriptors.

Margin α 128 × 128 Patch Descriptor 224 × 224 Patch Descriptor

2.0 40.1 17.0

5.0 41.2 13.8

10.0 37.8 17.5
Best FPR95 score of 13.8 was obtained for the descriptor that took as input 224× 224 patches and was trained
with α = 5.0.

4.1. Effect of Two-Step Training

We extracted features from a subset of the test patches using the 224× 224 network
with weights for best training before and after the bootstrapping stage and after the
triplet-loss training stage and performed dimensionality reduction on these features using
t-distributed stochastic neighbor embedding (t-SNE) [31]. The feature plots can be seen in
Figure 5.

Appl. Sci. 2021, 11, 3301 10 of 15

Patches labeled as containing important geometry

‘Texture’ patches, labeled as not containing important geometry

Real patches

Synthetic patches

real

synthetic
synthetic

real(a) (b)

Figure 5. Visualization of features extracted from synthetic and real patches after bootstrapping
(a) and triplet-loss training (b) using t-SNE [31]. After bootstrapping, the mappings of real and
synthetic patches are close by and intermeshed in the feature space, a good step toward solving
domain shift problem, as can be seen from the patches visualized on top of their mapped point
features. After triplet-loss training, we see that real and synthetic patches with similar geometry are
mapped to nearby locations.

When features are extracted using a network pre-trained on real images without
bootstrapping, patches from different domains map to distinct clusters. We observed
that such initialization with domain-separation leads to no convergence in the triplet-loss
training stage.

This was solved by bootstrapping. We note that after bootstrapping, features extracted
from real and synthetic patches are intermeshed since they are based on whether or not the
patches contain any texture information. This can be seen from the visualized patches in
Figure 5a. After triplet-loss training, the extracted features still remain intermeshed but
now are such that those extracted from real and synthetic patches are close together when
the patches contain similar geometry, and are far apart if not.

4.2. ROC Curves

Figure 6 presents ROC curves, which are plots of true positive vs false positive rates
for two different descriptors mentioned in Table 1. Change in α shows little effect on the
ROC of the 128× 128 descriptor. 224× 224 descriptors for all values of α perform better
than the corresponding 128× 128 descriptor.

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Tr
ue

 P
os

iti
ve

 R
at

e

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate False Positive Rate

Figure 6. ROC curves for 128× 128 (blue) and 224× 224 (gray) learned descriptors for different
margin parameters.

In Figure 7, some patch pairs falsely classified as matching or nonmatching by thresh-
olding the FPR95 distance between their learned feature extracted by 224× 224 size network

Appl. Sci. 2021, 11, 3301 11 of 15

using the best weights have been presented. In the false-positive as well as false-negative
pairs, we see some corresponding geometrical patterns. However, possibly because of lack
of sufficient context, the calculated descriptors were not discriminative enough. These
suggest that performance might be improved by using still bigger patch sizes.

Figure 7. Patch-pairs falsely classified as nonmatching (false negatives, four pairs in (a)) and matching
(false positives, four pairs in (b)). In each pair, the left patch comes from a render and the right patch
comes from the corresponding real image.

4.3. Nearest Neighbor Matching

For nearest neighbor matching between a real image and its corresponding render,
we detect interest points in each of the two images using FAST detector. Interest points in
adjacent locations are filtered with nonmaximum suppression. At each interest point, we
compute a descriptor using our trained deep network as depicted in Figure 4. The descrip-
tors are then matched using a brute-force matcher by comparing their l2 norms. Ambiguous
matches are discarded through crosschecking [1].

We present some examples of nearest neighbor matching between renders and real
images in Figure 8 . As can be seen, the renders are simplistic and are lacking in parts such
as screws and wires that are present in the real images. Results for one-to-one matching
were generally poor despite a good FPR95 score. Good ROC does not imply good nearest
neighbor matching, as noted in [6].

4.4. Bag of Visual Words with Learned Descriptor

Besides nearest neighbor matching for comparing image pairs, we also tested his-
tograms based on BoVW learned from a set of renders and real images by extracting from
them ORB features (oriented and rotated BRIEF) [6] and the learned features (LF) around
FAST interest points. The two learned BoVW dictionaries both contained 50 words. The
choice of 50 words was motivated by work of Mokhtari et al. (2018) [32] who trained an
object detector and image classifier on real images similar to the ones we used.

For every test pair of images, the two descriptors, ORB and LF, were calculated at
FAST points, and histograms were created using the calculated descriptors and learned
dictionaries. For each image, 2 histograms were computed, one based on ORB BoVW and
the other on LF BoVW. One pair hence produced 4 histograms, and 2 distances, one between
the ORB BoVW histograms and the other between LF BoVW histograms. The distances
between all matching test pairs have been shown in Figure 9e. The LF-based distances
between histograms were observed to be less erratic than ORB-based ones, as depicted by
the histograms and associated entropies in Figure 9a,b.

Appl. Sci. 2021, 11, 3301 12 of 15

Figure 8. Four image pairs showing nearest neighbor matching between renders and real images.
In each pair, the left image is a simple render generated for the real image to its right. Only a subset
of matches have been shown for clarity.

Entropy = 2.42
Entropy = 2.73

(a) (b)

(c) (d)

(e)

Distances between histograms of non-matching
crops

Distances between histograms of matching crops

Figure 9. Comparison of image pairs using Bag of Visual Words histograms learned from renders and
real images using ORB features and the learned features (LF). (a,b) are distributions of L1 distances
between BoVW histograms of matching and non-matching image pairs using LF and ORB features
respectively. (c,d) are matching pairs of rendered and real images. (e) is a plot of L1 distances between
BoVW histograms of matching image pairs using LF and ORB features.

Appl. Sci. 2021, 11, 3301 13 of 15

5. Conclusions

We saw that it is possible to learn a feature descriptor to compare simple renders
with real images using relatively few image pairs. To do this, we presented a method for
producing a data set of patch-pairs, and a method for training the cross-domain descriptor.
The learned descriptors showed better performance when larger patches were used, due to
simplistic nature of the CADs, i.e., larger patches provided more discriminative context.
A two-stage training strategy was necessary for learning the descriptor, where the first stage
was for learning initial weights that addressed domain-shift before learning discriminative
cross-domain embeddings. The learned descriptors were used for comparing image pairs
by nearest neighbor matching and through histograms based on Bag of Visual Words built
using the learned features. For nearest-neighbor matching, best FPR95 obtained was 13.8,
outperforming SIFT matching for real–real image patches. The learned features can thus be
used in a variety of ways, much like other local features.

For future work, we note that although we used a basic shading as described before,
a slightly more detailed shading, such as that described by Phong [33], might provide better
performance while still enabling fast renders. The deep architecture used was VGG16,
which is expensive to evaluate and impractical for real-time inspection. Smaller networks
such as the one in [10] need to be explored. The hyperparameters for training the network
may be chosen using Bayesian methods [34,35]. The FAST detector was used for sake of
dense detections, but its interest points are not best suited for comparing real and synthetic
images. Detectors such as LIFT, SIFT, or MSER [5] need to be tested. A detector could
also be learned like in LIFT [36]. Instead of matching descriptors one-to-one, matching
triplets of descriptors might be an effective alternative, since correspondence between
a simplistic CAD and real assembly is not one-to-one. Finally, realistically colored and
textured renders with different configurations of the CADs can be explored for augmenting
the set of real images.

Author Contributions: Conceptualization, P.G., I.J., and J.-J.O. ; methodology, P.G.; software, P.G.
and I.J.; validation, P.G. and I.J.; investigation, P.G., J.-J.O., and I.J.; resources, J.-J.O. and I.J.; data
curation, I.J.; writing—original draft preparation, P.G.; writing—review and editing, P.G., I.J., and
J.-J.O.; supervision, J.-J.O. and I.J.; project administration, J.-J.O.; funding acquisition, J.-J.O. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by IMT Mines Albi and the company Diotasoft. The APC was
funded by IMT Mines Albi.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data used in this work are highly sensitive industrial clients
data, hence can not be shared due to their confidential nature.

Acknowledgments: We would like to thank the whole team at Diotasoft Toulouse office, namely,
Yannick Porto, Nour Islam Mokhtari, Benoît Dolives, Hamdi Ben Abdallah, and Ludovic Brèthes,
for their support, guidance, and feedback throughout the span of this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In Proceedings of the European Conference on

Computer Vision, Graz, Austria, 7–13 May 2006; Springer: Berlin/Heidelberg, Germany, 2006.
2. Viana, I.; Bugarin, F.; Cornille, N.; Orteu, J.-J. Cad-guided inspection of aeronautical mechanical parts using monocular vision. In

Proceedings of the Twelfth International Conference on Quality Control by Artificial Vision 2015, Le Creusot, France, 3–5 June
2015; International Society for Optics and Photonics: San Diego, CA, USA, 2015; Volume 9534, p. 95340.

3. Jovančević, I.; Larnier, S.; Orteu, J.-J.; Sentenac, T. Automated exterior inspection of an aircraft with a pan-tilt-zoom camera
mounted on a mobile robot. J. Electron. Imaging 2015, 24, 061110. [CrossRef]

4. Agin, G.J. Computer vision systems for industrial inspection and assembly. IEEE Comput. 1980, 13, 11–20. [CrossRef]

http://doi.org/10.1117/1.JEI.24.6.061110
http://dx.doi.org/10.1109/MC.1980.1653613

Appl. Sci. 2021, 11, 3301 14 of 15

5. Schonberger, J.L.; Hardmeier, H.; Sattler, T.; Pollefeys, M. Comparative evaluation of hand-crafted and learned local features. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA , 21–26 July 2017.

6. Zagoruyko, S.; Komodakis, N. Learning to compare image patches via convolutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 4353–4361.

7. Han, X.; Leung, T.; Jia, Y.; Sukthankar, R.; Berg, A.C. Matchnet: Unifying feature and metric learning for patch-based matching. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015;
pp. 3279–3286.

8. Brown, G.H.M.; Winder, S. Discriminative learning of local image descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33,
43–57. [CrossRef] [PubMed]

9. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

10. Balntas, V.; Riba, E.; Ponsa, D.; Mikolajczyk, K. Learning local feature descriptors with triplets and shallow convolutional neural
networks. In Proceedings of the BMVC, York, UK, 19–22 September 2016; Volume 1, p. 3.

11. Simo-Serra, E.; Trulls, E.; Ferraz, L.; Kokkinos, I.; Fua, P.; Moreno-Noguer, F. Discriminative learning of deep convolutional feature
point descriptors. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015.

12. Raia, H.; Chopra, S.; LeCun, Y. Dimensionality reduction by learning an invariant mapping. In Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006.

13. Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep face recognition. In Proceedings of the BMVC, Swansea, UK, 7–10 September 2015;
Volume 1, p. 6.

14. Peng, X.; Sun, B.; Ali, K.; Saenko, K. Learning deep object detectors from 3d models. In Proceedings of the IEEE International
Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1278–1286.

15. Hinterstoisser, S.; Lepetit, V.; Wohlhart, P.; Konolige, K. On pre-trained image features and synthetic images for deep learning.
arXiv 2017, arXiv:1710.10710.

16. Ros, G.; Sellart, L.; Materzynska, J.; Vazquez, D.; Lopez, A.M. The synthia dataset: A large collection of synthetic images for
semantic segmentation of urban scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las
Vegas, NV, USA, 27–30 June 2016; pp. 3234–3243.

17. Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schoelkopf, B.; Smola, A.J. A kernel method for the two-sample-problem. Adv. Neural
Inf. Process. Syst. 2007, 19, 513–520.

18. Ganin, Y.; Lempitsky, V. Unsupervised domain adaptation by backpropagation. arXiv 2014, arXiv:1409.7495.
19. Rad, M.; Oberweger, M.; Lepetit, V. Feature mapping for learning fast and accurate 3D pose inference from synthetic images. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.
20. Gupta, S.; Hoffman, J.; Malik, J. Cross modal distillation for supervision transfer. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2827–2836.
21. Massa, F.; Russell, B.; Aubry, M. Deep exemplar 2D–3D detection by adapting from real to rendered views. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 6024–6033.
22. Hinterstoisser, S.; Lepetit, V.; Ilic, S.; Holzer, S.; Bradski, G.; Konolige, K.; Navab, N. Model based training, detection and pose

estimation of texture-less 3D objects in heavily cluttered scenes. In Proceedings of the Asian Conference on Computer Vision,
Daejeon, Korea, 5–9 November 2012; Springer: Berlin/Heidelberg, Germany, 2012.

23. Lim, J.J.; Pirsiavash, H.; Torralba, A. Parsing IKEA objects: Fine pose estimation. In Proceedings of the IEEE International
Conference on Computer Vision, Sydney, Australia, 1–8 December 2013.

24. Sun, X.; Wu, J.; Zhang, X.; Zhang, Z.; Zhang, C.; Xue, T.; Tenenbaum, J.B.; Freeman, W.T. Pix3D: Dataset and methods for
single-image 3D shape modeling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–22 June 2018.

25. Hodan, T.; Haluza, P.; Obdržálek, Š.; Matas, J.; Lourakis, M.; Zabulis, X. T-LESS: An RGB-D dataset for 6D pose estimation of
texture-less objects. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa,
CA, USA, 24–31 March 2017.

26. Unity Technologies. Unity Development Platform. Available online: http://unity3d.com (accessed on 1 February 2018).
27. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
28. Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y. Towards good practices for very deep two-stream convnets. arXiv 2015, arXiv:1507.02159.
29. Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 815–823.
30. Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks.

arXiv 2017, arXiv:1710.05381.
31. Van der Laurens, M.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res.2008, 9, 2579–2605.
32. Mokhtari, N.I. Application of State of the Art Machine Learning to Various Industrial Visual Inspection Problems. Master’s

Thesis in Computer Vision, Université de Bourgogne, Le Creusot, France, 2018.
33. Tuong, P.B. Illumination for computer generated pictures. Commun. ACM 1975, 18, 311–317.

http://dx.doi.org/10.1109/TPAMI.2010.54
http://www.ncbi.nlm.nih.gov/pubmed/21088318
http://dx.doi.org/10.1007/s11263-015-0816-y
http://unity3d.com

Appl. Sci. 2021, 11, 3301 15 of 15

34. Imani, M.; Ghoreishi, S.F.; Allaire, D.; Braga-Neto, U.M. MFBO-SSM: Multi-fidelity Bayesian optimization for fast inference in
state-space models. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February
2019; Volume 33.

35. Mahdi, I.; Ghoreishi, S.F.; Braga-Neto, U. Bayesian Control of Large MDPs with Unknown Dynamics in Data-Poor Environments.
In Proceedings of the NeurIPS,Montreal, QC, Canada, 3–8 December 2018.

36. Yi, K.M.; Trulls, E.; Lepetit, V.; Fua, P. Lift: Learned invariant feature transform. In Proceedings of the European Conference on
Computer Vision, Graz, Austria, 7–13 May 2006; Springer: Cham, Switzerland, 2006.

	Introduction
	Related Literature
	Methodology
	Producing Simple Renders
	Creation of Patch-Pair Data Set
	Two-Step Training for Feature Extractor
	Bootstrapping
	Triplet Loss Training

	Computing Learned Descriptor at Test-Time

	Results
	Effect of Two-Step Training
	ROC Curves
	Nearest Neighbor Matching
	Bag of Visual Words with Learned Descriptor

	Conclusions
	References

