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Abstract

In 2013, Galtier et al. [10] theoretically revisited a numerical trick that had been used since the very

beginning of linear-transport Monte-Carlo simulation: introducing “null” scatterers into a heterogeneous

field to make it virtually homogeneous.

The rigorous connection between null-collision algorithms and integral formulations of the radiative

transfer equation led to null-collision algorithms being used in distinct contexts, from atmospheric or

combustion sciences to computer graphics, addressing questions that may strongly depart from the initial

objective of handling heterogeneous fields (handling large spectroscopic databases, non-linearly coupling

radiation with other physics).

We briefly describe here some of this research and we classify it by proposing three alternative view-

points on the very same null-collision concept: an intuitive, physical point of view, called similitude; a

viewpoint built on the probability theory, where the null-collision method is seen as rejection sampling ;

and a more formal writing where the nonlinear exponential function is expanded into an infinite sum of

linear terms.

By formulating the null-collision concept under three distinct formalisms, our intention is to increase

the reader’s awareness of its flexibility.The idea defended and illustrated in this paper is that the ability to

explore null-collision algorithms under their different forms has often led to a broadening of the solution

space when facing difficult problems, including ones where the Monte Carlo method was consensually

considered inapplicable.

1. Introduction

Since the origin of numerical simulations of radiative transfer, it has been claimed that statistical

approaches such as Monte Carlo were the only practical “way or path” towards the simultaneous handling
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of all the spectral and geometric complexity of radiation in 3D realistic systems. This complexity tends

to infinity as soon as either

1. the degree of detail that describes the heterogeneous medium of propagation tends to infinity,

2. the spectral resolution of the optical properties of the medium tends to zero,

3. Fredholm integral equations are involved, e.g., in the context of multiple scattering, which theoret-

ically yields an integration domain of infinite dimension.

The reason why “Monte Carlo is the only numerical tool that passes infinite dimension” is the use of the

double randomization technique: the expectation of a linear function of another expectation is still just

one expectation, or

E[h(E[X])] = E[h(X)] (1)

where h is a linear function and X a random variable. This is trivial and can be easily demonstrated using

the linearity of the integral operator. However, the most immediate implication of this property is the

key to the renowned power of Monte Carlo: when estimating the expectation of a random variable that

is a linear function h of the expectation of other random variables (representing, for example, spectral,

spatial or directional variables), then only one sample of each “secondary” random variable is needed to

provide one sample of the global random variable. This technique is described in detail in Sabelfeld [22]

and identified as a key point in the Monte Carlo community of applied mathematics (see, for example,

[15, 6]).

However powerful, this property is strictly limited to cases where the h function is linear. Radiative

transfer is, of course, “linear transport” and the exponential extinction of a beam (after Beer’s law) is a

signature of this linearity. But in the context of Monte Carlo methods, with the necessary writing of the

computed quantity as an expectation, the nonlinearity of the exponential function is at the origin of severe

difficulties as soon as the medium of propagation is spatially heterogeneous. Indeed, the integral over

the heterogeneous extinction field appears within the exponential function, whereas the integration over

multiple scattering optical paths appears “outside” the exponential (these paths define the line-of-sight

along which Beer’s extinction is applied). The integrals are combined nonlinearly; double randomization

can no longer be employed (Eq. (1) is no longer true); a crucial feature of the Monte Carlo technique is

lost (see [3] for more advanced considerations on the matter).

A solution to bypass this nonlinearity without biasing the results or decreasing convergence rates

has been commonly used in various parts of the Monte Carlo literature ([31, 23, 2, 16, 12, 20]). The

main idea is to make use of “null colliders”, fictitious particles that are added to the true extinction

field in order to make it homogeneous, which reduces the optical-depth integral to a simple product.

When a path encounters one of these null colliders, it simply continues forward as if the collision had

not occurred. From an intuitive or physical point of view, null colliders are pure scatterers characterized



by a strictly-forward phase function. In the scope of probability theory, null collisions can be seen as

the rejected samples that come from sampling a density function that overestimates the frequency of

collisions instead of the true distribution of free-path lengths, as per a standard rejection method.

The null-collision method has long been considered a numerical trick to avoid a heavier, deterministic

integration of the extinction field. The fact that the line-of-sight integration was shifted from inside to

outside the exponential in the underlying mathematical formulation was only recently made explicit, in

the seminal paper of Galtier et al. in 2013 [10]. Subsequently, the authors and colleagues have highlighted

the important implications of this reinterpretation for a diversity of research and applied fields, including

combustion, spectroscopy, solar energy, atmospheric radiative transfer and image rendering [7, 11, 5, 3, 27].

Some examples of the new ideas that could only be explored and implemented thanks to the revisiting

of the null-collision method are listed hereafter:

• Villefranque et al. [27] investigated the question of the acceleration of path tracing in spatially

heterogeneous media using null collisions in combination with tools from the computer graphics

community. At the junction of physics and computer graphics, they structured the data describing

highly heterogeneous extinction fields into octrees to allow both fast traversal of the arbitrarily

complex spatial domain and limited time spent in sampling null-collision events. In the same way,

the field of image rendering has largely benefited from the formal framework that resulted from

Galtier et al.’s work in 2013, bringing them to develop and implement new null-collision algorithms

with renewed efficiency and confidence [18, 13].

• Tregan et al. [26] propounded a solution to avoid a convergence issue due to the use of null-collision

algorithms to compute sensitivity estimates of a radiative quantity. This was only possible by

shifting from the intuitive to the probabilistic point of view on the null-collision method, thereby

modifying the integral formulation associated with the first null-collision algorithm into a new

formulation (and hence, algorithm) yielding better statistical properties.

• Galtier et al. [11] have recently applied the idea of using null collision algorithms to spectrally

integrate radiative quantities without pre-computing the absorption spectra. In this proposition,

the null collisions are again a way to bypass the nonlinearity of the exponential: by shifting the

sum over the energetic transition line contributions to the local absorption coefficient from inside

to outside the exponential function, the double randomization technique can again be used where it

could not have previously been applied without the null-collision method. In the conception of this

algorithm, the formal or mathematical point of view was infinitely more helpful than the intuitive

or physical one.

Obviously, since their first apparition in the literature, justifications for the use of null-collision algo-

rithms (NCA) have been based on various arguments, depending on the community and context of the



application. As the method enjoys growing interest and is used by many scientists from fields as diverse

as those cited above, we find it interesting to suggest a classification of the different interpretations of

the concept of null collisions. Our intention is not to compare or rank these viewpoints, but rather:

1. to try and reduce the classification to a limited number of ideas (that is, three points of view);

2. to argue that although the second and third viewpoints are less immediate than the similitude

viewpoint (the most standard definition of null collisions), they produce quite different theoretical

developments toward the same conclusions, offering new formal perspectives;

3. to illustrate the practical benefits that can be expected from these new perspectives (algorithms

that would be difficult to establish from only the similitude viewpoint).

In the following sections, we present three readings of the method that we think allow convenient

changes in perspective regarding the concept of null collisions: from the physical viewpoint (Section 2, a

similitude), to the statistical (Section 3, a rejection method), to the mathematical (Section 4, a Taylor

expansion of the exponential) . To illustrate the practical signification of these three viewpoints, we briefly

describe recent research that was made possible or facilitated by a shift in the mental representation of

the null-collision concept.

The ideas behind these examples and the supporting illustrations are not always original, in the sense

that some have been published already. The originality of this work rather resides in the reformulation of

the null-collision concept, as well as in the connections that are made between the reported studies. Fur-

thermore, as this research covers a wide range of scientific fields, publications were sometimes addressed

to specialists of a particular domain rather than to the community of radiative transfer scientists. With

this paper, we hope to facilitate access to this literature.

2. Adding forward-scatterers: a similitude

Figure 1 illustrates this first viewpoint. It is the most prevalent one in the literature of radiative

transfer, and also the most intuitive one, as it can be enunciated entirely within the framework of the

physics of transport: fictitious particles are added to the medium to make it homogeneous, without

interacting with radiation.

Indeed, designing a Monte Carlo code raises the question of making the best computer-science choices

for fast tracking of multiple-scattering and multiple-reflection paths in complex 3D scenes. Path tracing

requires finding the location of the next event along the simulated path: it is at the shortest distance

between i/ the distance to the next collision in the volume and ii/ the distance to the next surface

intersection. Sampling the next volume collision is not straightforward in a heterogeneous medium because

the transmittance law is not invertible analytically.

A common solution is to compute the “line-of-sight” optical depth by numerically integrating the

extinction along the path, until a sampled value of “free” optical depth is reached. Often, the field of



A similitude viewpoint
Let us write the stationary Radiative Transfer Equa-
tion (RTE) in a purely scattering medium, where f is
the distribution function, ks the scattering coefficient,
Φ the scattering phase function:

ω.∇f = −ksf +

∫

4π

ksf
′Φ(ω|ω′) dω′ (2)

We assume that several species in the medium are re-
sponsible for the total scattering:

• blue scatterers with scattering coefficient ks1 and
phase function Φ1,

• red scatterers with scattering coefficient ks2 and
phase function Φ2

such that ks = ks1 + ks2 , ksΦ = ks1Φ1 + ks2Φ2:

ω.∇f = −(ks1 + ks2)f +

∫

4π

ks1f
′Φ1(ω′|ω) dω′ +

∫

4π

ks2f
′Φ2(ω′|ω) dω′ (3)

Once a collision is found in the medium, the type of scatterer is sampled according to the local
proportion of species: blue scatterers are found with a probability ks1/ks while red scatterers are
found with a probability ks2/ks.

(a) Scattering by multiple species: considering that different species with different extinction coefficients and phase
functions are responsible for the medium total optical thickness, the RTE can be written as a sum of contributions
from each scattering species

In the null-collision method, species that has no effect
on the radiation but makes the scattering coefficient
field homogeneous is added. The second type of scat-
terer in equation (3) is null : it has no physical meaning,
hence ks2 = kn can be chosen such that ks1 +ks2 is con-
stant in the medium, and Φ2(ω′|ω) set to δ(ω−ω′), i.e.
the null phase function is such that the path continues
in the same direction as if nothing had happened:

ω.∇f = −(ks1 + kn)f +

∫

4π

ks1f
′Φ1(ω′|ω) dω′ +

∫

4π

knf
′δ(ω − ω′) dω′ (4)

The RTE is unchanged because knf cancels out with
∫
4π
knf

′δ(ω − ω′) dω′. In the corresponding
Monte Carlo algorithm, the next-collision location will be sampled from the total extinction field
k̂s = ks1 + kn. A true collision will occur with probability ks1/k̂s while a null-collision will occur

with probability kn/k̂s.

(b) NCA viewpoint: in null-collision algorithms, a specie is added that does not impact the radiation, but makes
the field of colliders density homogeneous, hence allowing straightforward sampling of the next-collision location

Figure 1: Null-collision methods seen under the physical viewpoint where a purely forward-scattering species is
added to the medium to make it homogeneous.



extinction coefficient (the input data) is meshed, with a constant value in each gridcell (see Figure 2 for

an illustration). Computing the line-of-sight optical depth in a deterministic way then comes back to

iterating over the crossed gridcells, and for each one: computing the length of the ray in the gridcell,

accessing the data to retrieve the local extinction coefficient, and adding the current-gridcell length-

coefficient product to the cumulated optical depth.

Figure 2: a) Regular tracking, where the original medium is the support of the path-tracing algorithm. b)
Null-collision methods, where the field has been virtually homogenized, yielding data – algorithm independence.
Adapted from Figure 2 of [27].

In this regular tracking method, the original field is the support of the path-tracing algorithm, which

is by construction intrinsically dependent upon the data structure and size. If the field is highly resolved

and heterogeneous with a large range of extinction variations, then many gridcells might be crossed with

negligible contribution to the optical depth. For a given field, doubling the spatial resolution of the data

implies that finding the next collision in the volume requires at least twice the computational time.

The first benefit of null collisions is undoubtedly that the resulting path-tracing algorithms are strictly

independent of the original representation of the field, as in Figure 2-b). This independence was, for

example, pointed out in the Appendix of Marshak et al.’s 1995 paper [17] in the context of atmospheric

radiative transfer, and was at the heart of Eymet et al.’s work [7] for combustion applications. More

recently, research groups in the main animation studios of the cinema industry have clearly greeted the

proposal to introduce null-collision with considerable enthusiasm [18, 13, 25].



Indeed, data-algorithm orthogonality (independence) is a well-known concept in the image-rendering

community who have been capitalizing on its benefits for years, as far as surface rendering is concerned

[19]. Most of the recent advances in computer graphics for the cinema industry are direct results of this

orthogonality: they are mainly related to a hierarchical reorganization of the original data, which allows

fast crossing of the resulting structure, yielding fast testing of the ray-surface intersection for a large

set of surfaces [29, 28, 30]. These advances benefit the artists and modellers who can freely design their

numerical scenes, regardless of how the renderer will eventually handle the millions of elementary surfaces

that they output.

Since null-collision techniques preserve data-algorithm orthogonality, many of the tools developed to

accelerate path-tracing in complex surfaces can now be used for path-tracing in complex volumes. In

practice, accelerating structures are built prior to path tracing by merging gridcells from the original

highly-resolved field into larger voxels that efficiently capture the heterogeneous features of the true field.

An example of such a structure is presented in Figure 3. The structure is filled in the spirit of the

null-collision method: in each merged voxel, the field of extinction coefficient is homogeneous, i.e. it is

set to the maximum coefficient value found among the merged gridcells. Using a null-collision algorithm

means that the paths will travel through this new medium, where null collisionners have been added.

When a collision is found, the algorithm samples the nature (true or null) of the collision and proceeds

accordingly, much as in the examples of Figure 1.

A striking example of a complex volume is the cloudy atmosphere, as shown in Figure 4-a). Clouds

occupy a small region of a scene, and are made up of thousands of microscopic water droplets. Here, the

extinction field is structured into a regular 3D mesh with a uniform extinction coefficient in each gridcell

(one gridcell volume is 25×25×25 m3 and the domain volume is 6.4×6.4×4 km3). A large number of rays

will only intersect non-cloudy, empty gridcells, while others will visit the cloudy, optically-deep parts of

the scene, where thousands of collisions can occur.

In Villefranque et al. [27], it is shown that the efficiency of null-collision algorithms relies on a com-

promise between two extremes:

1. not merging any gridcells, as in the regular tracking method illustrated in Figure 2-a): null collisions

will never happen but a lot of time will be spent crossing the regular mesh and accessing the relevant

data in memory;

2. merging the whole field into one homogeneous voxel, as illustrated in Figure 2-b): the null-extinction

coefficient might be very large in some regions of the scenes, where a lot of time would be spent

testing collision nature and re-sampling free optical depths;

Figures 1 and 5 of [27], reproduced here as Figure 5 and Figure 6, present evidence of the data-

algorithm orthogonality: computing time is insensitive to the complexity of the scene description, for

both surface and volume.



Figure 3: Examples of hierarchical grids for fast path-tracing. Above: 3D view of a hierarchical grid for a
cumulus clouds scene. Below: 2D cross-section of a hierarchical grid for a congestus clouds scene.



(a) A cloudy scene simulated using the high-resolution Large Eddy Simulation (LES) tool of Météo-
France, rendered with a tool based on Monte Carlo path-tracing. The camera is located in the
bottom right corner of the field.

(b) Solar fluxes at ground level and associated uncertainties (standard deviations), as simulated by a multiple-scattering
Monte Carlo algorithm using null-collisions to handle the geometric complexity of the 3D clouds.

(c) Cloud optical depth, simulated solar-fluxes and sensitivities to these fluxes to 1− ω, along a line across the projection
of a given cloud, for two values of ω (left ω = 0.95, right ω = 0.99). The uncertainties are depicted as an envelope of width
3 times the standard deviation. The variance of the sensitivity evaluation increases when ω (the single scattering albedo)
gets close to 1, i.e. when reducing absorption.

Figure 4: Using null collision algorithms implemented in Monte Carlo codes to simulate radiative transfer in
highly heterogeneous cloudy atmospheres.
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Figure 5: Insensitivity of computing time to scene complexity is achieved when using hierarchical grids to
organize the surface data. Reproduced from Figure 1 of [27].
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Figure 6: Insensitivity of computing time to scene complexity is achieved when using hierarchical grids with
null collisions (full line with squares, τ̃ = 1). τ̃ is the merging criterion for the construction of the hierarchical
grids: the voxels are merged while the resulting optical depth is below the value of τ̃ . For τ̃ = 0, (dashed line
with circles) the voxels are never merged, yielding hierarchical grids that are the same resolution as the input
data. Reproduced from Figure 5 of [27].



The computer graphics community organises its developments around open-source libraries that are

available to our community and can be used on a regular basis [1, 24]. With their growing interest in the

null-collision method, new libraries will probably be developed and distributed to physicists. An example

of this has been described and illustrated in [27], in the field of atmospheric science. Their implementation

is also illustrated in Figure 4 where a library-based renderer is used to compute a physically-correct

synthetic image of a cloudy field that is the output of a high-resolution Large Eddy Simulation; and in

Figure 4b in which similar tools are used to compute pixel-averaged ground fluxes, each estimated using an

independent reverse Monte Carlo simulation involving 105 samples. Also displayed is the corresponding

statistical uncertainty. These simulations are then used to analyse the radiative effects of clouds at the

surface, to improve their representation in climate models. Using null-collision algorithms allows radiative

transfer to be simulated in large datasets, in which computations would otherwise be impracticable.

At this stage, we have retained a viewpoint under which all we see is a rigorous similitude between the

original radiative-transfer problem and a new one in which additional scatterers with a strictly-forward

phase function have been introduced in the medium. The benefits associated with this similitude are

essentially in terms of computer implementation.

3. Rejection sampling

An alternative way of describing the use of null collisions is to consider that when a null collision is

encountered, the sampling of the collision’s location is rejected. This viewpoint is illustrated in Figure 7.

The problem of the extinction coefficient heterogeneity appearing within the exponential can indeed be

reduced to the difficulty of sampling a collision location x according to the probability density function

p(x) = ke(x) exp

(
−
∫ x

0

ke(y)dy

)

Thus, the algorithm that rejects null collisions until a true collision is found is nothing more than

a rejection-sampling algorithm. Under this viewpoint, no similitudeis used, no “forward scatterers” are

added to the field. Null collisions are only a statistical method to sample p(x) when it is not analytically

invertible.

In our practice, we observe that there are cases in which switching from one viewpoint to the other

leads to the designing of quite distinct Monte Carlo algorithms. This is particularly true when we work on

the integral form of the algorithm. In this framework, any Monte Carlo algorithm can be translated into

its mathematical counterpart (and reciprocally). This integral formulation can be rigorously transformed

using simple operations, and translated back into a new algorithm with better properties (usually with

reduced variance [5]) or into one that computes entirely new quantities (for instance, the partial derivatives

(or sensitivities) of the initial quantity with respect to any model parameter [4, 21]).

With the first viewpoint (the similitude), each null collision is a sampling event that appears in the

integral formulation. With the second one (rejection sampling), the only retained events are the true



A rejection-sampling viewpoint
Let X and Z be two independent and
identically distributed (i.i.d.) random
variables with probability density func-
tion pX .
Let Y be a random variable with prob-
ability density function pY .
If there is α > 1 such that
∀x ∈ R, αpY (x) > pX(x), then:

X =

{
P (Y )Y

+ (1− P (Y ))Z

where P (y) = pX(y)
αpY (y) .

x

y

pX(πX)

αpY (πY )

pY (πY )
•

•
•

y1 y2y3

L

x0

(a) Rejection Sampling: {yn}n∈N is defined as a sequence of realizations of the random variable Y . The sequence
{rn}n∈N is defined such that ri is sampled uniformly on [0, αpY (yi)]. The rejection method consists of considering yi as
a realization of X when ri < pX(yi), in the other case yi is rejected. In the above example, y1 and y2 are rejected, while
y3 is retained.

Let XNCA be an exponentially dis-
tributed random variable of rate param-
eter ke.
Let Z be a random variable i.i.d. with
XNCA.
Let Y be an exponentially distributed
random variable of rate parameter k̂.
If ∀x ∈ [x0,+∞[, k̂ > ke(x), then:

XNCA =

{
P (Y )Y

+ (1− P (Y ))Z (Y )

where P(y) = k(y)

k̂
.

x

k(y)

ke

k̂

•

•
•

•

y1 y2 y3 y4

L

x0

(b) NCA viewpoint: NCA consists of sampling a realization y of the random variable Y , and to sample uniformly r

in [0, k̂]. If r < k(y)/k̂, y is retained as a realization of X; otherwise, a new realization ỹ of the random variable Y(y)
(defined on [y,+∞[) is sampled, which is therefore dependent on the previous realization. In the above example, y1, y2
and y3 are rejected, while y4 is retained.

Figure 7: Textboxes (a) and (b) highlight the close link between the rejection sampling method and the NCA.
Indeed, one can notice that X and XNCA have the same mathematical expression. In both cases, one realization
of the random variable X or XNCA is seen as a series of realizations of another random variable Y , each of which
are successively rejected until one is retained. The difference lies in the random variable XNCA itself, which has
to be exponentially distributed, while X may correspond to any random variable. This major difference allows
for the use of the NCA, in which each subsequent realization of Y makes use of the previous realizations. In terms
of practical use, while a realization yi is only used to reject or retain the event yi in the case of the rejection
sampling method, it is also used to evaluate the next realization yi+1 in the case of NCA. This also means that
every sub-realization yi of XNCA improves the chances of the following step yi+1 being the final one.



collisions; null collisions do not appear at all in the integral formulation. The difference is very significant

as soon as sensitivities are considered.

The principle of Monte Carlo estimation of parametric sensitivities (or Jacobians) in radiative transfer

is quite simple [4, 21]. Any Monte Carlo algorithm can be expressed under an integral form. This integral

can be derived as a function of any parameter to give another integral formulation that can again be

evaluated using Monte Carlo.

The sensitivity evaluation is simultaneous as soon as the very same random sampling algorithm can

be used for both the addressed quantity and its sensitivity. Roger et al. [21] have shown that this is

always possible, regardless of the parameter type, and even when the parameter affects the integration

domain. However, despite being thoroughly general, this proposition can cause practical difficulties in

some contexts, in particular as far as numerical convergence is concerned [26].

An example of such difficulty can easily be pictured using a simple example. Let us assume that

we want to evaluate the direct transmissivity of a semi-transparent column of length L starting at the

position x0 (Beer-Lambert law for heterogeneous medium), as displayed in Figure 8.

Tdir(x0) = exp

(
−
∫ x0+L

x0

ke(y)dy

)

Using a NCA, a collision location x will be sampled as if the extinction coefficient ke were uniform

and equal to k̂ = ke + kn, and rejected with probability

PN (x) =
kn(x)

k̂
=
k̂ − ke(x)

k̂

Retaining the similitude point of view for the NCA, one would write the following formulation, which

is demonstrated in [14] (see figure 9):

Tdir(x0) =

∫ +∞

0

dx k̂ exp
(
−k̂x

){
H(L− (x− x0))

{
PN (x)Tdir(x)+(1− PN (x)) {w0}

}

+H((x− x0)− L) {w1}
} (5)

Where w0 = 0 represents the null contribution to the transmissivity of an absorption in the medium, and

w1 = 1 the weight associated with a contribution to the transmissivity. To evaluate the sensitivity of the

transmissivity to any parameter ζ on which depends ke, the integrand in eq. (5) is derived with respect

to ζ. Then, in order to be able to use the same samples for Tdir and its derivatives, thus making the

computation of these quantities simultaneous, the derivative formulation must be rewritten under the

same form as eq. (5). This yields the logarithmic derivative of PN with respect to ζ in the sensitivity

Monte Carlo weight:

∂ζPN
PN

= − ∂ζke

k̂ − ke
where ∂ζke is the derivative of ke with respect to ζ (see Lataillade et al. [4]). It can be easily seen that

− ∂ζke

k̂−ke
tends towards infinity when k̂ tends towards ke (for more details, see Tregan et al. [26]), that is,



when the probability of null collisions decreases. For this reason, the variance of the sensitivity estimator

becomes infinite and convergence is impossible.

This means that when k̂ is well adjusted (which is required in order to reduce the number of useless null

collisions), the sensitivity estimation becomes less accurate. Figure 8 illustrates this convergence difficulty.

It also illustrates a solution that could easily be found by changing the viewpoint on null-collisions, which

is described in thorough detail in Tregan et al. 2020 [26]. In the first case, the null-collision probability

needs to be derived, leading to the problematic − ∂ζke

k̂−ke
mentioned above; in the second case, only p(x)

needs to be derived, in which k̂ does not appear, and the convergence difficulty associated with − 1
k̂−ke

vanishes (see Figure 8).

Another illustration of sensitivity computation can be found on the previously presented maps of

ground-fluxes (Figure 4b). In order to better understand and characterize cloud radiation interactions,

the ground-flux density was computed along a line on the ground (see Figure 4c, along with the sensitivity

to 1 − ω, where ω is the single scattering albedo (ω is assumed uniform within the clouds). These two

quantities were simultaneously computed, using the exact same technique as described above to avoid

convergence difficulties.

4. Transforming the nonlinearity of the exponential into a linear problem of infinite dimen-
sion

The principle underlying this third point of view is exposed in detail in Dauchet et al. [3] and described

in Figure 9. The departure point is that double randomization can no longer be used as soon as integrals

are combined through nonlinear functions. The first idea is that nonlinear functions can be developed

into infinite sums of monomials using a Taylor series. The second idea is that a monomial of order n of

a random variable X can be written as the product of n independent variables Xi identically distributed

as X. To compute one realisation of Xn, one only needs to compute n samples distributed according to

the probability density function of X and retain their product. The entire algorithm corresponding to

the evaluation of a Taylor series consists in sampling n, the order of the monomial, and then compute

one realisation of Xn, thus retrieving the power of double randomization.

In this third viewpoint, the nonlinearity of the exponential is read and treated with this exact idea in

mind. Let us consider

p(x) = ke(x) exp

(
−
∫ x

0

ke(x
′)dx′

)

and introduce the function f(u) = exp(−u). Then p(x) = ke(x)f(τ) with τ =
∫ x
0
ke(x

′)dx′ the optical
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Figure 8: Top figure Profile of the extinction coefficient ke within a heterogeneous column of length L. Bottom
figures In the particular case where the extinction coefficient ke is uniform, number of samples required for a 1%
accurate evaluation of the sensitivity to ke of the column transmissivity, using a null-collision algorithm. In the
left-hand figure, we start from an integral formulation in which null-collisions are viewed as forward-scattering
events, which leads to convergence difficulties when kn is close to 0 (the number of required samples tends to
infinity). In the right-hand figure, we start from an integral formulation in which null-collisions are viewed as a
rejection-sampling method: the convergence difficulty vanishes.



From a nonlinear to an infinite-dimensional problem
According to the Beer-Lambert law, the direct transmissivity of a semi-transparent column of length L can be expressed
as equation 6 in the case of a heterogeneous medium of absorptivity coefficient ke(x). With the introduction of an

overestimate k̂ as explained in Fig. 1, and a Taylor expansion of the exponential, this probability can be written as
equation 7.

Tdir(x0) = exp

(
−
∫ x0+L

x0

ke(x
′)dx′

)
(6)

= exp(−k̂x) exp

(∫ x0+L

x0

dx′
(
k̂ − ke(x′)

))

= exp(−k̂x)
∞∑

n=0

1

n!

(∫ x0+L

x0

dx′
(
k̂ − ke(x′)

))n
(7)

(a) A Taylor expansion approach

According to Beer-Lambert law, the direct transmissivity of a semi-transparent column of length L can be expressed as
equation 8 in the case of a heterogeneous medium of absorptivity coefficient ke(x). This transmissivity can be evaluated
by making use of the null-collision algorithm presented in Fig. 1, which is written in its integral form in equation 8. By
separation of the integrals with respect to the Heaviside functions (equation 9), the transmissivity can be rewritten as
equation 10 (see full details in Appendix A)

Tdir(x0) =

∫ ∞

0

dy1 k̂ exp(−k̂y1)

[
H(y1 − L){1}+H(L− y1)

{
ke(

x1︷ ︸︸ ︷
x0 + y1)

k̂
{0}+

(
1− ke(x1)

k̂

)
Tdir(x1)

}]
(8)

=

∫ ∞

L

dy1 k̂ exp(−k̂y1) +

∫ L

0

dy1 k̂ exp(−k̂y1)

[
ke(x1)

k̂
{0}+

(
1− ke(x1)

k̂

)
Tdir(x1)

]
(9)

= exp(−k̂L) +

∫ L

0

dy1 exp(−k̂y1)
(
k̂ − ke(x1)

)
Tdir(x1)

= exp(−k̂L)

︸ ︷︷ ︸
P0CN

+ exp(−k̂L)

∫ L

0

dy1

(
k̂ − ke(x1)

)

︸ ︷︷ ︸
P1CN

+ exp(−k̂L)

∫ L

0

dy1

(
k̂ − ke(x1)

)∫ L−y1

0

dy2

(
k̂ − ke(x2)

)

︸ ︷︷ ︸
P2CN

+ . . .

= exp(−k̂L)
L∑

n=0

∫ L

0

dy1

(
k̂ − ke(x1)

)∫ L−y1

0

dy2

(
k̂ − ke(x2)

)
...

∫ L···−yn−1

0

dyn

(
k̂ − ke(xn)

)
(10)

With the notation PiCN the probability for the null-collision algorithm to do strictly i null-collisions before fulfilling the
condition x′i > x0 + L (which means a positive contribution to the transmissivity), both approaches can be expressed

as the product of P0CN (= exp(−k̂x)) and a series of lookalike integrals.
In addition, both expressions can be further developed to prove a term by term equality (see [14] for more details),

which can be interpreted as 1
n!

(
P1CN (XNCA>x)
P0CN (XNCA>x)

)n
= PnCN (XNCA>x)

P0CN (XNCA>x)
.

(b) The null-collision approach

Figure 9: Key ideas on the transformation of the exponential’s nonlinearity of the direct transmissivity into an
infinite-dimension linear problem. Textbox (a) shows the regular approach to transforming such a non-linearity
into an infinite-dimension linear problem by making use of Taylor series. Textbox (b) shows how the ACN for
the same transmissivity can also be transformed into an infinite sum of lookalike terms. However, a term-by-term
comparison shows that both approaches do not lead to the same expressions, and therefore interpretations. The
mathematical proof that both expressions are equal can be found in [14]. The approach (in textbox (a), eq. (7))
is not implemented here for its lack of performance in terms of CPU time and convergence, compared to ACN (in
textbox (b), eq. (8)).



thickness of a line segment of length x. f can be expanded in its Taylor series around τ = 0:

p(x) = ke(x)
+∞∑

n=0

(−1)n

n!

(∫ x

0

ke(x
′)dx′

)n

= ke(x)

[
1−

∫ x

0

dx′1 ke(x
′
1) +

1

2

∫ x

0

dx′1

∫ x

0

dx′2 ke(x
′
1)ke(x

′
2)

−1

6

∫ x

0

dx′1

∫ x

0

dx′2

∫ x

0

dx′3 ke(x
′
1)ke(x

′
2)ke(x

′
3) ...

]

In Monte Carlo terms, the nonlinearity of the exponential has vanished and been replaced by an infinite

sum over the order n and an increase up to n of the dimension of the integration domain at each order.

Consequently, a Monte Carlo algorithm evaluating p(x) would simply sample a value of n and then sample

n values of x′1, x′2 ... x′n on the [0, x] interval and retain the product of the n values of ke evaluated at

x′1, x′2 ... x′n.

Of course, the purpose of a radiative-transfer Monte Carlo algorithm is seldom to evaluate p(x)

and several modifications to this initial idea are needed before reconstructing a standard null-collision

algorithm. These ideas are all detailed in Longo [14] and here we only state the most important: the

removal of the sign alternation. If the above decomposition was used as such, the Monte Carlo weight

would be positive when sampling even values of n and negative for odd values, and evaluating the average

of these positive and negative weights would require a large number of samples (the variance would be

large). To avoid this, the form of p(x) is first modified in the following way:

p(x) = ke(x) exp(−k̂x)g(k̂x− τ)

with g(u) = exp(u), where k̂ is an overestimate of ke at all locations. The function f was a negative

exponential applied to τ positive. The function g is a positive exponential applied to k̂x − τ , again

positive. When expanding g, the Monte Carlo weight remains positive for all values of n.

The fundamental point here is that the integral structure is linearized and that standard Monte Carlo

approaches can be used to evaluate it without further reformulation (see Figure 9). Since ke is now

outside of the nonlinear exponential, it can in turn be written as an integral or a discrete sum, while

double randomization continues to ensure that the algorithm is practicable.

In Galtier et al. (2016) [11], this was used to address the question of handling large spectroscopic

databases for molecular gases: it was no longer required that the contribution of all lines be first added to

construct the absorption coefficient at a given wavenumber; as this sum was shifted out of the exponential,

it could be handled by the Monte Carlo algorithm itself, by sampling line transitions and considering the

sampled line’s contribution to the local absorption only.

In Galtier et al. (2107) [9] the same approach allowed the application range of so-called “symbolic”

Monte Carlo algorithms to be significantly extended. Consider a radiative transfer problem in which a

quantityA needs to be evaluated knowing a set of field parameters π1, π2... that determine the temperature

and the optical properties. Symbolic algorithms do not only compute A for a given set of parameter



values e.g., π1 = πcomp1 , π2 = πcomp2 ..., they also evaluate the coefficients of a functional form that makes

it possible to later evaluate A for any other value of π1, π2.... This was claimed to be very difficult for

the parameters defining the absorption and scattering coefficients of a heterogeneous field because they

appear within the exponential of Beer’s law. Galtier et al. [9] made a successful use of the above-described

Taylor expansion to solve this difficulty.

5. Conclusion

In this text, ongoing and published research that makes use of the null-collision method has been

classified into three families that reflect different readings of the same concept. The similitude viewpoint

is the most intuitive one for it is related to physics, and originally opened the door to computational

efficiency in heterogeneous media. The rejection approach compares the null-collision method to a clas-

sical rejection sampling method and has proved useful in handling variance issues in the estimation of

partial derivatives.Finally, Taylor’s expansion, initially used to handle nonlinear physics, fundamentally

allows the shifting of the optical depth integral out from the nonlinear exponential. This opens up many

perspectives, for instance through the combination of transport with other physics underlying the com-

putation of the optical properties: uncertainty and sensitivity estimations can thenceforth be propagated

one step further than transport.

The other examples described in Dauchet et al. [3] go at least partially beyond radiative transfer.

One is related to the solution of Maxwell’s equations with the objective of evaluating the absorption and

scattering properties of an ensemble of complex-shape particles. Another one deals with the extension

to nonlinear transport (the Boltzmann equation) of the null-collision algorithms that are described in

the present text. Two further examples illustrate the potential of these approaches, which we believe

might be widely used in future research: the coupling of radiative transfer with other processes inside a

single Monte Carlo algorithm. This idea has already been presented in Fournier et al. [8] for coupling

radiation with other heat-transfer modes, but the coupling was linear. In Dauchet et al. [3] solar radiation

within a concentrated solar plant is coupled with a nonlinear photochemical conversion process, and, very

similarly, solar radiation within a photobioreactor is coupled with a nonlinear photosynthesis process. In

these examples, there is only a one-way coupling but it is nonlinear. Coupling radiation, conduction and

convection heat-transfers was effective, but it was in a linear context. Altogether, we do not see any

conceptual hurdle forbidding the design of Monte Carlo algorithms that would couple radiative transfer

with other physical, chemical or biological processes, including nonlinear ones.
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[9] M Galtier, M Roger, F André, and A Delmas. A symbolic approach for the identification of radiative

properties. Journal of Quantitative Spectroscopy and Radiative Transfer, 196:130–141, 2017.
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Appendix A. Expanded development of NCA to Taylor expression

Tdir(x0) =

∫ ∞

0

dy1 k̂ exp(−k̂y1)

[
H(y1 − L){1}+H(L− y1)

{
ke(

x1︷ ︸︸ ︷
x0 + y1)

k̂
{0}+

(
1− ke(x1)

k̂

)
Tdir(x1)

}]

(A.1)

=

∫ ∞

L

dy1 k̂ exp(−k̂y1) +

∫ L

0

dy1 k̂ exp(−k̂y1)

[
ke(x1)

k̂
{0}+

(
1− ke(x1)

k̂

)
Tdir(x1)

]

= exp(−k̂L) +

∫ L

0

dy1 k̂ exp(−k̂x1)
k̂ − ke(x1)

k̂
Tdir(x1)

= exp(−k̂L) +

∫ L

0

dy1 exp(−k̂y1)
(
k̂ − ke(x1)

)
Tdir(x1)

= exp(−k̂L) +

∫ L

0

dy1 exp(−k̂y1)
(
k̂ − ke(x1)

)[∫ ∞

0

dy2 k̂ exp(−k̂y2)

{
H(y1 + y2 − L){1}

+H(L− y1 − y2)

[
ke(

x2︷ ︸︸ ︷
x1 + y2)

k̂
{0}+

(
1− ke(x2)

k̂

)
Tdir(x2)

]}]

= exp(−k̂L) +

∫ L

0

dy1 exp(−k̂y1)
(
k̂ − ke(x1)

)[∫ ∞

L−y1
dy2 k̂ exp(−k̂y2)

+

∫ L−y1

0

dy2 k̂ exp(−k̂y2)

{
ke(x2)

k̂
{0}+

(
1− ke(x2)

k̂

)
Tdir(x2)

}]

= exp(−k̂L) +

∫ L

0

dy1

(
k̂ − ke(x1)

)∫ ∞

L−y1
dy2 k̂ exp(−k̂(y1 + y2))

+

∫ L

0

dy1 exp(−k̂y1)
(
k̂ − ke(x1)

)∫ L−y1

0

dy2 k̂ exp(−k̂y2)

{
ke(x2)

k̂
{0}+

(
1− ke(x2)

k̂

)
Tdir(x2)

}

= exp(−k̂L) + exp(−k̂L)

∫ L

0

dy1

(
k̂ − ke(x1)

)

+

∫ L

0

dy1 exp(−k̂y1)
(
k̂ − ke(x1)

)∫ L−y1

0

dy2 exp(−k̂y2)
(
k̂ − ke(x2)

)
Tdir(x2)

= exp(−k̂L) + exp(−k̂L)

∫ L

0

dy1

(
k̂ − ke(x1)

)

+ exp(−k̂L)

∫ L

0

dy1 exp(−k̂y1)
(
k̂ − ke(x1)

)∫ L−y1

0

dy2 exp(−k̂y2)
(
k̂ − ke(x2)

)

+

∫ L

0

dy1

(
k̂ − ke(x1)

)∫ L−y1

0

dy2

(
k̂ − ke(x2)

)∫ L−y1−y2

0

dy3

(
k̂ − ke(x3)

)
e−k̂(y1+y2+y3)Tdir(x3)

= exp(−k̂L)
L∑

n=0

∫ L

0

dy1

(
k̂ − ke(x1)

)∫ L−y1

0

dy2

(
k̂ − ke(x2)

)
...

∫ L···−yn−1

0

dyn

(
k̂ − ke(xn)

)

(A.2)
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